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Abstract
Video anomaly detection (VAD) is currently a trending research area within computer vision,
given that anomalies form a key detection objective in surveillance systems, often requiring
immediate responses. The primary challenges associated with video anomaly detection tasks
stem from the scarcity of anomaly samples and the context-dependent nature of anomaly defi-
nitions. In light of the limited availability of labeled data for training (specifically, a shortage of
labeled data for abnormalities), there has been a growing interest in semi-supervised anomaly
detection methods. These techniques work by identifying anomalies through the detection of
deviations from normal patterns. This paper provides a new perspective to researchers in the
field, by categorizing semi-supervised VAD methods according to the proxy task type they
employ to model normal data and consequently to detect anomalies. It also reviews recent
deep learning based semi-supervised VAD methods, emphasizing their common tactic of
slightly overfitting their models on normal data using a proxy task to detect anomalies. Our
goal is to help researchers develop more effective video anomaly detection methods. As the
selection of a right Deep Neural Network (DNN) plays an important role in several parts of
this task, a quick comparative review on DNNs is also included. Unlike previous surveys,
DNNs are reviewed from a spatiotemporal feature extraction viewpoint, customized for video
anomaly detection. This part of the review can help researchers select suitable networks for
different parts of their methods. The review provides a novel and deep look at existing meth-
ods and results in stating the shortcomings of these approaches, which can be a hint for future
works.
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1 Introduction

AnomalyDetection (AD) is one of the essential and crucial tasks in various applications, such
as video surveillance, quality control in production lines, security systems in data transmis-
sions, etc. Anomaly detection (a.k.a., abnormal event detection or outlier detection) involves
detecting patterns in data (image, video, etc.) that do not conform to expected behavior or the
notion of normal behavior (i.e., behavior conformed by the majority of data samples) [19]. In
video anomaly detection, the goal is to precisely locate the anomalies (spatially and tempo-
rally) inside frame sequences. Anomalies may be of different types, but they generally share
these assumptions: 1- Anomalies rarely take place (compared to normal events), so they have
a low probability of occurrence. 2- Patterns of anomalies are distinct from normals. These
assumptions are the keys to identifying anomalies, however, detecting anomalies is generally
challenging for a number of reasons:

1- There is not a limited and precise definition for abnormality. Anomaly patterns are diverse
and unrestricted and hence cannot be modeled or predicted precisely.

2- The boundary between normals and anomalies is not often precisely defined. Besides, it
is hard to classify the data instances near this boundary.

3- Abnormalities are highly contextual and their definitions can change considering the
time, place, and environment. For example, driving a car at a speed of 100 km/h is a
normal behavior on a highway but it cannot be considered as normal, in a residential
area.

4- Anomalies are rare (but diverse) and there are not enough labeled anomaly samples to
train a model.

5- It is very difficult to define a precise boundary (model) around normals, which can cover
all normal patterns and behaviors.

6- The most complex challenge would be intelligent anomalies (adversarial samples) that
attempt to resemble normal patterns.

1.1 Video Anomaly Detection (VAD)

Video anomaly detection has the same definition as mentioned above, but here we deal with
videos and we strive to detect anomalous video events, spatially and temporally. Hence,
in video, appearance and motion features are the key elements for defining anomalies and
they should be extracted effectively and analyzed jointly. For video anomaly detection, we
have the same general anomaly detection challenges (as mentioned above). There are some
additional challenges, related to video analysis, such as high dimensionality of video data,
complex scenes, occlusions, high interaction inside video contents, low resolution, etc.

1.2 Categories of video anomalies

Depending on the problem (definition and context), anomalous data can fall into one of
these three sub-categories: point anomalies, contextual (conditional) anomalies, or collective
(group) anomalies [19].

For point anomalies, the anomaly is defined and recognized, by analyzing the value of one
single data instance, individually. This value can be a scalar or a feature vector. For example,
in a video, a frame can be labeled as an anomaly, simply by detecting an unexpected object
(appearance feature vector) or by capturing a vehicle, which is moving with a speed greater
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than the allowed speed (regardless of the vehicle type or the place). In contrast, for conditional
anomalies, contextual information is required, in addition to the value. In this case, a single
factor (a variable value for instance) is not enough to make a robust and careful decision.
For example, it is expected to see cars in the street, but in their designated lines, not on the
sidewalk. As another example, although 100 km/h is an allowed speed on highways, it is
considered to be an abnormal behavior on snowy slippy roads. As noted, in these examples,
the values of the features are not individually enough and they can be interpreted differently,
in different conditions (depending on the context). Finally, in collective anomalies, groups
of data instances form the anomalies. For example, the presence of one or a few people may
be normal in the bank, but a group of one hundred people would be considered an anomaly.

Video anomalies can fall into any of the discussed categories, though the specific classi-
fication generally depends on factors such as the problem’s definition, complexity, context,
or the objective of simplifying the problem. This means that formulating a detection method
based on any of these categories can yield certain benefits or limitations. For instance, in
the case of object-centric VAD methods (discussed in Section 3.6), extracting and analyzing
objects independently from their frames enhances focus on the object, but may lead to the
omission of some contextual information, such as the object’s location within the scene.

1.3 Effective video anomaly detection

Regarding the definition, type, and challenges of the video anomaly, the following items
should be considered, to have an effective computer vision system for video anomaly detec-
tion.

1: Precisely defining normality (normal patterns).
2: Extracting effective and discriminative spatiotemporal features, customized for the given

task. This point is thoroughly examined in Section 2.
3: Considering the differences and similarities in and between normal and abnormal behav-

iors.
4: Considering environment information (e.g., illumination changes) and its variations. Our

experiments in Section 4 highlight this point.

Anomaly detectionmethods are generally divided into supervised, semi-supervised, unsu-
pervised, and weakly supervised. Semi-supervised methods have gainedmore attention since
there is not enough labeled data for anomalies (as they are rare and diverse, and it is hard to
collect enough samples to cover all anomalies). On the other hand, not only is there enough
training data for normals for semi-supervised formulation but also the definition of anoma-
lies is tied with the definition of normality (which is the base of semi-supervised VAD). This
paper primarily concentrates on providing a comprehensive review of semi-supervised VAD
approaches.

Important factors concerning semi-supervised anomaly detection that should be consid-
ered are:

1) Availability of enough labeled data for normalities to cover all of the normal patterns
[134].

2) Extracting compact and discriminative features for normal patterns, to ensure that nor-
mal features are very similar and close to each other and very distinct from features of
anomalies.

In this study, we have endeavored to take into account these considerations both in our
review of various VAD methods and in our experimental work.
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1.4 Benchmark datasets

UCSD (ped1 and ped2) [75] is one of the most popular datasets in semi-supervised video
anomaly detection, in which the normal scenes include people walking in the walkways,
while anomalies are due to the presence of unexpected objects in the scene (such as carts,
bicycles, skateboards, etc.), different motion patterns (skateboard riding, etc.) and walking in
the grass. Themain challenge of this dataset is the low resolution of the frames. The Shanghai
Tech dataset [64] is a similar dataset to UCSD, considering the definition of normals and
anomalies. However, unlike The UCSD dataset, its resolution is high and it would be easier
for systems to recognize anomalous objects, using appearance-based features. The video
clips of this dataset are captured across diverse campus scenarios. In these scenarios, the
normal instances depict individuals engaged in regular activities likewalking. Conversely, the
anomalies in the dataset arise from the presence of unfamiliar objects or abnormal activities,
such as running, chasing, jumping, and so on.

The CUHK Avenue dataset [73], UMN dataset [2] and Subway dataset [5] consider the
activities of people in crowded scenes to define normality. The Street Scene dataset [51] is
a recently proposed high-resolution dataset. Within this dataset, the definition of normality
varies depending on the objects involved, such as humans, cars, bikes, and others. To illustrate,
walking along a sidewalk is considered a normal activity for people. However, crossing the
road or engaging in unusual activities on the sidewalk, such as loitering, would be classified as
anomalies in this context. Among all mentioned datasets, the Street Scene dataset is the most
challenging, since 1) the events, inside, are highly contextual (in addition to the appearance
and motion information, the location information of the objects is essential in defining the
anomalies). Figure 1 illustrates this point. 2) The anomalies are of various types and they are
numerous. The mentioned datasets are compared in detail, in Tables 1 and 2.

It is important to note that the UCF-Crime dataset [114], originally designed and utilized
for activity recognition tasks and supervised video anomaly detection methods, can also
be employed to evaluate semi-supervised video anomaly detection approaches. This dataset
comprises videos depicting a range of criminal activities, including theft, burglary, and rob-
bery, alongwith a category for normal activities. In this context, the “Normal” category serves
as the representation of typical patterns, while other categories such as shooting or robbery
are considered anomalies.

Fig. 1 Aframe from the Street Scene dataset [51]. Anomalies in this dataset are highly contextual. For example,
the definition of anomaly is different, in these 4 positions (4 different boxes), for the same class of object. Best
viewed in color

123



Multimedia Tools and Applications (2024) 83:27761–27807 27765

Ta
bl
e
1

D
et
ai
le
d
in
fo
rm

at
io
n
on

be
nc
hm

ar
k
vi
de
o
an
om

al
y
de
te
ct
io
n
da
ta
se
ts

D
at
as
et
s

T
ra
in
in
g
fr
am

es
Te
st
fr
am

es
R
es
ol
ut
io
n

N
O
.o

f
an
om

al
ie
s

A
nn
ot
at
io
n

C
ol
or

N
o.
of

sc
en
es

Fo
rm

at

U
C
SD

-p
ed
1

6,
80

0
7,
20

0
23

8
x
15

8
54

(5
ty
pe
s)

Pi
xe
ll
ev
el
-b
in
ar
y
m
as
k

gr
ay

1
tif

U
C
SD

-p
ed
2

2,
55

0
2,
01

0
36

0
x
24

0
23

(5
ty
pe
s)

Pi
xe
ll
ev
el
-
bi
na
ry

m
as
k

gr
ay

1
tif

Sh
an
gh

ai
Te
ch

27
4,
51

5
42

,8
83

85
6
x
48

0
13

0
Pi
xe
ll
ev
el
-
bi
na
ry

m
as
k

co
lo
r

13
av
i

St
re
et
sc
en
e

56
,8
47

14
6,
41

0
12

80
x
72

0
20

5
(1
7
ty
pe
s)

Pi
xe
ll
ev
el
-
bo

un
di
ng

bo
x

co
lo
r

1
jp
g

C
U
H
K
A
ve
nu

e
15

,3
28

15
,3
24

64
0
x
36

0
47

(5
ty
pe
s)

Pi
xe
ll
ev
el
-m

as
k

co
lo
r

1
tif

U
M
N

7,
74
0
to
ta
lf
ra
m
es

−
24

0
x
32

0
11

(1
ty
pe
)

Fr
am

e
le
ve
l

co
lo
r/
gr
ay

3
av
i

Su
bw

ay
(E
nt
ra
nc
e)

18
,0
00

68
,5
35

51
2
x
38

4
66

(5
ty
pe
s)

Fr
am

e
le
ve
l

gr
ay

1
av
i,t
if

Su
bw

ay
(E
xi
t)

4,
50

0
34

,4
40

51
2
x
38

4
19

(3
ty
pe
s)

Fr
am

e
le
ve
l

gr
ay

1
av
i,t
if

U
C
F-
C
ri
m
e

1,
19

0
cl
ip
s
x
72

47
fr
am

es
81

0
cl
ip
s
x

72
47

fr
am

es
32

0
x
24

0
13

ty
pe
s

Fr
am

e
le
ve
l

co
lo
r

m
ul
tip

le
m
p4

123



27766 Multimedia Tools and Applications (2024) 83:27761–27807

Table 2 Comparing existing benchmark VAD datasets, based on their definition of anomaly and their chal-
lenges

Datasets Anomalies (some) challenges/ special points

UCSD Non-pedestrian entities in walk-
ways (bikes, skates, small carts,
wheelchair), unfamiliar motion pat-
terns (people walking across the
walkway or on the grass).

