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Abstract
Human Activity Recognition (HAR) has gained much attention since sensor technology has
become more advanced and cost-effective. HAR is a process of identifying the daily living
activities of an individual with the help of an efficient learning algorithm and prospective
user-generated datasets. This paper addresses the technical advancement and classification
of HAR systems in detail. Design issues, future opportunities, recent state-of-the-art related
works, and a generic framework for activity recognition are discussed in a comprehensive
mannerwith analytical discussion.Different publicly available datasetswith their features and
incorporated sensors are also descr-processing techniques with various performance metrics
like - Accuracy, F1-score, Precision, Recall, Computational times and evaluation schemes are
discussed for the comprehensive understanding of the Activity Recognition Chain (ARC).
Different learning algorithms are exploited and compared for learning-based performance
comparison. For each specific module of this paper, a compendious number of references
is also cited for easy referencing. The main aim of this study is to give the readers an easy
hands-on implementation in the field of HAR with verifiable evidence of different design
issues.

Keywords Human activity recognition · Shallow learning · Ensemble learning · Deep
learning · Activities of daily living and wearable sensors

1 Introduction

Sensor technology has seen a tremendous advancement in shape, size, cost, and performance
in the past few years because of the need for current and effective knowledge in various
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industrial applications. As the Internet-of-Things (IoT) also grows at an accelerated pace,
new developments in sensor technologies are following to keep the market demands intact,
allowing the industries to move swiftly. The most popular sensors in the market are ambi-
ent and wearable sensors like Inertial Measurement Units (IMUs). Researchers [1–5] use
these sensors for various applications like gait analysis, motion recognition, fall detection,
gesture recognition, and many more. One of the primary factors of sensor-based application
development is the rebate of its market price and the improvement in the accuracy of data
collection. Modern sensors are less likely to have noise in the collected data if appropriately
used than the earlier sensors. This allowedmany industries like -medicine and sports to invest
heavily in the new sensor technology, which then came up with the further implementation
of numerous designs and implementation in the last decade.

With the easy availability of wearable, external and vision-based sensors and their
improved overall performance, the field of Human Activity Recognition (HAR) has become
one of the trendiest research topics among researchers worldwide [6]. HAR is a process
of recognising daily living activities or Activities of Daily Living (ADLs) using a set of
sensors and an efficient learning algorithm. It includes activities like - jogging, sitting, stand-
ing, running, walking, incidental activities like - falls and many more. These activities are
often undertaken while doing daily tasks like - going to the office, playing, exercising, etc.
World Health Organisation (WHO) [7] categorised human actions into two categories, i.e.,
Moderate-intensity based human activities and Vigorous-intensity based human activities.
Moderate-intensity-based human activities require less human energy to perform, like - walk-
ing, standing, eating and many more. On the other hand, vigorous-intensity-based human
activities require a very high amount of energy than moderate-intensity-based human activ-
ities. It includes the activities like - running, jumping, jogging, etc.

Performing HAR with all the available sensors in the market is a complex task as there
is no clear way of associating raw sensor data to a specific activity in a direct way. This
paper address this problem by analysing various state-of-the-art HAR papers and laying a
comprehensive review on its design, development and implementation techniques.

The main novelties, innovation and contributions of this paper are as follows -

1. This paper extensively explores and synthesises the recent state-of-the-art Human Activ-
ity Recognition (HAR) works, furnishes comprehensive insights into their proposed
methodologies and highlights key advancements in the field of sensor-based HAR sys-
tems.

2. A comprehensive description of popular publicly available sensor-based HAR datasets
is inferred that offers detailed statistics and facilitates easy referencing for researchers
and practitioners in the field.

3. A detailed, comprehensive discussion of various tools and techniques required for devel-
oping sensor-based HAR systems is provided. Further, potential pros and cons associated
with the development chain are exploited and inferred for thorough understanding.

4. A wide range of classifiers, sensors, and the scope of HAR based on their operations,
inference capability and incorporated methodologies is categorised for improved com-
prehension. It offers a comprehensive and structured understanding of the different
components involved in HAR, providing researchers with valuable insights for selecting
suitable techniques and approaches for sensor-specific HAR applications.

5. A detailed empirical experiment is conducted using wearable sensors for inbuilt smart-
phone sensor-based HAR, involving dataset collection and a processing module. The
investigation delivers valuable insights to readers concerning the experimental implemen-
tation of HAR systems using various learning algorithms and processing tools, enabling
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them to gain an in-depth understanding and assemble reported decisions in developing
the HAR framework.

6. Potential future research gaps and scopes in HAR systems developments are highlighted.
The identified research gaps and scopes are discussed in detail, facilitating the subsequent
development of HAR systems and their applications.

This paper is divided intomultiple sections and sub-sections based on the recent and earlier
methods of the HAR system and its adopted set of learning classifiers and sensor technology.
The first Section 1 - introduces the readers to the field of HAR with critical advancements
in sensor technology, HAR research trends, scope and significance, and key research gaps.
Section 2 describes various HAR systems based on sensor choices and learning algorithms.
Section 3 describes the latest research trends in the HAR field with a brief outline of datasets
available for performing experiments. Section 4 summarizes the design issue for developing
an efficient HAR system, and Section 5 shows a practical implementation of an optimal HAR
system with a detailed analytical discussion. Finally, Section 6 firmly outlines all the paper’s
findings and conclusion.

1.1 Scope and significance

HAR has been explored aggressively in recent years and has seen vast scope and significance
over multiple domains. It has many applications, from building a small IMU device-based
end-to-end HAR system to building a full-fledged complete HAR system using multiple
sensors. A few of the major and popular scopes of HAR systems are shown in Fig. 1.

Fig. 1 Major Scope of HAR
system
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1.2 Prospective research gap for HAR

Numerous work has already been done in the field of HAR by manipulating different public
datasets, exploiting various learning algorithms, feature engineering techniques, and their
deployment. But most methods lack automatic feature engineering techniques, real-time
online HAR, domain adaptation problems, etc. We analyzed a few prospective research gaps
in HAR system development, which are as follows-

1. Domain shift analysis and handling for sensor-based multi-featured HAR systems for
efficient domain adaptation for robust performance in real-time.

2. Automatic hyperparameter tuning of deep learning algorithms based on dataset features,
number of instances and incorporated sensors.

3. Generating HAR dataset in an uncontrolled environment with more activity classes like
- complex, secondary and group activities.

4. Dynamic feature engineering for shallow and ensemble learning approach for limiting
manual feature extraction and selection based on the incorporated sensors and their
features.

5. Hybrid deep and ensemble models for extracting higher level features and better model
generalization capabilities towards efficient and robust activity classification.

6. Classifiers incorporated with an online automated class imbalance handling framework
for statistical feature-based HAR dataset to handle class imbalance by augmenting poten-
tial data instances for activity classification.

7. Lightweight deep learning models towards HAR systems for efficient deployment of
classifiers in small devices like - smartwatches and edge devices for fast human activity
classification in real-time.

8. Context-aware HAR system for classifying complex ADLs like - different swimming
types and underwater activities, etc.

9. A dynamic mechanism for handling unlabelled HAR datasets with approaches like -
neighbour analysis and unsupervised clustering models.

10. Explainable HAR system with context-based activity classification using hybrid models
for efficient activity classification and online human activity recognition.

2 Classification of HAR

HAR system can be categorised based on its incorporated sensor types and its classification
algorithms. This section comprehensively discusses the two aspects of the HAR system.
Section ’II-A’ describes the classification of the HAR system based on its incorporated sensor
technology, and section ’II-B’ discuss the HAR system based on its classification models.

2.1 Taxonomy of Sensor used in HAR System

Researchers around the globe classify HAR into different types based on their incorporated
sensor types or the type of machine learning algorithms they incorporate. Upon organising
the state-of-the-art HAR system based on its used sensors, it can be categorised into four
major classes, which are as follows [8–11] -

• Wearable Sensor-based HAR: Wearable sensor-based HAR is the most exploited type
of HAR system where the data is collected with the help of wearable sensors like -
accelerometer, gyroscope,magnetometer, etc. The sensors aremounted ononeormultiple
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locations of the human body with the help of proper mounting accessories. It is the most
popular approach among practitioners [12–16] because of its overall good performance
and easy availability of sensors in the market. Also, since all the raw data collected via
wearable sensors are numeric, it does not invade the privacy of the users.

