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Abstract
Music genre classification (MGC) is an indispensable branch of music information 
retrieval. With the prevalence of end-to-end learning, the research on MGC has made 
some breakthroughs. However, the limited receptive field of convolutional neural network 
(CNN) cannot capture a correlation between temporal frames of sounding at any moment 
and sound frequencies of all vibrations in the song. Meanwhile, time–frequency informa-
tion of channels is not equally important. In order to deal with the above problems, we 
apply dual parallel attention (DPA) in CNN-5 to focus on global dependencies. First, we 
propose parallel channel attention (PCA) to build global time–frequency dependencies in 
the song and study the influence of different weighting methods for PCA. Next, we design 
dual parallel attention, which focuses on global time–frequency dependencies in the song 
and adaptively calibrates contribution of different channels to feature map. Then, we ana-
lyzed the effect of applying different numbers and positions of DPA in CNN-5 for perfor-
mance and compared DPA with multiple attention mechanisms. The results on GTZAN 
dataset demonstrated that the proposed method achieves a classification accuracy of 91.4%, 
and DPA has the highest performance.

Keywords Music genre classification · Attention mechanism · Convolutional neural 
network · Global time–frequency correlation · Mel-spectrogram

1  Introduction

With the rapid development of multimedia and communication technology, digi-
tal music is seen everywhere in life. The volume of music resources has become 
more extensive, and the retrieval of massive resources that rely on humans has 
become laborious. Therefore, music information retrieval (MIR) has become a chal-
lenging problem [3, 17]. The algorithm will play an essential role in MIR if it can 
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automatically divide music into different genres according to the music content. 
Therefore, an accurate and effective music genre classification (MGC) algorithm 
is indispensable [18-20]. In the traditional method, MGC is mainly composed of 
two parts: (1) feature extraction; (2) classifier model. Feature extraction expresses 
the inherent properties of music as feature vectors, and the classifier model maps 
features vectors to different genres. Baniya and Lee [21] used two different types of 
features, tone texture, and rhythm content features, to represent music. They used 
Extreme Learning Machine (ELM) [7] with bagging as the classifier for classifying 
the genres. Arabi [22] proposed capturing the high-level concepts of music, har-
monics, pitch, and rhythmic content feature combined with low-level features and 
Support Vector Machines (SVM) [23] as a classifier. Sarkar [24] used Empirical 
Mode Decomposition (EMD) to capture tonal characteristics in the mid-frequency 
range and used a multilayer perceptron (MLP) [6] as a classifier. Although these 
methods have contributed much to MGC, they all rely on hand-crafted features 
for classification. This requires researchers have professional music knowledge to 
design more worked features.

Deep learning has made breakthroughs in Natural Language Processing (NLP) and 
Computer Vision (CV) in recent years [8, 10, 25, 26]. The advantage of deep learning is that 
it provides an end-to-end learning mode, so it does not need to design features separately. 
Therefore, the works of [15, 27-29] try to apply Convolutional Neural Networks (CNN) 
in deep learning to audio classification. It is worth noting that Low-level audio features 
[4] of short-time Fourier transform spectrogram (STFT) [30] and Mel-spectrogram are 
particularly widely used. In MGC, Zhang [31] proposed a method based on Convolutional 
Neural Network combined with pooling and short connection [26] to apply to MGC. To 
capture the temporal dependence of audio, Choi [32] proposed a Convolutional Recurrent 
Neural Network (CRNN) for music classification. Yu [14] found that: spectra with 
different temporal steps have different importance. Therefore, they proposed a new model 
incorporating with attention mechanism based on Bidirectional Recurrent Neural Network 
[33] and discussed the influence of serial attention and parallel attention. The above 
methods based on CNN and attention mechanism consider such factors as the temporal 
dependence of audio and spectral importance in different time steps.

However, there is a strong correlation between temporal frames of sounding at any 
moment and sound frequencies of all vibrations in the Mel-spectrogram. This can be easily 
found by observing the Mel-spectrogram (as shown in Fig. 1), choosing a temporal frame 
randomly in the time domain, and there is a vibrating sound frequency in the vertical 
direction of the temporal frame. Similarly, choosing a sound frequency randomly in the 
frequency domain, and there are sounding temporal frames in the horizontal direction of 
the sound frequency. Therefore, we proposed parallel channel attention (PCA) to build a 
global time–frequency correlation. Specifically, PCA constructs a weight matrix to obtain 
global feature correlation, weight and sum the time–frequency information in the Mel-
spectrogram and generate new features to build global time–frequency dependencies. 
From horizontal direction observed, Mel-spectrogram represents time domain figure, and 
from vertical direction observed, Mel-spectrogram represents frequency domain figure. 
Therefore, we discuss the influence of weighting methods based on time domain, frequency 
domain, and time–frequency domain building global time–frequency dependencies 
for attention mechanism. In addition, when CNN extracts feature, the importance of 
time–frequency information of each channel for feature map is different. We design dual 
parallel attention (DPA) composed of PCA and SE Attention [34], which focuses on global 
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time–frequency dependencies in the song and adaptively distinguishes importance of 
different channels. The main contributions of this paper are summarized as follows:

(1) We propose parallel channel attention, which builds global time–frequency dependen-
cies in the song by representing the correlation between temporal frames of sounding 
at any moment and sound frequencies of all vibrations.