*The definition of anomaly is similar
in Ped1 and Ped2. *Different scales
for different distances. *Object types
are not always recognizable (due to
resolution and distance).

ShanghaiTech
Campus

Sudden motion, such as chasing and
brawling, unexpected objects.

*Multiple scenes with multiple view
angles. *Complex lighting conditions.

Street scene Jaywalking, loitering, a car outside
lane, car u-turn, car illegally parked,
biker on the sidewalk, etc. (17 types
of anomalies)

*The anomalies are highly contex-
tual and more challenging than other
datasets *High resolution *The high
number of anomaly types. *Presence
of minor camera motion in some
frames.

CUHK Avenue Throwing objects, loitering, running. *The size of people may change
because of the camera position and
angle *Camera shakes in some frames.

UMN Crowd escaping quickly from the
scene.

*Number of anomalies is limited (just
one anomaly type) *Thevideo is short.
*Low resolution.

Subway Moving in the wrong direction, enter-
ing without payment, loitering.

*Noisy video *There is a big timer on
the screen. *Objects at distance are not
clear.

UCF-Crime Abuse, Arrest, Arson, Assault, Road
Accident, Burglary, Explosion, Fight-
ing, Robbery, Shooting, Stealing,
Shoplifting, and Vandalism

*Real-World Complexity *Diversity
of Criminal Activities *Camera View-
point Variation

Different items are separated by asterisks (*) in the table

State-of-the-art semi-supervisedVADmethods have selected from among these datasets to
assess their proposedmethods and compare themwith other studies. It’s important to note that
the choice of the dataset for evaluating a VAD method and demonstrating the explainability
of its detections should align with the method’s formulation and objectives. In essence, the
context of the anomaly within a dataset should match the formulation and goal of the VAD
method. Studies that use inappropriate datasets may fail to contribute any valuable insights.

1.5 Other surveys

There are a few other survey articles published concerning anomaly detection. For example,
Ramachandra et al. [91] review single-view video anomaly detection methods, with spe-
cial consideration of the applicability of methods on currently available benchmark datasets.
They discuss the problem formulation in distance-based, probabilistic, and reconstruction-
based VADmethods and compare the performance of state-of-the-art methods quantitatively.
Kiran et al. [55] review the state-of-the-art Deep Learning (DL) based approaches for
anomaly detection in videos and categorize them based on the criteria of detection and
the type of network used. It reviews supervised and semi-supervised VAD methods such as
reconstruction-based and prediction-based models for anomaly detection and hence is sim-
ilar to our work, in some parts. However, the deep networks are studied mostly focusing
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on their structures and basic concepts, but not from a feature extraction viewpoint and their
compatibility with the anomaly detection task. Moreover, Our work reviews and analyzes
numerous proxy tasks used in the filed. Raghavendra et al. [90] present a general review
on DL-based anomaly detection methods and review their applicability in different fields of
application (i.e. Cyber-Intrusion Detection, Medical Anomaly Detection, Sensor Networks
Anomaly Detection, Internet Of Things (IoT) Big-data Anomaly Detection, Log-Anomaly
Detection, Video Surveillance, Industrial Damage Detection). This review is an application-
based categorization andmostly summarizes theDeepNeuralNetwork (DNN) types, used for
various applications. Chandola et al. [19] reviewMachine Learning based anomaly detection
methods (conventional Machine Learning (ML) approaches) based on the different pattern
recognition techniques used (such as clustering, classification, neural networks, etc.) and it
studies them for different applications. Moreover, this review explains the basic assumption,
advantages, computational cost, etc, for each of the techniques. Bulusu [17] has provided a
review on DL-based anomalous instance detection methods. Its focus is on discussing unin-
tentional and intentional anomalies, specifically in the context of DNNs. Shibin [108] reviews
evaluationmetrics and popular evaluation schemes, used tomeasure the performance of video
and image anomaly detection approaches. Table 3 summarizes existing surveys, based on the
subjects they have covered.

Furthermore, a number of short reviews have been published within the field. Ren et al.
[95] provide an overview of the possibilities (including use cases in public health) and
challenges associated with deep learning-based VAD models, such as reconstruction-based,
prediction-based, generative, and hybrid methods. Yadav et al. [129] summarize recent meth-
ods, primarily focusing on weakly-supervised approaches, as well as the evaluation metrics
employed. They also discuss the current trends in the field. Lastly, Roka et al. [98] delve into
a comprehensive analysis of the advantages and disadvantages of various machine-learning
and non-machine-learning techniques, with a particular emphasis on the application of GANs
in VAD.

In this study, our focus lies on semi-supervisedVideoAnomalyDetection (VAD)methods,
and we approach these works from a unique perspective - specifically, we examine how they
employ different proxy tasks to effectively model normal patterns. Unlike other studies, our
analysis assesses their performance based on their success in analyzing both motion and
appearance patterns. Additionally, we endeavor to highlight the strengths and weaknesses
of different VAD methods. Finally, diverging from other reviews that simply list different
deep neural networks used in VAD methods, we review them from a fresh angle: effective
spatio-temporal feature extraction. This perspective tailors the review of DNNs specifically
for video anomaly detection and can assist researchers in selecting the appropriate network
type for different stages of their method.

1.6 Topic and contributions

In this study:

– Deep Neural Networks are evaluated and contrasted with a focus on spatiotemporal
feature extraction and pattern learning. This fresh perspective is advantageous in video
anomaly detection. It assists researchers in choosing the most appropriate network for
various components of their methodology, taking into account the specific objectives of
their anomaly detection method.

– Recent deep learning-based semi-supervised anomaly detection methods are examined
and contrasted, with an emphasis on their strengths and weaknesses. This perspective
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can provide valuable insights for future research and assist researchers in selecting the
most suitable strategy, tailored to their specific objectives.

– Common aspects of all recent DL-based semi-supervised anomaly detection approaches
(especially, their implicitly common strategy for anomaly detection) are stated. This
provides a new, global, and integrated perspective to the field.

– Selected experiments have been performed to highlight the strengths and weaknesses of
certain video anomaly detection methods. These findings shed light on areas requiring
further research and can guide future researchers in considering these aspects in their
work.

1.7 Organization of the paper

Section 2 provides a comprehensive review of deep neural networks, specifically examining
their efficacy in spatio-temporal feature extraction. The analysis concentrates on their appro-
priateness for different components within the video anomaly detection method, such as
modeling motion or appearance. In Section 3, a general look at different anomaly detection
approaches is provided, and state-of-the-art DL-based semi-supervised anomaly detection
methods are reviewed and compared, based on how they formulate and address the problem.
Shortcomings of existing methods are also listed in this section, which can be the subject
of future work. Finally, experiments are conducted in Section 4 to clarify the shortcomings
of the existing methods. The structure of the content addressed in the survey is depicted in
Fig. 2.

2 Deep Neural Networks (DNNs)

Like most computer vision tasks, video anomaly detection is completely reliant on effective
feature extraction. Hence, it is very important to have a good understanding of DNNs feature

Fig. 2 The content addressed in the study
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extraction capabilities, as they are the key tool for feature extraction and pattern learning. In
this section, a general, yet effective, look at various deep models and their applicability for
different related sub-tasks (e.g., modeling motion and/or appearance patterns) is provided.
Their compatibility with different data types is also analyzed, aiming to assist researchers in
selecting the most suitable network for their specific needs and data characteristics.

Deep learning has brought great success to various applications and research fields, espe-
cially computer vision applications, in analyzing high-dimensional data. DNNs have been
useful for different purposes and steps in computer vision applications. More specifically, in
video anomaly detection, they have been used to:

1) Extract discriminative high-level Spatio-Temporal features, for different types of data
(such as spatial data, sequences, etc.), by using proper architectures (such as CNNs,
RNNs, etc.)

2) Learn, model, and memorize patterns and information.
3) Differentiate between normal and abnormal patterns.

Hence, it will be useful to review DNNs, considering the mentioned factors. These networks
are analyzed fromdifferent points of viewsuch as their architectures, feature extraction ability,
compatibility with different data types, and their applicability to different tasks. Additional
information about DNNs and their applications can be found in [27].

2.1 Convolutional Neural Networks (CNN)

Convolutional neural networks are special forms of feed-forward neural networks and are
composed of multiple convolutional and pooling layers, which are followed by a few Fully
Connected (FC) layers, at the end of the network. Unlike fully connected networks, the
architecture of CNNs is compatible with 2D structured inputs (such as images or any other
2D signals), which helps effectively preserve the spatial structure of inputs. Feichtenhofer
et al. [37], present a deep insight into convolutional neural networks, for video recognition
tasks. Convolutional layers are composed of multiple kernels, which are convolved with the
input image or mid-layer activation maps to produce next-level activations. Benefiting from
some features such as weight sharing mechanism, invariance to translation and local pattern
identification makes CNN a good choice for image processing.

