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Abstract
With the development of computer vision, object detection has attracted wide attention and
achieved exciting results inmost situations.However, facing underwater environments, object
detection’s performance degrades severely due tomultiple ineluctable factors, including poor
underwater imaging quality, underwater objects with protective colors, etc. These lead to
strong interference of underwater backgrounds and the weak discriminability of underwater
object features, which make underwater object detection become an extremely challenging
task and cry out for reliable solutions. In order to reduce the underwater background inter-
ference and improve underwater object perception, we first propose the criss-cross global
interaction strategy (CGIS).CGISconsists of twocriss-cross structures,where feature decom-
position and feature extraction are performed sequentially according to different criss-cross
shapes in each structure. For information interaction, our strategy simultaneously avoids the
destruction of direct information correspondence and the lack of global information inter-
action. According to different parameter allocation strategies, CGIS is further divided into
standard criss-cross global interaction strategy (SCGIS) and efficient criss-cross global inter-
action strategy (ECGIS). We then design the criss-cross global interaction-based selective
attention in different target dimensions. Our selective attention efficiently perceives global
underwater information and rationally allocates precious computing resources to important
underwater regions. We finally combine the designed selective attention with YOLO detec-
tors, where attention modules are added to both ends of the feature fusion. The experimental
results show that our work makes important progress in achieving efficient underwater object
detection. Our selective attention shows good robustness in various YOLO detectors and
exhibits ideal generalization in different detection tasks.
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1 Introduction

Underwater object detection is an interesting and challenging task in computer vision, which
is a basic premise for ocean exploration and autonomous grasping by underwater robots.
Due to the absorption and scattering of light by water, the imaging quality of the underwater
image is poor, such as blur, low contrast, color distortion, and so on. In order to avoid attacks,
underwater objects have evolved protective colors, which can make full use of complex
underwater environments such as sand or rocks as shelters to hide themselves. The above
phenomena lead to strong interference of underwater backgrounds and the weak discrim-
inability of underwater object features, which greatly aggravate the difficulty of underwater
object detection. Although popular object detection algorithms [4, 30, 50, 51] using deep
learning have achieved encouraging results, it is not ideal to apply these algorithms directly
to the underwater environment. Obviously, common methods to improve the performance of
neural networks, such as directly increasing the depth [13], width [34], and cardinality [41]
in the network, cannot effectively solve the problem of underwater object detection.

At present, underwater detection algorithms tend to improve the underwater detection
performance from two different perspectives: 1. Data enhancement techniques [21, 45],
such as splicing and overlapping, are adopted to improve the dataset quality. 2. Network
construction techniques [43, 48], such as residual connection and feature pyramid, are used
to improve the network performance. This simple performance gain is mainly due to the
improvement of dataset quality and network performance. The core problems of strong
underwater background interference and weak underwater object perception have not been
solved effectively. In practical underwater applications, underwater detection algorithms [6,
22, 33, 42] still have some problems, such as poor robustness and weak generalization.

It is worth noting that the attention mechanism has been widely applied in computer
vision recently [1, 5, 7, 25, 37, 52], which can extract more valuable information from
massive information. In order to reduce the underwater background interference and improve
underwater object perception, we plan to focus on the attention mechanism in this paper.

At present, variousmoduleswith the attentionmechanismhave been proposed in computer
vision, such as the Squeeze-and-Excitation module (SEM) [16], Bottleneck attention module
(BAM) [26], Convolutional block attention module (CBAM) [40], Efficient channel atten-
tion module (ECAM) [39], Coordinate attention module (CoAM) [14], Spatial group-wise
enhance module (SGEM) [20], Style-based recalibration module (SRM) [19], Frequency
channel attention module (FCAM) [27], Shuffle attention module (ShAM) [49], Criss-Cross
attention module [15] and so on. According to the different target dimensions, these attention
modules are divided into spatial attention modules [15, 20], channel attention modules [16,
19, 27, 39], and hybrid attention modules [14, 26, 40, 49]. It is worth noting that the infor-
mation interaction is the most important process in attention modules, which is responsible
for capturing global or local dependencies in the target dimension. The attention activation is
carried out on the basis of the interactive result. The quality of the interactive result directly
determines the performance of the attention module. Although major breakthroughs have
been made in various attention modules, there are still some problems.

First, some attention modules use the dimensionality reduction interaction strategy [14,
16, 26, 27, 40]. This strategy refers to the use of a bottleneck structure in information inter-
action, which first compresses the input channel dimension and then expands the output
channel dimension. Although these modules can perceive global information, they cause
confusion in the correspondence between information. Second, some attention modules use
the local interaction strategy [19, 20, 26, 39, 40, 49]. This strategy refers to the use of local
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thinking in information interaction, which focuses on capturing local dependencies in the
spatial dimension or channel dimension. Although these modules can ensure the direct cor-
respondence of information, they ignore the importance of perceiving global information. In
summary, the destruction of direct information correspondence and the lack of global infor-
mation interaction will all reduce the quality of information interaction, thereby reducing
attention performance. The negative effects of the above problems will be magnified in the
complex underwater environment.

In this paper, our work is dedicated to solving the problems of strong underwater back-
ground interference and weak underwater feature discriminability. We first propose the
criss-cross global interaction strategy (CGIS), which can avoid the deficiencies brought by
the dimensionality reduction interaction strategy and the local interaction strategy in infor-
mation interaction. The proposed strategy is mainly composed of two criss-cross structures.
In each criss-cross structure, we perform corresponding feature extraction on the decom-
posed features according to different criss-cross shapes. After passing through two criss-cross
structures in turn, each calculated feature can efficiently perceive the global underwater
information. According to different parameter allocation strategies in feature extraction, our
strategy can be divided into standard criss-cross global interaction strategy (SCGIS) and
efficient criss-cross global interaction strategy (ECGIS). Compared with SCGIS, ECGIS can
achieve better underwater information interaction with fewer parameters. On the basis of
SCGIS and ECGIS, we then design the corresponding selective attention in the spatial, chan-
nel, and hybrid dimensions, respectively. Finally, we combine designed attention modules
with YOLO detectors. The main reason for choosing the YOLO series here is that the YOLO
algorithms belong to one-stage detection algorithms. They can better balance the detection
speed and detection accuracy, which aremore suitable for complex underwater environments.
Our attention modules are added to both ends of the feature fusion in YOLO. In this paper,
the main contributions of our work are summarized as follows:

• We first propose the criss-cross global interaction strategy, which simultaneously avoids
the destruction of direct information correspondence and the lack of global information
interaction. Our strategy fully perceives underwater global information and achieves
efficient underwater information interaction.

• We then design the criss-cross global interaction-based selective attention for reducing
the underwater background interference and improving the underwater object perception.
On the basis of high-quality underwater interaction results, our selective attention extracts
important underwater information from complex underwater environments.

• Wefinally combine the designed attentionmodules with YOLO detectors, which satisfies
both high-precision and real-time requirements for underwater object detection.

The remainder of this paper is organized as follows. In Section 2, we review related
work on attention mechanisms and object detection. In Section 3, we introduce the proposed
method in detail. Experiments and analyses are provided in Section 4. The conclusion about
our work is summarized in Section 5.