• Extrinsic Sensor-based HAR: Another way of performing HAR is by using extrinsic
ambient-based sensors for data collection and an efficient learning algorithm for activity
classification [17–19]. Often, wearable technology like in [20] is also incorporated with
extrinsic sensors as it will become hard to segregate the class of various ADLs and will
yield bad results. It is the least popular method of performing HAR among researchers
as it does not promise good performance results.

• Vision-basedHAR:Many research enthusiasts [21–25] make use of a camera module for
developing HAR system. The idea is to take multiple images of various human activities
and store them as a dataset in a local processing server or cloud. Each image or series
of images (video) is labelled with an activity name, and the data is kept in the form of
learning and validation. Generally, deep learning algorithms like - Convolutional Neural
Network - CNN and hybrid models like CNN-LSTM are widely used for vision-based
GAR because of their automatic feature engineering capabilities and ability to extract
higher-level features from images. But it is not very popular among users since it invades
user privacy.

• Hybrid Approach-based HAR: Finally, the last way of performing HAR is by using the
combination of wearable, extrinsic or vision-based sensors [26–29]. This method is also
trendy because of its good performance and tendency to classify complex activities like
- group activities and object interaction as well. Here, different sets of learning models
are also combined to handle different types of data, and in general, it takes substantially
more computational time for model training and validation (Fig. 2).

All the above types of HAR systems are either offline [4, 30–32] or real-time (online)
[33–36] in nature. There is no need for real-time data processing in offline or non-real-time
HAR systems. The collected data is stored and processed locally to get the performance
metrics. Researchers tend to develop their HAR system offline because of its simplicity and

Fig. 2 Classification of HAR on the basis of Sensors
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easy availability of numerous datasets publicly. On the other hand, real-time HAR system
development is costly and minimally explored in the research field. Here, real-time data
analysis is done on the collected data from sensors and server architecture. Whenever a
subject performs an ADL, the recognition is done with the help of a trained model that is
stored in the cloud or server. But because of its heavy bandwidth usage and real-time cloud
or server requirements, this architecture becomes very expensive and is significantly less
practised by the researchers.

2.2 Taxonomy of learning algorithms used in HAR system

Numerous learning algorithms are used for recognising different human activities, and one
can broadly categorise them into four types as shown in Fig. 3.

1. ShallowLearningAlgorithms:Algorithmswhich learn from their pre-defined set of rules
are termed shallow learning algorithms. Here, the user needs to extract features explicitly
and must have domain expertise on the incorporated dataset and type of data. Detailed
exploratory data analysis is always needed in this type of system. Usually, shallow learn-
ing algorithms are computationally much more efficient than the deep and ensemble

Fig. 3 Frequently used algorithms in HAR system development
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approaches because of their simple model training using uninvolved mathematical func-
tions. Researchers [37–40] use this approach because of its simplicity, cost-effectiveness
and decent performance.

2. Ensemble Learning Algorithms: Ensemble approaches are the extension of shallow
learning algorithms.Generally, they performbetter in terms of overall performancematri-
ces and have significantly less bias because of their multiple base model generation and
iterative model testing [30, 41–43]. There are two types of ensemble learning algorithms
- bagging and boosting, where numerous base learners are created independently, and
the final result is calculated with the help of result aggregation techniques like - Max
Voting, Averaging, Weighted Averaging, etc.

3. Deep Learning Algorithms: Deep Learning algorithms are widely popular for HAR
systems because of their efficient performance and tendency to perform automatic feature
extraction [44–46]. Human intervention for feature engineering is not needed with deep
learning algorithms, as the models are algorithmically designed to extract the features
on their own. But the major disadvantage of deep learning models is high computational
time and complex parameter tuning, which is generally very hard to overcome. Also,
these models are data-hungry in nature and require huge instances of data for model
training for optimal model generalization.

4. Fuzzy Inference Systems: A fuzzy inference system is a rule-based systemwhere a crisp
input is given to a fuzzy decision-making module, and a crisp output is processed from it.
First, a fuzzification unit converts the crisp inputs into fuzzy quantities with the help of
membership functions, and these fuzzy quantities are then passed to Decision - Making
Unit which decides the output by operating on the rules. Upon getting the fuzzy result,
the crisp output is calculated with the help of the defuzzification unit and knowledge
base. Researchers associate different rules with different human activities and classify
ADLs with the fuzzy input quantities, and the assigned rules [47–49]. This method is
fast but fails to perform significantly better than newer approaches.

3 State-of-the-art related works

In this section, we studied and analysed the latest state-of-the-art HARmodels with different
applications and presented them briefly. A synopsis is also attached at the end of this section
to get the latest practices on various HAR systems.

Fu et al. [63] collected the data from an IMU and an air pressure sensor at the sampling
rate of 20 Hz. Multiple features (a total of 19) were extracted from the raw data that they
collected. The data segmentation is done to get the different data segments in the specified
period. Upon analysis using their proposed Joint Probability Distribution Adaptation with
improved pseudo-labels (IPL-JPDA) method that extracts and generalizes the features based
on the target labels and othermachine learningmethods, they achieved an accuracy of 93.21%
and accuracy of 79%± 91% using different models. In [64], the authors proposed a biometric
identification system using HAR and deep learning models. They incorporated two publicly
available datasets’ named UCI Human Activity Recognition Dataset (UCI HAR) [65] and
USC Human Activity Dataset (USC HAD) [66] for their experiment, which consists of
different aged group data collected at the sampling rates of 50HZ and 100 HZ, respectively.
Traditional data pre-processing routines like handling missing values, noise, special symbol
removal and normalization of data for getting the standard scale data were incorporated. The
proposed framework first splits the dataset into a training and testing set and recognises the
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different human activities. Upon successful recognition of human activities, the training set is
used for user identification retrieval and tested with the test set. All the performance metrics
were iteratively recorded, and they managed to outperform the previous Random projection
method [67] with an average performance gain of 1.41%.

Yang et al. [68] proposed a deep learning-basedHAR systemwhich dealswith the problem
of the multi-subject based-HAR dataset. They identified that the dataset having different
subjects performed poorly during activity classification. So they integrated activity graphs
which align the neighbourhood signals using width and height and deep CNN for automatic
feature selection and classification. Upon classification, they boosted the accuracy by 5%
and managed to outperform previous benchmarks. In [32, 69], the authors proposed HAR
in the wild with portable wearable sensors and a behavioural HAR recognition system. The
dataset has different activity contexts [69] and behaviours in the case of [32], like the sitting
activity has the context of watching tv, meeting, etc. Because of the included secondary
context activities, the overall model became complex and achieved an accuracy of 89.43%
by [69]. Siirtola et al. [70] also proposed a context-aware incremental learning-based method
for personalized human activity recognition systems using ensemble models. Choudhury
et al. [30] proposed a novel physique-based human activity recognition system where they
recognised different human activities based on physical similarities and ensemble learning.
They found that combining the data of only similar subjects into one dataset will result in
efficient dataset generation and will be computationally less expensive than the traditional
HAR system. Upon testing the proposed model, they achieved an average accuracy of 99%,
and individual activity-wise performance was better than the conventional practice.

In [45, 46, 83–85] the authors used CNN and LSTM for activity classification. Khan et
al. [83] identified that the main limitation of HAR is the lack of a dataset having a good
number of class labels. They generated their dataset with 12 different classes and used CNN
for automatic feature engineering. They managed to achieve an accuracy of 90.89% with the
hybrid CNN-LSTM approach. But [46, 85–87] identified that deep learning approaches like -
CNN are very good for automatic feature analysis. In [46], the authors used a four-layer multi
CNN-LSTM network for HAR and managed to achieve an average accuracy gain of 2.24%
over previous methods. Whereas in [87], the authors used multiple public datasets without
handcrafted features for testing their model and achieved the average accuracy between
95±97. Kwon et al. [88] also proposed an automatic feature engineering technique with on-
body accelerometry from videos of HAR. Their approach automatically converts the videos
of various human activities into virtual streams of IMU data that represent the human body’s
accelerometry.