(2) We discuss the influence of weighting methods based on time domain, frequency 
domain, and time–frequency domain building global time–frequency dependencies 
for attention mechanism.

(3) We design dual parallel attention focuses on global time–frequency dependencies in 
the song and adaptively calibrates contribution of different channels to feature map.

The rest of this paper is organized as follows: Sect. 2 introduces music genre classification 
and attention mechanism related works. Section 3 describes model of proposed parallel atten-
tion applied in CNN-5, including CNN-5, parallel channel attention, SE Attention, and dual 
parallel attention. Section 4 shows Dataset and experimental setup. Section 5 analysis experi-
mental results of GTZAN dataset. Finally, Sect. 6 concludes the paper.
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Fig. 1  Mel-spectrograms of four music genres, Pop, Rock, Jazz, and Classical, in the GTZAN dataset, 
where all temporal frames from left to right constitute the time domain, and all sound frequencies from top 
to bottom constitute the frequency domain
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2  Related work

In audio and signal classification, deep learning is widely used. Yang [35] proposed 
duplicate convolutional layers whose output will be applied to different pooling layers 
and concatenated features after each pooling layer, providing more classification sta-
tistics. Chang [36] learned 2D representations from 1D raw waveform signals as input 
feature. Meanwhile, they proposed a new network architecture—MS-SincResNet, which 
can learn 1D and 2D convolutional kernels together. Choi [37] proposed a transfer 
learning method for MGC. They used pre-trained convolutional network features to per-
form music labeling. Then transfer [13] to classification task related to music. Cai [2] 
proposed a novel music classification framework incorporating the auditory image fea-
ture with traditional acoustic features and spectral feature. Srinivasu [38] uses the deep 
learning model based on finetuned AlexNet to classify the signals associated with glu-
cose levels in the human body. Scalvenzi [11] proposed multiresolution analysis based 
on discrete wavelet-packet transform (DWPT) associated with a support vector machine 
(SVM) to classify music singals, such as major and minor chords.

In order to capture global dependencies between input and output across distances, 
Vaswani [25] proposed Transformer, a model architecture entirely relies on an attention 
mechanism. Inspired by the classical non-local means method in CV, Wang [39] pro-
posed a non-local neural network (Non-local), which calculates the weighted sum of all 
position features as the response of a position. Wang [40] proposed parallel temporal-
spectral attention based on the time–frequency domain properties of the spectrogram, 
which enhances the temporal and spectral features by capturing the importance of dif-
ferent time frames and frequency bands. Huang [41] proposed an end-to-end attention-
based deep feature fusion (ADFF) approach for music emotion recognition to learn 
affect-salient features. Dosovitskiy [42] believes that the reason for the superior per-
formance of the attention mechanism is that the Transformer structure plays a decisive 
role, so they put forward the Vision Transformer (ViT), which has made a new break-
through in CV. Gong [43] applied Transformer structure in the direction of audio clas-
sification and proposed Audio Spectrum Transformer (AST).

Recently, the attention mechanism has been applied to MGC. Yang [44] continue to 
study the global dependencies of long audio sequences, employing parallel structures 
instead of recurrent architecture, multi-head attention as feature extractors, and SVM 
as classifiers. Their models show considerable generalization ability. In the MGC, few 
researchers focus on the time–frequency correlation in songs. We proposed parallel 
channel attention, which builds global time–frequency dependencies in the song and 
merges the parallel channel attention with SE Attention to form dual parallel attention.

3  Proposed method

In this section, we first introduce the basic network CNN-5, then describe parallel chan-
nel attention that builds global time–frequency dependencies, then show SE Attention, 
and finally present the dual parallel attention that fuses SE Attention with parallel chan-
nel attention.
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3.1  Overview

The general form of song is waveform signal, which is converted into Mel-spectrogram 
through short-time Fourier transform and Mel filter. There is a strong correlation between 
temporal frames of sounding at any moment and sound frequencies.

However, there is a strong correlation between temporal frames of sounding at any 
moment and sound frequencies of all vibrations in the Mel-spectrogram. Moreover, the 
importance of time–frequency information in each channel is different. Therefore, we pro-
pose dual parallel attention, which focuses on global time–frequency dependencies in the 
song and adaptively calibrates contribution of different channels.

The overall architecture of the proposed DPA approach is shown in Fig.  2: First, the 
input of the proposed model is Mel-spectrogram. Secondly, the backbone network of the 
model is CNN-5. The DPA proposed in this paper will be applied to the Attention module 
in the backbone network. CNN-5 captures the local features in the Mel-spectrogram, and 
DPA builds the global feature dependencies. As shown in Fig. 3, DPA is mainly divided 
into two parts. The upper part is parallel channel attention for building global time–fre-
quency dependencies, and the lower part is SE Attention for constructing the global chan-
nel dependencies. Finally, the features captured by the backbone network are sent to the 
full-connection layers, which map the features into genre classes as the output results.