2 Related works

2.1 Attentionmechanism

With the unremitting efforts of researchers, the attention mechanism in deep learning has
made significant breakthroughs. According to different design ideas, attention mechanisms
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can be divided into selective attention mechanisms [14, 16, 19, 20, 26, 27, 39, 40, 49] and
enhanced attention mechanisms [15, 24, 38, 44]. Selective attention can highlight important
features and suppress unimportant features according to the calculated importance of each
feature. The enhanced attention can enhance each feature according to the strength of the
calculated correlation among all features. In order to better reduce the underwater background
interference and improve underwater object perception, here we focus on selective attention.

Hu et al. [16] proposed the Squeeze-and-Excitation Network, where SEM learned the
importance of each channel by modeling the interdependence among channels. The bottle-
neck structure was used in information interaction to reduce parameters and computations.
This dimensionality reduction interaction strategy destroys the direct information corre-
spondence, which will reduce attention effectiveness, especially in complex underwater
environments. Wang et al. [39] proposed the Efficient Channel Attention Network, where
ECAM used the local interaction strategy without dimensionality reduction in the chan-
nel dimension. This strategy reduced the interaction cost while ensuring direct information
correspondence. A method for adaptively selecting the kernel size of 1D convolution was
developed to better determine the coverage of local cross-channel interaction. They argue that
the lack of global information interaction has little effect on attention performance. However,
this is very disadvantageous for applying selective attention in complex underwater environ-
ments. Hou et al. [14] proposed the coordinate attention for an efficient mobile network,
where CoAM generated the selective attention that captured both spatial and channel infor-
mation by embedding spatial location into channel attention. To avoid the missing position
information in the spatial dimension caused by 2D global pooling, they used two 1D global
pooling to capture vertical spatial information and horizontal spatial information. Their work
is extremely innovative and helps the network more accurately locate objects of interest.

BAM and CBAM are proposed in [26] and [40], respectively. BAM combined channel
attention and spatial attention in parallel and successively used multiple dilated convolutions
to expand the receptive field in the spatial dimension. CBAMcombined channel attention and
spatial attention in series and used both max pooling and average pooling to enrich receptive
fields in different dimensions. For BAM and CBAM, there is still the problem of direct
correspondence destruction on the channel branch and the problem of global interaction lack
on the spatial branch. The selective attention that ensures direct information correspondence
and achieves global information interaction is crucial for reducing underwater background
interference and improving underwater object perception.

SGEM [20] used global average pooling and normalization to collect spatial information.
Spatial-wise information interaction was further achieved by assigning a weight and a bias to
each channel grouping. SRM [19] used global average pooling and global standard deviation
pooling to collect twodifferent spatial information.Channel-wise information interactionwas
further achieved by assigning two different learnable parameters to each channel dimension.
For SGEM and SRM, the local spatial interaction and the local channel interaction degrade
the selective attention performance in underwater detection environments. FCAM [27] used
different DCT priors to capture the intrinsic information of channel grouping and used fully
connected layers with a bottleneck structure to achieve global information interaction. The
dimensionality reduction interaction strategy leads to the destruction of direct information
correspondence, which is not conducive to underwater detection tasks. ShAM [49] mainly
consisted of two attention branches. In information interaction, the channel attention branch
and the spatial attention branch assignweight and bias parameters to each channel dimension,
which realizes the local interaction of channel information and spatial information. Although
the local interaction strategy avoids the destruction of direct information correspondence, it
causes a lack of global information interaction.
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2.2 Object detection

With the unremitting efforts of researchers, the object detection task in computer vision
has made significant breakthroughs. According to different processing procedures, object
detection algorithms can be divided into one-stage algorithms [2, 18, 23] and two-stage
algorithms [11, 12, 31]. Compared with the two-stage detection algorithms, the one-stage
detection algorithms have a greater advantage in inference speed. In order to better complete
the underwater object detection task, here we focus on the detection algorithms in YOLO
(You Only Look Once) series [2, 10, 17, 28–30, 36, 46, 47].

Redmon et al. proposed YOLOV1 [28], YOLOV2 [29] and YOLOV3 [30]. The core idea
of the YOLO series is to directly input the entire image at the input end and directly output the
position and corresponding category of the bounding box at the output end. YOLOV1 used
GoogleLeNet as the backbone, which had ideal inference speed and generalization ability.
YOLOV2 used DarkNet19 as the backbone and introduced the idea of anchor boxes. The
model convergence speed was improved by adding the batch normalization layer after the
convolution layer. The multi-scale training method improved the robustness of YOLOV2
on images with different sizes. The backbone used by YOLOV3 was DarkNet53. YOLOV3
applied the residual structure to extract features better and applied feature pyramid networks
(FPN) for feature fusion. The multi-scale prediction strategy was used to better detect objects
with different scales. Compared with YOLOV1 andYOLOV2, YOLOV3 can achieve a better
balance of speed and accuracy.

Bochkovskiy et al. [2] proposed YOLOV4, which combined various tricks in deep learn-
ing. YOLOV4 introduced mosaic data augmentation and cross mini-batch normalization at
the input. CSPDarkNet53,Mish activation function, and DropBlock regularization were used
in the backbone. The spatial pyramid pooling (SPP) module and path aggregation network
(PAN) structure were borrowed in the neck. In the head, the loss computation and non-
maximum suppression were performed based on complete-intersection over union (CIOU)
and distance-intersection over union (DIOU), respectively. Compared with the previous ver-
sions, YOLOV4 has a stronger performance. YOLOV5 was proposed in [17], which had a
similar network structure to YOLOV4. In the backbone, YOLOV5 added Focus and SPP
structures and tweaked the implementation details, which can be called modified CSPDark-
Net. The cross-stage partial (CSP) structure is further used in the neck to strengthen the
feature fusion ability of the network. Adaptive anchor box calculating and adaptive image
scaling were applied at the input. YOLOV5 has stronger flexibility, which can achieve rapid
deployment.

YOLOv6 [46] designed the EfficientRep backbone and the Rep-PAN neck based on the
RepVGG style. The decoupled head is further optimized by reducing overhead. YOLOv6
adopted the anchor-free training strategy and the SimOTA label assignment strategy to further
improve detection accuracy. For YOLOv7 [36], the extended efficient long-range attention
network (Extended-ELAN) improved model learning ability without destroying the original
gradient path. The concatenation-based model scaling method maintained the optimal struc-
ture of the model design. The planned re-parameterized convolution effectively increased
model inference speed. The dynamic label assignment strategy with coarse-to-fine guidance
provided better dynamic targets for different branches.

Ge et al. [10] proposed YOLOXbased onYOLOV3. YOLOXused an anchor-free strategy
to reduce the complexity of the detection head and used the decoupled head to improve the
model convergence speed. The SimOTA strategy was applied to the loss computation, which
is able to dynamically match positive samples for objects with different sizes. In general,
YOLOX has superior performance in terms of speed and accuracy. YOLOV8 [47] was an
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improved version based on YOLOV5, which has the best speed and detection performance at
present. The backbone still used the CSP idea and achieved further lightweight. The neck still
used the PAN idea and tweaked the convolutional structure. The head used both decoupled-
head and anchor-free strategies. Task-aligned assigner was used in sample matching.

3 Proposedmethod

In this section, we first introduce the main idea of a criss-cross global interaction strategy
(CGIS). We then provide detailed processes for standard criss-cross global interaction strat-
egy (SCGIS) and efficient criss-cross global interaction strategy (ECGIS). Next, we design
criss-cross global interaction-based selective attention in the spatial, channel, and hybrid
dimensions, respectively. Finally, our attention modules are combined with YOLO algo-
rithms.

