Multimedia Tools and Applications (2024) 83:9873-9892
https://doi.org/10.1007/s11042-023-16015-3

®

Check for
updates

A truthful mechanism for time-bound tasks in loT-based
crowdsourcing with zero budget

Vikash Kumar Singh'@® - Sanket Mishra’

Received: 19 July 2021/ Revised: 29 May 2023 / Accepted: 12 June 2023 /
Published online: 27 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Crowdsourcing is a process of engaging a ‘crowd’ or a group of common people for accom-
plishing the tasks. In this work, the time-bound tasks allocation problem in IoT-based
crowdsourcing is investigated in strategic setting. The proposed model consists of multi-
ple task providers (or task requesters) and several IoT devices (or task executors), and each
of the task providers carries a task that have start time and completion time. Each of the
participating IoT devices provide a preference ordering (order of their interest for the tasks)
over a subset of tasks. Given the time bound tasks and ranking (or preference ordering) of
the task executors, the objectives are: (1) to assign the tasks to different slots so that they
are non-conflicting in nature, and (2) to allocate at most one task to each of the task execu-
tors from their respective preference ordering. To achieve the above objectives, a truthful
mechanism is proposed namely Truthful Mechanism for Time-bound Tasks in IoT-based
Crowdsourcing (TMTTC). Through theoretical analysis, it is proved that TMTTC satisfies
the properties such as computational efficiency, truthfulness, Pareto optimality, and The Core.
Through simulation, it is shown that TMTTC performs better than benchmark mechanism
on the ground of truthfulness.

Keywords Crowdsourcing - Scheduling - Truthful - IoT devices - Zero budget

1 Introduction

Crowdsourcing is said to be an open call to the group of common people (or community) for
accomplishing one or more task(s) [4, 20, 25, 27]. In crowdsourcing, the works (or tasks) that
is to be done are posted to some public domain (or platform) and the crowd workers execute
the tasks and submit it to the platform (or third party). The platform provide the completed
tasks to the task providers and incentives are given to the crowd workers in return of their

B4 Vikash Kumar Singh
vikash.singh@vitap.ac.in

Sanket Mishra
sanket.mishra@vitap.ac.in

School of Computer Science & Engineering, Vellore Institute of Technology,
Amaravati, Andhra Pradesh, India

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16015-3&domain=pdf
https://orcid.org/0000-0002-8747-1627

9874 Multimedia Tools and Applications (2024) 83:9873-9892

services. However, when the posted tasks are accomplished by the community with the help
of their smart devices (such as mobile phone etc.) then it is termed as Mobile crowdsourcing
(or Participatory sensing) [10, 13, 35]. Internet and the advancement of new technologies
have been the catalyst for these type of research over the last decade and have found many
application areas (such as healthcare [32], agriculture etc. [8]), thereby creating both the
theoretical and the applied research flavor. However, most of the works that are carried out
in past in crowdsourcing [16, 17, 19, 24, 34] mainly focused on how to motivate a mass
of task executors (or crowd workers) for participating in the system? One of the solutions
that has been provided from large community is to incentivize the participating agents (task
executors and task providers) for their services. However, the proposed solutions of dragging
large group of common people to the crowdsourcing market generates several other open
questions, such as:

1. How to decide that which agents are to be considered for performing the tasks?
2. How to have the information about the good (or quality) crowd workers?

3. What price is to be offered to the crowd workers in exchange of their services?
4. How to have the services of the crowd workers those are socially motivated?

In past, several works have been carried out in the directions pointed out in points 1—3
above. In [2, 9, 14, 15, 34] some incentive schemes are proposed for motivating the crowd
workers. In [2] the crowdsensing platform publishes the set of sensing tasks to the outside
world along with the location of the sensing tasks. Each of the floated sensing tasks is to
be sensed during the given time period by the vehicles having sensing devices (acting as
crowd workers). For this purpose an incentive based mechanism is developed that is based
on proportional share mechanism [29]. In [15] the mechanism is developed that along with
providing the incentives to the participants helps in protecting the privacy about the location of
the participating agents. In past, several truthful (or Incentive Compatible (IC)) mechanisms
(refer Section 3 for definition of truthful) for the crowdsourcing environment is proposed in
[3, 6,9, 34]. However, other than the above discussed scenarios, it may be the case that some
crowd workers may be socially motivated and are willing to provide their services to the task
providers free of cost. In past, the scenario depicted in query 4 above has not been addressed.
In this paper, we have addressed the situation mentioned in query 4 above by utilizing the
concept of mechanism design without money or under zero budget environment [5, 26, 28].

The detailed overview of the proposed framework is shown in Fig. 1.

In the proposed framework there are multiple task providers and several IoT devices. Each
of the task providers is having a task with him/her (henceforth him) that is to be completed.
The tasks held by the task providers have start time and completion time associated with
them. Here, start time of a task means that the time at which the task is available in the

t {5 fi) submission of preference ordering Final

allocation

t @ (2, 52, f2) §

Do o tedks ToT devices provide Tasks
ts, 53, f3) Platform

t R < 3593, J3

WLLE

into different slots
. in each slot T

preference ordering assignment]
over available tasks rule

t (R (tm, Sm; fm | preference ordering of IoT devices

Fig. 1 Proposed framework for IoT-based Crowdsourcing

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9875

market whereas completion time of a task is the time by which the task must be completed.
The task providers submit the tasks with the additional information i.e. start and completion
times of each of the tasks to the third party. Once the platform receives the tasks, it puts the
available tasks into different slots in such a way that there is no conflict between any two
tasks in a given slot (by utilizing the mechanism discussed in subsection 4.1). Now, each
slot contains the tasks and a set of task executors, where the task executors provide ranking
over all the available tasks or subset of tasks. The task executors may be indifferent between
two tasks or in other words the preference lists (or rank lists) may have ties. The preference
ordering of the task executors is private in nature. It means that, the preference ordering of
each of the task executors is only known to him and not known to others. In the proposed
framework, the IoT devices that are taking part in the crowdsourcing system are strategic
in nature. Due to this, the IoT devices can misreport their preference ordering for obtaining
better task. Given the above discussed set-up the objectives are: (1) to place the available tasks
to multiple slots in order to avoid conflict between the tasks, (2) to allocate at most one task
to each of the task executors from their reported preference ordering. For these purposes, by
utilizing an idea of mechanism design without money an incentive compatible mechanism is
proposed namely Truthful Mechanism for Time-bound Tasks in IoT-based Crowdsourcing
(TMTTC) motivated by [11, 21, 23, 28]. By mechanism design without money it is meant
that, no monetary transfers are necessary for accomplishing the desired works.
The key contributions of this paper are:

— First the tasks provided by the task providers along with their start and completion times
are distributed to different slots to ensure that in each slot there is no overlapping tasks.
It is required as it will help the task executors to show interest over multiple tasks.