Choudhury et al. [62] proposed an adaptive batch size-based hybrid CNN-LSTM frame-
work for a smartphone sensor-based HAR system. The framework combines Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models with an adaptive
batch size selection method to improve recognition accuracy and efficiency. The authors
evaluate the proposed framework on three datasets and compare its performance with sev-
eral state-of-the-art methods. The results show that the proposed method outperforms the
existing methods in terms of recognition accuracy and computational efficiency. The authors
in [89] incorporated multiple machine learning approaches and laid a comparative analysis
for human activity recognition using smartphone sensor-based data. The study utilized data
collected from an accelerometer, gyroscope, magnetometer and GPS sensors to recognize
human activities in real-life scenarios. Further, their work intercepts that the window size and
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gyroscope sensor data are not prominent for ADL classification. Panja et al. [90] proposed
a hybrid feature selection pipeline for recognizing human activities through smartphone
sensors. Their proposed framework incorporates clustering and a genetic algorithm-based
method to identify prominent features from the global feature set. Using multiple shallow
and ensemble learning approaches, they classified different ADLs solely on the selected
features.

Yadav et al. [91] proposed a secure privacy-preserving HAR system using WiFi channel
state information. The proposed neural network architecture - CSITimemodel has three levels
of abstraction. Instead of going with the ensemble approach like in [92] where they achieve
optimal results, the authors adhered to the single model for reducing the computational
time of their model. Three different datasets were incorporated in the experiment: ARIL,
StanWiFi, and SignFi, and they managed to outperform all the previous state-of-the-art works
with a good performance margin. The achieved accuracies are 98.20%, 98%, and 95.42%
w.r.t. ARIL, StanWiFi, and SignFi datasets. In [93], the authors proposed an adaptive CNN-
based, energy-efficient HAR system for low-power edge devices. Their model uses an output
block predictor to select a portion of the baseline architecture during the inference phase,
saving energy, memory, and overall computational cost. Similarly, Lou et al. [94] deployed
a binarized neural network for low-power edge devices. The main scope of their experiment
is to get faster computational times, lower network latency and efficient memory utilization.
With a new quasi-automatedmethod of classifying human activities, Taylor et al. [95] created
a dataset with Software define Radio signals (SDRs). Using the dataset and RF, they achieved
96.70%accuracy, but the only drawbackwas the lack ofmulti-class labels in their experiment.

Gua et al. [96], proposed a nested ensemble framework for handling HAR with class
imbalance problem. Khaled et al. [97] also proposed SMOTE method-based mechanism for
controlling the class imbalance problem. Both of them managed to achieve efficient results
with different publicly available datasets. In [98], the authors handled the class imbalance
with a cost-sensitive hybrid ensemble model. The proposed model modified the weights
of minority classes and merged all the weights of ensemble base learners with a stacked
generalization approach. Upon classification, they achieved 70.8% accuracy with a dataset
of 28-class labels. Hamad et al. [99] proposed a joint diverse temporal learning approach
using LSTM and 1D-CNN models to improve activity recognition with class imbalance.
They also found out that deep learning models do not always promise optimal results with
imbalanced datasets.

The authors in [100] compared multiple shallow and ensemble learning approaches for
an inbuilt-smartphone sensor-based HAR system. The result analysis incorporating state-
of-the-art data pre-processing shows that the ensemble learning models are significantly
better for recognising ADLs. Dua et al. [101] describes a new deep learning model for
recognizing human activities using sensor data from raw time-series data. The proposed
model combines CNN and Gated Recurrent Units (GRUs) that are inspired by the Inception
network architecture. The model was trained and evaluated on several benchmark datasets,
and the results demonstrate that the proposed approach outperforms existing state-of-the-art
models in terms of accuracy and efficiency.

The authors in [102] developed a robust CNN architecture called Temporal Convolutional
3D Network (T-C3D) for HAR for vision-based datasets. T-C3D addresses the challenge
of high computational cost in existing approaches by incorporating a hierarchical multi-
granularity learning approach and a residual 3D CNN to capture spatial information. Further,
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a temporal encoding scheme is also proposed for the temporal dynamics of human actions
in video frames. The proposed model achieved average accuracies of above 91.5% and
outperformed the benchmark models with optimal performance margins. Choudhury et al.
[103] developed an efficient CNN-LSTM model for the HAR system using smartphone
sensor data. They used minimal data pre-processing on raw sensor data and classified ADLs
using the features extracted by CNN and LSTM layers. Upon classification, they managed
to achieve an accuracy of 98.69%.

Li et al. [104] used a radar-based HAR dataset for recognising ADLs. The incorporated
dataset has sparse activity labels, which is very hard for models to generalise and extract
efficient performance. The proposed Joint Domain and Semantic Transfer Learning (JDS-
TL) model successfully extracted new features from the spares dataset and managed to
achieve an average accuracy of 87.6 %, where only 10% of the data was labelled. In [105],
the authors proposed a teacher-student-based self-learning method for augmenting labelled
and unlabelled data. Upon classification with their approach, they managed to get a 12%
performance boost over the previous models. To encounter the problem of activity labelling,
the authors in [106] proposed automatic activity annotation using a pre-trained model. They
trained the proposed model in multiple real-life conditions to overcome the physical biases,
which in turn increases the activity recognition rate.

Chen et al. [107] proposed a Masked Pseudo-Labeling AutoEncoder (MAPLE) pipeline
for efficient HAR with sparsely labelled datasets. The proposed model addresses the lim-
itation of the need for large annotated data and computationally expensive networks. The
framework leverages a Decoupled spatial-temporal TransFormer (DestFormer) as the core
feature extractor that efficiently learns long-term and short-term features by decoupling the
spatial and temporal dimensions of the point cloud videos. Lui et al. [108] introduce a real-
time action recognition architecture named Temporal Convolutional 3D Network (T-C3D) to
learn video action representations by adopting a hierarchical multi-granularity approach. It
combines a residual 3D CNN to capture the formation of frames and motion signals between
consecutive frames. The proposed model outperformed the benchmark model with optimal
accuracy margin and inference time.

Synopsis: All the works briefly described above are the latest trends in HAR system
expansion and deployment. Researchers used different modes of feature engineering, set
of sensors, public datasets, learning algorithms, etc., to develop an efficient HAR system.
For the future development scope, we have briefly described the latest work in Table 1,
state-of-the-art HAR works in Table 2 and the publicly available dataset in Table 3.

Further, previous works such as [109–112] have conducted comprehensive reviews of
publicly available datasets for sensor-based human activity recognition (HAR) systems.How-
ever, this paper provides a more extensive analysis of the various types of sensors utilized
in HAR and a more detailed review of the different learning approaches employed in this
context. While most review papers provide a comparative study of tools and techniques for
developing an efficient HAR system, they do not present a step-by-step procedure from data
collection to activity recognition in an easy-to-understand manner. This paper addresses this
issue by showcasing an efficient activity recognition chain that utilizes the inbuilt smartphone
sensor module and various learning algorithms for HAR. Furthermore, our paper exploits
our own generated dataset with public datasets like - mHealth to provide a comprehensive
understanding of the human activity recognition chain and detailed analytical discussion on
various performance measures, sensor choices and mounting locations.
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Table 2 Popular HAR works with different incorporated metrics

Study # Subjects # Activities # Attributes M.L. Sensors Acc.%

Nandy et al. [31] 4 12 N.A. FP, C A,HR EN = 94.61

Asim et al. [32] 60 15 18 N.A. A RF = 84

Kwon et al. [57] 10 7 21 W, C A,G RF= 98

Dehzangi & Sahu [58] 30 6 137 W, C A,G BE = 96

Patel & Shah [59] 30 7 561 W A,G LR = 94

Khokhlov et al. [60] 25 6 N.A. AR, W, C A,G KNN = 97.9

Hong et al. [61] 15 24 9 W, WR, T A DT = 93.7

Choudhury & Soni [62] 24 6 16 FP A,G A-CL = 99.29

∗ A = Accelerometer, G = Gyroscope, HR = Heart rate Sensor, N.A.= Not Available with the cited reference,
W =Waist, C = Chest, FP = Front Pockets, WR=Wrist, AR= Arm, T = Thighs, EN = Ensemble, BE = Bagged
Estimation, A-CL= Adaptive CNN-LSTM, M.L. = Mounting Locations, Acc. Accuracy