3.1 Criss-cross global interaction strategy (CGIS)

CGIS is mainly composed of two criss-cross structures. In each criss-cross structure, feature
decomposition and feature extraction are performed in sequence. In feature decomposition,
we select features located at the corresponding positions according to different criss-cross
shapes. In feature extraction, we perform convolution calculations on these selected features.
It is worth noting here that, in CGIS, the input features X ∈ R

H×W cannot yet achieve
information interaction, the features Y ∈ R

H×W obtained after the first criss-cross structure
can achieve local information interaction, and the output features Z ∈ R

H×W obtained after
the second criss-cross structure can achieve global information interaction. The general form
of CGIS is formulated as follows:

Y = E1 (D1 (X)) , (1)

Z = E2 (D2 (Y)) , (2)

where D1 and E1 respectively represent feature decomposition and feature extraction in
the first criss-cross structure, and D2 and E2 respectively represent feature decomposition
and feature extraction in the second criss-cross structure. Figure 1 shows the main idea of
CGIS, where the height H and the width W are set to 3 respectively, and the features at
different positions are represented by circles of different colors. In order to better emphasize
the difference in the degree of information interaction at different stages, we draw the input
featuresX at the initial stage, the featuresY at the intermediate stage, and the output features
Z at the final stage with lines of different thickness. Obviously, if the line used to draw the
circle in Fig.1 is thicker, it indicates that the degree of information interaction at this stage
is stronger. Next, we will focus on two specific implementations of CGIS, including SCGIS
and ECGIS.

3.1.1 Standard criss-cross global interaction strategy (SCGIS)

For SCGIS, the first criss-cross structure is mainly composed of two processes: the first
feature decomposition and the first feature extraction. The first feature decomposition can be
completed in two steps. First, we generate HW maskswith different criss-cross shapes,where
each mask has H ×W size. Second, according to these generated masksM ∈ R

HW×(H×W ),
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Input 
Feature

Second Feature 
Extraction

First Feature 
Decomposition

First Feature 
Extraction

Second Feature
Decomposition

Output 
Feature

First Criss-Cross Structure Second Criss-Cross Structure

Fig. 1 The main idea of criss-cross global interaction strategy (CGIS). For the convenience of drawing, the
width and height are set to 3 here. Circles with different colors represent features located at different locations.
In different stages, the stronger the information interaction intensity, the thicker the drawn circle lines

we perform the mask operation on the input featuresX ∈ R
H×W to obtain the corresponding

features P ∈ R
HW×(H+W−1), where the value at the true position is retained, and the value

at the fasle position is discarded. The first feature decomposition is formulated as follows:

P = D1 (X) = f{M} (X) , (3)

where f{M} represents the mask operation. The mask operation in the first feature decompo-
sition is defined as:

f{M} (X) = f{mn} (X) =
{

xi j i f mni j = True
none i f mni j = False

, (4)

where n = [1, ..., HW ], i = [1, ..., H ], and j = [1, ...,W ]. xi j ∈ R represents the feature at
the i th row and j th column in X,mn ∈ R

H×W represents the n th mask inM, and mni j ∈ R

represents the Boolean value at the i th row and j th column in mn .
After the first feature decomposition, we next perform the first feature extraction. The first

feature extraction can be completed in three steps. First, we generate a 1-dimensional (1D)
group convolution layer with parameters � ∈ R

HW×(H+W−1), where the number of input
channels and output channels are all set to HW , and the kernel size is set to H + W − 1.
Second, we put the features P into the configured layer for 1D group convolution, where
features P with HW × (H + W − 1) size can be processed into features with HW × 1 size.
Third, these features with HW × 1 size are reshaped into features Y with H × W size.
At this time, the features Y obtained after the first criss-cross structure have achieved local
information interaction according to different criss-cross shapes in the input features X. The
first feature extraction is formulated as follows:

Y = E1 (P) = f{H×W }
(
f{�} (P)

)
, (5)

where f{H×W } represents the reshape operation that can reshape the size from HW × 1 to
H ×W , and f{�} represents the convolution operation. The convolution operation in the first
feature extraction is defined as:

f{�} (P) = pn (�n)
T , (6)

where n = [1, ..., HW ]. T represents the transpose operation, pn ∈ R
1×(H+W−1) represents

features at the nth row in P, and �n ∈ R
1×(H+W−1) represents parameters at the nth row in

�.
For SCGIS, the second criss-cross structure is similar to the first criss-cross structure,

mainly composed of two processes: the second feature decomposition and the second feature
extraction. The second feature decomposition can be completed on the basis of the first feature
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decomposition. We directly use the masks M ∈ R
HW×(H×W ) generated in the first feature

decomposition and use the same mask operation f{M} to decompose features Y ∈ R
H×W .

The second feature decomposition is formulated as follows:

U = D2 (Y) = f{M} (Y) , (7)

where U ∈ R
HW×(H+W−1) represents the feature obtained after the second feature decom-

position. The mask operation in the second feature decomposition is defined as:

f{M} (Y) = f{mn} (Y) =
{

yi j i f mni j = True
none i f mni j = False

, (8)

where n = [1, ..., HW ], i = [1, ..., H ], and j = [1, ...,W ]. yi j ∈ R represents the feature
at the i th row and j th column in Y. The meanings ofmn and mni j are explained in (4).

The second feature extraction can be performed after the second decomposition. First,
we regenerate a 1D group convolution layer with parameter � ∈ R

HW×(H+W−1), where
the setting strategy is the same as the first feature extraction. Second, we perform 1D group
convolution on the features U. Third, by using the same reshape operation f{H×W } in the
first feature extraction, the size of the features obtained after convolution is reshaped from
HW × 1 to H × W . The second feature extraction can be completed after the above three
steps. The second feature extraction is formulated as follows:

Z = E2 (U) = f{H×W }
(
f{�} (U)

)
, (9)

where f{�} represents the convolution operation. The convolution operation in the second
feature extraction is defined as:

f{�} (U) = un (�n)
T , (10)

where n = [1, ..., HW ]. un ∈ R
1×(H+W−1) represents features at the nth row in U, and

�n ∈ R
1×(H+W−1) represents parameters at the nth row in �. At this point, the output

features Z obtained after the two criss-cross structures have achieved global information
interaction.

Masks

T T T
T F F
T F F
T T T
F T F
F T F
T T T
F F T
F F T

F F T
F F T
T T T

F T F
F T F
T T T

T F F
T F F
T T T

Input Channel = 9
Output Channel = 9

Kernel Size = 5

Reshape1D Group 
Convolution

First Feature Decomposition First Feature Extraction

Fig. 2 The first criss-cross structure in standard criss-cross global interaction strategy (SCGIS)
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In order to better show the design process of SCGIS, here we focus on the first criss-cross
structure in SCGIS as an example, where the second criss-cross structure in SCGIS is similar.
According to Fig. 1, the first feature decomposition and the first feature extraction of SCGIS
are shown in Fig. 2.