— The time-bound task allocation problem in loT-based crowdsourcing is cast as a mecha-
nism design without money problem or in zero budget environment.

— A truthful mechanism is proposed for allocating tasks to the IoT devices, that also ensures
the placement of tasks in a non-conlict manner to different slots.

— Through theoretical analysis itis shown that TMTTC is computationally efficient, truthful,
Pareto optimal, and satisfy the Core property.

— The simulations are carried out to show that, if in case of TMTTC the participating agents
tries to manipulate the private information (in this paper preference ordering) then they
cannot gain. Also, the proposed mechanism is compared with the benchmark mechanism
where the agents can gain by misreporting their preference ordering.

The remainder of this paper is organized as follows. In section 2 the related works are
discussed. The proposed system model is discussed in detailed manner in Section 3. In Section
4, the proposed mechanism is discussed and presented. An example is illustrated for better
understanding of TMTTC in Section 5. In Section 6, the analysis of TMTTC is carried out.
The experiments are carried out and obtained results are discussed in Section 7. In section 8
the conclusion of the paper is drawn and future works are discussed.

2 Related prior works

In this section the discussion about the recent development that is carried out in the field of
crowdsourcing is done. To have an overview about the works carried out in crowdsourcing,
readers can go through [4, 19, 24, 27, 31, 33, 37].

In [31] the discussion is mainly focused on the major challenges in crowdsourcing. In
[19], in order to address some of the issues in crowdsourcing a framework is developed

@ Springer

9876 Multimedia Tools and Applications (2024) 83:9873-9892

that automate the volunteer selection and matches the criteria of volunteers and tasks. In
[24] for identifying the crowd workers that provide the accurate data, the reputation-based
incentive mechanism is designed. The crowd workers those who furnish these accurate data
are called as the reputable workers. It is to be noted that there is high chance that these
reputable crowd workers will be getting the rewards and also by following the reputable
workers the non-reputable workers can gain reputation. In [1], to have a track about the
reliable crowd workers an efficient and dynamic approach is proposed. In [27] in order to
improve conventional crowdsourcing system and to develop future crowdsourcing system a
systematic survey of crowdsourcing is carried out that focuses on emerging techniques and
approaches.

Several incentive based mechanisms are designed that somehow incentivizes the agents
in exchange of their services [7, 9, 15, 17, 30, 34]. In [7], the discussed set-up is studied in
online environment where the task providers and executors are arriving and departing from
the system continuously. Here, the task executors report costs for performing the tasks and
is private in nature. Along with the private cost each task executor has different skill set that
make him eligible to show preference over subset of tasks for execution. For the discussed
set-up in [7] an incentive compatible budget feasible mechanism is proposed. In [17] an
optimal mechanism (one that maximizes the crowdsourcing revenue minus cost) is proposed
for incentivizing the crowd workers that is following the principle of all-pay auction. In [40]
an incentive compatible mechanism is proposed for mobile crowdsourcing that combines the
idea of reverse auction and multi-atribute auction.

In [9, 30, 34] along with providing the incentives to the crowd workers the focus was to
have a set of quality agents (or crowd workers) for performing the tasks. In [34] there are
multiple task providers and multiple task executors. Each task provider is endowed with a task
and a fixed budget for each of the tasks. For this set-up a truthful budget feasible mechanism
is designed that also take care of determining the quality task executors. In [30], an incentive
compatible mechanism is designed so as to assign the subset of quality IoT devices to each
of the tasks from the set of tasks of their interest. The assignment should be done in such a
way that there exist no conflict between the tasks and also the summed-up value of the bid
values of the winning task executors is maximum. In [9], the discussed set-up is, there are
multiple IoT devices and a task requester, where the task requester floats multiple tasks that
are to be executed. Also, the task requester is having budget that arrives in an incremental
way in several phases for all the available tasks. A budget feasible mechanism is designed
for the discussed set-up that also satisfy one of the important economic properties such as
truthfulness.

In [36] an incentive based mechanism is proposed where the incentives are provided to
the workers on the basis of quality of sensed data provided by them and not based on the
time they have spent on completing the task. In [38], an incentive compatible mechanism
is developed for revealing their quality, effort, and data in true sense. In [39], the tasks that
are floated by the task providers have some fixed deadlines. The task executors shows the
interest over the subset of tasks that he can complete based on his skills and on that basis
tasks are assigned to the task executors before its deadline. For this purpose a mechanism
is designed that results in maximum overall expected payoff subject to deadline and budget
constraints. In [18] for detecting the quality crowd workers the peer review process is carried
out. It means that the tasks completed by crowd workers is provided to peer crowd workers
for reviewing and based on their recommendation the quality crowd workers are identified.

However, the problems discussed in the aforementioned works are mainly studied in
monetary environment. By monetary environment, it is meant that the money is involved in
the market in some sense. In this paper, first time the problem in crowdsourcing or more

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9877

specifically in IoT-based crowdsourcing is studied in zero budget environment. By zero
budget, it is meant that money is not present in the market in any sense. Here, the crowd
workers are socially motivated to provide their services free of cost. In Section 3, the discussed
problem in this paper is formulated through the lens of mechanism design without money.

