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Abstract
Video error concealment (EC) is a challenging issue, and one of the key challenges is accu-
rately modeling motion vectors (MVs) in corrupted frames. To address this problem, we
propose a novel Principal Component Analysis (PCA)-based model for EC that uses hier-
archical clustering for MV estimation. Our approach has two main steps: first, we obtain
the MV fields represented in the 2D plane, and second, we conceal the erroneous regions of
the frame using a PCA-based hierarchical clustering algorithm. This algorithm selects the
best MVs among the field candidates while maximizing the correlation of MVs in a clus-
ter. Our approach outperforms recent related techniques in terms of PSNR and SSIM for
the H.265/HEVC compression standard. Specifically, our method improves average PSNR
by up to 4.99 dB and average SSIM by 0.029. Furthermore, our method has slightly lower
computational complexity compared to the compared techniques, especially for videos with
relatively uniform motion over the missing areas.

Keywords Video error concealment · Principal component analysis · H.265/HEVC
video coding

1 Introduction

The high demand for video communication leads to the provision of highly packetized video
data [32]. Video communication has become increasingly popular in recent years due to
advancements in technology and the proliferation of high-speed internet connections. As a
result, there has been a surge in thedemand for video content,whichhas led to thedevelopment
of highly packetized video data. Packetization is the process of dividing data into smaller
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units, or packets, that can be transmitted over a network. The packetization of video data
offers several benefits, such as improved network efficiency, reduced latency, and increased
reliability. Moreover, packetization allows for the transmission of video data over a wide
range of networks, including wireless and mobile networks. The recent advancements in
video codecs, such as the H.265/HEVC, have further improved the packetization of video
data. These codecs use advanced compression techniques to reduce the size of video data,
resulting in higher compression ratios compared to older codecs. This makes them highly
suitable for a wide range of networks, including those with limited bandwidth. The use of
highly packetized video data in conjunction with advanced video codecs has led to significant
improvements in video quality, reduced buffering times, and increased network efficiency. As
a result, these technologies are becoming increasingly important for video communication
applications, such as video conferencing, live streaming, and video-on-demand services [20].

However, the high compression used in video codecs, particularly in the H.265/HEVC
coding standard, makes them vulnerable to channel errors [16]. These errors can significantly
degrade the video quality, especially in inter-coded consecutive frames [15]. The loss of
critical information in these frames can result in motion discontinuities, blockiness, and
even complete frame freezing, severely impairing the overall viewing experience. Therefore,
effective algorithms are essential to mitigate the impact of channel errors and restore the
video quality by accurately reconstructing the lost or corrupted information [24].

To address this problem, efforts are beingmade to develop error-resilient and concealment
methods. The former aims to strengthen the integrity of the video data, while the latter
attempts to hide the erroneously decoded frames [1]. Furthermore, Forward Error Correction
(FEC) and Automatic Repeat Request (ARQ) are introduced in the literature. However, FEC
increases video bandwidth, and ARQ is not suitable for interactive applications [11, 35, 38].
The Error Concealment (EC) methods, on the other hand, are post-processing techniques that
try to recover a corrupted parts of a frame from the correctly decoded spatial and temporal
information. Thesemethods are categorized into spatial, temporal, and hybrid classes. Spatial
Error Concealment (SEC) algorithms exploit the pixel information available in the current
video frame. Also, Temporal Error Concealment (TEC) techniques benefit from motion
data, consisting of motion vectors (MVs) for the nearest correctly received motion data.
Moreover, hybrid EC methods use temporal and spatial correlated information to recover
erroneous parts of the video frame [17, 33]. The EC algorithms in H.264/AVC aim to conceal
damaged Macroblocks (MBs) within each erroneous slice. However, for H.265/HEVC, the
large damaged region of a frame makes the EC techniques used in H.264/AVC less effective
and causes several significant issues [17]:

• Traditional EC methods rely only on neighboring MVs, which can produce inaccurate
results when a video frame exhibits non-uniform motion.

• In H.265/HEVC, there is no Flexible Macroblock Ordering (FMO) slicing available;
therefore, the EC method cannot rely only on adjacent motion data. Moreover, the dam-
aged region is far from the correctly received spatially neighboring blocks. Thus, there
are insufficient available MVs for the concealment procedure. The reason is that the
Coding Tree Unit (CTU) size can be as large as 64 × 64 pixels in H.265/HEVC. To
account for transmission errors, an integer number of CTUs are grouped into one slice,
and an integer number of slices are encapsulated into a single transmission packet. Con-
sequently, a lost packet in an H.265/HEVC bitstream affects several CTUs, resulting in a
significant amount of frame area being lost. Therefore, all the information associatedwith
these CTUs will be corrupted. Also, in this case, SEC algorithms may not be effective
in recovering the lost data since the pixels are too far apart from each other to be useful.
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Therefore, alternative techniques such as TEC methods and inter-frame prediction are
commonly used to mitigate the effects of packet loss on video quality [17, 18].

• In H.265/HEVC, the traditional SEC techniques are not applicable in real scenarios since
the errors damage multiple consecutive CTUs, which are wide regions of a frame [16].

• While various EC algorithms have been proposed in the literature that rely on the side
information, they are often unsuitable for real-world scenarios because they are non-
standard and require modifications to the codec. Consequently, these algorithms have
limited practical applications [17].

This paper introduces a novel TECmethod specifically designed for estimating lost blocks
in H.265/HEVC encoded video data. Our proposed block-based approach aims to strike a
balance between computational complexity and video quality preservation. To achieve this,
we leverage a PCA-based hierarchical clustering algorithm to identify highly correlatedMVs
and improve the accuracy of MV candidates. The proposed method considers each mutually
orthogonal unit eigenvector as an axis of an ellipsoid. In other words, it develops a classi-
fication scheme that categorizes correlated temporally neighboring MVs of the erroneous
regions of the frame. The proposed approach can also discover essential features of the most
correlated motion information of the frame’s faulty parts and reveal previously unsuspected
relationships. Additionally, the overall area of the ellipsoid can be interpreted as a param-
eter of computational complexity, i.e., there is a positive relationship between the MVs’
nonuniformity and the area of the ellipsoid.