3.2  CNN‑5

This section will introduce CNN-5, which mainly consists of five convolutional layers. 
First, the small channel convolutional layers capture low-level features such as texture and 
contour. With deeper layers, the number of channels is increased to gather deep semantic 
feature. The architecture parameters are as follows:

• Layer 1: The first convolutional layer, consisting of 64 kernels with a 77 respective 
field and stride of (1, 1), sets a large respective field to aggregate more spectrogram fea-
ture. Next, max-pooling with stride (2, 2) is used for down-sampling, capturing critical 
information in the pooling block.
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CNN-5 Full-connection
       layers
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Mel-spectrogram

Attention module

Fig. 2  The overall architecture of applying attention mechanism in CNN-5"
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• Layer 2: The second convolutional layer consists of 128 kernels with a 33 respective 
field and stride (1, 1). Down-sampling is done by avg-pooling with stride (2, 2), which 
captures All information in the pooling block.

• Layer 3: The third convolutional layer consists of 256 kernels with a 33 respective field 
and stride of (1, 1). Down-sampling with avg-pooling which stride of (2, 2).

• Layer 4: The fourth convolutional layer consists of 256 kernels with a 33 respective 
field and stride of (1, 1). Down-sampling with avg-pooling which stride of (2, 2).

• Layer 5: The fifth convolutional layer of 256 kernels with a 33 respective field and 
stride of (1, 1). Finally, global average pooling [45] for down-sampling.

Each convolutional layer follows with Batch Normalization (BN) [46] to speed up the 
network’s training. The activation function is Rectified linear units (ReLU) [47]. Detailed 
parameters are shown in Table 1.

3.3  Parallel channel attention

There is a strong correlation between temporal frames of sounding at any moment and 
sound frequencies of all vibrations. We propose parallel channel attention (Fig. 4) to build 
global time–frequency dependencies. PCA constructs a weight matrix for each channel 
in the feature map to obtain global feature correlation, weights and sums time–frequency 
information of each channel in parallel and generates new features to build global time–fre-
quency dependencies. Given input feature map � ∈ ℝ

c×f×t , c denotes the number of chan-
nels, f  denotes the number of Mel filter banks in the frequency domain, and t denotes the 
number of temporal frame in the time domain(actually f  and t denote height and width 
in feature map). The feature map � has c channels, denotes, � =

(
�1, �2,… , �c

)
 where 

�i ∈ ℝ
f×t , i ∈ {1, 2,… , c} , �i represents a channel and is also a feature set of Mel-spec-

trogram, composed of two dimensions: time domain and frequency domain. This sec-
tion describes parallel channel attention based on time domain, frequency domain, and 
time–frequency domain.

global time-frequency 
        correlation

shortcut connection

sqF

global channel
   correlation

feature map
feature map

( )

( )

Fig. 3  Dual parallel attention, where the top part is PCA, and the bottom part is SE Attention. Here, �(⋅) 
denotes sigmoid function, Conv denotes convolutional layer, ⊗ denotes matrix multiplication, ⊕ denotes 
matrix sum and ⊙ denotes element-wise product
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Parallel channel attention based on time domain weighting, as shown in Fig. 5: first, build-
ing a time domain weight matrix, then, weighting and summing all sounding temporal frames 
at each sound frequency of Mel-spectrogram in parallel. At last, aggregating time-domain fea-
tures across distances to build global time–frequency dependencies, as follows:

where three 1 × 1 2D convolutions include � , � and � , a 3 × 3 2D convolution g and Sig-
moid function denotes � . � and � reduce the number of channels in feature map and the 
number of parameters during operation. Transpose �(�) to get (�(�))T and multiply with 
�(�) to get time domain weight matrix. We only select a channel �i of �(�) and (�(�))T to 
express this process, as follow:

(1)FPCA_T (�) = g
((

�
(
(�(�))T�(�)

)
(�(�))T

)T)
+ �

(2)�
(
�i
)
=
(
��1

�1,��2
�2,… ,��t

�t
)

Table 1  CNN-5 network 
structure

Layer Type Shape Output size

L1 2D Conv 6477 64,128,313
L1 BN & ReLU - 64,128,313
L1 Max pool 22 6,464,156
L2 2D Conv 12,833 12,864,156
L2 BN & ReLU - 12,864,156
L2 Avg pool 22 1,283,278
L3 2D Conv 25,633 2,563,278
L3 BN & ReLU - 2,563,278
L3 Avg pool 22 2,561,639
L4 2D Conv 25,633 2,561,639
L4 BN & ReLU - 2,561,639
L4 Avg pool 22 256,819
L5 2D Conv 25,633 256,819
L5 BN & ReLU - 256,819
L5 Global Avg pool 819 25,611

time-frequency
  information

shortcut connection

  new
feature time-frequency

  information  old
feature

global feature
  correlation

convolutional
       layer

convolutional
       layer

Fig. 4  Parallel channel attention, which constructs a weight matrix to obtain global feature correlation, 
weights and sums time–frequency information and generates new features to build global time–frequency 
dependencies
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where ��j
�j ∈ �

(
�t
i

)
 , ��j

�j ∈
(
�
(
�t
i

))T , j ∈ (1, 2, .… , t) , � denotes 1D convolution ker-
nel, �i denotes a channel in the feature map � , and �j denotes a temporal frame on channel 
�i.