In some networks such as Autoencoders, in order to reconstruct an image from extracted
features in the latent space, there must be up-sampling-like layers to increase the resolution
of feature maps. Transpose convolution, which is also referred to as deconvolution or up-
convolution, is a convolution-based operation, which increases the resolution of its input.
Up-sampling is a similar operation to transpose-convolution, but the main difference is that
transpose-convolution has trainable kernels.

2.1.1 Characteristics of CNNs

Videos are consecutive frames that should be processed both separately (image processing)
and also in connection to each other (considering their temporal dependencies). Convolutional
neural networks are generally the essential elements for image processing. This is due to some
important characteristics of CNNs, which make image processing more effective, efficient
and even less challenging. Some of these characteristics are listed as below:

1: Reduced number of parameters: Thanks to local connectivity and shared weights, CNNs
have much fewer parameters, compared to Fully Connected Networks, and hence are
easier to train.
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2: Shift/Translation invariance: this means that by any shift in input, the result does not
change (because of convolutional and pooling layers).

3: Transfer Learning: The transfer Learning possibility is one of the strengths of CNNs, in
which pre-trained networks are used for feature extraction, in other similar datasets.
Nazare et al. [83] study the quality of features, extracted by pre-trained CNNs, for
anomaly detection tasks. Ionescu et al. [49] and Aburakhia et al. [4] are good exam-
ples of the application of pre-trained CNNs for extracting appearance features to detect
anomalies in videos.

4: Convolutional neural networks (CNNs) are suitable for processing input data that has an
inherent grid-like topology.

5: CNNs extract rich features at different semantic levels.
6: More filters capture more features but increase the computational cost [24].

2.1.2 CNNs from a feature extraction point of view

As mentioned in the previous subsection, CNNs render image processing (and hence video
processing) more efficiently and effectively, due to their ability to exploit spatial features.
Therefore they are the prime element for spatial feature extraction from frames. Here are
some important aspects to consider regarding CNNs from the feature extraction viewpoint:

1: Experiments show that features in the first layers are low-level and local. For example,
filters in the first layer are edge detectors and color filters. The edge detectors are at
different angles and allow the network to construct more complex features in the next
layers [83].

2: Layers towards the end of the network learn high-level combinations of the features
learned in the earlier layers (see Fig. 3).

3: Although the deeper layers have complex and higher-level features and are usually used
as feature representation, in order to have a better performance for a special task, it is the
target task that precisely defines the layer from which the features should be extracted.
For example, in some tasks, such as iris recognition, the recognition accuracy drops after
special layers, because the network captures only the abstract and high-level information
and it does not distinguish much between diverse iris patterns [8].

4: Reducing the kernel size can improve the capture of smaller details in the picture while
missing the global information in the frame and may result in greater confusion. Larger

Fig. 3 Different levels of features extracted in CNNs. In this figure, different levels of features are extracted for
human face pictures. Left: extracted low-level features are generic and focus on edges. Middle: CNN focuses
on different parts of the object at mid-levels. Right: deeper layers provide a global look at objects, extracting
high-level features. This figure originally appeared in [60]

123



27772 Multimedia Tools and Applications (2024) 83:27761–27807

kernels, on the other hand, will lead to a global look at the image, while missing the
details [53]. This is extremely important when there are objects at different distances
from the camera (different scales). Hence, the filter size should be selected considering
the task, dataset, and application. Some works, such as [84], utilize inception modules
in early layers, to automatically select the proper kernel size.

5: Each kernel is in charge of learning special features from the image. For example, con-
volutional kernels are capable of capturing features such as edge, line, texture, shape,
intensity, color, etc. [105].

6: Earlier layers in a CNN concentrate on generic features (independent of the task), while
deeper layers extract features more specific to the problem and the goal.

2.1.3 CNNs for spatiotemporal feature extraction

As explained before, CNNs are excellent and powerful in feature extraction from images.
When it comes to consecutive frames (video clips or other 3D tensors), CNNs are not, by
nature, suitable for the capture of temporal patterns [77], since they consider single frames
as input. Moreover, 2D convolutional kernels map each receptive field (2D or 3D) to one
channel (note that, kernel depth in CNNs is equal to the number of input channels). In order
to allow the network to be aware of temporal variations, the use of a cuboid of frames (instead
of a single frame), as the input, has been proposed. However, the first convolution destroys
the temporal structure and does not show promising results in capturing temporal patterns
[117].

2.2 3D Convolutional networks (C3D)

In C3D, 3D kernels (with sizes smaller than the width, height, and depth of frame sequences)
are applied on consecutive frames and the output is a 3D tensor, unlike the 2D networks
which produce a one-channel output for either an image input or sequence of frames (see
Fig. 4). The C3D network considers spatial information in the first few frames and it starts
to consider the temporal information in the following frames [116].

Fig. 4 Different structures in 2D and 3D convolutions and their different output feature maps [119]. (a): in a
2D CNN, the output feature map is a single channel tensor. (b): in a 3D CNN the output is a 3D tensor
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2.2.1 Characteristics of C3Ds

The architecture of C3Ds seems to be a good choice for spatiotemporal feature extraction.
However, there are some points about C3Ds that should be considered for feature extraction.

1- C3D achieves better results in video analyzing tasks (such as video classification and
video retrieval), compared to 2D CNN, as it captures both spatial and temporal informa-
tion [18].

2: C3D requires a high number of parameters, thus it is computationally expensive and
difficult to train, which makes it prone to overfitting [52].

3- Modeling the long sequences is not addressed in C3D, because it leads to a huge com-
putational cost.

4- C3D does not take advantage of Transfer Learning as effectively as 2D CNNs.

2.3 Recurrent Neural Networks (RNNs)

Basic feed-forward networks (such as CNNs) accept a fixed-sized input and produce fixed-
sized outputs. This is one of the shortcomings of the feed-forward networks, which are
therefore not applicable for some applications, such as language translating or frame cap-
tioning, in which the length of the input sentence (or image) and its translation might be
different. This problem is addressed by recurrent neural networks. Moreover, unlike a feed-
forward network, in which data pass through layers once, in RNNs, they cycle in a loop and
touch neurons several times. In this way, RNNs not only consider the current input but also
care about its temporal neighbors (past or future frames). More importantly, as Recurrent
Neural Networks feature inner loops, they allow the information to persist [112].

2.3.1 Characteristics of RNNs

Recurrent neural networks are, by nature, compatible with sequences [36]. Hence they are
widely used for temporal feature extraction. However, regarding the models’ abilities and
the target task, some points should be considered regarding RNNs, as listed below:

1: As they benefit both new input data and the previous hidden state, as the input to the
network, they are able to model sequences and to extract temporal information.

2: Thanks to the presence of the hidden state, they benefit from an internal memory [29].
3: This model is not limited to fixed input and output sizes and hence is appropriate for

several tasks such as video captioning, translating, etc.
4: RNNs have difficulties learning long-term dependencies, because of vanishing and

exploding gradients [86].

2.4 Long Short-TermMemory Units (LSTMs)

LSTM is a special type of RNN, designed to avoid the long-term dependency problem.
LSTMs are gated memory blocks, which include 3 special gates in their chain-like structure,
and in addition to hidden states (as is in RNNs), they have cell states. Carefully regulated by
gates, LSTM has the ability to remove or add more information to the cell states. Gates, in
LSTM, are composed of a sigmoid layer and a pointwise multiplication operation. Since the
sigmoid function produces outputs between zero and one, it defines how much information
should be deleted or passed [79].
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Like every type of neural network, layer size (memory units, here in LSTM) and network
depth are the hyper-parameters to choose. Generally, deeper models show better performance
in extracting richer features, compared to shallow models, but using much deeper models
does not always guarantee the best performance, for all types of applications and tasks.

2.4.1 Characteristics of LSTMs

LSTM has some extra advantages compared to simple RNNs in modeling sequences (for
example an inherent memory), which makes it the first choice for sequences, in most cases.
However, other practical points, as listed below, should be considered about LSTMs.

1: LSTMs handle exploding and vanishing gradients effectively, thus they are able to model
longer sequences, compared to the basicRNNstructure, although this length also depends
on the nature of the sequence data and its inner correlation [24].

2: Although LSTMs have no difficulty in modeling long dependencies, they lead to high
computational complexity, when modeling long sequences.

3: LSTM is the basic element of temporal attention mechanisms.
4: LSTMs have the ability to learn the context required for making predictions in sequence

data, therefore they are widely used for forecasting tasks [58].

2.4.2 C3D versus LSTMs, in modeling temporal information

Although both 3D convolutional networks and recurrent neural networks consider sequences
and model temporal information, the nature of patterns, captured by these models, are quite
different. In LSTMs, based on the task, the network can be encouraged to select meaningful
time dependencies and forget unnecessary items.Moreover, the network follows the evolution
between sequences. In C3Ds, the network attempts to memorize the patterns inside the
training cuboid (frame sequences) without explicitly emphasizing the order of the frames.
Moreover, the extracted patterns in C3Ds are more generic [116].

2.4.3 Special points regarding ConvLSTM

LSTMs in their basic form are not suitable for 2D spatially structured data. Hence they are
extended to ConvLSTM, in which multiplications are replaced with convolutions.

1: ConvLSTM shows great performance in extraction of spatiotemporal features, by taking
advantage of its two main elements: i- LSTM to capture long temporal dependency and
ii- Convolution for structured spatial information.

2: Due to convolution, ConvLSTM is capable of capturing local spatial information and
suitable for spatiotemporal localization tasks [92].

3: In LSTM, convolutional kernel size of input-to-input connection, defines the resolution
of the feature map produced from the input. In addition, the filter size of hidden-to-
hidden connections defines the collective information from previous steps. Moreover,
larger transitional kernels capture faster motions, while smaller kernels perceive slower
ones [77].

2.4.4 GRU versus LSTM

The Gated Recurrent Network (GRU) is another improved version of the standard recurrent
neural network to solve the vanishing gradient problem of a standard RNN. It is a gated
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memory block similar to LSTM, with a different number of gates (3 gates in LSTM and 2 in
GRU). Chung et al. [25] evaluate the performance of these networks on sequence modeling.

1: GRU has a simpler architecture compared to LSTM and its training is faster [124].
2: In theory, LSTMs can learn longer sequences than GRUs and they perform better for

longer sequences.
3: In general, the relative performance of each method depends on the data and the appli-

cation [25].
4: Unlike GRU, which exposes its full content (seen or used content) without any control,

the amount of the memory content is controlled by the output gate, in LSTM [25, 78].