The proposed method offers several advantages over the previous algorithms. Our method
is content adaptive, which means it can adapt to the characteristics of the video being pro-
cessed, resulting in more accurate and visually pleasing results. In addition, our method has
lower complexity than the previous methods, which can lead to faster processing times and
lower computational requirements. Another significant advantage of our method is its appli-
cability to the H.265/HEVC video compression standard, which is becoming increasingly
popular. Unlike many previous methods, our method can generate new MVs, which can be
especially useful in cases where there are insufficient MVs available. This can improve the
accuracy of the reconstructed frames and reduce the visual artifacts. We evaluated the per-
formance of our method using several benchmark video sequences, and compared the results
with several previous methods. The experiments show that our method outperforms com-
pared methods in terms of visual quality and computational efficiency. Overall, our proposed
method for video error concealment offers a comprehensive set of advantages that make it
a valuable tool for a wide range of applications in video processing and compression. The
major contribution of this paper are given as follows:

• Our proposed method makes a significant contribution by utilizing the directional corre-
lation among an object’s MVs in a video scene, interpreting them as elongated clusters
within a frame’s region.

• Our paper introduces a novel approach by utilizing Principal Component Analysis (PCA)
for modeling ellipsoidal motion data, which enables us to limit candidate regions in
directions with lower diversification, thereby enhancing the algorithm’s efficiency.

• In our paper, we employ a divisive hierarchical clustering technique to classify MVs,
leveraging the Sum of Square Error (SSE) to minimize Euclidean distance between clus-
ters and decrease the order of complexity, thereby improving the method’s performance.

• Our proposed method presents a comprehensive methodology for generating new MV
candidates using the axis-aligned ellipse, where the magnitude and angle of the ellipse
are determined by the variance and covariance of the MVs in each cluster.
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Table 1 The description of key symbols in our proposed method

Symbol Description

n number of data points or observations in a dataset

�SSE threshold that determins stopping criterion

S set of temporally neighboring MVs

Xl the lth observation

N number of elements in the set S

Ci, j the j th cluster in the i th level of hierarchical clustering

Ri, j the SSE value for the cluster Ci, j

j index of cluster number in divisive hierarchical clustering

i index of cluster level in divisive hierarchical clustering

L set of all clusters

stop f lag stopping flag for the divisive hierarchical clustering algorithm

k a temporary value that shows the cluster number in each level

MV a motion vector of a block

MVx the x component of aMV

MVy the y component of aMV

(xi , yi ) the i th inner point of an ellipse

[xmin , xmax ] solution interval on the x-axis

[ymin , ymax ] solution interval on the y-axis

λ1, λ2 the largest and second-largest eigenvalues of the covariance matrix

Rx the major semi-axis length of an ellipse

Ry the minor semi-axis length of an ellipse

σx the standard deviation of motion data along first principal component

σy the standard deviation of motion data along second principal component

α the orientation of an ellipse

u1 the largest eigenvector of a covariance matrix

(xd , yd ) displacement of an ellipse

a, b, c coefficients of a quadratic equation

• The results and discussion in our paper highlight the exceptional efficiency and perfor-
mance of our proposed scheme, demonstrating the significant contribution of our work.

This paper is organized as follows. The state-of-the-art EC algorithms are reviewed in
Section 2. Section 3 summarizes the problem statement, discussing the MV modeling and
the divisive hierarchical clustering algorithm. Section 4 describes the proposed algorithm.
Detailed experimental results and computational complexity analysis are presented in Section
5. Finally, Section 6 concludes the paper with final remarks.

Table 1 summarizes the main symbols utilized in our proposed method.

2 Related work

TEC algorithms mostly use the available motion data surrounding the damaged area. A novel
nonlinear and non-Gaussian motion estimation technique is proposed in [28]. MV recovery
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should also consider MVs, which are strongly correlated with the lost MV, as presented in
[14]. The authors find the tendency of theMV in each 4×4 block by processing the co-located
MV in the previous frame with successfully received blocks. Moreover, the method provides
information about the closest MV to the motion information of the lost block. Although this
method presents an appropriate strategy for motion recovery, it only exploits the upper blocks
for tendency estimation, which may not be valid in all scenarios. Furthermore, the recovered
MV for the more inner blocks is not sufficiently trustable for large damaged areas, and the
result may not be accurate.

A trained PCA is used to conceal damaged parts of a frame using information from the
previous frames’ buffer [5]. The authors proposed a novelmethod for detecting scene changes
using dynamic thresholding and a similarity metric with a novel scene change detection
algorithm. Additionally, an updated PCA model is presented by combining scene change
features with index transformation buffers, and missing images are concealed by Projection
Onto the Convex Set (POCS). Due to scene change, all previous frames may not be suitable
and should be discarded from the buffer. Furthermore, the success of this method depends
on the correlation of the lost area with the surrounding pixels, which is not the case for
H.265/HEVC since the available correct pixel data is far from the lossy blocks.

Data hiding is a technique that can embed auxiliary or watermark data into digital video,
which has a high degree of data redundancy. This can enable video error concealment by
recovering the lost parts of the video frames from the embedded data. For example, the authors
in [4] present a scheme that uses compressed sensing to hide auxiliary data into video frames
over lossy channels. Compressed sensing is a method that can reconstruct sparse signals
from fewer measurements than the conventional methods. Data hiding can also enhance
image authentication by embedding watermark data [10].

Li et al. model neighboring MVs of the lost block by plane fitting, which shows how they
change in small regions of the damaged frame [21]. However, this approach is not meaningful
and needs further modifications for heavily corrupted video frames. Similarly, Lin et al. use
the nearest available MVs to predict the missing ones. They propose a novel TEC method
to estimate MVs’ weighting using disparities among MVs of available neighboring blocks
[23]. This method does not work well for large, lossy regions where the neighboring MVs
are missing for inner blocks. In [13], the authors propose a shape-preservation technique that
uses different EC strategies depending on the position of the corrupted blocks. However, this
method is limited by the difficulty of measuring the object’s boundaries.