3 System model and problem formulation

In this set-up, the set of n task executors is given as T = {Ty,Ts,...,T,}, where
T; e T denotes i’ task executor. Also, there are m task providers and is given as
R = {Ry, Ry, ...,R,,}, where R; € R denotes i task provider. Here, m and n may or

may not be equal (i.e. m > n or m < n or m = n). Each of the task providers R; has a task
t; that is to be completed. The set of tasks that is available in the market is represented as
t ={t1, 12, ..., ty}. Inthe proposed model, each of the tasks #; has start time represented as s;
and completion time represented as f;, where f; > s;. The set of start and completion times
forall the tasks is givenas s = {s1, 52, ..., sy}and f = {f1, f2, ..., [} respectively. [t may
be the case that the two tasks #; and 7 overlaps. We say that the two tasks 7; and # overlaps,
when one of the following occurs: (1) s; < sx < fj < fr,or Q) sp <5; < fx < fj,or(3)
sk <85 < fj < froor(4)s; < si < fr < fj. The discussed model in this paper is studied
as a two fold process. In the first fold, all the tasks along with the task providers are placed
in minimum number of slots so that no two tasks are overlapping in any of the slots (refer to
example discussed in Section 5 for understanding the task distribution in slots.). Once, the
available tasks are placed to multiple slots in non-overlapping manner, then in the second
fold, each of the task executors give the preference ordering over the available tasks. The
preference ordering of i’ h task executor is represented by >; over a set of tasks . t; >; #
means that the task executor T; prefers the task ¢; over the task #;. The ties in the preference
list of i*" task executor is represented by =; over a set of tasks ¢. Here, f; =; # means that
the task executor T; prefers ¢; and #; equally. The set of preference of all the task executors
is denoted by >= {>1, >2,=3,..., >,}. In the proposed framework, the task executors
are strategic. It means that, the task executors may gain by not providing the privately held
preference ordering in truthful manner. By private it means that the preference ordering is
only known to him and not known to others. Given the ranking over the tasks by the task
executors, the TMTTC assigns at most one task to each of the task executors. The resultant
allocation vector is given as A = {4, As, ..., Ay}, where A; € Ais given as (T,). Let
us discuss the required concepts and definitions before moving forward.

Definition 1 [Blocking coalition [22, 26]] If some of the IoT devices among the available
ones form a coalition and via some internal reallocation the IoT devices are making themselves
better off then that coalition will be said to be blocking coalition.

Definition 2 [Core allocation [22, 26]] The allocation resulted by mechanism is said to be
core allocation if in an allocation any subset of task executors form a coalition and with some
internal reallocation only some of the members of the coalition are made themselves better
off and not all the members.

Definition 3 [Truthfulness [22, 26]] A mechanism is said to be truthful, if the participating
agents are not able to gain by misreporting their preference ordering.

Definition 4 [Pareto optimality [22, 26]] An allocation is Pareto optimal, if in that allocation
no agent can be made better off without making someone else worse off.

@ Springer

9878 Multimedia Tools and Applications (2024) 83:9873-9892

Definition 5 [Computational efficiency] An incentive compatible mechanism is said to be
computationally efficient if all the steps is carried out in polynomial time.

4 Proposed mechanism: TMTTC

In this section, TMTTC motivated by [12, 21, 23, 28] is discussed. The TMTTC consists of
two components: (1) Tasks distribution rule, and (2) Tasks assignment rule. In the upcoming
subsections the discussion of the components of TMTTC is carried out in detailed manner.

4.1 Tasks distribution rule
The Tasks distribution rule is motivated by [12, 30].
4.1.1 Outline of tasks distribution rule

The objective of Tasks distribution rule is to schedule all the tasks into slots so that no two
tasks in a slot should be overlapping with each other. The outline of the mechanism is that,
first the ordering of the available tasks is done in increasing order of their start time. Now,
from the ordered list, a task is selected and is placed in the slot to which it is compatible with
the available tasks. The process is continued until all the available tasks are processed.

— Order all the available tasks in increasing order of their start time.
— If ties occur, select a task randomly from the ordering.

— Initially, no slot is allocated to any task.

— while (each task is not processed):

— If selected task is appeared to be compatible with any of the available slots, then
place the task to that available slot.
— Otherwise a new slot is considered and the task is allocated to that new slot.

4.1.2 Detailing of tasks distribution rule

The inputs to tasks distribution rule is a set of tasks ¢, and set of start time s. In line 1, the
available tasks are ordered in increasing order of their start time. Once ordered, the tasks are
held in . Now, using while loop in line 2-12 the tasks are placed in the slots in such a way
that there is no conflict among the task in any given slot. In line 3, a task is selected from
a set of tasks and is stored in 7. In line 4, a check is made if the selected task is compatible

with any of the slots then it will be placed in that slot otherwise a task is placed in new slot.
Line 2-12 iterates until all the tasks are processed.

4.2 Tasks assignment rule
The Tasks assignment rule is motivated by [22, 26].
4.2.1 Outline of tasks assignment rule

The objective of Tasks assignment rule is to allocate the most preferred task to the task
executors. The idea of the mechanism is, first the random numbers are generated from 1 to n

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9879

Algorithm 1 Tasks distribution rule (¢, s).

1 t < Sort(t, s) ; // Sort t based on start time.

2 while # ¢ do
3 f < Select (t)
4 if task in f is compatible with some slot then
5 ‘ Schedule task in 7 in any such slot.
6 end
7 else
8 Assign aslot £ + 1.
9 Place the task present in 7 to slot £ + 1.
10 < C+1.
11 end
12 end

and are assigned to [oT devices. After that the task executors are ordered in ascending order
of the random number allocated. From the ordered list, a task executor is considered each
time and the best available task is allocated from his preference list. The process ends once
every task executor is processed.

Tasks assignment rule In each slot:

1. First of all, n distinct numbers are generated randomly and are assigned to the task
executors.

2. After that, the task executors are placed in increasing order of random number slapped
on them.

3. A task executor is selected from the ordered list and is checked that, whether the rank
list provided by the task executor contains any task or not;

o If the preference list is not empty, then from his preference list the top most task
is allocated to him among the available one. The allocated task along with the task
executor is removed from the crowdsourcing market.

o Otherwise, delete the unallocated task executor from the list of task executors.