LSTM and GRU have gained significant popularity in prediction tasks. Given that future
frame/video prediction serves as a common proxy task in video anomaly detection, these
networks are regarded as essential tools for such tasks. However, choosing between LSTM
and GRU depends on factors such as the complexity of the data and the specific requirements
of the task at hand.

2.5 Autoencoders

A deep Autoencoder is an unsupervised learning network architecture (learning from unla-
beled training samples) composed of two main sections, encoder, and decoder, which aims to
map input data to a latent space, in order to extract deep features and then reconstruct the input
using extracted features. In other words, it attempts to learn an approximation to the identity
function, so that the output would be similar to the input. Recently, autoencoders are widely
used in anomaly detection (especially video anomaly detection). This is because of their abil-
ity in unsupervised representation learning. Here are some points regarding Autoencoders
(AEs), which should be considered by researchers, in video anomaly detection:

1: They extract effective representations from data, in an unsupervised approach.
2: Autoencoders are effectively used for noise removal [42].
3: Autoencoders are effectively used for dimensionality reduction similar to PCA. The

difference is that PCA is restricted to a linear map, while autoencoders can have nonlinear
encoders/decoders [9].

4: The basic Autoencoder consists of fully connected layers and is therefore not only com-
putationally expensive but also unsuitable for image processing, as it flattens the image
to a vector and destroys the spatial structure (this problem is addressed by convolutional
Autoencoders).

5: A baseline Autoencoder is not complex enough to learn complex information (such
as image content), and thus generally attempts to memorize and average the data (this
problem is addressed, partially, by Variational Autoencoders).

6: The fundamental problem with Autoencoders, for generation tasks, is that their latent
space, may not be continuous, or allow easy interpolation [57].

2.5.1 Shortcomings of deep auto-encoders

As mentioned before, AEs are appealing tools for anomaly detection researchers. However,
they sometimes do not produce the desired results, mostly due to these facts:

1: They are prone to vanishing gradients.
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2: They reproduce a lower-quality version of the input image, without explicitly considering
its high-level contents. Pihlgren et al. [88] introduces perceptual loss instead of element-
wise loss to alleviate this shortcoming.

3: Autoencoders confront information imbalance in each layer [64]. This challenge is
addressed using U-Nets (see Section 2.8).

4: Autoencoders are unsupervised feature extractors and are not aware of the classes of the
objects inside the image.

5: Autoencoders suffer from memorization and their reconstructed images are blurry [13].
GANs address this challenge of Autoencoders [13].

2.6 Variational Autoencoders (VAE)

Variational AE (VAE) is a generative variant of classical AEs, which assumes a probability
distribution (such as a Gaussian distribution) for the source input data and it attempts to
capture the parameters of the distribution, through an encoding-decoding process. In VAE,
not only does the network attempt to reconstruct an image but the network is also asked to
consider the same distribution, for the generation of new samples, as it was in the training
dataset. Important characteristics of VAEs can be listed as below:

1- VAEs produce a lower-dimensional representation of the input data (like classical AEs).
2- By design, VAEs have continuous latent spaces, which makes random sampling and also

interpolation easier [106].

2.7 Generative Adversarial Network (GAN)

GANs are a set of generative networks, which are able to generate new content. In Generative
Adversarial Networks (GANs), the aim is to produce new data (such as images) which look
real. In fact, this goal is a min-max game between a Generator (G) and a Discriminator (D),
so that D tries to recognize real and unreal images, while G tries to produce images that
look real. This learning architecture gives these networks a good ability, suitable for frame
processing tasks, some of which are listed below:

1- GANs allow CNN to learn an implicit distribution from data patterns [84].
2- GAN has good applicability for video prediction [64].
3- GANs are used to produce data for prediction applications, in which not enough training

data is available [101].
4- GANs produce sharper images compared to VAEs [111].

2.7.1 Main challenges of GANs

Despite GANs special abilities in feature extraction and frame processing, there are some
challenges, specific to these networks, which sometimes lead to a reduction in their use. The
most noticeable challenges are:

1- They require a precise selection of hyper-parameters.
2- They need multiple initializations [23].
3- It is difficult to train adversarial methods, such as GANs.
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2.8 U-Net

Autoencoders suffer from vanishing gradients and a lack of information symmetry in their
architectures. To tackle this problem, U-Net is proposed, which adds a shortcut between a
high-level layer and a low-level layer with the same resolution [99]. The difference between
U-Net and AE, in architecture, is illustrated in Fig. 5.

2.9 Transformers

The attention mechanism has enhanced the performance of deep neural networks in var-
ious applications, including natural language processing and machine translation [34, 71],
segmentation [66, 74], and other translation-related tasks. Drawing inspiration from the capa-
bilities and successes of attention mechanisms, the Transformer architecture was introduced.
A transformer is a deep learning based model that adopts the mechanism of self-attention to
solve sequence-to-sequence tasks (e.g., sequence transduction, or neuralmachine translation)
while handling long-range dependencies with ease. This model was primarily proposed in
[121] for machine translation. This model later was extended to computer vision applications
(e.g., vision transformer [32].). This model is composed of two parts (Encoder, Decoder);
however, it is different from previous RNN-based sequence-to-sequence models. One main
difference is that the input sequence can be passed parallelly to GPU so that the speed of
training and inference can be increased. This model is also based on the multi-headed atten-
tion layer and overcomes the vanishing gradient issue easily. Transformers have recently
gained more interest in video anomaly detection. Some of the related noticeable works are
[59, 133].

Accurate video anomaly detection necessitates effective and precise modeling of both
appearance and motion patterns. In this section, we thoroughly analyzed various neural
networks, evaluating their capabilities in extracting and modeling spatio-temporal features.
Additionally, we conducted comparisons between different networks, considering factors
such as feature extraction effectiveness, speed, computational cost, and more. The topics
covered in this section aim to assist researchers in selecting the most suitable network for
their specific method and goals. Furthermore, they provide valuable insights into potential
challenges and shortcomings that researchers may encounter in their methods.

3 Anomaly detectionmethods

This section provides a comprehensive review of anomaly detection methods from two dis-
tinct perspectives. Firstly, the methods are examined based on their approach to jointly

Fig. 5 Illustration of similarity and difference, in architectures, between U-Net (A) and Conv-AE (B). Figures
A and B originally appeared in [1] and [46], respectively
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extracting spatiotemporal features. This analysis offers researchers a comprehensive under-
standing of the architectural design of these methods, specifically how they model both
appearance and motion features.

Subsequently, different methods are studied with a focus on how they formulate the task
and approach the problem. This formulation is based on the proxy task they employ for
modeling normal patterns. By reviewing these approaches, the capability and limitations of
each proxy task in capturing the necessary features (such as object class, motion, color, etc.)
for video anomaly detection are highlighted.

3.1 Methods based on Spatio-temporal (ST) feature extraction

Avideo is a sequence of frames, which are evolved over time. Therefore, the twomain impor-
tant defining attributes are appearance and motion, from which video analysis is performed.
Appearance is the first attribute that attracts the attention of the analyzers. Anomalies in
videos can be due to the presence of unknown (previously unseen) objects, which can be
defined by appearance-based features. However, this is not the only factor for the definition
or creation of anomalies in videos. In a variety of cases, it is the motion, which defines the
anomaly. For example, an irregular speed of a car inside a street can determine an anomaly
taking place in that scene. Similar to appearance, motion features should be analyzed and
modeled both locally and globally, in order to gain a better understanding of video content.
Motion patterns can be represented to the network directly by motion-based features (such
as optical flow) or they can be captured by sequence-aware networks (such as the RNNs).
The importance of considering motion is that most of the anomalies, in the real world, take
placewithmoving objects. Humans consider and analyze both appearance andmotion factors
jointly and interactively, because, generally, motion and appearance are not always indepen-
dent, but each one can also be a support to determine the other. For example, the motion
pattern of an object (let us assume a snake here) can be a support for its recognition, in
addition to its appearance features (such as shape, color, etc.). In video anomaly detection,
understanding the Spatiotemporal context of a video is essential as it provides information
about the evolution of the appearance of an event in a video [59]. Various methods and mod-
els are proposed for spatiotemporal feature extraction, which were studied in the previous
section (literature on deep learning based models). However, from another viewpoint (the
process of jointly extracting motion and appearance features), methods can be categorized
into the following categories:

A- Single network-Single path methods: in this category (e.g., [63, 102, 115]), spatiotem-
poral features are extracted through a single path (single branch) process, by a single
model. The most noticeable type of model in this category is C3D, which is able to
extract rich spatiotemporal features for different applications, especially action recog-
nition. However, a few important points should be considered regarding this model, as
listed below:

– C3Ds are difficult to train (high computational cost) and require an enormous amount
of training data [21].

– C3Ds capture localmotionpatterns [10].C3Dsdemonstrate effectiveness inmodeling
short-term motions. However, they encounter challenges when it comes to modeling
long-termmotion patterns, which is crucial in the context of video anomaly detection.

B- Two streammethods: In thesemethods (e.g., [110, 130]),motion and appearance aremod-
eled separately, using two separate but usually identical branches. Generally, the input of
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one of the branches is a raw frame and this branch is in charge of modeling appearance,
through a frame reconstruction, prediction task, etc. In a complementary manner, the
second branch attempts to capture and model motion patterns. This is generally achieved
by receiving an explicitly-extracted motion feature (e.g., optical flowmap) and modeling
it through a reconstruction task [128], or by getting a raw frame and learning the asso-
ciated motion patterns by predicting its corresponding optical flow map or optical flow
magnitude map [11, 12] (i.e., through an image translation task). The two branches of the
model are usually optimized jointly, which implicitly encourages the model to learn the
features of both types in an integrated way. To better integrate motion and appearance,
some methods such as [38], propose to add cross-branch connections, to transfer more
information between the branches. Nguyen et al. [84] use a similar strategy, to jointly
extract Spatio-Temporal features. In their approach, two identical but separate branches
(i.e, decoders, in this example) decode the extracted features of a frame (produced by
a common encoder), consecutively to reconstruct the input frame, and to estimate the
optical flow. In the inference stage, they compute the reconstruction/prediction error of
each branch in order to detect anomalies.

C- Hybrid methods: in methods of this category (such as [24, 107, 122]), generally multiple
networks (each specialized in extracting specific features, such as motion and appear-
ance) are connected in order to extract spatiotemporal features. As numerous research
studies have proved, CNNs are powerful in image analysis and, on the other hand, RNN
families are, by nature, suitable for analyzing video sequences. Hence several methods
with different architectures have connected these two types of networks to extract suitable
spatiotemporal features for anomaly detection.