In [37], the authors propose a novel weighted boundary matching EC scheme for
H.265/HEVC based on the Coding Unit (CU) depths and Prediction Unit (PU) partitions
in reference frames. The proposed method uses the information of CU depths in reference
frames for lost slices, and for each Largest Coding Units (LCU) in a lost slice. The LCUs sur-
rounding the co-located LCUare used to calculate the summedCU-depthweight to determine
the conceal order of each CU. The co-located partition decision from the reference frame is
adopted for PUs in each lost CU, and the sequence of PUs to conceal is sorted based on the
texture randomness index weight. Finally, the best estimated MV for the lost PU is selected
for concealment. Although experimental results show that the proposed method achieves
higher PSNR gains compared to the other methods, this approach may face challenges when
dealing with videos that have high motion. In such scenarios, the co-located CUs and PUs in
reference frames may not provide accurate or reliable motion information, particularly when
the MVs are large. As a result, the proposed method cannot determine the conceal order
of each CU since the neighboring LCUs may not provide sufficient motion information to
accurately estimate the CU depths. In addition, the use of MV prediction for lost PUs may
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result in suboptimal concealment when the MVs are unreliable or ambiguous due to high
motion.

In [22], the authors propose an EC algorithm that improves upon a commonly used
algorithm that extrapolates MVs from the previous frame. The proposed method considers
partition decision information from the previous frame to improve the concealment pro-
cess. The results of the study demonstrate that the proposed method performs better than
the conventional algorithm. However, the proposed method relies on the partition decision
information from the previous frame, which may not be accurate or reliable in scenarios with
fast object movement, as the object boundaries and sizes may change rapidly. Moreover, it is
worth noting that the proposedmethodmay also require additional computational resources to
account for the partition decision information from the previous frame, which may impact its
real-time performance in certain scenarios. In [3], the paper proposes a motion-compensated
EC method for H.265/HEVC. The proposed method refines the MV from the co-located
block for motion compensation and merges blocks based on the reliability of these MVs.
New MVs are then assigned to the merged blocks. The experimental results demonstrate a
significant gain in PSNR and an improvement in visual quality compared to the conventional
EC methods. However, any motion-compensated EC method may face challenges in scenar-
ios where the lost data is significant or theMVs are unreliable, which can result in suboptimal
concealment performance. Additionally, the proposed method relies on the reliability of the
MVs from the co-located block, which may not be accurate or reliable in scenarios when
there are fast object movements.

In [36], a trainedGenerativeAdversarial Network (GAN) is exploited for EC. Thismethod
trains completion and discriminator networks with the temporally and spatially surrounding
pixels as inputs. Thus the generator is used for loss recovery. However, training the GAN
network is very time-consuming. It is not applicable since the loss area should be known
apriori, which is impossible for most EC scenarios. In [30], the authors propose a convolu-
tional Long Short-Term Memory (LSTM) layer and a simple convolutional layer for optical
flow estimation. There are two rows of MBs above and below each slice for three frames
which are exploited for recovery purposes. Furthermore, only using optical flow and spatial
information cannot be sufficient. Training the network for potential loss locations in real sce-
narios is necessary, but it limits its practical application. In addition, LSTM has the ability to
perform intelligent feature extraction from the data packets. For instance, in [34], the authors
demonstrates a deep learning approach for feature extraction from the captured data that can
handle limited sample sizes effectively.

In [6], the authors present a homography-based registration approach for the pixels sur-
rounding the corrupted region and their corresponding pixels in the reference frame. This
method aims to identify the registration with the least distortion regarding the whole frame
and the area around the lossy region. Further, this technique is performed forward and back-
ward, with the remaining points being filled by SEC. It enhances the registration quality
when the correlation is sufficient for determining the registration points. However, finding
good matching points is impossible for all contents, especially for H.265/HEVC, since the
lossy areas are large.

There is a parallelogram partitioning approach for H.265/HEVC in [12]. Corrupted areas
are divided into smaller parallelograms, and MV recovery and filling are applied. Moreover,
it is used for the various sizes and angles of parallelograms. Despite this algorithm’s high
quality, it is more complex since it should iterate for different angles and sizes. In [27], the
two spatially adjacent MBs of each lost 8 × 8 block are used to identify the most correlated
MV in the previous frame. Then, if any block with a sufficiently close motion trajectory is
found in the few previous frames, its MV is used to recover the lost 8× 8 block. A weighted
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average of twoMVs of spatially adjacentMBs is calculated if theMV is not found. Then, one
of these three MVs is selected, which produces the least boundary distortion. The algorithm
is not appropriate for H.265/HEVC due to its reliance on nearby MVs that are not always
available.

3 Problem statement

The EC methods attempt to improve the video quality by exploiting the most correlated
available information for the corrupted area and replacing the damaged CU. The lossy area
in H.265/HEVC is relatively large, and the available Prediction Block (PB) is far from each
damaged block in the temporal domain. Specifically, the data is encapsulated in an integer
number of Coding TreeUnits (CTUs), and each CTU can be up to 64×64 pixels in size. Thus,
packet loss can result in losing a significant amount of frame data. A CU of H.265/HEVC
varies from LCU to Smallest Coding Unit (SCU). In LCUs and SCUs, the sizes are 64× 64
pixels and 8 × 8 pixels, respectively [7]. A lost LCU is split into several SCUs for further
processing.