4 Design and development of HAR system

4.1 Activity recognition series

4.1.1 Data acquisition modules

Any HAR system starts with a proper choice of sensor mix and mounting locations. One or
many types of sensors are considered by the experimenter for data collection from a different
set of users. It is very important to choose a good mix of users with various physique types
and gender for getting generalized data. If one fails to ensure the above steps, the collected

Table 3 Publicly available
datasets for sensor-based HAR
system

Dataset #Sub. #Features Sensors #Class

HARSense [71] 12 16 A, G 6

USC-HAD [66] 12 N.A. A,G 12

MotionSense [72] 24 12 A,G 6

MobiAct [73] 57 N.A A,G 12

UCI HAR [65] 30 561 A,G 6

Opportunity [74] 4 242 Hybrid 9

mHealth [75] 10 23 A,G,M 12

RealWorld [76] 15 7 A 17

HASC [77] 5 4 A,G,M, GPS 6

WISDM [78] 29 46 A 6

PAMAP2 [79] 9 52 A,G,M,H 12

HAPT [80] 30 N.A. A 12

w-HAR [81] 22 120 A,SS 7

HHAR [82] 30 40 A 7

*A =Accelerometer, G = Gyroscope, M =Magnetometer, GPS =Global
Positioning System, H = Heart rate Sensor, SS = Stretch Sensor, Sub. =
Subjects, N.A.= Not Available with the cited reference, Class = No. of
Activities
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Fig. 4 Dependency between the different acquisition modules

data will of poor quality and the overall performance will be low. Ensuring proper mounting
position is also very important as it helps in collecting true activity data.

Moreover, data must be collected in different environmental surroundings and for an
adequate amount of time to get good patterns of various human activities. Considering all
the factors, it is concluded that the data acquisition modules are highly dependent on sensor
choice, mounting locations, number of sensors, a mix of users, environmental surroundings
and activity performance time, and a consequence of one module can lead to overall poor
data acquisition. The dependency between the different acquisition sets is shown in Fig. 4.

4.1.2 Data collection

The next step is to collect the data formaking aHARdataset. Data is collected through sensors
in the local server machines, cloud servers or smartphones. Prominently the practitioners
[30, 69, 83] store the data in the local server machines and smartphones for making the HAR
database because of the accessible data compilation and negligible transmission delays. It
also saves the data from harmful users and doesn’t require additional costs for data storage.
Few researchers [33, 49, 113], who implement real-time HAR, uses cloud-based data storage
architecture for data collection. Cloud-based data collection is subdivided into two types. In
the first technique, a user can opt. for free cloud-based services like - ThingSpeak for data
collectionwhere a substantial transmission delay and synchronization restrictions are present.
Other uses the paid services like - AmazonWeb Services - AWS, Google Cloud services, etc.,
where the transmission is significantly less, and there is no data syncing restriction.

4.1.3 Data pre-processing and visualization

Once the data is collected, it has to be analysed and pre-processed for further polishing
and finding relationships between different features. It is one of the most crucial and time-
consuming steps and needs to be done carefully to discover meaningful data. Data pre-
processing helps in making data robust by removing noise, corrupted data, missing values,
outliers and class imbalance, as shown in Fig. 5. The detailed description of all the data
pre-processing steps is defined as follows-

1. Handling Noise and Corrupted Data: The first step of data pre-processing is removing
noise and corrupted data. Noise and corrupted data degrade the data quality and make
the training wicked. Corrupted data is taken care of by deletion of corrupted instances
present in specific features or attributes. One can either remove the distinct attributes
from the dataset if there are too many corrupted instances present or can remove only a
few instances if there are less number of corrupted instances present. Noise is handled by
using various techniques like - Low-pass Filter, Kalman Filter, Moving Average Method,
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Fig. 5 Activity Recognition Series (Generic Framework) of HAR

etc. Noise needs to be removed very aggressively as it can influence other instances and
attributes dependent on one another.
Ordinarily, the accelerometer and gyroscope are quite noisy devices, especially those
which are incorporated into smartphones. The low-pass filter [114] is a popular method
that allows the signals with a lower frequency than the threshold frequency and stops the
higher-frequency signals. Kalman filter [115] is another widely used method that filters
the noise by using predict and update framework. It uses the past data in the present
data acquisition state to predict the new instance. Once the signal is generated, its value
is refined using the past data, and the sensor values are kept in a specific range. The
moving average method [116] is another form of low-pass filter that uses a statistical
moving average strategy to calculate the average of ’n’ instances at a time and softens
the sensor readings by returning a single value. It is slower than the traditional Low-pass
and Kalman filter because of its heavy computation.

2. Handling Missing Values: Another factor that makes the dataset’s quality poor is the
missing values. These are often present in the dataset because of some technical or human
error while gathering the raw data from the users. It is handled by either deletion or data
imputation [117]. In deletion, one removes the particular row where the missing values
are present or removes the entire column if too many missing instances are present. But
before deletion of the entire column, one has to ensure there is no attribute dependence
and the particular column is not the prime attribute of the dataset.
Another popular method for handling missing values is data imputation, where empty
cells or instances are augmented with statistical values like- mean, median, standard
deviation, percentiles, etc. The Pandas [118] data frame andNumPy [119] array packages
are widely used for handling missing values with their inbuilt statistical functions. But
the data imputation technique (mostly statistical approaches like - mean) is considered
unsatisfactory for handling missing units because it violates the dependency between
attributes and leads to standard errors.

3. Data Visualization and Data Exploration:Data visualization and exploration allow us to
make critical decisions on raw data andmake the datasets understandable. Feature depen-
dency, transformation, scatteredness, segmentation and univariate ness are analyzed in
the data exploration step [120]. Data visualization helps inmodel explanation by enabling
exploratory data analysis, and natural inductive reasoning [121]. In layman’s terms, we
could say that data visualization and exploration tend to interact with the dataset more
efficiently by enabling faster decision-making and identifying errors and inaccuracies.
The popular packages for data visualization and exploration includematplotlib, seaborn,
geoplotlib.
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4. Outlier Detection and Removal:Outliers are the data points that have the same behaviour
as the expected data points but are significantly far from the usual data dispersion.
They affect the model training phase and lead towards poor model generalization. If not
removed, there will be a degradation of the overall model performance. The researchers
in [122] incorporated multiple outlier handling mechanisms for tackling HAR outliers
which can be broadly categorised into two types - a. Density-based outlier detection,
b. Distance-based outlier detection. Density-based outlier detection can detect the local
outliers, and distance-basedmethods are competent in detecting the global outliers. HAR
dataset tends to have both types of outliers because of the involvement of dynamic move-
ment of human activities and numerous sensors.

5. Solving Class Imbalance Problem: It often occurs that the HAR dataset has a class
imbalance problem. HAR system encounters this problem because of the difference in
time for performing numerous activities. This problem leads to biases about a specific
class label or human activity. It can be slightly biased (low-class imbalance) or severely
biased (very high-class imbalance), as shown in Fig. 6. The machine learning and deep
learning models assume a uniform distribution of classes in the dataset. If one passes the
imbalanced dataset, the model will be more biased towards the majority class and will
perform poorly while validating the model [96, 97].
Schemes like - model over-sampling and model under-sampling are widely used for
handling the imbalanced dataset. Over-sampling creates the random duplicates of the
minority class and uplifts them by matching the majority classes. On the other hand,
model under-sampling removes the random instances of majority classes and matches
them up with the minority class. Nowadays, another method named - synthetic sample
generation is widely used where the new samples are created with the help of statistical
artificial intelligence techniques like - the distance betweendata points and its neighbours’
count. Imbalanced-learn with scikit learn are the two popular libraries that are used for
handling the class imbalance problem.