It is worth mentioning that several fusion approaches, in several levels such as pixel-
level (concatenation before ST feature extraction), feature-level (fusion of features before
decisionmaking), and score-level (fusion of anomaly scores extracted fromdifferent features)
have been proposed to combine effects of different features, for a better anomaly detection
[128]. The selection of the fusion type can impact the method’s speed, complexity, and
performance due to its unique characteristics. For instance, employing input-level and feature-
level fusion can decrease the overall feature size, but integrating features of varying types and
dimensions may present challenges [62]. Conversely, score-level fusion circumvents feature
incompatibilities, albeit it may introduce high computational complexity and storage load
[61].

3.2 Common approach of DL-based semi-supervisedVADmethods

Various DL-based semi-supervised VAD methods have been proposed, which use different
strategies for anomaly detection. They have approached the problem by performing various
proxy-tasks (reconstruction, segmentation, prediction, etc.), which although are not of direct
interest [87] and seem to be apparently unrelated to the task of anomaly detection, are very
effective in video anomaly detection. All of these different methods, as a self-supervised task,
mine different features [35], however, they all exploit the fact that all machine learning (ML)
methods generally achieve the desired results for the data types on which they are trained
(or at least for similar enough data types). In other words, ML methods do not guarantee
to produce the desired results for test data, which is new and different from the training
set. In the following sections, the methods are all based on the same general approach: they
train a DNN (or any DL-based approach), on only normal data (the rule of semi-supervised
methods), to perform a specific task. Hence, they produce the desired result for the normal
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test data (that is, they detect no anomaly), since they have been previously seen during the
training. The results would not be as desired for abnormal test data (that is, they detect an
anomaly). The main challenge is to specify the desired scope of the task and select training
and testing data accordingly. This way, DNNs would learn and use proper features of the
video data and thus discriminate well between normals and anomalies at the test time. The
following sections review important methods using this common approach, describing their
strategies, their feature extraction procedure, and their strengths and weaknesses.

3.3 Reconstruction-basedmethods

In reconstruction-based AD methods, it is assumed that the models, trained by normal data,
are able to reconstruct the normal test data accurately (i.e., with low reconstruction error),
while the reconstruction error would be comparatively high for abnormal test data, which
has not been observed by the model, during the training [44]. This methodology can be
implemented in different ways. In various research studies, deep Auto-encoder networks
(especially Conv-AE) have been used to learn to reconstruct normal data. AEs perform
well in the reconstruction of the data, on which they have been trained. They encode the
input visual data (a single frame, or a sequence of frames) into the latent space through
an encoder and reconstruct the input data through a decoding pathway. For anomalies (the
data samples, not seen in training), it is expected that the reconstruction error would be
comparatively high [44]. An anomaly score (or vice versa, a regularity score) is normally
calculated from the reconstruction error to indicate the anomalies. Figure 6 illustrates the
process of reconstruction-based video anomaly detection.

One of the first and most noticeable works in this field is proposed by Hasan et al. [44],
which uses a Conv-AE to extract spatiotemporal features from video clips and calculate the
anomaly score from the reconstruction error. Although it uses a group of consecutive frames

Fig. 6 Reconstruction-based video anomaly detection, using AEs. This figure originally appeared in [104]
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as input, instead of a single frame, to enforce themodel to capture temporal dependencies, the
2D convolution destroys the temporal information, after the first convolution layer [118]. This
issue has been addressed in [24], which proposes a Conv-LSTM-AE to learn spatiotemporal
features. The model extracts the spatial features of the frames, by a Conv-encoder, and
passes them to a LSTM encoder to track temporal variations; the output goes through a
reverse (temporal and spatial) decoder to reconstruct the frames group. Conv-LSTM-AE has
also been used in [70] for anomaly detection. In other similar works such as [23] and [137] a
similar approach has been used for anomaly detection; however, they model normal data by
minimizing the difference between the latent spaces of the input frame and the reconstructed
frame, in addition to minimizing the reconstruction error of the frame itself. The work in [33]
proposed to reconstruct the optical flow map of each frame, in order to consider the motion
and to detect the anomalies in video. Moreover, some other researchers have proposed the
concatenation of the appearance (frame) and motion data (optical flow), as an input, for the
purpose of reconstruction. Nguyen and Meunier [84] proposed to use two different branches
formotion and appearance, in order to capture the correspondence between them and to detect
the anomalies more effectively. In this way, one branch is in charge of frame reconstruction
(capturing spatial dependency) and the other one attempts to estimate the optical flowmap, to
capture motion dependency, customized for the task. Different models that have been applied
for representation learning or reconstruction-based anomaly detection are as follows: PCA
[72], classic AE [44], Conv-AE [44], Contractive-AE [96], Conv-LSTM-AE [24, 77, 122],
Hybrid Spatio-Temporal Autoencoder [125], Denoising AEs [82] and VAE [127], GRU-AE
[81]. Some of the other examples in this field are [3, 45, 69, 80, 97, 128]. Manassés et al.
[76] study the deep convolutional auto-encoders for anomaly detection in videos.

3.3.1 Challenges of auto-encoders in reconstruction-based VAD

As can be noticed from the references mentioned above, AEs are the main tool for
reconstruction-based video anomaly detection methods. Below, some challenges and short-
comings of AEs for VAD are listed.

1: AEs have a high learning capacity and a good power of generalization. Hence, the
assumption that anomalies have a high reconstruction error is not always true [64, 136].
Researchers in [59, 68] believe that this generalization issue is because AEs learn an
identity map between inputs and outputs. These works leveraged prediction proxy-task
for anomaly detection to handle the mentioned challenge.

2: When an AE is trained to minimize the Mean Square Error (MSE) for frame reconstruc-
tion, the network actually learns the average of previously seen training data.

3: Anomalies occurring in small regions can be neglected, because of the adding and aver-
aging process for the entire frame, which may produce a low reconstruction error for
anomalies in small regions. Nguyen and Meunier [84] proposes using small patches
instead of the entire frame in its score estimation scheme, to partially handle this chal-
lenge.

3.4 Prediction-basedmethods

Prediction, generally, means the estimation of the masked frame(s), based on previously
seen frames. Prediction-based VAD methods cast anomalous events as unexpected events
in future frames [120]. In prediction-based anomaly detection methods, it is assumed that
predictive models, which are trained on normal sequences (previously seen frames), can
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precisely predict the masked frame(s) (usually future frames) in normal test sequences but
their prediction error would be comparatively high in abnormal test sequences. Thus, in video
anomaly detection, video frames are considered as sequences and the goal is learning the
normal patterns (appearance and motion), in consecutive normal frames and predicting the
masked frames, based on the learned patterns. The prediction error can be easily calculated by
measuring the difference between real and predicted frames or by calculating the conditional
probability of a new observation based on the previous samples [55]. Different constraints
have been used for anomaly detection, in prediction-based frameworks, such as appearance
(gradient and intensity) and motion [64]. Experiments in [64] show that predicted frames for
abnormal samples are unclear and usually with color distortion and it is claimed that among
several networks, GANs show better results for video prediction. Wang et al. [123] report
that feature extraction, through the prediction process, has high quality and it is more suitable
for video analyzing applications since accurate prediction highly depends on high-quality
features. It is worth mentioning that, in prediction-based methods, the input and output are
not necessarily of the same type or size and they can be different, in different approaches.
For example, [100] takes advantage of two cross-domain generators, in which one learns to
predict the past gradients from appearance and the other learns the reverse, for local anomaly
detection. Prediction-based video anomaly detection strategy has been utilized in numerous
research studies such as: [22, 64, 67, 68, 94, 107, 131].

3.4.1 Generative models for reconstruction and prediction

Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs) are also
widely used in the reconstruction and especially prediction-based anomalydetectionmethods.
The main difference between these methods and previously introduced approaches is that
these methods consider the distribution similarity, in addition to pixel-wise similarity. Some
of the noticeableADworks, based onGANs, include the researches conducted by Zenati et al.
[135], Kimura et al. [54], Akcay et al. [6], Ravanbakhsh et al. [93], Akcay et al. [7], Sabokrou
et al. [103], Gherbi et al. [41] and Ganokratanaa et al. [39]. Zenati et al. [47] and Donahue
et al. [30] use a biGAN to map a latent space to an image and use it for anomaly detection.
Gans have promoted the performance for variousADapproaches, especially prediction-based
approaches. However, as GANsmay show instability during training, their usage for anomaly
detection may be limited. Hence, in order to address this problem, in addition to comparing
frames, extracted features are also compared to calculate the loss [6]. Galeone et al. [28],
Rani, and Sumathi [15] have, comprehensively, studied GANs for anomaly detection.

3.4.2 Prediction versus reconstruction

A prediction-based method attempts to obtain the most information from the most recent
frames, as they are more relevant to the future frame [77, 78]. Hence, predictive methods lose
a lot of information about the past and their generic (general) predictionwould be less precise.
Moreover, Pathak et al. [87] declare that as nearby frames are visually similar (considering
the texture and the color), they might focus on learning low-level features instead of high-
level semantic features. Reconstruction, on the other hand, attempts to learn an obvious
representation from data [77] and in fact, it memorizes the input [55] and considers all
frames almost equally. In this way, it neglects the temporal evaluation between frames. To
address the mentioned challenges, a composite approach has been proposed to benefit from
the advantages of bothmethods [81, 113, 132]. For example, the proposedLSTM-AEnetwork
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in [113] (Fig. 7) is composed of two branches, one for reconstruction and one for prediction.
These branches have an encoder in common but with two separate decoders. Some other
examples of composite VAD methods are [65, 78].

One of the challenging aspects of both prediction-based or reconstruction-based methods
is that even slight lighting variations may cause a high pixel-based loss, which can be decep-
tive. Moreover, these approaches generally train the model (reconstruction or prediction)
from scratch, in an unsupervised manner, and the entire frame or only proposal patches are
reconstructed or predicted. Hence, these approaches are not aware of the class of the objects
in the frames. To address these challenges, researchers such as Bergmann et al. [14] use a
pre-trained network (trained on natural images) as the encoder. Producing the latent space in
this way, helps the network leverage prior knowledge about the nature of the natural images
and tackle the issue to some extent.