4. Step 3 is repeated till task executors list get exhausted.

4.2.2 Detailing of tasks assignment rule

In line 2, variable k is initialized to 0, and the variables 7, 7, and G are initialized to ¢. Line
3-12 the random numbers are generated and are assigned to the [oT devices. In line 13, the
set of task executors are ordered in increasing order of the number assigned randomly. In line
14 — 27 the allocation of tasks is made to task executors. In line 15 — 22, from the ordered list
of IoT devices, sequentially an IoT device is considered and is checked that, whether the rank
list provided by the task executor contains any task or not. If the preference list is not empty
then the most preferred task will be assigned to the selected IoT device. Once the allocation
is done the allocated task executor and task will be removed. If the rank list is empty then the
task executor is deleted from the task executors list using line 23 — 26. In line 28 the final
allocation is returned.

@ Springer

9880 Multimedia Tools and Applications (2024) 83:9873-9892

Algorithm 2 Tasks assignment rule (T, R, >).

Output: A < ¢
begin
k<0,f«¢,F ¢, G<—¢
fori < I ton do
| G<Guli)
end
fori < I ton do
| swap Gl[i] with G[Random (i, n)]
end
for each T; € T do
Assign_number (T;, G[k])
k<—k+1

-
SN NN R W -

—
N

end

T <« Sort(T, G)

while T # ¢ do

f < pick_TE (T) /* where, i=1, 2,...,n */
if >; # ¢ then

7 < Select_most_preferred (>=;)

A<~ AU, 7)

T« T;\f;R < R; \ 7

> > \;, T,‘ eT

f<—¢;7 <9

[S R S R
N = O v ® 9 N AW

end
else

NN
= W

T« T;\7
f<—¢

N
[

end

N
BN}

end
return A
29 end

[
=)

5 Example elaborating TMTTC

In this section TMTTC is elaborated with the help of an example. The initial configuration
of the tasks along with their start time and completion time is depicted in Fig. 2a. Let
us apply Algorithm 1 to the set-up depicted in Fig. 2a. So, first the available tasks are
ordered in increasing order of their start time and sorted ordering obtained is given as:
t <t <3 <tg <ts. S0, first task #1 is considered and is placed to slot 1. Next task #,
will be picked up and the check in line 5 will be false in this case so following line 7-11
of Algorithm 1 a new slot will be allocated to task #,. After that, task #3 is picked up from
the ordering and is scheduled in slot 1. Next task #4 is considered and is assigned to slot 2.
Finally, task #5 will be picked from the ordering and will be assigned to slot 1. So, the tasks
distribution obtained is shown in Fig. 2b.

Let us consider Slot 1 to understand Algorithm 2. In Fig. 2b it can be seen that in Slot 1 we
have 3 tasks and say we have 4 task executors given as Ty, T,, T3, and Ty4. The preference
ordering of the task executors is depicted in Fig. 3a. Using line 3-12 of Algorithm 2 four
distinct numbers are generated randomly and are assigned to the task executors as shown
in Fig. 3b. The task executor T3 is picked up and task #3 is allocated, as it was the most
preferred task in the preference ordering of T3. Now, both the task executor T3 and task 73
are removed from the market. Next, task executor T is picked up and the most preferred task
t1 is allocated to him. So, task executor T and task #; are removed from the market. From

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9881

13 o
to ty Slot 2 —l2e —lie
o—0 >
(31 t5
I R S Y S R P R
Time
(a) Initial tasks configuration (b) Non-Overlapping tasks

Fig.2 Illustration of Tasks distribution rule

the ordering, next task executor T is picked up but as his preference list is empty no task is
allocated to him. Finally task #4 is picked up and the most preferred task #, is allocated. Final
allocation is depicted in Fig. 3c.

6 Analysis of TMTTC

In this section, first in Theorem 1 it is shown that TMTTC is computationally efficient i.e.
running time of TMTTC is 0(n3). TMTTC is utilizing the framework of The Draw [22].
The Draw exhibits two important properties truthfulness and Pareto optimality. First, the two
propositions regarding truthfulness and Pareto optimality of The Draw is presented and then
it is proved that TMTTC is truthful (Lemma 1) and Pareto optimal (Lemma 2). Further in
Lemma 3 it is proved that the allocation resulted by TMTTC is the unique Core allocation.
In Lemma 4 and 5 the probabilistic analysis is carried out. In Lemma 4, it is shown that, the
expected number of task executors (or IoT devices) getting their most preferred task (i.e.

first preference) is ”7", where ny is the number of IoT devices in any k' " glot. In Lemma 5, the

probability that at least 2% task executors are getting their most preferred task is less than
or equal to %.

Theorem 1 The computational complexity of TMTTC is O (n3).

Proof The computational complexity of TMTTC will be the sum of the computational com-
plexities of Tasks distribution rule (Algorithm 1) and Tasks assignment rule (Algorithm 2).
The computational complexity of the components of TMTTC is shown below:

— Tasks distribution rule: Line 1 will take O (m 1gm) time. The body of while loop will
execute for m times. For each iteration of while loop, the body of the while loop will end up
in O (m). So, while loop in line 2-12 of Algorithm 1 takes O (m?). So, the computational
complexity of Tasks distribution rule is O (m1gm) + O(m?) = O(m?).

Ty: t1 =1 t3 (2)Ty: t1 >1 t3 Ty —t
Ty t1 =2 t3 (3)Ty: t1 = t3 Ty —— None
T3l &3 =3 t1 =3 0o (T3 t3 =3 t1 =3 ta Ty —t3
Ty: to >4 DTy ta =4 g Ty —1%

(a) Preferences of IoT devices (b) Assignment of random numbers (c) Final allocation

Fig.3 Illustration of Tasks assignment rule

@ Springer

9882 Multimedia Tools and Applications (2024) 83:9873-9892

— Tasks assignment rule: The random number generation in line 3 — 12 takes linear time
i.e. O(n).Line 13 will take O (n1g n). The while loop in line 14 —27 takes 0(n?). So, the
running time of Tasks assignment rule is given as O (n) + O(nlgn) + 03 = o0®md).