6. Feature Extraction and Selection: HAR dataset consists of n number of features, and
some of them can be relevant, relatively relevant and irrelevant as well. One can easily
find out the effect of each feature or attribute by solely running models with a particular
feature. The features that yield good accuracy are primarily relevant in nature, and the

Fig. 6 Class Imbalance Problem
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irrelevant features will contribute less to the performance. Generally, we use feature
construction, feature extraction and feature selection [58, 123–125] for reducing the
overall dataset dimensionality. Feature construction is the practice of creating additional
features from the already available data or features.
Feature extraction is the process of extracting new information from the raw dataset. It
creates a new form of information from the stored data and minimizes the duplicated
data. HAR datasets are often very big, with huge numbers of activity instances and raw
sensor values of multiple sensors like - tri-axial accelerometers, gyroscopes and many
more. It has always been a big challenge for researchers to handle big datasets and study
them. Most of them [63, 124, 126], uses handcrafted feature extraction techniques for
generating the new information from the raw data as referred in the Table 4.
Often, a dataset with too many features is very hard to handle, and extracting features
from them is considerably complex. To address that kind of dataset, one must use a
feature selection mechanism like - mutual information or information gain to select the
most relevant features from the set of all available features. It reduces the overall time
complexity of the model and helps in overcoming model overfitting as well.

7. Data Normalization and Standardization:HAR dataset has numerous data instances and
has a mix of sensor values. Because of the bulk of data present in the HAR dataset, it is
always advisable to bring all the feature data on a standard scale. Numerous methods are

Table 4 HAR Handcrafted
Features for Inertial
Measurement Unit (IMU)
[63, 126]

Domain Features

Frequency Skewness

Weighted Average

Energy

Maximal Frequency

Angle between two vectors

Percentile

Time Mean

Median

Standard Deviation

Maximal

Minimal

Entropy

Correlation coefficient

Auto regression Coefficient

Interquartile range

Average sum of squares

Kurtosis

Range

Variance

DC Components

Number of mean crossing

Wavelet Energies

Percentile
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Table 5 Popular Data
Normalization and
Standardization

Method Mathematical Formulation

Min-Max Normalization xi−Min(x)
Max(x)−Min(x)

Mean Normalization xi−Average(x)
Max(x)−Min(x)

Z-Score Standardization

(Standard Scalar) xi−Mean(x)
Std.Dev.(σ )

used for data normalization and standardization by the researchers, and a few popular
ones are listed in Table 5.
Min-Maxnormalization transforms the feature instances by replacing themaximumvalue
to one, the minimum value to zero and the remaining values between zero and one. Mean
normalization scales the features by removing the average value from every instance. The
z-score standardization is another form of mean normalization where the data instances
are normalized using the standard deviation. Z-score standardization is widely known as
Standard Scalar standardization. It is important to note that the normalization process is
specific to the type of learning algorithm. The distance-based algorithms like -KNN, SVM
have a terrific impact on data normalization, but the gradient descent-based algorithms
like - Artificial Neural Network, Logistic Regression, Linear Regression suffer from it.
On the other hand, tree-based learning algorithms like - Decision Tree, Random Forest
have an almost negligible effect on data normalization and standardization.

4.1.4 Model building and evaluation

Once the data is pre-processed, the model building and evaluation are done, where one or
multiple learning algorithms are trained and tested. At first, the entire dataset is divided
into two parts, i.e., training set and testing set. The training set has a higher number of data
instances as it is required to train the model for finding the rules and patterns from the dataset.
For every ADL present in the dataset, the rules are generated and stored in the trained model.
The testing set has a lower number of data instances since it is applied for model evaluation.
Ideally, the dataset’s input instances are split randomly for unbiased model classification and
performance measurement. We analysed that the split ratio of 70 : 30, 80 : 20 and 90 : 10 is
the most optimal split for most of the dataset.

After the training and testing split, classification models are selected based on the require-
ments. Model training is an iterative process where new rules and patterns are determined
from the training set w.r.t the associated class labels, and the best combination of weights
is allotted over the classification range. The block-level view diagram of the model training
phase for tree-based algorithms like - Decision Tree is shown in Fig. 7. Once the model is
trained, it can be quickly evaluated using a test set for getting the performance score. One of
the significant advantages of model training is that it can be deployed in multiple computing
environments and can be used accordingly. The test set is supplied to the trained model and
iteratively tested with different activity classes. Training and testing sets are often not enough
for optimal performance evaluation (mostly with deep learning models); another set named
- the validation set, which consists of a small number of data instances, is used to test and
tune the model. Hyper-parameter Tuning is the process of tweaking the model in terms of
various model-specific parameters like - weights (w), neighbour values (k), learning rate
(lr ), threshold (α), etc. for getting the best performance from the models.
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Fig. 7 Block view of the model training phase for tree-based algorithms

Model evaluation is done with the help of various performance metrics and is very impor-
tant for different domain applications. HAR systems also need different performance metrics
for evaluating the best classifier, architecture, dataset, sensor types, mounting locations, etc.
Evaluation metrics that are extensively popular for measuring the classification performance
with the help of confusion matrix, as shown in Fig. 8 for the HAR system, are as follows-

1. Precision (P) signifies the rate of correctly predicted positive classeswhen both the actual
and notional positive classes are given to the model. Mathematically, it is defined as the
number of true positives (Tp) over the number of true positives plus the number of false
positives (Fp).

P = Tp

Tp + Fp
(1)

2. Recall (R) is the actual positives of the classification model that is defined as the total
number of true positives (Tp) over the total number of true positives (Tp) and false
negatives (Fn). This measure is also commonly known as sensitivity or True Positive
Rate (T PR) and is incorporated when we need to see the performance of the actual class
labels.

Fig. 8 Confusion Matrix for the
classification model

123



Multimedia Tools and Applications (2024) 83:73233–73272 73251

R = Tp

Tp + Fn
(2)

3. Specificity calculates the performance of the classification model when we provide the
negative or wrong class to the classifier, and the classifier manages to predict it as the
negative class successfully or not. Specificity is also known as False Positive Rate (FPR).
Mathematically, it is defined as the true negatives (Tn) over the total of true negatives
(Tn) and false positives (Fp).

Speci f ici t y = Tn
Tn + Fp

(3)

4. F1-Score (F1) calculates the harmonic mean between the Precision (P) and Recall (R)
and is one of the widely used performance metrics.

F1 − Score = 2 ∗
(

P ∗ R

P + R

)
(4)

5. Accuracy (A) is the most used performance metric in the HAR system and is defined
as the ratio of correctly predicted class (total true instances) of the total number of
observations. The accuracy (A) is defined as follows.

A = Tp + Tn
Tp + Tn + Fp + Fn

(5)

6. Computational Time (CT ) is defined as the total amount of time required for model
training (Tr ) and testing (Ts). Mathematically, it is defined as -

CT = Tr + Ts (6)

where Tp , Tn , Fp and Fn is defined in the Table 6.

Finally, after completing the model evaluation, researchers often perform cross-validation
of their HAR system to validate their incorporated parameters, and effective usage of the
overall dataset [127]. Cross-validation helps in understanding overall system performance
and identifies whether the proposed system is reliable or not. The popular methods which
competent investigator [128, 129] inherits are as follows-

1. K-Fold Cross-Validation: K-Fold cross-validation is one of the most common valida-
tion methods used by researchers [130, 131]. It effectively utilises all portions of the
dataset and gives possible room for hyperparameter tuning based on the different fold
performance.
In this method, the dataset is divided into k different folds, and the train and test sets are
evaluated in multiple iterations. In each iteration, (k − 1) folds are used for training, and

Table 6 Description of different
measure used in the performance
metrics

Measure Description

Tp When the positive class is classified as positive.

Tn When the negative class is classified as negative.

Fp When the negative class is classified as positive.

Fn When the positive class is classified as negative.
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Fig. 9 Architecture of K-Fold Cross-Validation

the remaining 1 fold is used to test the model, as shown in Fig. 9. Finally, the average of
all the k folds is considered as the overall performance measure.

2. Leave One Out: Leave one out is a form of K-Fold Cross-Validation where the dataset is
divided into N number of parts, where N is equal to the number of data points or instances
in the dataset [132, 133]. Therefore, one instance of the dataset will be used to validate
the model and the remaining (N − 1) instances will be used to train the classification
model.
Another form of leave one out cross-validation is leave p out cross-validation where
the user defines the size of validating set in the form of p parameter. Accordingly, the
data instances are chosen from the dataset for the validation set. The remaining (N − p)
instances are used as the training set. It can be easily understood with the help of Fig. 10.
The above form of cross-validation is also iterative in nature, and like k-fold cross-
validation, it is computationally expensive because almost all the instances need to be
tested, which will require exponential time in case the dataset is huge.