3.5 Memorization-basedmethods

One of the main challenges with previous methods is that DNNs (and especially CNNs)
are so powerful in generalization, that they may reconstruct the abnormal frames too well.
Hence, the assumption that the reconstruction/prediction error is comparatively high for

Fig. 7 Combination of frame reconstruction and prediction for anomaly detection in video [113]
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abnormal test frames is not always true. In order to address this problem and reduce the
representation power of DNNs, memorization-based anomaly detection methods have been
proposed. These methods use the encoding of the input frame as a query to select the most
relevant saved items, from the recorded prototypical patterns of normal data, to reconstruct
the input frame. Consequently, the previously recorded items are decoded and selected from
memory, instead of using the output of the encoder directly. For example, Gong et al. [43]
proposedMemAE (Memory augmentedAutoEncoder) which learns and updates thememory
contents, during training, to represent the prototypical elements of the normal data. In the
test phase, the memory is fixed and reconstruction is performed using items selected from
the memory (see Fig. 8). Moreover, Park et al. [85] propose a similar strategy for anomaly
detection and reconstruct or predict a video framewith a combination of items in thememory,
rather than using CNN features directly from an encoder. In this work, items in the memory
record prototypical patterns of normal data and the diversity of normal patterns is considered
explicitly, since the authors believe that a single prototypical feature is not enough to represent
various patterns of normal data. Other examples of memory-based approaches can be found
in [65, 107, 122].

3.6 Object-centric basedmethods

As mentioned before, one of the main shortcomings of the methods based on frame recon-
struction or prediction is that they do not explicitly (and hence effectively) consider the
objects. Object-centric approaches concentrate on detected objects (detected by state-of-the-
art object detectors) and study their appearance and motion features to make decisions. The
research conducted by Ionescu et al. [48] is one of the recent works on video anomaly detec-
tion that detects objects of interest to accomplish anomaly detection. Moreover, Doshi and
Yilmaz [31] propose an object-centric approach, in which objects of interest in each frame
are detected by a pre-trained YOLOv3 object detector and consequently, a feature vector
containing appearance, motion, and location information is extracted to learn normal behav-
iors. Unlike Ionescu et al. [48], this method considers location information by containing a
summary of location information in its provided feature vector. Other researchers have also
detected anomalies by detection of objects [16, 50, 109, 126]. The advantages and challenges
of object-centric based methods are:

Fig. 8 Illustration of the memorization-based anomaly detection [43]
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– The objects are explicitly considered, which is helpful in video understanding.
– The anomalies are easily located inside the frame.
– The performance of the method completely relies on the object detection part.
– Information regarding the object size and the context (such as the location information)
is removed as these methods crop and resize the detected objects (Fig. 9).

3.7 Segmentation-basedmethods

Krzysztof et al. [56] perform the anomaly detection task in a different way. The proposed
idea arises from the fact that a semantic segmentation approach can segment the objects
properly if it has observed them in the training phase and it would show worse results for
unseen objects. This fact can be used for image anomaly detection. The researchers propose
to synthesize the image from produced semantic segmentation maps and the reconstructed
images help to define and locate the novel objects. The positive point of this method is object-
type awareness, however, this method is proposed for images, not videos. Another research
[26] proposes a similar anomaly detection approach, based on foreground segmentation and
detects unexpected objects (i.e., objects not seen in the training samples). To extend this
idea to video anomaly detection, inspired by [56], Mohammad et al. proposed a two-stream
segmentation-based VAD method [11], which leverages knowledge distillation to propose
an object-class aware video anomaly detection method. In the appearance stream of their
proposed method, a teacher-student strategy (Mask-RCNN as teacher and resnet-UNet as
student) is proposed. The student network learns semantic segmentation with the annotations
generated by the teacher for each input frame. In the inference stage, the trained student
fails to semantically segment abnormal objects precisely and the error of segmentation is
used to calculate the anomaly score. Mohammad et al. also proposed a similar method in

Fig. 9 An object-centric video anomaly detection method, proposed in [48]
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[12] to predict the semantic segmentation of the future frames by observing the previous two
consecutive frames. This helps the network detect sudden motions in addition to detecting
unexpected objects via a single task (i.e., predicting the semantic segmentation map of the
future frame) (Fig. 10).

3.8 Multi-task learning based ADmethods

Various proxy-tasks have been proposed by researchers for anomaly detection. However,
approaching anomaly detection problem through a single proxy task is suboptimal since a sin-
gle proxy-task is not able to detect all anomalies and is not well alignedwith the problem [40].
Hence, researchers have recently proposed to usemultiple proxy tasks in onemethod to cover
more anomalies. One of the outstanding multi-task learning based VADmethods is proposed
by Georgescu et al. in [40]. This method benefits from 4 self-supervised proxy-tasks such
as (i)discrimination of forward/backward motions, (ii)discrimination of objects in consec-
utive/intermittent frames, (iii)object-specific appearance reconstruction, and (vi)knowledge
distillation tasks for effective anomaly detection. Mohammad et al. [12] proposed another
multi-task learning based method with different proxy tasks. In this work, they combine the
abilities of future frame prediction task and semantic segmentation task to the novel task of
future semantic segmentationmap prediction, to detect appearance andmotion anomalies via
a single task. He also proposes a knowledge distillation task in another stream, to detect other
types of motion anomalies. In this task, the student learns to map input video frames to their
corresponding optical flow magnitude maps (produced by the optical flow extractor method
as a teacher). In this formulation, the network learns to associate each object with its normal
motion and finds the anomalies by calculating the differences between the estimations of
the teacher and the student network. Generally, it is assumed that adding more proxy-tasks

Fig. 10 Anomaly detection, based on semantic segmentation [56]. a: input frame. b: extracted semantic
segmentation map. c: resynthesized frame from segmentation map. d: difference of input and resynthesized
frame. The image in this example comes from the Lost and Found dataset [89]
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could results in the detection of more anomaly types, however, adding more tasks adds to
the complexity of the method, run time, memory consumption, etc. Hence, the key idea in
multi-task learning based methods is to propose the least number of complementary tasks to
cover more anomalies but with fewer parameters. Another example in this field is presented
in [20, 59].

3.9 Shortcomings or challenges of previous methods

Through a meticulous analysis conducted in the previous sections, numerous deep learning-
based semi-supervisedvideo anomalydetectionmethodswere subjected to critical evaluation.
Drawing insights from the experiments and conclusions of these methods, several challenges
and shortcomings have come to light. These findings serve as valuable cues for researchers in
the field, providing valuable guidance for future endeavors and shedding light on areas that
require further exploration and improvement. The following summary highlights these sig-
nificant challenges and shortcomings, presenting them as vital considerations for researchers
in their future works:

1: Previous holistic methods usually reconstruct/predict the entire frame/map and consider
the appearance and the motion with a global look. They do not consider the objects
and other details individually. Hence, the performance of these methods can be affected
by background errors. Object-centric approaches on the other hand, only attempt to
focus on reconstruction or prediction of the objects and therefore fail to consider the
context. Hence, almost all existing methods neglect some important information in their
algorithm.

2: A considerable portion of spatiotemporal information in frames is redundant, and is not
required in scene analyzing or video understanding. This leads the network to divide its
attention to a variety of aspects (including these redundant parts) and not to precisely
focus on useful portions (for example, to the objects of interest). This fact plays an
important role in video anomaly detection since anomalies generally occur rarely and
may occupy a small portion of a frame. This problem has not been acceptably covered
in existing methods.

3: Loss functions, which direct the network to capture effective features, do not simulta-
neously and effectively apply compactness and descriptiveness constraints to the feature
extraction process.

4: The relation between the class of the object of interest, its motion, and its location has
not been taken into account effectively in existing methods.

5: In the existing methods, if an anomaly occupies a small portion of the frame, its effect
could be lost on the anomaly score of the frame. On the other hand, even object-centric
methods may also have a difficult time detecting such small objects.

6: The currently used approach for the calculation of the reconstruction error is not reliable.
Any small changes in all pixels (for example illumination changes in the environment)
can result in a high change in reconstruction error.

7: Holistic models, trained on a scene, may not perform well after a change in the scene or
viewpoint.

8: In existing methods, the fusion of different anomaly scores (e.g., motion anomaly score,
appearance anomaly score, etc.) does not apply the effect of all factors effectively and
one factor may dominate others and lead to underestimation of other factors.
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4 Experiments

The preceding section offered an in-depth review and evaluation of various methods, drawing
from the outcomes of past research studies. These analyses would also be drawn theoretically,
taking into account various aspects such as the structure of the proposed network, the target or
loss function, and the outcomes from analogous applications, among other factors. The align-
ment between these theoretical and empirical findings fosters the notion that drawing upon
the knowledge gleaned from DNNs (as discussed in Section 2) and the empirical outcomes
of prior methods (covered in Section 3), additional theoretical hypotheses or conclusions can
be formulated. These can then be validated through new experimental studies. Therefore, in
this section, we carry out a series of experiments to confirm some theoretical conclusions
that are not explored in earlier studies. The key points to be investigated are as follows:

– The effect of the number of foreground objects: For any proxy-task selected for anomaly
detection, an anomaly score is calculated basedonhowwell the trainedmodel performson
normal and abnormal data. The underlying presumption is that the model’s performance
is significantly inferior when dealing with anomalies compared to normal instances.For
instance, the reconstruction error is anticipated to be greater for anomalies. However,
even though the model is trained on normal data, achieving zero reconstruction error is
practically unattainable for normal instances as well. Put differently, even though the
anomaly map is expected to exhibit higher activations for anomalies, there will also
be some activations present for normal regions. Therefore, we can infer that in holistic
approaches (i.e., methods that take into account the entire frame for anomaly detection),
the anomaly score of a frame also relies on the number of objects within that frame. This
could lead to a higher anomaly score for a frame filled with numerous normal objects, as
compared to a frame containing a single abnormal object.

– The effect of the camera distance (or the object size): The qualitative results from all
prior methods indicate that the activations in the anomaly map for each object (which
could also be considered as the model’s uncertainty for that object) are dependent on
the size of the object. Therefore, it can be inferred that the anomaly score of a frame for
larger objects (or objects nearer to the camera) would be higher compared to frames with
similarly typed but smaller-sized objects. This issue can lead to a higher anomaly score
for a larger normal object compared to a small abnormal object.

– Awareness of the method concerning the class of the objects: The proxy tasks associated
with frame reconstruction or prediction, along with their loss functions, are designed to
incorporate low-level image features (like intensity, color, etc.) for anomaly detection.
The models used in these methods are primarily focused on learning these low-level
features in order to accurately reconstruct or predict the desired frames along with their
image specifics. This arrangement does not ensure that themodel takes into account object
class information to execute the proxy task. Consequently, these methods emphasize the
detection of novelties or deviations in low-level features (such as color) and may assign a
higher anomaly score to a normal object with unusual colors than to an abnormal object
with a color frequently encountered during training.