3.1.2 Efficient criss-cross global interaction strategy (ECGIS)

ForECGIS, the feature decomposition in the first criss-cross structure can be completed in two
steps. First, we generate three different types of masks, including masksM ∈ R

HW×(H×W ),
mask M

′ ∈ R
HW×(H+W−1) and mask M

′′ ∈ R
HW×(H+W−1). The purpose of generating

masks M is to extract corresponding features according to different criss-cross shapes. The
purpose of generating maskM

′
is to further extract the required features according to the row

direction of different criss-cross shapes. The purpose of generating mask M
′′
is to further

extract the required features according to the column direction of different criss-cross shapes.
Second, the features P ∈ R

HW×(H+W−1) are obtained by combining the input features
X with the masks M. We further combine features P with masks M

′
and M

′′
to obtain

features P
′ ∈ R

HW×W and P
′′ ∈ R

HW×(H−1), respectively. The first feature decomposition
is formulated as follows:

P
′
,P

′′ = D1 (X) =
⎧⎨
⎩

f{
M′}

(
f{M} (X)

)
f{
M′′}

(
f{M} (X)

) , (11)

where P = f{M} (X). f{M}, f{M′}, and f{
M′′} represent different mask operations. f{M} (X)

is defined in (4). f{
M′} (P) and f{

M′′} (P) are defined as:

f{
M′} (P) =

{
pnk i f m

′
nk = True

none i f m
′
nk = False

, (12)

f{
M′′} (P) =

{
pnk i f m

′′
nk = True

none i f m
′′
nk = False

, (13)

where n = [1, ..., HW ] and k = [1, ..., H + W − 1]. pnk ∈ R represents the feature at the
n th row and kth column in P. m

′
nk ∈ R and m

′′
nk ∈ R represent the Boolean values at the nth

row and kth column in M
′
and M

′′
, respectively.

The feature extraction in the first criss-cross structure can be completed in three steps.
First, by using the reshape operation f{W×HW }, the features P

′ ∈ R
HW×W are reshaped

into the features P
′� ∈ R

W×HW . By using the reshape operation f{H×W (H−1)}, the features
P

′′ ∈ R
HW×(H−1) are reshaped into the features P

′′� ∈ R
H×W (H−1). Second, a 1D group

convolution layer with parameters α ∈ R
W×W is generated to processP

′�, where the number
of input and output channels, the kernel size and the stride are all set to W . The 1D group
convolution layer with parameters β ∈ R

H×(H−1) are generated to process P
′′�, where the

number of input and output channels are all set to H , and the kernel size and the stride are
all set to H − 1. Third, after the 1D group convolution for P

′� and P
′′�, the features with

W × H size and the features with H × W size are obtained respectively. We transpose the
features with W × H size and sum them with the features with H × W size to get features
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Y ∈ R
H×W . The first feature extraction is formulated as follows:

Y = E1

(
P

′
,P

′′)

= f{α}
(
f{W×HW }

(
P

′))T + f{β}
(
f{H×W (H−1)}

(
P

′′)) , (14)

where P
′� = f{W×HW }

(
P

′)
and P

′′� = f{H×W (H−1)}
(
P

′′)
. f{α} and f{β} represent the

convolution operations. f{α}
(
P

′�
)
and f{β}

(
P

′′�
)
are defined as:

f{α}
(
P

′�
)

= f{α j }
(
p

′�
j

)
= p

′�
ja

(
α j

)T
, (15)

f{β}
(
P

′′�
)

= f{βi }
(
p

′′�
i

)
= p

′′�
ib (βi )

T , (16)

where i = [1, ..., H ], j = [1, ...,W ], a = [1, ..., H ], and b = [1, ...,W ]. p′�
j ∈ R

1×HW

and p
′′�
i ∈ R

1×W (H−1) represent the features at the j th row and the i th row in P
′� and

P
′′�, respectively. p

′�
ja ∈ R

1×W and p
′′�
ib ∈ R

1×(H−1) represent the features belonging to

the ath stride range and the bth stride range in p
′�
j and p

′′�
i , respectively. α j ∈ R

1×W and

βi ∈ R
1×(H−1) represent the features at the j th row and the i th row in α and β, respectively.

For ECGIS, the feature decomposition in the second criss-cross structure can be com-
pleted in two steps. First, Y ∈ R

H×W are decomposed into U ∈ R
HW×(H+W−1) by using

the mask operation f{M} defined in the first feature decomposition. Second, we further use
the mask operations f{

M′} and f{
M′′} defined in the first feature decomposition to decom-

pose U ∈ R
HW×(H+W−1) into U

′ ∈ R
HW×W and U

′′ ∈ R
HW×(H−1). The second feature

decomposition is formulated as follows:

U
′
,U

′′ = D2 (Y) =
⎧⎨
⎩

f{
M′}

(
f{M} (Y)

)
f{
M′′}

(
f{M} (Y)

) , (17)

where U = f{M} (Y). f{M} (Y) is defined in (8). f{
M′} (U) and f{

M′′} (U) are defined as:

f{
M′} (U) =

{
unk i f m

′
nk = True

none i f m
′
nk = False

, (18)

f{
M′′} (U) =

{
unk i f m

′′
nk = True

none i f m
′′
nk = False

, (19)

where n = [1, ..., HW ] and k = [1, ..., H + W − 1]. unk ∈ R represents the feature at the
nth row and kth column in U. The meanings of m

′
nk and m

′′
nk are explained in (12) and (13).

The feature extraction in the second criss-cross structure can be completed in three steps.
First, U

′ ∈ R
HW×W and U

′′ ∈ R
HW×(H−1) are reshaped into U

′� ∈ R
W×HW and U

′′� ∈
R

H×W (H−1) respectively by using the same reshape operations f{W×HW } and f{H×W (H−1)}
in the first feature extraction. Second, two 1D group convolution layers with parameters
δ ∈ R

W×W and ϕ ∈ R
H×(H−1) are generated to process U

′� and U
′′�, where the setting

strategies are the same as the first feature extraction. Third, the processing for U
′� and U

′′�
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in the second feature extraction is the same as the processing for P
′� and P

′′� in the first
feature extraction. The second feature extraction is formulated as follows:

Z = E2

(
U

′
,U

′′)

= f{δ}
(
f{W×HW }

(
U

′))T + f{ϕ}
(
f{H×W (H−1)}

(
U

′′)) , (20)

where U
′� = f{W×HW }

(
U

′)
and U

′′� = f{H×W (H−1)}
(
U

′′)
. f{δ} and f{ϕ} represent the

convolution operations. f{δ}
(
U

′�
)
and f{ϕ}

(
U

′′�
)
are defined as:

f{δ}
(
U

′�
)

= f{δ j }
(
u

′�
j

)
= u

′�
ja

(
δ j

)T
, (21)

f{ϕ}
(
U

′′�
)

= f{ϕi }
(
u

′′�
i

)
= u

′′�
ib (ϕi )

T , (22)

where i = [1, ..., H ], j = [1, ...,W ], a = [1, ..., H ], and b = [1, ...,W ]. u′�
j ∈ R

1×HW

and u
′′�
i ∈ R

1×W (H−1) represent the features at the j th row and the i th row in U
′� and

U
′′�, respectively. u

′�
ja ∈ R

1×W and u
′′�
ib ∈ R

1×(H−1) represent the features belonging to

the ath stride range and the bth stride range in u
′�
j and u

′′�
i , respectively. δ j ∈ R

1×W and

ϕi ∈ R
1×(H−1) represent the features at the j th row and the i th row in δ and ϕ, respectively.

In order to better show the design process of ECGIS, here we focus on the first criss-cross
structure in ECGIS as an example, where the second criss-cross structure in ECGIS is similar.
According to Fig. 1, the first feature decomposition and the first feature extraction of ECGIS
are shown in Fig. 3. For SCGIS, we assign different parameters to these features selected
from different criss-cross shapes, and these parameters are not shared with each other during
training. For ECGIS, we use a parameter sharing method in feature extraction, which can
further reduce parameters and achieve more effective global information interaction. Our
parameter sharing method is shown in Fig. 4, where the position of the star symbol indicates
the intersection of row and column directions in the criss-cross shape. We focus on the
locations of these intersections, and divide features with the same position state according to
row and column directions, respectively. The features enclosed by the same color box share
parameters during training.