3. Monte Carlo Cross-Validation: In above practices, user needs to explicitly pass a splitting
parameter throughwhich a dataset is partitioned intomultiple subsets.MonteCarlo cross-
validation [134] randomlypicks a portion of data from the incorporated dataset and use the
particular portion for model training. The remaining part is used for model validation in

(a) Leave One out Cross-Validation.

(b) Leave p out Cross-Validation.

Fig. 10 Architecture of Leave one and p out Cross-Validation
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the end. This process is repeated multiple times iteratively by selecting different portions
of the dataset without replacement as the training set and remaining data for validation.
Finally, the average is calculated to measure the overall performance factor. But here, a
few data instances could be left in the training and testing set as it is completely random
in nature.

5 Experimental result and discussion

This section shows and describes a detailed process of experimenting with an efficient HAR
system using in-build smartphone sensors. The results and their performance metrics are
discussed in detail with the help of generated dataset and incorporated classifiers.

5.1 Experimental setup

For our experimental setup,we used two different devices for data collection from24 different
users. Three android smartphones named - “Oneplus 9 Pro”, “Poco X2” and “SAMSUNG
Galaxy A30-S” are used for ADLs data collection by mounting it on the waist and front
pocket. The mounting of the sensor module and various activities performed by different
subjects are shown in Fig. 11. A publicly available android application named SensorRecord
is incorporated to read the accelerometer and gyroscope readings from the user. The same
data is stored in the form of a CSV (Comma-Separated Values) file in the smartphone itself
for convenience. The features that are present in our dataset are directly collected from the
android application and inbuilt smartphone sensors, and are constructed up of Rotational

Fig. 11 Different ADLs performed by users and sensor module- mounting location
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Rate (3D), Gravity (3D), Linear Acceleration (3D) and Acceleration due to Gravity (3D).
Among the feature set, the gravity, linear acceleration and acceleration due to gravity are
collected through the accelerometer sensor, and only the rotational rate is collected through
the gyroscope sensor.

The data is collected at the rate of 100 Hz, and each individual activity of all the subjects
is done for a period of 60 to 120 seconds each. The various activities include – Standing,
Walking, Running, Sitting, going Downstairs and going Upstairs. The age of the subjects is
in-between 25± 35; height is in-between 155± 185 cms, and weight is in-between 66± 85
kgs. The formulation of the dataset, along with its feature set with respect to its sensors, is
shown in (10). Fs1 and Fs2 features are collected from the accelerometer sensor as defined
in (7) and (8), and Fs3 is collected from gyroscope sensor module as defined in (9), where,
(AG) is Acceleration due to Gravity, (L A) is Linear Acceleration, (GV ) is Gravity and
(RR) is Rotational Rate.

Fs1N X6 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AGx0 AGy0 AGz0 L Ax0 L Ay0 L Az0
AGx1 AGy1 AGz1 L Ax1 L Ay1 L Az1

...
...

...
...

...
. . .

AGxn AGyn AGzn L Axn L Ayn L Azn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

Fs2N X3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

GVx0 GVy0 GVz0
GVx1 GVy1 GVz1

...
...

...

GVxn GVyn GVzn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8)

Fs3N X3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RRx0 RRy0 RRz0
RRx1 RRy1 RRz1

...
...

...

RRxn RRyn RRzn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

DatasetN X13 = {
Fs1 Fs2 Fs3,Classes

}
(10)

The formulated dataset adds diversity and accounts for possible sensor performance, sen-
sitivity, and quality variations across various devices as it considers multiple sensor modules
for data acquisition. Also, we collected different ADLs data in uncontrolled environments,
which allows the users to perform multiple activities freely, making the data instances real
and minimally augmented, unlike the dataset formulated in a controlled scenario. Further,
with data from 24 users, the dataset offers a relatively large and diverse user cohort. This
diversity can help capture variations in human activities across individuals, leading to more
robust and generalized models.

Along with our dataset, we incorporated a public dataset named - mHealth [75] for bench-
mark comparison and analytical discussion on different aspects. ThemHealth dataset consists
of sensor data from smartphone that were performed by 10 participants while they engaged in
12 physical pursuits. The dataset contains six different sensor readings, including ECG (elec-
trocardiogram) data, accelerometer, gyroscope, and magnetometer readings. The dataset’s
objective is to make it easier to conduct mobile device study on human movement recogni-
tion. The dataset has been extensively used in machine learning research, especially in the
creation and assessment of algorithms for fall detection and activity recognition.
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After data collection and dataset building, we performed data pre-processing on the gener-
ated dataset and mHealth to remove all the inconsistencies and get insights into the acquired
data. As an initial point, we checked for corrupted and missing values and found out that
there were zero instances of them. Then we checked for redundant (duplicate) instances and
found out that 37.46% of data were redundant.We removed them using the dropmethod from
pandas [118] data analysis tool. For the rest of the experiment, we have used the remaining
62.54% of data instances as our primary focus. Removing redundant data (if it is in huge
quantity) is imperative for saving computational time and model overfitting, which will lead
to poor performance in real-time activity classification. Further, for mHealth there were no
missing, duplicate and corrupted present in the dataset.

In the next stage, we checked for outliers in our dataset using data visualization tools and
found out that 99% of the data are good and the remaining 1% are outliers.We did not remove
the small fraction of them to make the model a bit more complex for both model training
and evaluation. Then in the next step, we checked for class imbalance. We marked that our
dataset has a significant class imbalance problem upon envisioning the different activity
labels. As discussed above in Section 4.1.3, the class imbalance problemmust be rectified, or
otherwise, the majority class will dominate the minority classes, and it will affect the overall
classification performance. To solve our datasets’ imbalance trouble, we incorporated the
Random Over Sampler - ROS [135] method that randomly picks considerable examples of
a minority class with replacements and puts them into the training set. The result of before
and after class imbalance can be seen in Figs. 12 and 13, respectively.The need of ROS
for balancing the mHealth dataset was not needed as mHealth dataset was already balanced
with almost 25243 ± 27648 instances except one activity with 9267 instances and the class
distributions are shown in Fig. 14.

Once the class imbalance problem is solved, we constructed the features for passing the
training and testing set to the classifiers. Here, the activity labels are encoded to an integer
using Label Encoder as many of the classifiers only accept the numeric activity class labels
for the classification task. The result of encoding is 0 - Running, 1 - Sitting, 2 - Standing,
3 - Walking, 4 - downstairs, 5 - upstairs. The same has been done for the mHealth dataset
using Label Encoder. Feature extraction and selection are not required for both datasets
as they have enough data instances and features for model training. Then, we checked the
performance of our incorporated models with and without data standardization - Standard
Scalar and normalization - Min Max Normalization on both dataset. Data standardization
and normalization helps in delivering the dataset patterns an equal weight for model training.

Fig. 12 Imbalanced data instances of our generated dataset
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Fig. 13 Balanced data instances after ROS on own generated dataset

But because of this, a few models like - gradient-descent based classifiers suffer, which is
further explained in the discussion section.

5.2 Result analysis and discussion

Various classifiers with respect to its learning methods are incorporated for recognising
human activities. Decision Tree (DT), k-Nearest neighbour (KNN) and Naive Bayes (NB)
are considered under shallow learning algorithms, Random Forest (RF), eXtreme Gradient
Boosting (xGB), Cat Boost (CB) and Lightweight Gradient Boosting Model (LGM) are
considered under ensemble learning method, and Long Short Term Memory (LSTM) and
Hybrid CNN-LSTM models are incorporated under deep learning methods.

To train and test the incorporated classifiers, we have used a Windows-based workstation
built up of 32 GB RAM (31.6 GB usable), Intel Xeon W-2133 @ 3.6GHz Processor, 2TB
Hard Disc Drive and NVIDIA Quadro P2000 GPU. All the models are tested on Python
(Version 3.9) using Anaconda Jupyter Notebook. After the complete data pre-processing,
we divided the dataset into two sets, i.e. training set and testing set, with a ratio of 80 : 20,
respectively. The generalized view of the training and testing set is summarized in (11) and
(12).