The computational complexity of TMTTC is O m?) + 03 = 0.
Proposition 1 The Draw is truthful [22].

Proposition 2 The allocation resulted by Draw is Pareto optimal [22].
Lemma1 TMTTC is truthful.

Proof Fix a slot i. In TMTTC the numbers generated randomly and assigned to the task
executors has no relation with the preference lists of the task executors over the tasks. It
is meant that, the task executors considered in any iteration is independent of the random
number assigned to him. From the construction of TMTTC, in whichever iteration a task
executor is considered, he will be getting his best task from the available ones. So, if any task
executor is manipulating his preference ordering then in that case either he will be getting
the similar task (which he could have got when he would have reported the true preference
ordering) or worse than that. From above argument it is clear that it is not beneficial for the
task executors to misreport their ranking over the tasks. So, it will be true for all the task
executors in different slots. Hence, TMTTC is truthful.

Lemma 2 The allocation resulted by TMTTC is Pareto optimal.

Proof Fix a slot i. From the construction of TMTTC, in any k'" iteration the task executor
under consideration gets the top ranked task from his ranking over the tasks. As a thought
experiment let us run TMTTC in parallel with some other mechanism. The objective here is
to show that the allocation resulted by some other mechanism is same as TMTTC and if not
then the other mechanism has worsen the allocation of some of the task executors. So, this
makes TMTTC Pareto optimal.

The proof can further be carried out by utilizing the idea of mathematical induction. So,
before the 1*' iteration both TMTTC and other mechanism has not done any allocation so
the winning set is empty for both the mechanisms. Let us say till p*” iteration the allocation
resulted by TMTTC and other mechanism is same. It means that the available set of tasks
and the task executors for TMTTC and other mechanism is same for (p + 1) iteration. So,
in case of TMTTC if any task executor T; is considered then he will get his most preferred
task from the available set of tasks. However, if the other mechanism allocates the task to
task executor T; other than that allocated by TMTTC then it means that the task executor
T; is worsen off in case of other mechanism. If not, then the two mechanisms would have
given same set of allocation, which is optimal. So, it will be true for all the task executors in
different slots. Hence, TMTTC results in an allocation that is Pareto optimal.

Lemma 3 The allocation resulted by TMTTC is the unique core allocation.

Proof Fix a slot i. In Lemma 2 it is already proved that the allocation resulted by TMTTC
is unique. Here, the goal is to just prove that the unique allocation obtained is “The Core".
Suppose the two task executors i.e. T; and T; form a coalition and by their mutual collabo-
ration both of them reports the preference ordering other than the true preference ordering.
As it is already discussed that the random number that are assigned to the task executors is
independent of their preference list. So, if any of the task executors i.e. T; or T; is considered

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9883

at any point of time then he will be allocated the best available task from their respective
ranking. But, if by mutual collaboration they have misreported their ranking then in that case
either they will be getting the task that they would have got when reported truthfully or worse
than that. So, one can conclude that the task executors cannot gain by mutual collaboration.
From above claim it can be true for any task executor in any slot. So, TMTTC results in core
allocation. Hence, TMTTC results in unique core allocation.

Lemma4 In any given slot say k, the expected number of IoT devices (or task executors)
assigned their most preferred task (i.e. first preference) is given as "7" where ny is the
available number of IoT devices in any k' slot. In more formal way, it can be written as
E[Y] = ”‘ . Here, Yy, is the random variable that determines the total number of loT devices

allocated thelr first preference.

Proof Fix any slot k. In this, the main objective is to have an estimate on the expected number
of IoT devices allocated their most preferred task. Here, Y is a random variable that keep
track of total number of IoT devices getting their most preferred task in slot k. So, in slot
k the expected number of IoT devices that are allocated their most preferred tasks is given
by E[Y}]. Before moving forward let us first have an estimate on the probability that any /"
IoT device will be getting their first preference. Let U be the event that any /" task executor
will not be getting his first preference and this will take place only when it has been already
taken up by any of the / — 1 task executors appearing before [/ task executor. Let U; be the
event that any task executor T; from / — 1 task executors are having the same first preference
as ['" task executor. So, it can be written as:

Pr{U} =) Pr{Ui} (1)

Now, the probability that the [task executor’s first preference will be the first preference
of any task executor appearing before /" task executor is i (as it is equally likely). Putting

1

the value as —— in equation 1,

l— 1
Pr{U} = Z —)

1—1

Let U be the event that the first preference of any I'" agent will not be taken by any of the
task executor appearing before him. So, we have

Pril}=1-Pril}=1-— (g) 3)
ni

Now, let Yy; be the indicator random variable and is defined as: Yy; = I{l’ h task executor
in k'" slot gets his first preference}

[{1, ifI"taskexecutorgetshisfirstpreference

0, otherwise

As defined already that Yj keep track of total number of IoT devices getting their most
preferred task in slot k. We have,

ng
Y, = Z Yu “)

@ Springer

9884 Multimedia Tools and Applications (2024) 83:9873-9892

Taking expectation both side in equation 4, we get;

nk
E[Y;] = E[> Yu}
=1
By linearity of expectation, we get
nk
E[Yi] =) E[Yu]

As the expectation of the random variable is equal to its probability, so we have

ny ng
E[Y] =) Pri¥u}=)_ Pr{0)
=1 =1

-2(-(5)- Z‘—Z;(’ 0)

[1

_1211_2 + 1

ng

_ (£ 1D 3
- (")+<nk)

ny 1 ng

T2 7272
From here, one can infer that in expectation half the total number of IoT devices will be
allocated their most preferred task.

observation 1 If we consider the value of nj as 200 then we get E[Yy] = ”Tk = 22@ =100. So,
in expectation 50% of the available IoT devices will end up getting their most preferred (or
first preference) tasks from their preference ordering.