Masks
T T T
T F F
T F F
T T T
F T F
F T F
T T T
F F T
F F T

F F T
F F T
T T T

F T F
F T F
T T T

T F F
T F F
T T T

Mask

Mask

F F F T T

T T F F F

T T F F F

T T F F F

F F F T T

F F F T T

T T T F F

F F T T T

F F T T T

F F T T T

T T T F F

T T T F F

Input Channel = 3
Output Channel = 3

Kernel Size = 3
Stride = 3

Input Channel = 3
Output Channel = 3

Kernel Size = 2
Stride = 2

Element-wise 
Sum

Transpose

Reshape 1D Group 
Convolution

Reshape

+

1D Group 
Convolution

First Feature Decomposition First Feature Extraction

Fig. 3 The first criss-cross structure in efficient criss-cross global interaction strategy (ECGIS)
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Fig. 4 The parameter allocation strategy in efficient criss-cross global interaction strategy (ECGIS). Features
with the same location state share the same trainable parameters, which are boxed by the same color

3.2 Criss-cross global interaction-based selective attention

In this subsection, we plan to design selective attention using the criss-cross global interaction
strategy in information interaction. There are three things to note here. First, according to
different implementations, CGIS can be divided into SCGIS and ECGIS. Second, according
to different target dimensions, selective attention can be divided into spatial attention, channel
attention and hybrid attention. Third, the structural design of selective attention using different
interaction strategies on the same target dimension is exactly the same. For the convenience
of introduction, the subsequent content is organized as follows.

We first introduce the criss-cross global interaction-based spatial attention module (CGI-
SAM), which includes standard criss-cross global interaction-based spatial attention module
(SCGI-SAM) and efficient criss-cross global interaction-based spatial attention module
(ECGI-SAM). We then introduce the criss-cross global interaction-based channel attention
module (CGI-CAM), which includes standard criss-cross global interaction-based channel
attention module (SCGI-CAM) and efficient criss-cross global interaction-based channel
attention module (ECGI-CAM). We finally introduce the criss-cross global interaction-
based hybrid attention module (CGI-HAM), which includes standard criss-cross global
interaction-based hybrid attention module (SCGI-HAM) and efficient criss-cross global
interaction-based hybrid attention module (ECGI-HAM).

3.2.1 Criss-cross global interaction-based spatial attention module (CGI-SAM)

The structural design of CGI-SAM is shown in Fig. 5. When SCGIS is specifically used in
information interaction, CGI-SAM is denoted as SCGI-SAM. When ECGIS is specifically
used in information interaction, CGI-SAM is denoted as ECGI-SAM. As can be seen from
Fig. 5, CGI-SAM is mainly composed of three processes, including information prepro-
cessing, information interaction and attention activation. First, information preprocessing is
responsible for processing input features into the features required for subsequent operations.
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Fig. 5 The structural design of criss-cross global interaction-based spatial attention module (CGI-SAM).
According to different interaction strategies, CGI-SAM can be denoted as standard criss-cross global
interaction-based spatial attentionmodule (SCGI-SAM) or efficient criss-cross global interaction-based spatial
attention module (ECGI-SAM)

We use the 2-dimensional (2D) group convolution with parametersW ∈ R
C×1×1 to quickly

process the input featuresA ∈ R
C×H×W , where the number of input and output channels are

set to C , and the kernel size is set to 1×1. This convolution operation has low computational
cost and can appropriately reduce the similarity of deep features, which can make the sub-
sequent selective attention can play a better screening role. We then use batch normalization
and Mish activation on the features obtained after convolution to get features B ∈ R

C×H×W .
B is further processed into features C ∈ R

1×H×W after 1D global average pooling. Second,
information interaction is responsible for capturing feature dependencies in the target dimen-
sion. Passing C into CGIS can get features D ∈ R

1×H×W that effectively perceive global
information in the spatial dimension. CGIS is detailed in Subsection 3.1, which includes the
introduction to SCGIS and ECGIS. Third, attention activation is responsible for activating
the features obtained after information interaction to obtain the attention map and combining
the attention map with the target features to finally play the role of the attention mechanism.
We use Sigmoid activation for D to obtain the spatial attention map with 1 × H × W size,
and use the element-wise product to combine spatial attention with B to get output features
E ∈ R

C×H×W .

3.2.2 Criss-cross global interaction-based channel attention module (CGI-CAM)

We show the structural design of CGI-CAM in Fig. 6. When SCGIS and ECGIS are used in
information interaction, respectively, CGI-CAM can be denoted as SCGI-CAM and ECGI-

Fig. 6 The structural design of criss-cross global interaction-based channel attention module (CGI-CAM).
According to different interaction strategies, CGI-CAM can be denoted as standard criss-cross global
interaction-based channel attention module (SCGI-CAM) or efficient criss-cross global interaction-based
channel attention module (ECGI-CAM)
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CAM, respectively. CGI-CAMalso consists of three processes. In information preprocessing,
2D group convolution with parametersW ∈ R

C×1×1, batch normalization andMish function
are used to process input features A ∈ R

C×H×W to get the features B ∈ R
C×H×W . We

then perform 2D global average pooling on B to obtain features with C × 1 × 1 size, and

further reshape the obtained features into features C ∈ R
1×C

′×C
′′
, where C = C

′ × C
′′
. In

information interaction, SCGIS or ECGIS can also be chosen to process C. We then reshape
the features obtained after CGIS into the features D ∈ R

C×1×1. In attention activation, the
channel attention map with C × 1 × 1 size is obtained by performing the Sigmoid function
on D. Using the element-wise product to combine channel attention with B can get output
features E ∈ R

C×H×W .

3.2.3 Criss-cross global interaction-based hybrid attention module (CGI-HAM)

On the basis ofCGI-SAMandCGI-CAM,we further designCGI-HAMaccording to different
combinations, as shown in Fig. 7(a)-(c). Figure 7(a) shows the combination of CGI-SAM and
CGI-CAM in series, which is abbreviated as CGI-HAM1. Figure 7(b) shows the combination
of CGI-CAM and CGI-SAM in series, which is abbreviated as CGI-HAM2. Figure 7(c)
shows the combination of CGI-CAM and CGI-SAM in parallel, which is abbreviated as
CGI-HAM3. To be more specific, if we use SCGIS or ECGIS in information interaction,
CGI-HAM1 can be further divided into SCGI-HAM1 or ECGI-HAM1. The same is true for
CGI-HAM2 and CGI-HAM3.