TrainSetN X13 = {
(Fs11−n Fs21−n Fs31−n, Activi t y)

}
(11)

Fig. 14 mHealth dataset class label distributions
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T est SetN X12 = {
((Fs1k−m Fs2k−m Fs3k−m)

}
(12)

5.2.1 Analysis of deep learning algorithms

We choose two deep learning models, namely- LSTM and CNN-LSTM, for evaluating our
dataset. LSTM and CNN-LSTM are considered as they are very efficient with automatic
feature analysis on time series data and have low chances of training and validating loss. The
incorporated hyperparameters for both models are summarized in Table 7. On testing the
models, we got an average accuracy of 96.24% and 96.53% with LSTM and CNN-LSTM
models on our dataset, respectively. The detailed comparison between the two model accura-
cies after 10- fold cross validation is shown in Fig. 15. The P, R is also promising as compared
to the shallow and ensemble learning models, as the capability of model generalization is
better with deep learning algorithms.

LSTM shows the volatility inmodel training as the loss on validation data is not consistent,
and because of this, its overall training accuracy is also changing with successive iterations.
It is happening because it lacks efficient hierarchical feature extraction on time series data.
It successfully handles the long-term dependencies but fails to analyse the prime features.
The model is overfitting after a certain amount of training and validation, and the same is
shown in Fig. 16. Unlike LSTM, the hybrid CNN-LSTM model manages to extract features
from the time series data using its Conv1D method and its again memorized with the help of
LSTM memory mechanism. Long-term dependencies and high-level features are efficiently
extracted here, producing very low training loss. The training-validation accuracy and loss of

Table 7 Summary of
hyper-parameters used for deep
learning model

Model Metric Used parameter

CNN-LSTM Convolution Conv1D

Filter 64

Kernal_size 3

drop_out 0.5

MaxPooling MaxPooling1D(2)

CNN_activation relu

LSTM_activation relu

output_activation softmax

neuron_dense 200

batch_size 512

epoch 150

LSTM model Sequential

drop_out 0.5

LSTM_activation relu

output_activation softmax

LSTM_neurons 200

neuron_dense 200

epoch 150

batch_size 512
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Fig. 15 10-Fold accuracies of deep learning models (own dataset)

this model can be seen in Fig. 17. As we have comparatively fewer samples after redundant
data removal, the above model can yield better results when a huge dataset is provided to
them. Due to the lack of data, deep learning models are overfitting and hampering the overall
accuracy, as shown in Fig. 18.

Both model also achieves optimal accuracies on the mHealth dataset as well, and the 10-
Fold accuracies are shown Fig. 19. CNN-LSTM achieves better results than LSTM due to the
advantage of superior feature extraction from Conv1D layers. Also, huge training instances
help the models to generalize optimally and exert higher training and testing accuracies as
compared to our dataset. The training and testing accuracies of LSTM and CNN-LSTM are
compared in Fig. 20.

Due to the cardinal benefit of balanced and vast data instances, both models experience
minimal training and validation data losses. Both models were trained for 150 iterations, as
referred to in the Table 7 and the training accuracies and loss achieved by the models were
optimal, as shown in Figs. 21 and 22, respectively. Also, as both models are not overfitting in
the successive iteration after 60 ± 80, we can stop the training process at 80 epochs to save
computational cost.

Fig. 16 Model loss and accuracy of LSTM classifier (own dataset)
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Fig. 17 Model loss and accuracy of CNN-LSTM classifier(own dataset)

Fig. 18 Training and Testing accuracies of LSTM and CNN-LSTM models showing model overfitting (own
dataset)

Fig. 19 10-Fold accuracies of deep learning models (mHealth dataset)
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Fig. 20 Training and Testing accuracies of LSTM and CNN-LSTM models showing model overfitting
(mHealth dataset)

Fig. 21 Model loss and accuracy of LSTM classifier (mHealth dataset)

Fig. 22 Model loss and accuracy of CNN-LSTM classifier (mHealth dataset)
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Fig. 23 Accuracy comparison of different shallow and ensemble models of own dataset

5.2.2 Analysis of shallow and ensemble learning algorithms

Evaluating the incorporated shallow learning models on the processed datasets, we managed
to achieve average accuracies of 89% and 91% with DT and KNN, respectively on our own
dataset. At the same time, both DT and KNN managed to achieve an average accuracy of
97% and 91%, respectively, on the mHealth dataset. NB suffers from performance loss as
the classification criteria were conditional probability which is optimal for binary classifica-
tion but significantly not efficient for multi-class classification. DT classifier is tested with
Gina_Index criteria with the minimum sample split of 2. On the other hand, KNN is tested
with 5 neighbours and Euclidean distance for distance calculation criteria. The Precision,
Recall and F1-Score values are also remarkably high and consistent for all the 10 - fold
cross-validation. The average, maximum and minimum accuracies of both datasets achieved
after 10-fold cross-validation are compared in Figs. 23 and 24. Shallow learning models
are not able to match the performance of deep and ensemble learning models as it lacks
automatic feature engineering, which is automatically done by the hidden layers of deep
learning algorithms, and they also lacks the support of multiple base learners for effective
model generalization. The need for experts to perform feature extraction and selection is a
primary drawback here. But in contrast, because of its simple mathematical operations and
model training, the computational time is much more efficient than the ensemble and deep
models. The detailed performance comparison with other learning models are described in
Table 8.

On the other hand, ensemble learning models performed much more efficiently than
shallow learning models. The accuracies of all four classifiers for both datasets are shown in
Figs. 23 and 24, respectively. The involvement of multiple base learners and random dataset

Fig. 24 Accuracy comparison of different shallow and ensemble models of our mHealth dataset
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Table 8 Detailed comparison of different learning models with computational times of our own dataset

Classifier Hold-Out 10-Fold
Acc.

Avg. Precision Recall F1-Score Avg. CT (Sec.)

RF 94.41 94 M. Avg. 0.94 0.94 0.94 25.1

W. Avg. 0.94 0.94 0.94

XGB 93.78 93 M. Avg. 0.93 0.93 0.93 295.8

W. Avg. 0.93 0.93 0.93

CB 92.46 92 M. Avg. 0.92 0.92 0.92 3.6

W. Avg. 0.92 0.92 0.92

LGM 92.72 92 M. Avg. 0.93 0.93 0.93 29

W. Avg. 0.93 0.93 0.93

DT 89.26 89 M. Avg. 0.9 0.9 0.9 1.7

W. Avg. 0.9 0.9 0.9

KNN 91.41 91 M. Avg. 0.91 0.91 0.91 3.53

W. Avg. 0.91 0.91 0.91

NB 68.1 68 M. Avg. 0.68 0.68 0.68 3.53

W. Avg. 0.68 0.68 0.68

LSTM 97.7 97 M. Avg. 0.99 0.99 0.99 892

W. Avg. 0.99 0.99 0.99

CNN-LSTM 97.88 97 M. Avg. 0.99 0.99 0.99 627

W. Avg. 0.99 0.99 0.99

∗ Acc.=Accuracy, Avg.=Average, M. Avg=Micro Average, W. Avg=Weighted Average

splits yields better results. Also, the support of multi-feature handling and transferring to the
base learners produced better output in all the trained models, and the result aggregation got
a better performance result. It takes more time to train and test the model as compared to
shallow learning models, but it is much more computationally efficient than deep learning
models. The tendency of handling bias or variance on all the base learnersmultiple times helps
overcomemodel overfitting and under-fitting, resulting in better accuracy performance. XGB
yielded highest accuracy of 99.43% with the training parameters of 100 base estimators and
gini index splitting criteria. Along with the XGB classifier, RF, CB and LGM got an average
accuracy of 99% each on the mHealth dataset. Our dataset suffers from performance loss
as the data collected has fewer training samples than mHealth, and the models fail to train
the parameters optimally. The detailed comparison of the incorporated ensemble approaches
are described in Table 8. In contrast to the deep and shallow learning algorithms, the RF
ensemble model performs better in computational time and yields comparable accuracy to
the deep learning models for the mHealth dataset. The detailed performance comparison of
all the incorporated classifiers of our own and mHealth datasets are summarized in Tables 8
and 9, respectively.

5.3 Effect of model evaluation schemes

We incorporated holdout and k-fold cross-validation (k= 10) method for performance com-
parison and checking the performance of different model evaluation schemes. The Holdout
method performs better in terms of accuracy than the 10-fold cross-validation as it uses a

123



Multimedia Tools and Applications (2024) 83:73233–73272 73263

Table 9 Detailed comparison of different learning models with computational times of mHealth dataset

Classifier Hold-Out 10-Fold
Acc.