Lemma 5 For any slot say k, the probability that at least 2% task executors are getting their
most preferred task (i .e. first preference) is less than or equal to %. In other words, it can be

written as:
2ny 3
PriYy> —} < -
3 4

Here, Yy keep track of total number of loT devices getting their most preferred task in slot k.

Proof From the above lemma (i.e. Lemma 4), we have Y is the random variable that keep
track of total number of IoT devices getting their most preferred task in slot k. It is represented
as I = {number of task executors allocated their first preference}

1, ifY > 2

I = ©)
0, Otherw1se

From equation 5, we can write

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9885

Ifm (6)

Taking expectation both side of equation 6, we get

Yk
E[I] < E[m]

3

1
3
3
E[I] < T'E[Yk] (7
nk
Pr{Ykzzsﬂ}'lfﬁ'E[Yk] 3)

From Lemma 4 the value of E[Y}] is substituted as ”7" in equation 8§,

2ng 3 ng
priy, s 2l o 2 % 9
r{"—3’ =om 2 ©)

Equation 9 above can be written as:

2ny
Pr YkZT =

ENION)

Hence proved.

observation 2 From Lemma 5, one can infer that if n; value is taken as 150 then with
probability at most 0.75 more than 100 task executors will be allocated their most preferred
tasks.

7 Experiments and results

In this section, the experiments are carried out to compare TMTTC with the benchmark
mechanism (i.e. Random) that is non-truthful in nature. For the simulation purpose the
data (here, preference ordering of the task executors) has been generated synthetically using
Python libraries. In order to strengthen our claim, the simulation is carried out for two different
dataset, namely small dataset (see Table 1) and large dataset (see Table 2). It is to be noted
that the benchmark mechanism differ only in terms of Tasks assignment rule from TMTTC,
the Tasks distribution rule is same for both the mechanisms. The underlying idea of Tasks
assignment rule of Random mechanism is given below. For any given slot,

1. Each time a task executor is picked up from the set of task executors.

2. After that the preference ordering of the selected task executor is checked whether it is
empty or not.

3. If preference list is not empty, then

— From the preference list of the respective task executor a task is randomly selected
and is assigned to the task executor.

@ Springer

9886 Multimedia Tools and Applications (2024) 83:9873-9892

Table 1 Small data set utilized for comparing TMTTC with Random mechanism

Cases Number of IoT devices Preference Ordering Generated

n=m 25, 50, 75, 100, 125, 150 Randomly (using Python libraries)
n<m 20, 45, 70, 95, 120, 145 Randomly (using Python libraries)
n>m 25, 50, 75, 100, 125, 150 Randomly (using Python libraries)

— Once allocated, both the task executor and the task are removed from crowdsourcing
market.

4. Else, a task executor is removed from the market.
5. Steps 1-4 are repeated until each of the task executors are processed.

In simulation, the manipulative behavior of IoT devices is taken into consideration. The
two mechanisms are compared based on the following parameters: (1) Number of Preferred
Allocation (NPA) — Number of task executors getting their first preference from their reported
preference ordering, and (2) Utility of Task Executors (UTE) — It is the difference between
the position of the task allocated to him from his preference ordering and the position of the
most preferred task in his preference ordering.

It is to be noted that, for the mechanism that results in higher value of NPA and lower
value of UTE will be considered as good mechanism.

7.1 Simulation setup

In simulation the tasks and task executors are considered from 5 different slots. In any given
slot one of the following situations could be pertaining: (1) number of tasks is equal to the
number of task executors (i.e m = n), (2) number of tasks is greater than the number of
available task executors (i.e. m > n), and (3) number of tasks is less than the number of
task executors (i.e. m < n). In all the three situations, the task executors are providing the
preference ordering over the tasks. In this paper, the simulation is carried out considering two
cases: (1) all the participating task executors are revealing their true ranking, and (2) some
subset of the participating task executors are mis-reporting their ranking. More specifically,
for the direction mentioned in point 2 above the below mentioned manipulation criteria is
followed for the simulation purpose.

1. Small manipulation (S-Man): % of the task executors are mis-reporting their ranking.
2. Medium manipulation (M-Man): % of the task executors are mis-reporting their rank-

ing.
3. Large manipulation (L-Man): % of the task executors are mis-reporting their ranking.

Table 2 Large data set utilized for comparing TMTTC with Random mechanism

Cases Number of IoT devices Preference Ordering Generated

n=m 500, 1000, 1500, 2000, 2500, 3000 Randomly (using Python libraries)
n<m 400, 800, 1200, 1600, 2000, 2400 Randomly (using Python libraries)
n>m 700, 1200, 2100, 2800, 3500, 4200 Randomly (using Python libraries)

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9887

e Random —— 1200 Random ——— -
TMTTC —— TMTTC =
80 | TMITC-S-Man — TMTTC-S-Man
TMTTC-M-Man —=— 1000 fTMTTC-M-Man
TMTTC-L-Man TMTTC-L-Man -
60 800
g =
z 40 O 600
400 |
20
200 H m
0 o Lk T

25 50 75 100 125 150 25 50 75 100 125 150
Number of Task Executors Number of Task Executors
(a) Comparison based on NPA (b) Comparison based on UTE

Fig.4 Comparison based on NPA and UTE (m=n) for small dataset

As a test case, the simulation is carried out for large data set also, where the number of
IoT devices could be bounded above by 4200. The preference ordering of each of the IoT
devices is generated randomly. Table 2 depicts the data utilized for comparing TMTTC with
Random mechanism.

7.2 Result analysis

As the simulation is carried out for three different situations, so the results are discussed
considering all the three situations and for both the data sets. The discussion will mainly
circumvent around the parameters mentioned in Section 7. The results obtained for the three
different situations are depicted in Figs. 4-9. In Figs. 4a, 5a, 6a, 7a, 8a, and 9a x-axis represents
the number of task executors and y-axis represents NPA. The NPA value in case of TMTTC
is higher than the NPA value in case of Random for all the three situations. It is due to the
reason that, each time, in case TMTTC each of the task executors is allocated with the best
available tasks. On the other hand, in case of Random the task executors may not be allocated
with the best available tasks. In this, the tasks are picked-up randomly from the preference
ordering of task executors and allocated.