Fig. 7 The criss-cross global interaction-based hybrid attention module (CGI-HAM). (a) The combination
of CGI-SAM and CGI-CAM in series, where CGI-HAM1 includes SCGI-HAM1 and ECGI-HAM1. (b) The
combination of CGI-CAM and CGI-SAM in series, where CGI-HAM2 includes SCGI-HAM2 and ECGI-
HAM2. (c) The combination of CGI-SAM and CGI-CAM in parallel, where CGI-HAM3 includes SCGI-
HAM3 and ECGI-HAM3
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Fig. 8 Combining attention modules with YOLO detectors for underwater object detection

3.3 Application of attentionmodules

In order to meet the accuracy and real-time requirements of underwater object detection,
we combine designed modules with YOLO algorithms, as shown in Fig. 8. Here, our atten-
tion modules refer to CGI-SAM, CGI-CAM, and CGI-HAM. The YOLO detectors refer to
YOLOV3 [30], YOLOV4 [2], YOLOV5 [17], YOLOV6 [46], YOLOV7 [36], YOLOV8 [47]
and YOLOX [10]. It is worth noting that the YOLO series have a similar network architec-
ture, which is mainly composed of a backbone, neck, and head. The backbone is responsible
for extracting image features, which can obtain high-level semantic information. The neck
is responsible for fusing features at different scales, which can further enhance semantic
information. The head is responsible for classifying and regressing the enhanced features at
different scales, which can obtain the object category and bounding box position. We add the
attention modules to both ends of the YOLO neck. Our selective attention can devote limited
computing resources to more important underwater regions, which is crucial for reducing
underwater background interference and improving underwater object perception.

In order to make the application environment of YOLO algorithms more flexible, YOLO
detectors often have multiple different network sizes. Here we focus on YOLOX as an
example. YOLOX can be divided into YOLOX-Nano, YOLOX-Tiny, YOLOX-S, YOLOX-
M, YOLOX-L, and YOLOX-X according to different network scales. Based on the above
sequence, C1 can be taken as 64, 96, 128, 192, 256, and 320, respectively. C2 can be taken as
128, 192, 256, 384, 512, and 640, respectively. C3 can be taken as 256, 384, 512, 768, 1024,
and 1280, respectively.

4 Experiments and analyses

In order to validate our work, we conduct comprehensive experiments on the underwater
image dataset [3, 35] and the PASCAL VOC dataset [8, 9] and analyze the experimental
results in detail. In this section, we first provide the training details of the network model
used in the detection task. Then, ablation experiments and comparative experiments are
performed on the underwater image datasets. Finally, the experiments are performed on the
PASCAL VOC dataset. We use single-class average precision (AP) and multi-class mean
average precision (mAP) to measure the detection accuracy and use frames per second (FPS)
to measure the detection speed. The parameters, giga floating-point operations per second
(GFLOPs), and memory consumption were used to measure the network scale and operation
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cost. On the basis of the above objective evaluation indicators, in order to better visualize the
results, we further use detection maps, attention maps, epoch-mAP graphs, and epoch-loss
graphs to comprehensively demonstrate the subjective performance of the proposed attention.

4.1 Training details

In this paper, our work is mainly based on URPC and Brackish datasets. The underwater
image dataset (URPC 2017-2019) consists of URPC 2017(17655), URPC 2018(2901) and
URPC 2019(4757), which has a total of 22577 images and 4 categories (Holothurian, Ech-
inus, Scallop, and Starfish) after removing duplicate images. The underwater image dataset
(Brackish 2019) has a total of 10,995 images and 6 categories: fish, small fish, crab, shrimp,
jellyfish, and starfish. The PASCAL VOC dataset consists of VOC 2007 test, VOC 2007
trainval, and VOC 2012 trainval, which has a total of 21503 images and 20 categories. We
first divide the dataset into trainval set and test set in a 9:1 ratio. The trainval set is further
divided into a training set and validation set in a 9:1 ratio. For URPC 2017-2019, the train-
ing set, validation set, and test set have 18287, 2032, and 2258 images, respectively. For
Brackish 2019, the training set, validation set, and test set have 8905, 990, and 1100 images,
respectively. For the PASCAL VOC dataset, the training set, validation set, and test set have
17418, 1935, and 2150 images, respectively. During training, the input image size is set to
640 × 640. We use the stochastic gradient descent (SGD) optimizer with a weight decay of
5e-4, a momentum of 0.9, and a mini-batch size of 16. All models are trained within 500
epochs by setting the initial learning rate to 0.01, which is decreased by a factor of 0.5 per
50 epochs. All experiments are run on a personal computer with NVIDIA GeForce RTX
3090/PCle/SSE2 and Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz×36.

4.2 Underwater image dataset

In order to better study the problem of underwater object detection, our work is mainly
based on URPC and Brackish datasets in this paper. URPC is a public Chinese under-
water detection dataset, where underwater images are captured by underwater robots and
divers in the near-shallow sea. The underwater image dataset (URPC 2017-2019) consists of
URPC 2017(17655), URPC 2018(2901) and URPC 2019(4757), which has a total of 22577
images and 4 categories (Holothurian, Echinus, Scallop, and Starfish) after removing dupli-
cate images. Brackish is a public European underwater detection dataset, where underwater
images are collected by using a fixed-point camera and light source in strait waters. The
underwater image dataset (Brackish 2019) has a total of 10,995 images and 6 categories:
fish, small fish, crab, shrimp, jellyfish, and starfish. Many underwater work studies are based
on these two underwater datasets. Figure 9 shows the underwater images in real marine envi-
ronments and provides the underwater detection results of our work. Obviously, underwater
images have low contrast, color cast, texture distortion, and so on. Underwater objects have
protective colors and strong concealment capabilities. All of the above phenomena greatly
increase the difficulty of underwater object detection. In this paper, our goal is to reduce
underwater background interference, improve underwater object perception, and ultimately
achieve efficient underwater object detection. As can be seen from the above experimental
results, ourwork has good robustness, adaptability, and generalization in complex underwater
detection tasks.
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Fig. 9 Various underwater images in real marine environments, where the three lines represent the detection
results of YOLOV5+ECGI-HAM1 in URPC 2017-2019, YOLOX+ECGI-HAM1 in URPC 2017-2019, and
YOLOV8+ECGI-HAM1 in Brackish 2019, respectively

4.3 Experiments on underwater image dataset

It is worth noting here that the experiments on spatial attention, channel attention, hybrid
attention, final design, and attention robustness are based on URPC 2017-2019, and the
experiments on training loss and training accuracy are based on Brackish 2019.

Spatial Attention In order to explore more effective spatial attention calculation methods in
underwater object detection, we conduct the ablation experiment based on YOLOX-M. We
focus on BAM-Var, CBAM-Var, ShAM-Var, SGEM, SCGI-SAM and ECGI-SAM in Table
1, where BAM-Var, CBAM-Var and ShAM-Var represent the spatial attention branches in
BAM [26], CBAM [40] and ShAM [49], respectively. SGEM [20] is a lightweight spatial
attention module. SCGI-SAM and ECGI-SAM are our attention modules designed in the
spatial dimension. These attention modules are applied in the same way, as shown in Fig. 8.
It can be seen from Table 1 that other modules are weaker than our modules in improving
accuracy. The reason is that although BAM-Var and CBAM-Var use techniques such as the
continuous use of multiple dilated convolutions and the combined use of multiple pooling
operations in information interaction to enrich the spatial receptive field, they can still only
perceive local spatial information. In the information interaction, although ShAM-Var and
SGEM avoid the destruction of direct information correspondence by assigning weight and
bias to each channel dimension and each channel grouping, it causes the lack of global
information interaction. Obviously, it is necessary to perceive global information in complex
underwater environments. Compared with SCGI-SAM, ECGI-SAM can compute spatial
attention more efficiently, which benefits from the ECGIS we use in information interaction.
Compared with SCGIS, ECGIS uses a parameter sharing method in feature extraction, which
can more efficiently capture underwater global dependencies and further reduce the number
of parameters. Building on Grad-CAM [32], we successfully achieve attention visualization
in underwater detection tasks. We focus on selecting the attention layer on the middle branch
after YOLOX_M neck for visualization. Figure 10 shows the attention visualization results
in complex underwater environments for CBAM-Var, SGEM, SCGI-SAM and ECGI-SAM.