Avg. Precision Recall F1-Score Avg. CT (Sec.)

RF 99.37 99 M. Avg. 1 1 1 105.1

W. Avg. 1 1 1

XGB 99.43 99 M. Avg. 1 1 1 1998.23

W. Avg. 1 1 1

CB 99.38 99 M. Avg. 0.99 0.99 0.99 169.85

W. Avg. 0.99 0.99 0.99

LGM 99.82 99 M. Avg. 1 1 0.93 11.02

W. Avg. 1 1 1

DT 97.41 97 M. Avg. 0.97 0.97 0.97 10.4

W. Avg. 0.97 0.97 0.97

KNN 91.68 91 M. Avg. 0.92 0.92 0.92 651.28

W. Avg. 0.92 0.92 0.92

NB 85.13 85 M. Avg. 0.85 0.85 0.68 0.32

W. Avg. 0.85 0.85 0.85

LSTM 98.94 98 M. Avg. 0.99 0.99 0.99 1256

W. Avg. 0.99 0.99 0.99

CNN-LSTM 99.48 99 M. Avg. 1 1 1 856

W. Avg. 1 1 1

∗ Acc.=Accuracy, Avg.=Average, M. Avg=Micro Average, W. Avg=Weighted Average

more significant proportion of the dataset for training and a smaller proportion for model val-
idation, which results in an accurate evaluation of the testing set. However, this also means
that the holdout method may suffer from higher variance and may not generalize as well
to new data. On the other hand, k-fold cross-validation provides better estimate of model
performance by averaging the results of multiple evaluations (in our case, 10-folds). This is
particularly useful when the dataset is large or when the model is complex, as it ensures that
all data is used for both training and validation. However, k-fold cross-validation requires
more computational resources and is much slower than the holdout scheme. The comparison
of both evaluation scheme with respect to accuracy is summarized in the Tables 8 and 9 for
own and mHealth dataset, respectively.

5.4 Effect of data standardization and normalization on different classifiers

As discussed in section 4.1.3, we reviewed that the gradient-descent-based models suf-
fer from data normalization or standardization. We applied Min-Max normalization and
Standard-Scalar data standardization to see this degrading performance phenomenon and
compared the results of all the incorporated classifiers. Upon testing the incorporated clas-
sifiers, distance-based classifiers managed to achieve better results with the performance
increase of (91±94)%with our own dataset and (91±99)%with the mHealth dataset. Also,
the computational times were optimised because of common scale data. Other shallow and
ensemble learning models did not show any changes to the accuracies, but the training times
were also optimized for them.
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Fig. 25 Accuracy comparison of different classifiers with and without data standardization and normalization
on own dataset

On the other hand, both gradient-descent-basedmodels - LSTM andCNN-LSTM suffered
from accuracy loss with an overall accuracy loss of 1% on both datasets. It is happening
as the gradient descent algorithm is sensitive towards the scale of input features and the
relationships between the input features and output variables are not preserved after data
normalization. But, one positive effect was the efficient computational times of both models
as the computations become easy for non-linear activation functions. The achieved accuracies
by different classifiers with andwithout data standardization and normalization on our dataset
and mHealth are shown in Figs. 25 and 26, respectively.

5.5 Effect of different sensors and learningmodels

Finally, we analysed the performance of different features acquired by the incorporated
sensors for data collection. First, we checked the individual feature accuracies and achieved
good performance with Accelerometer (A) features on our own dataset. On the contrary,
Gyroscope-based (G) feature - Rotational Rate, achieved poor performance result as it fails
in optimally categorise the activity patterns. But, combining both A and G features, the
performance improves and achieves better accuracies than the individual feature set. The
detailed comparison of all the incorporated classifiers on our dataset is described in the
Table 10.

On the other hand, G features yield better performance for the mHealth dataset, and A
features suffer from model generalisation. mHealth has other sensor features, like - Mag-
netometer (M) and Electrocardiogram(ECG), which returns poor accuracies than A and G

Fig. 26 Accuracy comparison of different classifiers with and without data standardization and normalization
on mHealth dataset
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Table 10 Accuracy comparison
(in %) of various learning models
with respect to different sensors
of our own dataset

Dataset Models A G A+G

Own Dataset RF 92 79 94

XGB 90 76 93

CB 88 73 92

LGM 90 75 92

DT 88 75 89

KNN 89 74 91

NB 63 53 68

LSTM 90 59 97

CNN-LSTM 91 63 97

∗ A = Accelerometer, G = Gyroscope

feature set. The average accuracies for M are between (50± 71%) and (15± 21%) for ECG
features, respectively. Analysing different feature sets, we can conclude that G andA features
yield better accuracies and can easily generalise patterns than the other two. So, we com-
bined both A and G features and trained and tested our model to compare the performance.
We managed to achieve comparable performance concerning the original dataset achieved
performance. Other combinations of feature sets are also included in our experimental study,
and we found out that (A+G + ECG) feature set provides optimal performance results and
is better than the original feature set, as well. The detailed comparison of all the sensor-based
feature accuracies are briefly described in Table 11.

However, it was observed that in our dataset, A-based features yields better accuracies, but
for the mHealth dataset, G-based features yielded better performance results. Based on these
findings, we cannot conclude whether A-based features or G-based features are better for
activity recognition, but we could certainly confirm that the combination of both A andG fea-
tures are efficient towards human activity recognition. Further, appropriatemounting location
and incorporation of physiological sensors like - ECG are optimal for activity recognition,
but it certainly demands more computational power for model training and validation.

Table 11 Accuracy comparison (in %) of various learning models with respect to different sensors of mHealth
dataset

Dataset Models A G M ECG A+G A+G+M A+G+ECG A+G+M+ECG

mHealth RF 95 98 71 17 99 99 99 99

XGB 94 98 69 21 99 99 99 99

CB 92 96 67 21 99 99 99 99

LGM 94 98 69 21 99 99 99 99

DT 90 98 63 17 97 97 97 97

KNN 95 97 67 16 96 91 97 91

NB 75 51 50 13 80 85 88 85

LSTM 93 97 68 16 98 98 98 98

CNN-LSTM 93 98 70 15 98 99 99 99

∗ A = Accelerometer, G = Gyroscope, M = Magnetometer, ECG = Electrocardiogram
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Note - All the classifiers incorporated for the experimental analysis are the basic state-
of-the-art learning classifiers, and the achieved results can be further improved by analyzing
optimal hyperparameters. Models were incorporated to show the effect of different learning
approaches towards sensor-based HAR systems.

6 Conclusion

This paper addressed the recent state-of-the-art HAR works in detail, focusing on sensor-
based HAR system development. Classification based on sensor technology, learning
algorithms and significant scope are discussed, along with its pros and cons. Design issues
for efficient HAR system development, data collection metrics with do’s and don’ts for good
quality dataset generation, and a generic architecture of the Activity Recognition Chain are
conferred to exhibit the step-by-step procedure for developing an efficient sensor-based HAR
system. Popular state-of-the-art works and public datasets for developing a HAR system are
summarized in tables with their methodologies and incorporated evaluation metrics.

Further, a complete step-by-step HAR system design and development has been exper-
imented for comprehensive understanding of empirical human activity recognition chain.
A multi-user dataset is generated in an uncontrolled environment with the help of inbuilt
smartphone sensors, and with different learning algorithms, and data pre-processing routine
we have classified various human activities. Methods and frameworks for overcoming the
common problem of class imbalance, effect of sensors types, data standardization, noise
removal and many more are also discussed in detail. Upon classification, we achieved the
highest accuracy of 99% with deep learning models - LSTM and CNN-LSTM and the low-
est accuracy of 85% with shallow learning model - Naive Bayes on the mHealth dataset.
Similarly, our dataset achieved the highest accuracy of 97% with the LSTM classifier and
the lowest of 68% with the Naive Bayes classifier. The influence of different pre-processing
methods and the use of learning methods with key findings are discussed in detail with a
verifiable performance result. Finally, the prospective future opportunities are highlighted,
and the research direction is laid out for future scope and applications.
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