3000 T 35000 F%? M” $‘%’8 _—
TMTTC —=—]
2500 | TMTTC-S-Man — - 30000 [TMTTC-S-Man 1
TMTTC-M-Man —— TMTTC-M-Man 1
2000 | TMTTC-L-Man 25000 [TMTTC-L-Man
20000
& 1500 E
15000
1000
10000
500 5000 j ‘
0 H
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Number of Task Executors Number of Task Executors
(a) Comparison based on NPA (b) Comparison based on UTE

Fig.5 Comparison based on NPA and UTE (m=n) for large dataset

@ Springer

9888 Multimedia Tools and Applications (2024) 83:9873-9892

il Random —— 1200 Random [1| ‘ ‘

TMTTC —— TMTTC 3 A
80 | TMTTC-S-Man — TMTTC-S-Man 1
TMITC-M-Man —— 1000 fTMTTC-M-Man
TMTTC-L-Man TMTTC-L-Man =

60 800

NPA
UTE

40

~ 400 |
20 ~ 7
| Hﬂﬂ
0) H—nﬂ i
20 45 70 95

120 145

20 45 70 95 120 145
Number of Task Executors Number of Task Executors
(a) Comparison based on NPA (b) Comparison based on UTE

Fig.6 Comparison based on NPA and UTE (m < n) for small dataset

3000 e ——— 35000 FEI?M”%% —
TMTTC —— (e
2500 | TMTTC-S-Man — - 30000 |TMTTC-S-Man]
TMTTC-M-Man —— TMTTC-M-Man
25000 [[TMTTC-L-Man ————
2000 TMTTC-L-Man ———
20000 1
£ 1500 E
/‘////” 15000 g
1000 - :
10000
400 800 1200 1600 2000 2400 400 800 1200 1600 2000 2400
Number of Task Executors Number of Task Executors
(a) Comparison based on NPA (b) Comparison based on UTE

Fig.7 Comparison based on NPA and UTE (m > n) for small dataset

100

1200 Random

TMTTC-S-Man =
1000 fTMTTC-M-Man
TMTTC-L-Man

Random ——
TMTTC ——
80 TMTTC-S-Man ——=—
TMTTC-M-Man ———
TMTTC-L-Man

60 800 -
5 2
z S 600
40
400 | N
20

200 | {E

9 o Ltk]

25 50 75 100 125 150 25 50 75 100 125 150
Number of Task Executors Number of Task Executors

(a) Comparison based on NPA (b) Comparison based on UTE

Fig.8 Comparison based on NPA and UTE (m < n) for small dataset

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9889

3000 T 35000 Ffl.ahﬂ%?r'g o —
TMTTC (e
2500 | TMTTC-S-Man — = — 30000 |TMTTC-S-Man 1
TMTTC-M-Man —=— TMTTC-M-Man =1
2000 | TMTTC-L-Man 25000 [TMTTC-L-Man =
20000
= 1500 S
= 15000
1000
10000
200 5000 ’7 h m H
o L_Lhr]
7001200 2100 2800 3500 4200 700 1200 2100 2800 3500 4200
Number of Task Executors Number of Task Executors
(a) Comparison based on NPA (b) Comparison based on UTE

Fig.9 Comparison based on NPA and UTE (m < n) for small dataset

Similar nature of TMTTC and Random can be seen for large dataset (see Table 2) in Figs.
5a, 7a, and 9a. The reason is same as mentioned above.

Considering the manipulative behavior of the participating task executors, it can be seen
in Figs. 4a, 6a, and 8a that the NPA value in case of TMTTC with large manipulation
(TMTTC-L-Man) is lower than the NPA value in case TMTTC with medium manipulation
(TMTTC-M-Man) and is lower than NPA value in case TMTTC with small manipulation
(TMTTC-S-Man) and is lower than NPA value in case of TMTTC with no manipulation
(TMTTC). So it can be inferred that higher the manipulation lower will be the NPA value in
case of TMTTC and it means lower number of task executors are getting their most preferred
tasks. As it is natural from the construction of TMTTC and Random.

Similar nature of TMTTC and Random can be seen for large dataset (see Table 2) in Figs.
5a, 7a, and 9a. The reason is same as mentioned above.

Considering the second parameter, in Figs. 4b, 5b, 6b, 7b, 8b, and 9b, x-axis represents
the number of task executors and y-axis represents UTE. It can be seen that the UTE value in
case of TMTTC is lower than the UTE value in case of Random. As from the construction of
TMTTC whenever a particular task executor is considered he is allocated the most preferred
task from the available one, whereas in case of Random mechanism some random allocation
of task is done to the task executor from his preference list. Due to this in case of TMTTC the
value of UTE remain small as compared to UTE value in case of Random. From definition
of UTE, it is clear that lower the value of UTE better will be the mechanism. In Figs. 5b,
7b, and 9b the similar nature of TMTTC and Random can be seen for large data set on the
ground of UTE value. The reason is same as above.

Considering the manipulative behavior of the participating task executors, it can be seen
in Figs. 4b, 6b, and 8b that the UTE value in case of TMTTC with large manipulation
(TMTTC-L-Man) is higher than the UTE value in case of TMTTC with medium manipulation
(TMTTC-M-Man) and is higher than UTE value in case of TMTTC with small manipulation
(TMTTC-S-Man) and is higher than UTE value in case of TMTTC with no manipulation
(TMTTC). So it can be inferred that, higher the manipulation higher will be the UTE value
and it means higher number of task executors are allocated the tasks that is far away from
their most preferred task in their preference ordering. Similar nature of TMTTC and Random
can be seen for large dataset (see Table 2) in Figs. 5b, 7b, and 9b. The reason is same as
mentioned above.

@ Springer

9890 Multimedia Tools and Applications (2024) 83:9873-9892

From above discussion one can infer that in case of TMTTC the participating task executors
cannot gain by manipulating their true preference ordering. Dissimilar to the case of TMTTC,
in Random mechanism the participating task executors can gain by reporting their preference
ordering after manipulation. So, on the ground of truthfulness TMTTC beats Random.