Channel Attention In order to explore more effective channel attention calculation methods
in underwater object detection, we also make the ablation experiment based on YOLOX-M.
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Fig. 10 Attention visualization results. The four columns represent the use of CBAM-Var, SGEM, SCGI-SAM
and ECGI-SAM in underwater object detection, respectively

In this experiment, we focus on SCGI-CAM and ECGI-CAM, and compare them with other
channel attention modules, including SEM [16], SRM [19], ECAM [39] and FCAM [27].
The experimental results are reported in Table 2. The accuracy gains brought by our attention
modules are higher thanSEMandFCAM,which indicates that ensuring the direct information
correspondence in information interaction is crucial for the application of attention mecha-
nism in underwater object detection. Our attention modules outperform SRM and ECAM,
which indicates that achieving global information interaction in the channel dimension is
also crucial for underwater object detection. Compared with SCGI-CAM, ECGI-CAM can
generate channel attention more suitable for underwater object detection. Like Fig. 10, Fig.
11 shows the attention visualization results for ECAM, SRM, SCGI-CAM and ECGI-CAM.

Hybrid Attention In order to explore more efficient hybrid attention computation methods in
underwater object detection, ablation experiments are performed on the basis of YOLOX-M.
After research on spatial attention and channel attention, we find that the attention module
designed based on ECGIS can show stronger performance in underwater object detection.
Therefore, we focus on various hybrid attention modules composed of ECGI-SAM and
ECGI-CAM, which include ECGI-HAM1, ECGI-HAM2 and ECGI-HAM3. Table 3 reports
the experimental results on BAM [26], CBAM [40], CoAM [14], ShAM [49], and designed
attentionmodules. ComparedwithBAMandCBAM, designed attentionmodules can achieve
greater gains in improving the accuracy of underwater object detection, which mainly ben-
efits from two points. First, our modules avoid the lack of global information interaction in
the spatial dimension. Second, our modules avoid the destruction of direct information cor-
respondence in the channel dimension. Compared with CoAM, designed attention modules
also perform better. Although CoAM successfully captures the global location information
by aggregating features along two spatial directions respectively, our criss-cross structure can
capture the global location information more directly and efficiently in the spatial dimension.
Compared with ShAM, proposed attention modules achieve the global interaction of channel
information and spatial information. For our hybrid attention modules, we find that ECGI-
HAM1 performs the best. Compared with other combinations, the combination of spatial
attention and channel attention in series can achieve better performance gains in underwa-
ter object detection. Figure 12 shows the attention visualization results for CBAM, CoAM,
SCGI-HAM1 and ECGI-HAM1. As can be seen from Figs. 10, 11 and 12, our designed
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Fig. 11 Attention visualization results. The four columns represent the use of ECAM, SRM, SCGI-CAM and
ECGI-CAM in underwater object detection, respectively

selective attention can play a better role in reducing underwater background interference
and improving underwater object perception. Obviously, avoiding the destruction of direct
information correspondence and the lack of global information interaction in the attention
module are crucial for underwater object detection.

Final design After the above research on spatial attention, channel attention and hybrid atten-
tion, we finally believe that, comparedwith other designedmodules, ECGI-HAM1 composed
of ECGI-SAM and ECGI-CAM in series is more suitable for application in complex under-
water environments. To further prove this point, we do some experiments based onYOLOX-S
and YOLOX-L. Tables 4 and 5 report the application results of various selective attentions
designed using SCGIS and ECGIS for underwater object detection, respectively. It can be
seen from Tables 4 and 5 that the detection accuracy can be improved under different network
scales by using spatial attention or channel attention, and the gain brought by spatial attention
is greater. When we use hybrid attention at different network scales, the detection accuracy is
further improved and the combination of spatial attention and channel attention in series can
be more beneficial to deal with underwater visual information. Compared with Table 4, the
results in Table 5 are generally better. The above experiments prove our point. ECGI-HAM1
shows the best performance in complex underwater environments, and can be plug-and-play
in different network scales. Here, we focus on selecting the attention layer on the middle
branch after YOLOX_S neck for visualization. Figure 13 shows the attention visualization
results in different marine environments for ECGI-HAM1. As can be seen from Fig. 13, for
underwater object detection, our work achieves ideal experimental results in different marine
environments.

Attention Robustness To verify attention robustness, we integrate ECGI-HAM1 into a wide
variety of YOLO detectors. The specific application of attention modules is elaborated in
subsection 3.3. In order to achieve a fair comparison, all detectors are experimented with
similar network sizes. Table 6 reports the underwater detection performance of ECGI-HAM1
on YOLOV3, YOLOV4, YOLOV5-L and YOLOX-L. For YOLOV3 and YOLOV4, the input
image size is set to 608×608. For other YOLO detectors, the input image size is set to 640×
640. Table 7 reports the underwater detection performance of ECGI-HAM1 on YOLOV5-X,
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Fig. 12 Attention visualization results. The four columns represent the use of CBAM, CoAM, SCGI-HAM1
and ECGI-HAM1 in underwater object detection, respectively

Table 4 Comparison of various
attention modules based on
SCGIS under different network
scales

Architecture Param. GFLOPs FPS mAP (%)

YOLOX-S 8.94M 26.64 56.97 70.58

+ SCGI-SAM 12.58M 26.75 49.93 71.59(+1.01)

+ SCGI-CAM 9.13M 26.75 53.01 71.13(+0.55)

+ SCGI-HAM1 12.73M 26.77 46.87 72.69(+2.11)

+ SCGI-HAM2 12.73M 26.77 46.73 72.41(+1.83)

+ SCGI-HAM3 12.73M 26.77 46.40 72.35(+1.77)

YOLOX-L 54.15M 155.29 32.54 80.76

+ SCGI-SAM 57.80M 155.42 29.53 81.45(+0.69)

+ SCGI-CAM 54.60M 155.42 30.57 81.14(+0.38)

+ SCGI-HAM1 58.20M 155.45 27.56 82.21(+1.45)

+ SCGI-HAM2 58.20M 155.45 27.42 82.00(+1.24)

+ SCGI-HAM3 58.20M 155.45 27.10 81.96(+1.20)

Table 5 Comparison of various
attention modules based on
ECGIS under different network
scales

Architecture Param. GFLOPs FPS mAP (%)

YOLOX-S 8.94M 26.64 56.97 70.58

+ ECGI-SAM 9.06M 26.75 48.48 71.90(+1.32)

+ ECGI-CAM 9.00M 26.75 51.43 71.21(+0.63)

+ ECGI-HAM1 9.07M 26.77 44.51 73.18(+2.60)

+ ECGI-HAM2 9.07M 26.77 44.39 72.89(+2.31)

+ ECGI-HAM3 9.07M 26.77 43.96 72.64(+2.06)

YOLOX-L 54.15M 155.29 32.54 80.76

+ ECGI-SAM 54.33M 155.42 28.10 81.67(+0.91)

+ ECGI-CAM 54.28M 155.42 30.06 81.18(+0.42)

+ ECGI-HAM1 54.35M 155.45 26.62 82.60(+1.84)

+ ECGI-HAM2 54.35M 155.45 26.51 82.36(+1.60)

+ ECGI-HAM3 54.35M 155.45 26.23 82.17(+1.41)
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Fig. 13 Attention visualization results in different marine environments for ECGI-HAM1

YOLOV7-X and YOLOX-X. As can be seen from Tables 6 and 7, our attention module
can show good robustness in different YOLO detectors. Our selective attention significantly
improves the underwater detection accuracy. Although the designed ECGI-HAM1 brings
additional parameters and computations, the negative impact of these costs is negligible.
To further demonstrate the advantages of ECGI-HAM1, we focus on testing on the basis
of YOLOX in complex underwater environments, as shown in Fig. 14. From the subjective
comparison results, it can be seen that the underwater detection accuracy is significantly
improved by combining our selective attention. ECGI-HAM1 can indeed effectively reduce
the underwater background interference and improve the underwater object perception,which
meets the real-time and accuracy requirements of underwater detection tasks.