3.1 Hierarchical MV clustering using divisive approach

The divisive hierarchical clustering algorithm is a top-down technique. First, the data points
are associated with one cluster, and then it branches into smaller sets as it goes down the
hierarchy. Finally, each cluster splits into two new clusters iteratively until the stopping
criterion is satisfied. There are ways of breaking each cluster [39]. The proposed algorithm
exploits the SSE and minimizes it at each stage of cluster analysis to avoid the increasing
order of complexity [26]. In addition, there is a limited distance among the MVs since they
are highly correlated in a region. Furthermore, there are O(2n) ways of dividing the clusters.
The variable n represents the number of data points or observations in the dataset. In our
proposed model, n refers specifically to the temporally neighboringMVs in the set S. Also, a
fixed threshold determines the stopping criterion, which is determined by�SSE . The smaller
the threshold, the greater the complexity and accuracy [29].

To apply this method, we assume the set S such that Xl ∈ S where l ∈ N and N is the
number of temporally neighboringMVs. Each cluster is represented byCi, j and is a member
of the set L , which contains all clusters. The variable i denotes the level of the cluster while
j specifies its position within that level. We will proceed with the following steps to apply
this method.

1. Build the unique set S, which is C0,0.
2. Partition each cluster into two distinct clusters.
3. Reiterate step 2 until the SSE for each cluster Ri, j becomes smaller than a predefined

threshold.

Algorithm 1 describes the divisive clustering method in detail. In this algorithm, �SSE is
the threshold for the SSE of each cluster Ci, j and stop f lag sets the stopping criterion for the
algorithm. Initially, the set L consists only of the set S. At each iteration of the while loop,
the members of all Ci, j ∈ L are used to measure the SSE, denoted by Ri, j . If the SSE value
is greater than or equal to �SSE , then stop f lag is set to zero, indicating that Ci, j must be
divided, and the algorithm should proceed to the next iteration. Additionally, Ci, j should be
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Fig. 1 The divisive hierarchical clustering algorithm is visualized. Clusters are split into two separate clusters
at each level if the SSE exceeds the threshold value�SSE . The l

th data point is denoted asXl ∈ Ci, j . Initially,
the parent cluster is defined as the set S. As the algorithm progresses, new clusters are formed by splitting
existing clusters. Each cluster is labeled with a subscripted index, such as Ci, j , where i denotes the level of
the cluster in the hierarchy and j denotes its position within that level

removed from L after being divided. This iterative process continues until the SSE value of
all members of L is less than �SSE . Finally, L contains all the clusters.

The divisive hierarchical clustering method is illustrated in Fig. 1. At each level, the
algorithm splits a cluster into two subclusters if the SSE is greater than a predefined threshold
�SSE .

Algorithm 1 Divisive hierarchical clustering algorithm
Input:
S = {X1,X2,X3, . . . ,XN },�SSE
Output:
The dendogram for the set S
1: Initialization:
2: i ← 0
3: j ← 0
4: Ci, j ← S
5: L ← {Ci, j }
6: k ← 0
7: stop f lag ← 0

8: while stop f lag = 0 do
9: k ← 0
10: j ← 0
11: for each Ci, j ∈ L do
12: stop f lag ← 1

13: Ri, j ← ∑
Xl∈Ci, j

(Xl − X)2

14: if Ri, j > �SSE then
15: stop f lag ← 0
16: k ← k + 1
17: Split Ci, j into Ci+1,k−1 and Ci+1,k
18: Remove Ci, j from L
19: Add Ci+1,k−1 and Ci+1,k to L
20: end if
21: j ← j + 1
22: end for
23: i ← i + 1
24: end while
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3.2 Motion vector modeling using PCA

A key challenge for EC algorithms is to accurately model the MVs of erroneous regions in a
video frame. ECmethods attempt to infer motion patterns to achieve better performance. The
proposed approach develops a motion tracking model for the corrupted block. Also, it creates
a model for each of these corrupted blocks by utilizing motion data clustering to improve the
accuracy and efficiency of estimating the missing MVs. We define MV of a block as a 2D
vectorMV, which is denoted in (1):

MV = (MVx , MVy) (1)

where MVx and MVy are x and y components, respectively, of the considered missing MV .
Furthermore, the definition of a candidate region within a frame suggests more accurate

predictions for MV recovery. Thoroughly determining this region requires considering the
characteristic properties of the ellipsoid. In this paper, we propose to embed eachMV into its
specific cluster and investigate these clusters to find the most appropriate region for correctly
predicting the lost motion information of the corrupted blocks. To achieve this, we use
PCA, a statistical technique widely used for dimensionality reduction, to compute linearly
uncorrelated Principal Components (PCs) from the input training data [2, 9, 19]. Using the
parameters obtained from PCA, we generate new data points from the modeled ellipsoids,
which allows us to increase the size of the training data set without collecting new data. This
approach is particularly useful in applications where the cost of collecting new data is high
or where training data availability is limited.

Assume that the data are distributed in a 2D plane. Figure 2 visualizes the iso-contour
representation of the ellipses in the 5th frame of the ‘Stefan’ sequence for the H.265/HEVC
coding scenario. This experiment illustrates clusters of MVs in the third Picture Order Count
(POC). The MVs are chosen from the set S, which is made up of the adjacent motion
information of the considered corrupted block. This experiment shows that the temporally
neighboring motion information can be effectively classified into multiple ellipses. Figure 2
(c) depicts such scenarios where a rotated ellipse bounds two MVs.
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Fig. 2 Iso-contour visualization of the ellipses. This figure represents theMV clustering in the HEVC standard
for the fifth frame of the ‘Stefan’ sequence. In addition, this experiment shows the ellipsoidal clustering regions
in the third POC. (a) Region: Px ∈ [312, 336], Py ∈ [264, 288] (b) Region: Px ∈ [88, 112], Py ∈ [248, 272]
(c) Region: Px ∈ [304, 328], Py ∈ [192, 216]
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4 Proposed algorithm

The Generative PCA-based Hierarchical (GPH) method is an innovative clustering EC
approach that utilizes the PCA technique to specify the MVs for each cluster. The main
objective of MV clustering is generating the correlated MVs inside a cluster. Moreover, the
commonly used criterion for clustering is to minimize the Euclidean distance between data
points. In addition, the object’sMVs are directionally correlated to each other in a video scene
that can be intuitively interpreted as elongated clusters in a frame’s region. The MVs reflect
the motion of the camera and the objects in the scene. We argue that MVs are correlated
depending on the type and extent of motion in the video. When there is a global motion (such
as panning or zooming), all MVs have a similar direction and magnitude. When there is a
local motion (such as an object moving independently), someMVs have a different direction
and magnitude.