The weight matrix obtained by multiplying �
(
�i
)
 and 

(
�
(
�i
))T denotes the correlation 

between any two temporal frames on channel �i as follows:

[16] proposed to employ Sigmoid as a scaling function in audio signals, which can avoid 
the concentration of attention on several temporal frames. Therefore, Sigmoid is the scaling 
function in this paper, as follows:

feature map � reduces number of channels through � and also only selects a corresponding 
channel, �

(
�i
)
 , as follows:

��j
�j ∈ �

(
�t
i

)
, transpose �

(
�i
)
 and multiply with �

(
�
(
�i
))T

�
(
�i
)
 , which makes all tempo-

ral frames in �
(
�i
)
 multiply and add corresponding to each row of the weight matrix, 

(3)
(
�
(
�i
))T

=
(
��1

�1,��2
�2,… ,��t

�t
)T

(4)
�
�
�
�i
��T

�
�
�i
�
=

⎛
⎜⎜⎝
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�1��1
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)

Fig. 5  PCA based on time domain. Sigmoid denotes activation for each element in the weight matrix. The 
blue circular box denotes 2D convolution, reducing the number of channels in the feature map
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aggregate into new features, to complete the operation of capturing time domain features 
across distances, to build global time–frequency dependencies, as follows:

�

((
�
(
�i
))T

�
(
�i
))(

�
(
�i
))T

∈ ℝ
c , Then, the original channel shape is restored through g , 

and the input and output shapes are kept consistent. Finally, shortcut connections are added 
to the attention module to avoid losing the original information.

Parallel channel attention based on frequency domain weighting: first, build a frequency 
domain weight matrix, then weight and sum all sound frequencies in each temporal frame 
in parallel. And last, aggregate frequency domain features across distances to build global 
time–frequency dependencies, as follows:

Parallel channel attention based on time–frequency domain is composed of the feature 
fusion of time domain weighting and frequency domain weighting, as follows:

3.4  Squeeze‑and‑excitation attention

CNN extracts feature by fusing information in local receptive field, and each convolutional 
kernel independently completes the fusion process. However, not the time–frequency infor-
mation of each channel in feature map is equally important. HU et  al. proposed SENet 
(General attention module, Fig.  6), which adaptively recalibrates channel-wise feature 
responses by explicitly modeling interdependencies between channels. SE Attention is the 

(7)�

((
�
(
�i
))T

�
(
�i
))(

�
(
�i
))T

=
(
�1, �2,… , �t

)

(8)FPCA_F(�) = g
(
�
(
�(�)(�(�))T

)
�(�)

)
+ �

(9)FPCA_TF(�) = g
(
�
(
�(�)(�(�))T

)
�(�) +

(
�
(
(�(�))T�(�)

)
(�(�))T

)T)
+ �

Fig. 6  Squeeze-and-Excitation 
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core module of SENet, and we will introduce it. It is mainly divided into two parts: squeeze 
and excitation. As follows:

where Fsq denotes squeeze function, W1 ∈ FC
m

r
×m and W2 ∈ FC

m×
m

r  denote two full con-
nection layers, � denotes ReLU function, Fscale denotes scaling function.

First, introduce squeeze operation, using global average pooling to squeeze features on 
each channel in the feature map into an element. We only select one channel �i to describe 
squeeze operation, as follows:

Next, excitation operation, features are passed through W1 and W2 . Two full connection 
layers learn the relationship between the channels and use different function to activate 
after each full connection layer. Finally, Fscale is used to copy the output feature, make its 
shape consistent with the feature map � , and multiply with � channel by channel to adap-
tively calibrate the relationship between channels. This paper adopts the general attention 
module squeeze and exception attention (SE Attention) in SENet.

3.5  Dual parallel attention

The limited receptive field of CNN cannot capture the correlation between temporal 
frames of sounding at any moment and sound frequencies of all vibrations. At the same 
time, when CNN extracts feature of the Mel-spectrogram, convolutional kernel captures 
time–frequency information of different levels and fuses them into channels. However, not 
the time–frequency information on each channel is equally important. We design dual par-
allel attention Fig.  3, which builds global time–frequency dependencies in the song and 
distinguishes the contribution of each channel to feature map. Dual parallel attention is 
composed of parallel channel attention and SE Attention fusion, as follows:

After the feature map � is weighted by the parallel channel attention and SE Attention. 
next, the element-wise summation completes the feature fusion, and the shortcut connec-
tion is added to avoid losing the original information.