– Illumination changes: Asmentioned in the previous point, formulating anomaly detection
using proxy tasks that primarily focus on low-level features can make the method suscep-
tible to changes in illumination within the frame. Therefore, we can anticipate a higher
anomaly score for frames with different lighting conditions than what was encountered
during the training phase.
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– Effect of motion patterns: Experiments from past studies demonstrate that CNN-based
models tend to prioritize appearance features over motion features, dedicating more
effort to learning appearance characteristics as compared to motion. Therefore, video
anomaly detection methods, which are designed to detect both appearance and motion
features through a single branch, might lean towards and prioritize appearance features,
potentially leading to the neglect of motion information.

To analyze these points, we implemented two state-of-the-art methods. Our analysis will
yield insights applicable not only to these particular methods but also to others that share
similar components or detection strategies. We approached these experiments from a unique
perspective: examining the instances where these methods fail. Rather than comparing the
numerical performance of various methods, our aim is to illuminate the respective strengths
and weaknesses of different approaches. This will help future work to address these areas,
ultimately reducing the occurrence of false positives and false negatives.

First, we implemented the method proposed by Hasan et al. [44] which uses a Conv-
Autoencoder for anomaly detection. It is worth mentioning that Hasan et al. conducted
experiments on two different autoencoder architectures: Fully Connected Autoencoder (FC-
AE) and Convolutional Autoencoder (Conv-AE). In addition to the experimental results that
they provided, it also can be concluded (considering the network architecture) that FC-AE
destroys the structure of the image and it could not show comparatively promising results
for image processing. Hence, we do not implement that part. To train the Conv-AE, we
implemented the same architecture and used the same hyperparameters as originally proposed
(The implemented architecture is shown in Fig. 11).

After training the model on the UCSD dataset, we performed an evaluation on its test
dataset. We calculated the reconstruction error and consequently the regularity score for
each frame as in (1) and (2). In these equations, s(t) and e(t) show the regularity score and
reconstruction error of the frame, respectively. I(x,y,t), e(x,y,t) also refers to the intensity and
the reconstruction error of the pixel.

e(x, y, t) = ‖I (x, y, t) − fw(I (x, y, t))‖2 (1)

S(t) = 1 − e(t) − mint e(t)

maxte(t)
(2)

As can be seen in Fig. 12, the results of the experiments show that this method fails
(generates false positives) when the number of foreground objects is considerably variable
in different frames. As Fig. 12 shows, when the number of foreground objects is high, we

Fig. 11 The architecture of the Conv-Autoencoder proposed in [44] for video anomaly detection
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Fig. 12 Effect of the number of the FG objects on the regularity score (UCSD-Ped1-Test003). (a) Regularity
score as a function of frame number. (b) Samples of frames in the test clip. (c) Reconstruction error map for
the input frame (e(x,y,t))

would have a lower regularity score (or higher reconstruction error) for the frame. This
is because each object, more or less, has a reconstruction error and as the number of the
objects rises, the total reconstruction error of the frame, which is the sum of the errors of
the foreground objects and the background (BG), increases. From another point of view, as
Fig. 13 shows (This figure originally appeared in [44]), the most regular frame for each scene
is an image quite similar to its BG. BG pixels are the constant and the most frequent pixels
in all images during training and the network easily learns them. The reconstruction error of
the frame is due to the difference between the input frame and the most regular frame (let us
assume BG here) and is thus directly affected by the number of foreground objects. It can be
concluded that, for cases in which the class of the objects defines the anomalies rather than
their number, objects should be analyzed individually (as with object-centric approaches)
instead of evaluating the entire frame at once. We also repeated the same analysis for the
training samples (Fig. 14) and the experiment confirms the previous results. That means that
the reconstruction error of the frames with high populations (even if they do not contain any

Fig. 13 (a) Synthesized regular frame for Ped1. (b) Synthesized regular frame for Ped2
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Fig. 14 Effect of the number of the foreground objects on the reconstruction error (results on Ped2). (a)
Reconstruction error (loss value) for the training frames. (b) A frame with a high number of people. (c) A
frame with a low number of people

anomaly) is considerably higher than that of the other frames (even compared to frames with
anomalies).

In most of the recent research studies, the appearance and motion features were analyzed
separately, in separate branches. In the motion branch, researchers reconstruct or predict
the previously extracted motion features (such as optical flow or difference of consecutive
frames) to learn the normal motion patterns. We analyzed the effect of the number of objects
on the results of the motion branch. As can be seen in Fig. 15, the results give rise to the
previous conclusion; if the frame (or the motion map) is analyzed globally (analyzing the
entire frame, not each object) the reconstruction error would be affected by the number of
foreground objects, rather than the important anomaly factors.

We should make this point clear that the mentioned shortcoming has nothing to do with
formulating the anomaly detection as a reconstruction or a prediction problem but is due
to the fact that these methods consider the frame holistically. As object-centric approaches
analyze each object individually, they do not face this challenge.

Considering the frame entirely has a strong point: Considering location. Frame recon-
struction or prediction-based methods, mostly learn a pixel-wise model. This means that
they learn a model for each pixel separately, and pixels at different locations expect different
intensities. Before examining the experiment results, let us have a second look at Fig. 13-b,
for example. Figure 13-b shows that the most regular frame for the Ped2 has many dark
pixels on the upper side of the walkway. This is because, during training, the network has
frequently seen dark objects on that side. From this image, it is more expected (i.e., it is
normal) to see dark objects on the upper side and the presence of dark objects in the lower
part of the walkwaymost probably would be detected as an anomaly. To validate this idea, we
analyzed the response of the network in some frames of Ped2, which is shown in Fig. 16. As
expected, the network considers the position of the object in the scene and it produces higher
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Fig. 15 Reconstruction error for motion maps. (a) Reconstruction error (loss) of motion maps for training
samples. (b) Motion map of a frame with a high number of people. (c) Motion map of a frame with a low
number of people

errors for objects which are not expected in that location. This positive feature is missed in
object-centric approaches, as they crop objects out of the frame and analyze them individu-
ally. Thus, the location information is either lost or not considered. This would produce false
positives and false negatives for object-centric approaches in different datasets, especially
the street scene dataset. As can be seen in Fig. 1, in the Street scene dataset, the definition of
normality (and hence anomaly) is different for 4 different cars, considering their locations.

Figure 17 shows the results of anomaly detection for different sample frames. This figure
shows the input image (a), the reconstructed image by the model (b), the reconstruction

Fig. 16 Different responses of the network to the samepixel intensities at different locations. (a)Reconstruction
error map (b) Input Frame with detected anomalies in red
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Fig. 17 Effect of the camera distance and pixel intensity on anomaly detection (results are provided for
UCSD-Ped1). (a) Input frame. (b) Reconstructed frame. (c) Difference between input and reconstructed frame
(reconstruction error map). (d) Result of anomaly detection (anomalous pixels are indicated in red)

error map or the differences between the original and reconstructed image (diff) in (c), and
finally (d) indicates the pixels which are most probably anomalies, by applying a threshold
on the reconstruction error map. This figure highlights a few points: First, what is missing in
existing methods (in most reconstruction and prediction-based methods) is that the effect of
the distance of the object from the camera is not considered. As illustrated in the figure, as
the car approaches the camera, it occupies many pixels in the frame and produces a higher
reconstruction error for the entire frame. Hence, the anomaly score of the frame would be
affected by the factor of object distance. Another point that can be concluded from the results
is that these methods mostly consider the intensity (or color) of the objects instead of the
class of the objects. As illustrated in the results, the anomaly points (red points) are only
detected for the pixels which have an intensity that differs from that of the background, and
the other parts of the car are detected as normal. This can also be concluded logically; in
these methods, the model is trained to reduce the Mean Square Error of the pixel’s intensity
(low-level features), which causes it to focus on low-level features. On the other hand, no
information regarding the class of the objects is provided to the model directly.
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The method proposed by Hasan et al. does not effectively consider motion, because as
mentioned in Section 3.3, the first convolutional layer destroys the temporal information.
Furthermore, our experiments do not show any considerable reconstruction error for objects
with abnormal motion (faster motion here) such as bikers and skateboarders. Although in
the results there is a noticeable reconstruction error for the cars, due to their different pixel
intensity and their comparatively larger size. Hence, in the second step, we implemented the
method proposed by Chong et al. [24]. This method benefits from a temporal autoencoder
which is embedded inside the spatial autoencoder. We implemented the same architecture,
as proposed originally [24]. This architecture is shown in Fig. 18.

The results indicate that the previous challenges in Conv-AE such as the effects of distance
and number of objects, unawareness regarding the class of objects, etc. still exist here since
this approach has similar strategies (such as evaluating the entire frame at once, focusing on
intensity, etc.). However, as this method adds a temporal autoencoder to the network, it can
capture motion patterns.

As illustrated in Fig. 19, bikers’ bodies (unlike other persons’ bodies) produce a higher
intensity in error maps. The proposed method explicitly models the temporal evolution of
the frames and hence can capture motion. However, the produced reconstruction error for
the entire frame again depends on several factors which may degrade the effectiveness of
the method. As it can be concluded from these results and also previous ones, these factors
can be: 1) Number of foreground objects: the number of the objects is more decisive than
the effect of the object motion. 2) Distance from the camera: the motion effect of an object,
in the reconstruction error map, can be easily neglected if the object is located far from the
camera (i.e., for smaller objects). 3) The results show that in single path methods (categories
A and C in Section 3.1), the effect of the appearance features may dominate the effect of
motion features. It can be expected that two-branch approaches would produce better results
in considering the effect of themotion anomalies, as they independently consider and analyze
motion in a different branch. Figure 20 confirms the previous point. In this experiment, we
removed 9 consecutive frames (frames 9 to 17) to synthetically generate a sudden motion
between frames 8 and 18. Through these frames, all objects inside the scene are normal
objects. In other words, we synthetically generated an abnormal motion for normal objects
(i.e., the abnormality is simply due to the motion factor), and this motion is much faster than

Fig. 18 The proposed Conv-Lstm-Autoencoder in [24]. (a) The entire architecture. (b) The temporal autoen-
coder
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Fig. 19 Results of Conv-Lstm-AE on Ped1 (Test033). (a) Regularity score of the clip. (b) Input frames. (c)
Reconstruction error map for the input frames

Fig. 20 Regularity score for different motions. (a) Regularity score for an original test clip (ped1-test016). (b)
Regularity score for the same clip with synthesized large motion
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anymotion in the clip. However, as Fig. 20 indicates, the regularity score fall (anomaly score)
is not considerable.