Furthermore, the proposed algorithm enhances accuracy and speed due to innovative
ellipsoidal motion data modeling. It derives more correlatedMV candidates for the corrupted
area. Also, to avoid any confusion, we would like to emphasize that our proposed video EC
technique does not address consecutive frame losses, and that the use of an IDR frame at the
start of a GOP is a potential solution to recover from such losses.

Also, this classification technique allows us to restrict the candidate region in the direc-
tions with more limited diversification. In other words, the candidate region is related to the
motion disparity and variance of the correctly received MVs. GPH proposes a comprehen-
sive methodology to achieve the MV candidates utilizing the axis-aligned ellipse. Also, the
covariance of the MVs determines the ellipse’s angle.

On the other hand, the ellipse magnitudes depend on the variance of the MVs, i.e., the
larger the variance, themore extended the ellipse’s axis.Moreover, the covariance of theMVs
defines the angle of the ellipse. Hence, it can be a nonzero number since the MVs are highly
correlated to each other. If the covariance is zero, the corresponding MVs are uncorrelated,
and the ellipse is axis-aligned in this case. Figure 3 depicts the ellipse with a major axis 2Rx

and a minor axis 2Ry , which holds all the correctly received motion data.
The axis directions are where motion data varies the most, characterized by a linearly

transformed matrix called the covariance matrix. Furthermore, the ellipse axes are eigenvec-
tors of the covariance matrix, and the length of each axis is proportional to the square root
of the corresponding eigenvalue, i.e.,

√
λ1 and

√
λ2. These eigenvalues indicate the amount

of variation in the motion data along the corresponding eigenvectors. Moreover, each cluster
can be modeled as a confidence ellipsoid shape with a 95% confidence region, where the
major and minor semi-axis lengths are given by Rx = σx

√
5.991λ1 and Ry = σy

√
5.991λ2,

respectively, where σx and σy are the standard deviations of themotion data along the first and
second PCs, and λ1 and λ2 are the largest and second-largest eigenvalues of the covariance
matrix, respectively.

One can measure the orientation of the ellipse using the largest eigenvector towards the
x-axis:

α = tan−1 u1(y)
u1(x)

(2)

where u1 is the largest eigenvector of the covariance matrix and α ∈ [0, π]. Accordingly, the
general equation of the ellipse is:

((x − xd)cos(α) + (y − yd)sin(α))2

R2
x

+ ((x − xd)sin(α) − (y − yd)cos(α))2

R2
y

= s (3)
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Fig. 3 This illustration shows a 2D ellipse for the MV points of a corresponding erroneous block. It displays
the solution intervals on both the x and y axes. For each value of xi , there exists a corresponding value of yi
that falls within the interval [ymin , ymax ]

where (xd , yd) is the displacement. Also, Rx and Ry are semi-axes in x and y directions,
respectively. To simplify the (3), assume that a, b, and c are defined as follows:

a = cos(α)2

R2
x

+ sin(α)2

R2
y

(4)

b = (
1

R2
x

− 1

R2
y
)sin(2α) (5)

c = sin(α)2

R2
x

+ cos(α)2

R2
y

(6)

Hence, the ellipse equation in (3) is reformulated as:

a(y − yd)
2 + (y − yd)(x − xd)b + (x − xd)

2c − s = 0 (7)

where a, b and c are the coefficients of the quadratic (7). It has a closed-form solution. It is
categorized into four cases that affect the major and minor axes of the ellipse and its shape:

1. Rx �= 0, Ry �= 0, 0 ≤ α ≤ π : In this case, the solution written in terms of its coefficients
is:

y = −b′ ±
√
b′2 − 4ac′
2a

(8)

where b′ and c′ are:
b′ = −2ayd + (x − xd)b (9)

c′ = ay2d − yd(x − xd)b + (x − xd)
2c − s (10)

Figure 3 illustrates the solution intervals for the x and y axes. xi ∈ [xmin, xmax ] is selected
based on the quarter pixel resolution for the entire video sequence since higher resolution
can better provide accuracy. Hence, b′ and c′ are determined after obtaining xi using (9)
and (10), and then yi ∈ [ymin, ymax ] is specified by applying (8).
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2. Rx = 0, Ry �= 0, α = kπ ± π
2 : In the present case, the ellipse transforms into a vertical

segment limited between ymax and ymin . It can commonly occur if there is a fast vertical
camera movement in a scene or the objects shift vertically in the video frames. It is
depicted in Fig. 4a.

3. Rx �= 0, Ry = 0, α = kπ : This case is illustrated in Fig. 4b. The MVs only vary in the
x-axis, which explains the nonuniformity of motion in the x-direction. It can also be the
result of the object’s displacement or camera movement only in the x-axis.

4. Rx = 0, Ry = 0: This case indicates that the temporally neighboring MVs are uniform
around the erroneous region. Figure 4c depicts this scenario where MVx0 and MVy0 are
the x and y components, respectively, of the correctly received MV.

Furthermore, this paper recommends two methods to determine the relevant cluster for
extracting the MV candidates: 1)Maximum Likelihood (ML) and 2)Nearest Mean (NM).
The former selects the cluster with the highest probability density function (PDF) value,
while the latter finds the cluster with a mean value more closely related to the average of the
temporally neighboring correctly received MVs. Both of these approaches are used to select
a single cluster from the clusters obtained from the clustering process. The ML approach is a
standardmethod used inmany clustering algorithms due to its ease of implementation. On the
other hand, the NM approach is suitable for applications where there is a strong correlation
between the data, such as neighboring MVs in a local region of a video frame. However, in
the case of H.265/HEVC, the erroneous region is often large, and spatially neighboring MVs
are not available, which results in a decrease in performance of the NM approach compared
to the ML approach.