4  Dataset and experimental setup

4.1  Dataset and preprocessing

In this paper, dataset is GTZAN collected by Tzanetakis [12], widely applied in MGC. It 
includes 1000 songs, evenly distributed in each genre, 100 songs in each genre, of which ten 
music genres are Blues, Classical, Country, Hip-hop, Jazz, Metal, Pop, Reggae and Rock. 
Each song excerpt is about 30 s, stored as 22,050 Hz, 16 bits. To avoid repetitive informa-
tion in multi-channel, we down-sample the song to 16,000 Hz, transform it to mono-channel 
processing.

(10)FSEA = Fscale
(
𝜎
(
W2𝛿

(
W1Fsq(�)

)))
⊙ �

(11)Fsq
(
�i
)
=

1

f × t

f∑
p=1

t∑
q=1

uk(p, q)

(12)FDPA(�) = FPCA(�) + FSEA(�) + �
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We transform the song into Mel-spectrogram as input feature. The length of the FFT win-
dow is 512, hop length is 256, and the number of frequency bins is 128. We sliced the songs 
[14, 31, 35], and each song was divided into 11 music clips (lasting 5 s), and each clip over-
laps by 50%, and the clip shape is 128 × 313 [5].In the experiment, train, validation, and test 
set ratio is divided into 8:1:1, and the balance between genres is maintained. In addition, the 
results of a single experiment in GTZAN fluctuate significantly, we use ten-fold cross-valida-
tion to ensure stability of results. In this paper, all test results are average values after ten runs.

4.2  Experimental setup

In this paper, Pytorch as deep learning platform, GPU is RTX 3090, Adam [48] as 
optimizer, batch size is 22, and loss function is Cross-Entropy. Each fold data training 
with 50 epochs and the tenfold cross-validation training for 500 epochs. The 0.0001 is the 
initial learning rate, which decays to one-tenth after 20 epochs. The convolutional kernel 
was initializing to Xavier Normal and Batch normalization initializing to constant. During 
training, we treat all song clips as independent samples for training. However, during 
verification and testing, we use a voting mechanism to select a genre with the highest 
probability from all the same song clips as final output result. For example, dividing a song 
into m clips and the song has k genres, prediction result of a song, as follows:

wherei ∈ {1, 2, ..., m},j ∈ {1, 2, ..., k} , yij denotes probability of genre j in the i song 
clip, calculate the average probability of genre j in all clips, as follow:

Then, selecting a genre with the highest probability as final output, as follows:

(13)Y =

⎛
⎜⎜⎜⎝

y11 y12
... ...

... y1k

... ...

yi1 yi2
ym1 ym2

yij yik
... ymk

⎞⎟⎟⎟⎠

(14)yj =

∑m

i = 1
yij

m

(15)ylabel = max(y1, ..., yj, ..., yk)

Table 2  Comparison results 
of CNN-5 + DPA and existing 
methods on GTZAN dataset

Method Feature Accuracy

KCNN(k = 5) + SVM [49] Mel-spectrum, SFM, etc 83.90%
nnet2 [31] STFT 87.40%
Transform learning [37] Convnet features 89.80%
Hybrid model [50] MFCC, SSD, etc 90.00%
net1 [35] Mel-spectrogram 90.70%
BRNN + PCNNA [14] STFT 90.00%
CRNN with GLR [1] Mel-spectrogram 87.79%
MhaNN-SVM [44] Mel-spectrogram 88.40%
MS-SincResNet [36] Raw waveform 91.49%
CNN-5 Mel-spectrogram 89.30%
CNN-5 + DPA (Ours) Mel-spectrogram 91.40%
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5  Experimental results and analysis

5.1  Experimental results on the GTZAN dataset

In this section, we compare the proposed method with many existing methods, and the 
results are summarized in Table  2. KCNN(k = 5) + SVM, nnet2, and net1 networks are 
based on convolutional neural networks, shortcut connection, pooling, and other opera-
tions, and the network structure is redesigned. Although the classification accuracy of net1 
network is higher than that of the backbone network CNN-5, net1 network cannot apply 
attention mechanism, so this paper does not improve the net1 network. In addition, from 
the final results, the accuracy of net1 network is lower than the method proposed in this 
paper. The accuracy of Transform learning method based on hybrid feature and transfer 
learning training and Hybrid model method based on a two-stage hybrid classifier is lower 
than the methods proposed in this paper. BRNN + PCNA and MhaNN-SVM methods com-
bine the attention mechanism. BRNN + PCNA method proposes a model based on a bidi-
rectional recurrent neural network and parallel attention. The mhaNN-SVM method uses 
multi-head attention as a feature extractor and SVM as a classifier to recognize all classes. 
These two methods do not consider the application of attention mechanism in time–fre-
quency dependency. MS-SincResNet innovatively applies the method of extracting features 
from waveform signals to music genre classification and then sends the features into the 
deep neural network ResNet for classification.