In order to further prove the rationality and effectiveness of our work, we provide the
graphs of training loss and training accuracy. Figure 15(left) shows the epoch-loss result of
YOLOV8+ECGI-HAM1 during the learning process. It can be seen from train loss and val
loss that our training process is stable and convergent, and there is no overfitting problem.
Figure 15(right) shows the epoch-mAP results of YOLOV8 and YOLOV8+ECGI-HAM1
in the Brackish underwater dataset. It can be seen from the experimental results that our
proposed attention can effectively improve the accuracy of underwater detection.

Table 6 The underwater
detection performance of
ECGI-HAM1 on YOLOV3,
YOLOV4, YOLOV5-L and
YOLOX-L

Detector Param. FLOPs FPS mAP(%)

YOLOV3 [30] 61.54M 139.76G 14.32 75.18

+ECGI-HAM1 61.72M 140.05G 9.27 76.39(+1.21)

YOLOV4 [2] 63.95M 127.60G 20.93 77.27

+ECGI-HAM1 64.14M 127.89G 16.69 78.28(+1.01)

YOLOV5-L [17] 46.15M 108.04G 34.15 79.03

+ECGI-HAM1 46.34M 108.32G 28.14 80.35(+1.32)

YOLOX-L [10] 54.15M 155.29G 32.54 80.76

+ECGI-HAM1 54.35M 155.45G 26.62 82.60(+1.84)
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Table 7 The underwater detection performance of ECGI-HAM1 onYOLOV5-X, YOLOV7-X andYOLOX-X

Detector Param. FLOPs Memory mAP(%)

YOLOV5-X [17] 86.24M 204.14G 1248.91M 83.24

+ECGI-HAM1 86.53M 204.45G 1318.98M 83.54(+0.30)

YOLOV7-X [36] 70.83M 188.46G 885.92M 84.01

+ECGI-HAM1 70.91M 188.59G 920.96M 84.12(+0.11)

YOLOX-X [10] 99.00M 281.46G 1497.85M 84.32

+ECGI-HAM1 99.29M 281.77G 1567.92M 84.77(+0.45)

4.4 Experiments on PASCALVOC dataset

In Table 8, We integrate ECGI-HAM1 with different YOLO detectors and test the perfor-
mance of original detectors and attention detectors on the VOC detection task. All detectors

Fig. 14 Subjective comparative experiments on underwater detection tasks (URPC 2017-2019). The three
columns show the original images, the YOLOX detector results and our detector results (YOLOX+ECGI-
HAM1), respectively
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Fig. 15 The training loss and training accuracy of the proposed work(YOLOV8+ECGI-HAM1) on Brackish
2019

used here are the same as in Table 6. Compared with the original detectors, the attention
detectors achieve ideal performance gains in detection accuracy. It is worth noting that the
detection performance enhancement is not due to the simple capacity increase but due to
the designed selective attention ECGI-HAM1. The experimental results in Table 8 demon-
strate the generalization ability of ECGI-HAM1 on different detection tasks. After further
analysis of Tables 6 and 8, we find that the combination of ECGI-HAM1 and YOLO has
a stronger performance gain in our underwater detection task than in the PASCAL VOC
detection task. This suggests that our designed selective attention is more needed in complex
underwater environments. In other words, ECGI-HAM1 can make a greater contribution to
solving the problems of strong underwater background interference and weak underwater
feature discriminability.

5 Conclusion

In this paper, we first proposed the criss-cross global interaction strategy (CGIS). Our strategy
can effectively avoid the destruction of direct information correspondence caused by the
dimensionality reduction interaction strategy and the lack of global information interaction
caused by the local interaction strategy. According to different parameter allocation methods,
CGIS was further divided into standard criss-cross global interaction strategy (SCGIS) and
efficient criss-cross global interaction strategy (ECGIS). Compared with SCGIS, ECGIS

Table 8 Comparison results of different detectors on the PASCAL VOC dataset

Detector Param. FLOPs FPS Memory mAP(%)

YOLOV3 [30] 61.63M 140.01G 17.21 942.39M 77.80

+ECGI-HAM1 61.81M 140.30G 13.17 992.98M 78.40(+0.60)

YOLOV4 [2] 64.04M 127.85G 22.33 1295.63M 80.62

+ECGI-HAM1 64.22M 128.14G 17.22 1346.22M 81.17(+0.55)

YOLOV5-L [17] 46.24M 108.19G 36.41 850.84M 83.71

+ECGI-HAM1 46.42M 108.48G 32.19 906.90M 84.13(+0.42)

YOLOX-L [10] 54.16M 155.36G 34.47 1030.10M 85.33

+ECGI-HAM1 54.31M 155.59G 28.01 1086.15M 85.96(+0.63)
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achieved better information interaction with fewer parameters. We then designed the criss-
cross global interaction-based selective attention in different target dimensions. Specifically,
there are SCGI-SAM and ECGI-SAM in the spatial dimension, SCGI-CAM and ECGI-
CAM in the channel dimension, and SCGI-HAM1, SCGI-HAM2, SCGI-HAM3, ECGI-
HAM1, ECGI-HAM2, and ECGI-HAM3 in the hybrid dimension. Our selective attention
can effectively reduce underwater background interference and improve underwater object
perception. We finally combined the designed attention modules with YOLO detectors. The
combination of ECGI-HAM1 and YOLO achieved a good balance of accuracy and real-time
in underwater detection tasks. Our work provided a more significant performance gain for
underwater detection tasks and brought some performance improvements for other detection
tasks. The experimental results show that our work makes important progress in achieving
efficient underwater object detection.Our selective attention showsgood robustness in various
YOLO detectors and exhibits ideal generalization in different detection tasks.

In general, perceiving global underwater information content and ensuring direct under-
water information correspondence are crucial for underwater detection tasks. Our criss-cross
interaction structure and parameter-sharing strategy can effectively capture global underwater
dependencies and further reduce the underwater attention parameters. At different network
scales, the use of spatial attention or channel attention can improve underwater detection
accuracy, and spatial attention brings greater underwater performance gain. Hybrid atten-
tion can further improve underwater detection performance, and the series combination of
spatial attention and channel attention is more conducive to processing underwater visual
information. In underwater detection environments, our work has demonstrated excellent
performance in terms of parameters, computations, memory consumption, and detection
accuracy. However, our high-strength detail design may lead to excessive feature calibration
and introduce some performance interference in simple detection tasks.

In the future, we will continue to work on exploring the potential of attention mechanisms
in underwater object detection. We plan to further combine enhanced attention and selec-
tive attention to propose a more powerful attention module, which will achieve both global
correlation-based information enhancement and global importance-based information selec-
tion. We hope that the underwater detection task can be better accomplished by combining
stronger attention modules with state-of-the-art detectors.
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