Figure 5 demonstrates the extraction of MV candidates utilizing the GPH method. The
ellipse equation is estimated for each cluster exploiting the PCA approach and the correctly
received MVs, i.e., the set S. Furthermore, the resolution of x is �x , with a minimum value
of 0.25, and n�x represents the number of iterations required to compute solutions for xi ∈
[xmin, xmax ]. Additionally, the yi component of the MV candidates are derived by applying
(7) where yi ∈ [ymin, ymax ]. GPH attempts to classify theMVs field and estimates the cluster
for MV recovery. The clusters with ellipsoidal shapes are in the direction with more disparity
represented in two radii extremes, themost extended set ofMVs. TheGPH technique exploits
the selected cluster for MV candidate recovery, refined utilizing the Boundary Matching

Fig. 4 The special cases of the cluster. (a) Rx = 0, Ry �= 0, α = kπ ± π
2 (b) Rx �= 0, Ry = 0, α = kπ (c)

Rx = 0, Ry = 0
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Fig. 5 Diagram of the proposed algorithm. After building the set S, the mean of the set is subtracted from each
element. Next, the set’s covariance is measured, and the eigenvalues are extracted, which results in finding the
PCs and the ellipse orientation. Based on the Rx and Ry , one of the four cases is determined, and the range
of y is measured, leading to obtaining the MV candidates

Algorithm (BMA) procedure. The proposed scheme can be broken down into the following
steps:

• Error detection: The first step involves decoding the received video stream and checking
for errors. Any errors found are flagged and sent to the ECmodule for further processing.

• Data extraction: In this step, the set S is built using available temporally neighboringMVs
from the previous frame. These MVs are extracted from co-located LCU in the previous
frame and its spatially neighboring MVs are added to the set S. These data points are
aggregated, and also zero and average MVs are added to the set.

• Data clustering: The data points are associated with a cluster in this step, and the cluster
branches into smaller sets as it goes down the hierarchy. The process iteratively splits
each set into smaller ones until a stopping criterion is satisfied. ML or NM algorithms
are then used to determine the relevant cluster.

• Model training: In this step, the PCA procedure is performed, and the PCs are calculated
using existing data in the chosen cluster. To do this, the mean is first subtracted from
each element in the cluster. Then, the covariance is calculated, and the eigenvalues are
derived.

• Data generation: Once the model is trained, it can be used to generate new data points.
This involves deriving the ellipse orientation using the trained model’s parameters, as
well as determining the major-axis and minor-axis lengths of the ellipse. Then, the x and
y components of the data points, which are the MV candidates, are calculated.

• Concealment: In this final step, the erroneous blocks are concealed using theMVs derived
in the data generation step, utilizing the BMA approach.
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5 Experimental results

5.1 Experimental environment

The simulations for ECwere carried out on an Intel core i5Dual-Core, 2.6GHzprocessorwith
8GB RAM of a MacBook laptop. The experiments were conducted using the H.265/HEVC
reference software HM 16.20 [8]. The video sequence was encoded using the main profile
with an input bit depth of 8. The maximum width and height of coding units were limited to
64 pixels, while the maximum partition depth was set at 4. The decoding refresh type was
not utilized, and a Group of Pictures (GOP) size of 4 was selected. Motion estimation was
performed using the TZ search method with a search range of 64.

In this paper, we use a video dataset from Xiph.org [25]. The dataset consists of various
video sequences that covers a wide range of content. We tested the proposed method on five
video sequences: ‘Shields,’ ‘Ducks Take-Off (DTO),’ ‘Park run (PR),’ and ‘Johnny (JO),’.
All sequences have a resolution of 1280×720 pixels and use the 720 progressive (720p) HD
signal format. We use 4:2:0 color subsampling on these video signal. The frame rates for all
the video sequences are 50 Frames per Second (fps), except for ‘Johnny’, which has a frame
rate of 60 fps.

In our experimental setup, we specified a specific Packet Loss Rate (PLR) for each simu-
lation and applied a concealment procedure after detecting errors in the decoded video. The
video sequenceswere encoded in SliceMode, with each slice containing an integer number of
CTU. We set the maximum slice size to 1500 bytes, which aligns with the Maximum Trans-
portation Unit (MTU) of the network for a single packet. We tested two PLR values of 10%
and 20%, andmodeled the transmission channel using the Elliot-Gilbert model.We generated
20 instances of packet loss, with an average burst length of three packets. Moreover, we only
considered P-frames and did not include B-frames. The coding structure used for testing the
performance is “IPPP", which consists of only one intra-frame (I) after 51 inter-frames (P).
There are 150 frames used in each video sequence. Quantization Parameters (QP)s were set
to 25 and 35.

We evaluated the performance of the proposed GPH method and its two approaches,
GPHML and GPHNM, on a set of benchmark datasets. The experimental results show that
both GPHML and GPHNM achieve superior performance compared to the state-of-the-art
methods in terms of accuracy and computational efficiency. Notably, the two approaches
offer robust and efficient solutions to the problem across a range of datasets.

5.2 Performance evaluation

The paper compares the performance and complexity of the proposed algorithmwith those of
other related EC schemes such as Xu method [37], Lin method [22], and Chang method [3]
for H.265/HEVC. In experiments, we use PSNR as an objective metric for quality estimation
and evaluate the video frames using Structural Similarity IndexMeasurement (SSIM), which
captures essential perception-based facts or inter-dependent pixel information better than the
PSNR [31].