MS-SincResNet is slightly better than the proposed CNN-5 + DPA in classification 
accuracy. Therefore, we compare CNN-5 + DPA with MS-SincResNet in detail from Par-
ams size, training time, and accuracy. Params size and training time are not provided in 
the MS-SincResNet paper. We experimented again according to the code provided in the 
paper.1 As shown in Table 3, 91.49% (Chang) represents the accuracy of [36], and 90.20% 
(ours) represents the accuracy of our experiment. The Params size of MS-SincResNet is 
43 MB, while CNN-5 + DPA is only a quarter of it, 10 MB. MS-SincResNet lasts 37 h, 
while CNN-5 + DPA lasts about 4 h, only one-ninth of its time. Although the accuracy of 
CNN-5 + DPA is 0.09% lower than MS-SincResNet, the Params size and training speed 
are much better than theirs. Therefore, CNN-5 + DPA is quite competitive in the methods 
mentioned in Table 2.

Table 3  Detailed comparison results between MS-SincResNet and CNN-5 + DPA

Method Ten-fold cross-
validation

Params size Training time Accuracy

MS-SincResNet [36] 43 MB 37 h 02 min 91.49% (Chang)
90.20% (ours)

CNN-5 + DPA 10.5 MB 04 h 15 min 91.40%

1 GTZAN is divided according to the proportion of 9:1 for the training set and test set in the paper [36], 
and ten-fold cross-validation is adopted. The average of the ten test results is the final result, which is con-
sistent with the strategy of our paper. We treat the results of the test set as final when the model training is 
complete. Unfortunately, we were unable to reproduce the classification accuracy mentioned in their paper, 
which may be due to insufficient training details provided in the paper.
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The experimental results of the test set in tenfold cross-validation are shown in Fig. 7. 
The red line represents the proposed model CNN-5 + DPA, and the blue line represents the 
backbone network CNN-5. The results of the CNN-5 + DPA model are better than those 
of CNN-5 in most fold data. CNN-5 is slightly better than CNN-5 + DPA in eightfold and 
tenfold data. Overall, the DPA proposed in this paper can improve the model performance 
steadily and effectively.

As shown in Fig. 8, taking the fourfold data in ten-fold cross-validation as an example, 
we provide the details of model training based on loss and accuracy. First, look at the loss 
figure. Training and validation loss in the first 20 epochs shows a downward trend. The 
training loss decreased steadily with the epoch increase, while the validation loss changed 
significantly, with the maximum value exceeding 6 and the minimum value only 1. After 
20 epochs, the learning rate decreased to 0.00001. Between the 20th and 40th epoch, train-
ing and validation loss remained the same. The training loss was stable at around 0.03, 
and the validation loss was at about 0.5. After 40 epochs, the learning rate decreased to 
0.000001. There was no significant change in training and validation loss, showing a con-
vergence state, which remained around 0.03 and 0.5, respectively. Secondly, observing the 

Fig. 7  Ten-fold cross-validation test results

(b) Accuracy(a) Loss

Fig. 8  Loss and accuracy of training and validation of CNN-5 + DPA model
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accuracy figure. In the first 20 epochs, the training accuracy increased steadily with the 
increase of epoch, while the validation accuracy showed an out-of-order state. Similarly, 
the learning rate decayed after 20 epochs. Between the 20th and 40th epoch, the training 
accuracy reaches 100%, and the validation accuracy fluctuates from 90%. After 40 epochs, 
the learning rate decreased again. The training accuracy remains at 100%, and the valida-
tion accuracy is at 90%. After the first decay of the learning rate, the proposed model’s loss 
remains stable, indicating that the model converges fast. After two decays of the learning 
rate, the validation accuracy is basically stable, and the model has converged in combina-
tion with the loss figure.

As illustrated in Fig. 9, the confusion matrix figure represents the comparison of pre-
dicted and actual results of applied DPA in CNN-5 on the GTZAN dataset. The higher 
diagonal value and the darker color, the higher recognition rate of music genre. We found 
that the classification accuracy of Classic and Blue is relatively high, reaching 99% and 
97%, Pop and Rock classification accuracy is relatively low, only 84% and 81%. From the 
perspective of music style and experimental methods: classic and blues music styles are 
relatively stable, and the melody and beat of the song itself change little. This paper adopts 
the song slice and voting mechanism (as shown in Sect.  4.2) to combine the prediction 
probability of each slice and ensemble the final prediction result. Therefore, songs with 
consistent melody and style tend to be more easily recognized by the model. It is worth 
noting that the precision value of classical in Table 4 is not the highest. This index evalu-
ates the proportion of songs whose actual genre is classical in the songs whose predicted 
genre is classical by the model. Although Classical has a high recognition rate, Jazz, which 
is similar in style, is easily misclassified as classical. Fewer songs were misclassified as 
Blues. Therefore, Blues’ Precision index is the highest.