In another experiment, in order to analyze the effect of lighting changes in the scene we
made changes in the brightness of some test frames. For this purpose, the pixel intensity
of entire pixels in a test frame was multiplied by 1.3, and the reconstruction error map was
extracted for the original test frame and the newly generated frame. The results, shown in
Fig. 21, indicate that by lighting changes in the frame, the reconstruction error map varies
considerably, which affects the performance of the method. In other words, this not only
shows that the system is vulnerable to lighting changes but also that the system considers
low-level features instead of focusing on high-level ones.

Experimental results in Figs. 22 and 23 illustrate the dominance of some factors such as
intensity and distance on the class of the objects (which is the reason for the definition of the
anomaly here). In Fig. 22, the top two frames are both normal frames, however, the second
one would most probably be detected as an anomaly. In Fig. 23, the frame in row 4 contains
an anomaly in the far distance which results in producing a higher regularity score compared
to row 1 which only contains normal objects.

In the final step, we carried out a test to evaluate how effective object-centric approaches
could be, in considering the class of the object and identifying abnormal objects. Object-
centric approaches, as discussed in Section 3.6 and as observed in Fig. 9, crop objects out of
the frame and train a network (usually an autoencoder) to learn normal patterns. However, as
the experiments show, reconstructing a frame or even the appearance of objects individually,
does not necessarily lead these approaches to consider the class of the object. This is mainly
due to the fact that training an AE for the purpose of reconstruction, mostly focuses on the
intensity (or color). What object-centric approaches mainly contribute, is focusing on the

Fig. 21 Effect of lighting changes on the reconstruction error map. (a) Input frames. top: original frame,
bottom: the same frame after increasing the pixel intensities. (b) Reconstruction error map
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Fig. 22 Results of Conv-Lstm-AE on Ped1 (clip 016). (a) Regularity score of the clip. (b) Input frames. (c)
Reconstruction error map for the input frames

object, rather than other factors (such as BG or the number of objects, etc.). In order to
validate this idea, we separately trained and evaluated three autoencoders with, respectively,
cropped images of objects and their class-level features, whichwere extracted by a pre-trained
CNN. For this experiment, two groups of images were prepared and named ‘Normals’ and
‘Abnormals’. The Normals group contains all of the cropped objects of the same group (here,

Fig. 23 Results of Conv-Lstm-AE on Ped1 (clip 020). (a) Regularity score of the clip. (b) Input frames. (c)
Reconstruction error map for the input frames
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Fig. 24 Reconstruction error for Normal and Abnormal samples. (a) Reconstruction error for images. (b)
Reconstruction error for low-level features. (c) Reconstruction error for class-level features

images of people) and the Abnormals group contains cropped images of different types of
objects (such as vehicles, bicycles, bikes, etc.). The Normal and abnormal groups present
normal and abnormal objects, respectively. Then, using a pre-trained VGG19, the class-level
(i.e., features of the last layer), and color-level features (i.e., features of the first layer) were
extracted for each group. Each network was trained and evaluated separately with images of
normal objects, and their low-level and class-level features. The evaluation is carried out on

Table 4 Comparison of different DL-based AD strategies from different viewpoints

Strategy used for AD Reconstruction Prediction Segmentation Object-
Centric

Memorization

Object class
awareness

No No Yes No No

Generalization of
model to anoma-
lies

possible possible theoretically
NO

possible No

Extracted
features

ST ST ST ST ST

Used DNNs AE, Conv-AE Conv-LSTM-AE,
GANs,Unet

GANs, Unet AE,Conv-
AE

AE,Conv-
AE

Aware of environment
and contextual infor-
mation (location, time)

Implicitly Implicitly Implicitly No Implicitly

Typical
examples

[24, 33, 44] [51, 64, 123] [11, 12, 56] [16, 48, 50,
109, 126]

[43, 85]

ST stands for Spatial and spatiotemporal respectively
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both normal and abnormal groups. The reconstruction error for each group is calculated on the
test subset, to evaluate their performance in discriminating between normal and anomalies.
The results are shown in Fig. 24 which confirms the aforementioned idea.

Results in Fig. 24 show that the networks trained on images of the normal objects
(Fig.e 24-a), or their low-level features (Fig. 24-b) cannot effectively discriminate between
normal and abnormal objects. Although frame reconstruction shows better results (in dis-
criminating between normal and anomalies) compared to the low-level feature reconstruction
method, it is not effective for anomaly detection. We believe that in frame reconstruction, the
network implicitly considers some other features from the image, in addition to pixel inten-
sity or color. However, the results of Fig. 24-c show that training the network on class-level
features (directly providing high-level features) helps the network effectively discriminate
between normal and abnormal objects and improves performance. As it can be concluded
from this experiment, object-centric approaches do not effectively consider the class of the
objects for discriminating between normal and abnormal objects.

Before summarizing the results, it is worthmentioning that these experiments do not target
all proposedmethods in the mentioned categories. However, they show that all these methods
should consider the mentioned points (also summarized below) to reduce the false positives
and false negatives. In summary, our experiments highlight these points:

1) Methods that focus on low-level features (in their loss or target functions) do not effec-
tively discriminate between normal and abnormal frames which are defined based on the
class of the object. These methods are also vulnerable to illumination changes.

Table 5 Advantages and challenges of different DL-based semi-supervised VAD methods

AD strategy Strong points shortcomings

Reconstruction
based [24, 33, 44,
70, 84, 118, 137]

*Implicitly aware of the environ-
ment and context (e.g., location, back-
ground, etc.).

*Unaware of the object class.

*Considers low-level featurs (such as
color and texture) for anomaly detec-
tion.

*The model would be generalized to
abnormals.

Prediction based
[22, 55, 64, 94,
100, 123, 131]

*Implicitly aware of the environment. *Unaware of the object class.

*nherently models motion patterns. *The model would be generalized to
abnormals.

Object centric
methods [16, 31,
48, 50, 109, 126]

*Focuses on the objects. *The performance is dependent on the
object detection step.

*anomaly score is not affected by the
number of objects.

*Unaware of the environment.

Segmentation
based [11, 12]

*Is aware of the class of the object. *The performance is dependent on the
semantic segmentation step.

*Model is not distacted by back-
ground complexity.

*It has a higher computational load.

Memorization
based [43, 65, 85,
107, 122]

Model is not generalizable to abnor-
mals.

*Produced anomaly scores would be
equal for different frames if their latent
spaces are close to each other.
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2) Methods that consider and analyze the frames entirely, instead of analyzing each object
individually, will fail when the number of foreground objects is considerably variable in
different frames.

3) Object-Centric methods are not affected by the number of foreground objects. However,
they do not consider the environment information (BG information, location, etc.). More-
over, although they focus on objects (rather than redundant information such as BG), they
are not aware of the class of the object if they reconstruct the cropped image in order to
learn appearance patterns.

4) It is probable that in single-path methods, which analyze appearance and motion simul-
taneously, the motion information may be dominated by the appearance. Two branch
approaches, analyze the appearance and motion separately; hence their effect can be
applied separately to the task.

5) The effect of the camera distance (or object size) should be considered in the methods.
Objects closer to the camera usually have more effect on the frame anomaly score.

Table 6 Some of the state-of-the-art DL-based semi-supervised VAD methods

State of the
art methods

Strategy for AD DNN used in the
method

Special points

Hasan et al. [44] Reconstruction Conv-AE *The proposed model (Conv-AE) does not
consider temporal patterns effectively.

*Not aware of the class of the objects.

*Has difficulty detecting anomalies in small
regions.

Chong et al. [24] Reconstruction Conv-LSTM-AE *Considers the evolution of frames.

*Not aware of the class of the objects.

Akcay et al. [6] Reconstruction Conditional GAN *In addition to minimizing the distance
between input and reconstructed images, the
distance between latent spaces is also mini-
mized.

Ravanbakhsh [93] Reconstruction GAN *Benefits fromgenerating optical flow images
from raw-pixel frames and vice versa for AD.

Liu et al. [64] Prediction GAN (Unet for
generator)

*Prediction considers themotion bymodeling
the evolution of frames.

*Not aware of the class of the objects.

Ionescu et al. [48] Object centric AE *Focuses on the objects but does not consider
the environment.

*The performance is dependent on the perfor-
mance of the object detector.

Gong et al. [43] Memorization AE *Benefits from a memory module and hence
AE, here, is not generalizable to anomalies.

Park et al. [85] Memorization AE *Considers the diversity of normal patterns
explicitly.

*AE, here, is not generalizable to anomalies.

Mohammad
et al. [11]

Segmentation Unet *Considers the class of objects for VAD.

*Motion ismodeled by predicting optical flow
magnitude.
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5 Conclusion

In this study, recent DL-based semi-supervised video anomaly detection methods are
reviewed. As DNNs are the main tool for different parts of the task (e.g., feature extrac-
tion, decision making), the study began with a study of DNNs. Different DNNs are reviewed
and analyzed from different points of view, such as spatiotemporal feature extraction, pat-
tern learning, and compatibility with different data types. Moreover, their applicability for
different parts of anomaly detection methods is stated, providing some points regarding their
special attributes and challenges. Hence, researchers can choose the most suitable DNN for
different parts of their anomaly detection method, based on their approaches. In the final
section, recent anomaly detection methods are critically reviewed. First, the methods are
categorized based on the spatiotemporal feature extraction process and then the study ana-
lyzed them based on the strategy they commonly used for anomaly detection. Moreover,
almost all of the recent approaches and state-of-the-art methods in the field are covered in
this review, thereby providing a global but comprehensive look at the field for researchers, by
describing essentials, positives points, shortcomings, and challenges of each categorization
and approach, which can be the subject of future work. Tables 4 and 5 summarize different
reviewed anomaly detection strategies and Table 6 presents the state-of-the-art research in
this field.

Effective detection of video anomalies (similar to other applications requiring a good
understanding of videos) requires joint consideration of different requirements, such as
extracting effective appearance features, capturing motion and extracting effective temporal
features, and separately capturing and analyzing different moving objects in the scene (for
most applications), considering the context and the environment information, etc. However,
each proposed method has addressed only one or a few of the mentioned requirements and
almost all methods are unable to effectively and jointly consi der all of the aspects. This issue
should be addressed in future work by properly combining existing methods, considering
their capabilities and the capabilities of different DNNs. Initial efforts in this direction are
made in our recent research in video anomaly detection [11, 12] and it is our hope many
other researchers will join us on this endeavor.
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