PSN R = 10 log10
M2

MSE
(11)

where M represents the most significant value of the signal, which in our case was 255, and
MSE represents the Mean Square Error difference between two video frames.
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Tables 2 and 3 show the PSNR and SSIM results for a PLR of 10% and 20%, respectively.
These tests were conducted on the entire test sequence. The table demonstrates that the pro-
posed method outperforms the others by more than 4.99 dB and 4.19 dB in PSNR of 10% and
20%, respectively. Additionally, it achieves a total gain of 0.0208 and 0.029 in terms of SSIM
for a PLR of 10% and 20%, respectively. Accordingly, the improved performance of the pro-
posed approaches is consistent with our expectation that the clustering hypothesis experiment
would outperform the motion-compensated method. Due to the high compression ratio of
HEVC, error propagation is entirely severe in the succeeding frames in a video sequence
which causes rapid degradation for all EC techniques since even minor error results in a high
degradation in the following GOP frames. PSNR gain is consistent in our proposed schemes,
and visual quality is superior to the algorithms we compared. Also, we have evaluated the
performance of both the ML and NM approaches for selecting a single cluster. Our experi-
mental results demonstrate that the GPHML approach outperforms the GPHNM approach in
terms of both concealment quality and computational complexity. This finding is consistent

Table 2 Performance comparison of H.265/HEVC in terms of PSNR, SSIM, and run time for packet loss rate
10%

QP video Xu [37] Lin [22] Chang [3] GPHml GPHnm

25 Shields PSNR(dB) 24.54 22.02 31.40 38.95 33.21

SSIM 0.9104 0.7744 0.9690 0.9935 0.9714

Time(s) 0.17 0.16 0.16 0.12 0.12

DTO PSNR(dB) 29.53 23.26 30.51 36.02 32.76

SSIM 0.9518 0.8204 0.9672 0.9872 0.9766

Time(s) 0.16 0.19 0.14 0.13 0.13

PR PSNR(dB) 28.09 27.27 29.03 34.00 30.05

SSIM 0.9534 0.9589 0.9581 0.9777 0.9680

Time(s) 0.16 0.19 0.18 0.16 0.13

JO PSNR(dB) 35.26 31.26 36.05 38.92 37.79

SSIM 0.9837 0.9654 0.9843 0.9882 0.9853

Time(s) 0.05 0.07 0.05 0.05 0.05

35 Shields PSNR(dB) 23.57 20.15 28.96 37.57 31.46

SSIM 0.8893 0.7321 0.9620 0.9937 0.9631

Time(s) 0.05 0.04 0.04 0.04 0.03

DTO PSNR(dB) 22.91 21.41 28.88 34.29 32.34

SSIM 0.8011 0.6630 0.9547 0.9808 0.9732

Time(s) 0.08 0.09 0.07 0.07 0.07

PR PSNR(dB) 26.47 24.88 28.60 32.12 29.65

SSIM 0.9446 0.8969 0.9442 0.9678 0.9564

Time(s) 0.08 0.08 0.07 0.07 0.06

JO PSNR(dB) 29.26 27.16 34.36 35.80 35.75

SSIM 0.9474 0.9374 0.9690 0.9863 0.9787

Time(s) 0.04 0.04 0.03 0.04 0.03

Average PSNR(dB) 27.45 24.68 30.97 35.96 32.88

SSIM 0.9227 0.8436 0.9636 0.9844 0.9716

Time(s) 0.09 0.11 0.09 0.08 0.08
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Table 3 performance comparison of H.265/HEVC in terms of PSNR, SSIM, and run time for packet loss rate
20%

QP video Xu [37] Lin [22] Chang [3] GPHml GPHnm

25 Shields PSNR(dB) 22.59 19.68 28.97 37.21 30.78

SSIM 0.8747 0.7020 0.9520 0.9905 0.950

Time(s) 0.20 0.18 0.19 0.13 0.13

DTO PSNR(dB) 23.49 20.00 27.88 32.65 28.10

SSIM 0.8331 0.6595 0.9407 0.9732 0.9311

Time(s) 0.20 0.22 0.19 0.15 0.14

PR PSNR(dB) 26.38 26.24 27.14 30.14 27.29

SSIM 0.9234 0.9149 0.9355 0.9500 0.9421

Time(s) 0.16 0.20 0.18 0.17 0.14

JO PSNR(dB) 29.15 28.53 32.10 34.03 33.53

SSIM 0.9416 0.9367 0.9620 0.9747 0.9638

Time(s) 0.09 0.16 0.08 0.05 0.05

35 Shields PSNR(dB) 20.56 18.61 28.30 33.95 30.06

SSIM 0.7842 0.6334 0.9472 0.9851 0.9490

Time(s) 0.05 0.04 0.04 0.04 0.03

DTO PSNR(dB) 20.55 19.84 26.95 31.57 27.71

SSIM 0.6995 0.6462 0.9305 0.9627 0.9295

Time(s) 0.10 0.11 0.10 0.09 0.07

PR PSNR(dB) 24.48 23.90 25.87 27.99 26.55

SSIM 0.8892 0.8631 0.8956 0.9380 0.9302

Time(s) 0.08 0.12 0.07 0.07 0.06

JO PSNR(dB) 28.84 25.48 30.55 33.75 30.82

SSIM 0.9584 0.9330 0.9549 0.9761 0.9582

Time(s) 0.06 0.05 0.03 0.04 0.03

Average PSNR(dB) 24.50 22.79 28.47 32.66 29.35

SSIM 0.8630 0.7861 0.9398 0.9688 0.9442

Time(s) 0.12 0.13 0.11 0.09 0.08

with the fact that in the erroneous region of a frame in H.265/HEVC, the availability of
spatially neighboring MVs is limited, and the correlation between them decreases dramati-
cally. Therefore, we recommend using the GPHML approach in our proposed algorithm or in
similar applications.

Moreover, the proposed method requires fewer computations for video frames with more
uniform motion vectors. For example, in Table 2, the ‘Shields’ sequence requires about 30%
fewer computations for the proposed algorithms than the other compared ones. This video
sequence depicts a man walking uniformly in front of a wall. The results show that the
proposed methods have less computational complexity than the other compared methods.