Fig. 9  Confusion matrix of CNN-5 with DPA on GTZAN dataset
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Pop and Rock are generally marked by an inconstant rhythmic element, various styles, 
and a complex structure. Take Rock.23 of Rock genre in GTZAN dataset as an example. 
Rock.23 is a 30-s clip of the Bohemian Rhapsody Ballad part. Promane [9] argues that the 
Bohemian Rhapsody style fuses elements of Glam and progressive rock with those found 
in musical theatre, opera buffa, and vaudeville. The whole Rock.23 clip, vocal elements 
account for a prominent proportion, accompanied by a piano solo. Although the genre of 
Rock.23 is defined as Rock, the rock characteristics of the song are not obvious, and the 
content is not inclined to rock music. Under the method of song slice and voting mecha-
nism, the more complex structure of a song, the more significant difference in the predic-
tion results of each clip. It is unsuitable to employ a voting mechanism to ensemble the 
final results. Therefore, the various styles of songs and the method of this paper are funda-
mental reasons for the low recognition rate of Rock and Pop.

5.2  Ablation study for attention

In order to explore the effect of the weighting method based on time domain, frequency 
domain, and time–frequency domain for building global time–frequency dependencies in 
the spectrogram, we conducted experiments with different settings in Table 5. Similarly, to 
verify the function of two parts in DPA, we conducted experiments with different settings 
in Table 6.

As shown in Table  5, we found that applied PCA in CNN-5 brings a remarkable 
improvement in accuracy rate when comparing baseline CNN-5 with CNN-5 + PCA. Spe-
cifically, applied based on time domain, frequency domain, and time–frequency domain 
PCA in CNN-5 respectively improved 1.9%, 1.6%, 1.7% accuracy rate compared with 
baseline. Music is a 1D time-series signal, and it is the most effective to use based on 

Table 4  Precision, Recall, and 
F-score of each genre obtained 
on the GTZAN dataset

Genre Precision Recall F-score

Blues 98.0% 97.0% 97.5%
Classical 95.2% 99.0% 97.1%
Country 85.3% 93.0% 89.0%
Disco 89.9% 89.0% 89.4%
Hiphop 93.9% 92.0% 92.9%
Jazz 95.0% 96.0% 95.5%
Metal 90.6% 96.0% 93.2%
Pop 84.8% 84.0% 84.4%
Reggae 96.7% 87.0% 91.6%
Rock 85.3% 81.0% 83.1%

Table 5  Experimental results 
of constructing global time–
frequency dependencies by PCA 
based on time domain, frequency 
domain and time–frequency 
domain

Method Time domain Frequency 
domain

Accuracy

CNN-5 (baseline) 89.30%
CNN-5 + PCA 91.20%
CNN-5 + PCA 90.90%
CNN-5 + PCA 91.00%
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time-domain PCA to build time–frequency dependencies. Similarly, music was expressed 
as frequency signals after Fourier transform, based on frequency domain PCA also works. 
However, classification accuracy based on the time–frequency domain PCA is not fantas-
tic. We argue that: building time–frequency dependencies with time domain and frequency 
domain weighting fusion, which time-series and frequency fuse in the feature. However, 
the mixture features could not represent an audio signal, and classification accuracy has not 
improved further.

Table 6 indicates that applied PCA and SE Attention in CNN-5, respectively, improved 
by 1.9% and 1.2% compared with baseline. We found that applied PCA in.

CNN-5 improved model performance more than SE attention. These results note that 
when Mel-spectrogram is the input feature, there is a significant similarity between channel 
feature information. Even if SE attention is applied in CNN-5, the performance improve-
ment of model is limited. However, the fixed receptive field of traditional CNN cannot cap-
ture global time–frequency information in the song, then applying PCA in CNN-5 works 
excellently. Finally, we applied DPA in CNN-5, and accuracy improved by 2.1% compared 
with baseline, outperforming SE Attention and PCA. This result verifies that DPA focuses 
on global time–frequency dependencies in the song and adaptively calibrates contribution 
of different channels to the feature map. (PCA used time domain weighting). In addition, 
we can observe that with CNN-5 only, the params size is 6.0  MB. When SE Attention 
and PCA (Time domain) are applied separately, the params size are 8.0 MB and 8.4 MB, 
respectively. It can be seen that SE Attention and PCA (Time domain) have increased the 
params size by 2.0  MB and 2.4  MB. Finally, when DPA is applied, the params size is 
10.4 MB. This shows that when the two attention mechanisms are applied in parallel, the 
params size of model is accumulated by adding.

5.3  Attention applied in CNN‑5

In this section, we study the effect of different numbers and positions of DPA applied in 
CNN-5 for performance. Specifically, we performed experiments on applying different 
numbers of DPA in CNN-5. Next, fixed the number of DPA and experiments with DPA 
applied in different positions of CNN-5. As shown in Fig.  10, it improves performance 
most that applied DPA in the second, third, fourth, fifth layer of CNN-5, which is higher 
2.1% than baseline. It brings the least improvement that applied DPA in second, third and 
third, fifth layer of CNN-5, which is only 1.0% higher than baseline. In Fig. 11, we found 
that the performance is sensitive to positional relationship when two DPA applied in CNN-
5, the gap between Max and Min reach 1.0%, and average value is closer to Min. When 

Table 6  Ablation experimental results of PCA and SE Attention in DPA

Method DPA Params size Accuracy

PCA
(Time domain)

SE Attention

CNN-5 (Baseline) 6.0 MB 89.30%
CNN-5 8.0 MB 90.50%
CNN-5 8.4 MB 91.20%
CNN-5 10.5 MB 91.40%
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three DPA applied in CNN-5, performance has a minor dependency in position, the gap 
between Max and Min only 0.2%, and average value in the middle of extreme values. (In 
this paper, applied attention to second, third, fourth, and fifth layers of CNN-5).

Fig. 10  The accuracy rate of different numbers and positions of attention applied in CNN-5. The horizontal 
axis denotes position and number of attention mechanism applied in CNN-5, and the vertical axis denotes 
accuracy rate. For example: "245" means that attention applied in the second, fourth, and fifth layers of 
CNN-5

Fig. 11  The maximum value (Max), minimum value (Min), an average value of all positions (Average) 
denotes accuracy that applied the same number of attention mechanism in different positions of CNN-5
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5.4  Contrast study for multiple attention mechanism

In this section, we compare DPA with Non-local, dual attention networks (DANet) [51], 
frame-level attention (FLA), and parallel time–frequency attention (PTS-A). Non- local 
and DANet are similar to DPA in architecture, which builds long-distance feature depend-
encies for features weighted summation through weight matrix. FLA and PTS-A are sim-
ilar to DPA in function, which combines time-series or frequency characteristics of the 
audio signal.2

As shown in Table 7, we proposed the DPA has highest accuracy. The results show that 
the accuracy of applying Non-local and DANet in CNN-5 is 3% lower than the baseline. 
We argue that: squeezed the channel into a row, and then the features of all channels are 
multiplied together to obtain the weight matrix representing any two feature.dependencies 
in the feature map, and finally, the weighted summation of original feature to build global 
dependencies, this method, Non-local and DANet, is not suitable to a spectrogram. The 
spectrogram is composed of each temporal frame in the time domain or each sound fre-
quency in the frequency domain arranged in parallel. Squeezing the spectrogram into a 
row, the time frame or sound frequency is connected end to end, violating the spectro-
gram’s characteristic. Therefore, the accuracy rate decreases. In addition, the accuracy of 
applying FLA and PTS-A in CNN-5 is also lower than that of CNN-5 with DPA.

6  Conclusion

Automatic music genre classification is a research topic that classifies music (songs) into 
different genres according to their content. This can replace tedious manual labeling meth-
ods and provide a theoretical basis for commercial applications of music genre classifica-
tion. In this paper, we proposed to apply dual parallel attention (DPA) in CNN-5 for music 
genre classification. DPA is composed of parallel channel attention (PCA) and SE Atten-
tion. PCA employs a weight matrix to construct new feature by weighted summation of 
time–frequency information to build global time–frequency dependencies in the song. This 
paper also has research on the effect of the weighting method based on time domain, fre-
quency domain, and time–frequency domain for building global time–frequency depend-
encies. Among these methods, the based time domain method is the most effective. In 

Table 7  Comparison results of 
applying multiple attentions in 
CNN-5

Method Accuracy

CNN-5 (baseline) 89.30%
CNN-5 + Non-local 86.10%
CNN-5 + DANet 86.30%
CNN-5 + FLA 90.10%
CNN-5 + PTS-A 90.30%
CNN-5 + DPA (Ours) 91.40%

2 It is worth noting that: Non-local and DANet are codes provided by the author. FLA and PTS-A are 
implemented based on the content of the paper. All attention is applied in CNN-5 for comparison in the 
same way.
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addition, we analyzed the effect of different numbers and positions of DPA applied in 
CNN-5. The experimental results demonstrate that: the performance of applying DPA in 
the second, third, fourth, and fifth layers of CNN-5 is the most outstanding. Moreover, 
when two DPA are applied, the change of position relationship has a sensitive effect on the 
performance. When three DPA are applied, performance has a minor dependency on posi-
tion relationships. Compared to the Non-local and DANet, etcetera attention mechanism, 
the classification accuracy of DPA is the highest in the optimal application position setting.

In commercial applications: This method can provide users with acceptable classifica-
tion accuracy by retrieving music from different genres. More importantly, we propose 
building global dependencies of the song. It is worth thinking deeply and can provide new 
ideas for music genre classification. Similarly, there are still areas for improvement in this 
article. When DPA is used in the basic network CNN-5, it brings more parameters and 
computational overhead to the model. However, the classification accuracy of the model is 
not significantly improved. In future work, we will continue to focus on how to reduce the 
computational complexity of DPA. At the same time, recognizing music genres with rich 
styles based on hand-crafted features is worth researching.
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