Figure 6 illustrates a visual comparison of the 50th frame of the ‘Park Run’ sequence using
the algorithms by Xu [37], Lin [22], and Chang [3]. In this experiment, QP is 35 and PLR is
set to be 20%. The frames in Fig. 6b, c, and d are concealed using Xu’s, Lin’s, and Chang’s
algorithms, respectively. Figure 6a shows the original frame of the 50th frame of the ‘Park
Run’ sequence. Figure 6e and f show the frames recovered using the proposed methods, i.e.,
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Fig. 6 Error concealment results of 50th frame over ‘Park run’ sequence at the PLR of 20% and QP=35.
(a)Original frame (b)Xu approach [37] (c)Lin approach [22] (d)Chang approach [3] (e)The proposed method
by GPHnm approach. (f)The proposed method by GPHml approach

GPHnm and GPHml, respectively. These figures show that the proposedmethods significantly
enhance the visual quality compared to the other algorithms. The video sequence depicts a
man running in a park with an umbrella in his hand. The proposed approaches accurately
predict the shape of the man. Moreover, there are trees, snow, and water in the background
with lots of intricate patterns. The proposed approaches, specifically GPHml, preserve the
details more accurately than the other compared methods.

Figure 7 shows the subjective comparison of the 70th frame of the ‘Johnny’ sequence. In
this experiment, QP is 25 and PLR is set to be 20%. Figure 7a shows the original frame, which
contains amanmoving his head and a static backgroundwith several details. The other figures,
namely Fig. 7b, c, and d, demonstrate the results of using Xu’s [37], Lin’s [22], and Chang’s
[3] algorithms to conceal parts of the scene. Errors occurring on moving parts, particularly
the left side of the head, greatly affect the visual quality of the scene. This is because sudden
movements in these areas result in more non-uniform motions that are challenging for EC
methods to recover. Our proposedmethods,GPHnm andGPHml, demonstrate superiormotion
information estimation compared to the other methods we tested. This is evidenced by the
results in Fig. 7e and f. Overall, our findings demonstrate the superiority of our algorithms
over the other compared methods.
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Fig. 7 Error concealment results of 70th frame over ‘Johnny’ sequence at the PLR of 20% and QP=25.
(a)Original frame (b)Xu approach [37] (c)Lin approach [22] (d)Chang approach [3] (e)The proposed method
by GPHnm approach. (f)The proposed method by GPHml approach

We attribute this exceptional performance to two reasons that mitigate the obstacles:

1. The EC algorithms, such as the Xu method [37], employ limited motion information,
and hence they cannot predict the missed MVs considerably.

2. In the absence of motion information in adjacent blocks, EC techniques employing only
neighboring MVs cannot provide a good estimation of the MV.

Furthermore, the moving facial region of the frame does not provide precise PU/TU infor-
mation at the slice level. Thus, applying only the neighboring MVs can result in successive
slice errors and blocking artifacts as motion increases. In our study, we used the “IPPP”
coding structure, which means that each frame (except the first one) is dependent on the
previous frames for reconstruction. This can make the video more vulnerable to the effects
of packet loss. However, we did not introduce any I-frames to the coding structure to reduce
the dependence on previous frames. As a result, our results may represent the worst-case
scenario in an error-prone environment. Furthermore, future studies could explore the use of
I-frames in the coding structure to improve the video quality in such environments.

123



Multimedia Tools and Applications (2024) 83:20997–21017 21015

5.3 Computational complexity analysis

Tables 2 and 3 compare the computational complexity of decoding video frames concealed
in different EC techniques. They show that the EC algorithms demand post-processing pro-
cedures that increase the overall decoding time. The required decoding time for the proposed
algorithms depends on the degree of MV uniformity around the corrupted region, i.e., the
smaller the MV range, the fewer computations are needed. In contrast, other EC algorithms
usually consume the same amount of decoding time in different video sequences. In the
proposed GPH method, the first PC determines the number of computations and the special
cases of the quadratic (7) which defines the ellipse transformation. It is illustrated in Fig. 4.
Consequently, these conditions automatically reduce the computational complexity based on
the local information of the MV uniformity.

6 Conclusion

This paper proposes a novel approach for lost MV recovery in H.265/HEVC using a PCA-
based hierarchical clustering technique to address the challenge of dealing with large lossy
areas where the available PBs are far from the damaged blocks. Our study utilizes divisive
hierarchical clustering to classify temporally and spatially adjacent MVs. Through several
experiments, we employed the PCA method to estimate the magnitude and direction of each
cluster. Additionally, our proposed procedure generates an ellipsoidal model that limits the
diversification of motion data for loss concealment.

Furthermore, our proposed method introduces two strategies for selecting the best cluster:
maximum likelihood and nearest mean. The former utilizes the PDF, while the latter relies
on the average MV for each cluster. Other similar approaches could also be studied to select
the best cluster. The proposed algorithm generates related motion data based on the variance
of the selected cluster, making it suitable for processing different video sequences as its
computational complexity is determined by motion diversity and variance. Thus, our method
provides a new framework for video EC, and further research in this area is needed.

The experimental results demonstrate that the proposed method outperforms other tested
EC algorithms in both PSNR and SSIM. Specifically, for PLR of 10%, the proposed method
improves PSNR by up to 16.11% and SSIM by up to 2.1586% on average. Similarly, for PLR
of 20%, the proposed method improves PSNR by up to 14.72% and SSIM by up to 3.0857%
on average, compared to the other EC algorithms.

Our study proposes a PCA-based approach for error concealment in H.265/HEVC, lever-
aging MV clustering to generate accurate MVs for missing regions of damaged frames.
While our findings are promising, there is still much to explore in this area. Future research
could focus on evaluating other effective clustering methods for different types of video
frames beyond the Euclidean distance measure used in this paper, potentially leading to
increased homogeneity within clusters. Additionally, investigating alternative strategies for
proper cluster selection could also be valuable. Finally, exploring properties of generative
models, such as hidden Markov models and mixture of Gaussians, could help identify more
suitable approaches for motion estimation.

In addition, our proposed method effectively preserves the structure of moving objects
and edges in concealed regions. We also conducted experiments to determine the decoding
time for our approach and compared it with other related techniques. The results indicate that
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our method outperforms the other EC schemes, achieving high video quality while reducing
computational complexity.
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