8 Conclusion and future works

For the above discussed set-up a truthful mechanism is proposed for distributing the tasks
into multiple slots and allocating at most one task to each of the task executors from their
reported preference list. Through theoretical analysis it is shown that TMTTC satisfies several
properties such as computational efficiency, truthfulness, Pareto optimality, and The Core.
Further analysis provide the insight about the allocation of most preferred task to each of the
task executors from their reported preference ordering. Through simulation it is shown that
TMTTC performs better than the benchmark mechanism on the ground of truthfulness.

In future, one could consider the set-up where the interests or preference ordering from
both the parties (task executors and task providers) is provided and a truthful mechanism
could be designed.

Acknowledgements We would like to thanks the faculty members of the School of Computer Science and
Engineering (SCOPE), VIT-AP University, Amaravati for their valuable suggestions during the course of this
work.

Funding No funds and grants was received.

Code Availability The code will be publicly available upon acceptance.

Declarations
Conflicts of interest There is no conflict of interest.

References

1. Chenxi Qiu, Anna Squicciarini, Dev Rishi Khare, Barbara Carminati, and James Caverlee. Crowdeval:
A cost-efficient strategy to evaluate crowdsourced worker’s reliability. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, AAMAS 18, page 1486-1494,
Richland, SC, 2018. International Foundation for Autonomous Agents and Multiagent Systems

2. Duan Z, Tian L, Yan M, Cai Z, Han Q, Yin G (2017) Practical incentive mechanisms for iot-based mobile
crowdsensing systems. IEEE Access 5:20383-20392

3. Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos. TRAC: Truthful auction for location-aware
collaborative sensing in mobile crowdsourcing. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications, pages 1231-1239, Toronto, ON, Canada, April 2014

4. Florian Daniel, Pavel Kucherbaev, Cinzia Cappiello, Boualem Benatallah, and Mohammad Allahbakhsh.
Quality control in crowdsourcing: A survey of quality attributes, assessment techniques, and assurance
actions. ACM Computing Surveys, 51(1):7:1-7:40, January 2018

5. Gale D, Shapley LS (1962) College admissions and the stability of marriage. American Mathematical
Monthly 69:9-15

6. L. Gao, F. Hou, and J. Huang. Providing long-term participation incentive in participatory sensing. In
2015 IEEE Conference on Computer Communications (INFOCOM), pages 2803-2811, Kowloon, Hong
Kong, April 2015

@ Springer

Multimedia Tools and Applications (2024) 83:9873-9892 9891

20.

21.

22.

23.

24.

25.

26.

27.

28.

30.

. G. Goel, A. Nikzad, and A. Singla. Mechanism design for crowdsourcing markets with heterogeneous
tasks. In Proceedings of the Second AAAI Conference on Human Computation and Crowdsourcing,
HCOMP 2014, November 2-4, 2014, Pittsburgh, Pennsylvania, USA, 2014

. https://en.wikipedia.org/wiki/crowdsourcing, May 2018

. Jaya Mukhopadhyay, Vikash Kumar Singh, Anita Pal, and Abhishek Kumar. A truthful budget feasible
mechanism for iot-based participatory sensing with incremental arrival of budget. Journal of Ambient
Intelligence and Humanized Computing, Feb 2021

. Jurairat Phuttharak and Seng Wai Loke (2019) A review of mobile crowdsourcing architectures and
challenges: Toward crowd-empowered internet-of-things. IEEE Access 7:304-324

. B. Klaus, D. F. Manlove, and F. Rossi. Matching under preferences. In Felix Brandt, Vincent Conitzer,
Ulle Endriss, Jérome Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice,
pages 333-355. Cambridge University Press, Cambridge, New York, April 2016

. Kleinberg Jon, Tardos Eva (2005) Algorithm Design. Addison-Wesley Longman Publishing Co., Inc,
Boston, MA, USA

. Kong X, Liu X, Jedari B, Li M, Wan L, Xia F (2019) Mobile crowdsourcing in smart cities: Technologies,
applications, and future challenges. IEEE Internet of Things Journal 6(5):8095-8113

. Lefeng Zhang, Ping Xiong, Wei Ren, and Tianging Zhu. A differentially private method for crowdsourcing
data submission. Concurrency and Computation: Practice and Experience, 31(19):e5100, 2019. e5100
cpe.5100

. Li Yang, Zhao Yunlong, Ishak Serrat, Song Hongtao, Wang Nianbin, Yao Nianmin (2018) An anonymous
datareporting strategy with ensuring incentives for mobile crowd-sensing. Journal of Ambient Intelligence
and Humanized Computing 9(6):2093-2107

. Li Jiaye, Hao Yu, Zhang Leyuan, Wen Guogqiu (2019) Double weighted k-nearest voting for label aggre-
gation in crowdsourcing learning. Multimedia Tools and Applications 78:33357-33374

. T. Luo, S. K. Das, H. P. Tan, and L. Xia. Incentive mechanism design for crowdsourcing: An all-pay
auction approach. ACM Transactions on Intelligent Systems and Technology, 7(3):35:1-35:26, February
2016

. Masaki Kobayashi, Hiromi Morita, Masaki Matsubara, Nobuyuki Shimizu, and Atsuyuki Morishima.
An empirical study on short- and long-term effects of self-correction in crowdsourced microtasks. In
HCOMP, pages 79-87. AAAI Press, 2018

. Mazlan Nurulhasanah, Ahmad Sharifah Sakinah Syed, Kamalrudin Massila (2018) Volunteer selection

based on crowdsourcing approach. Journal of Ambient Intelligence and Humanized Computing 9(3):743—

753

Munro Robert (2013) Crowdsourcing and the crisis-affected community. Information Retrieval 16(2):210—

266

T. Roughgarden. CS269I: Incentives in computer science (Stanford University course), 2016. Lecture 3:

Strategic Voting

T. Roughgarden. CS2691: Incentives in computer science, (Stanford University Course), Lecture #1: The

draw and college admissions, September 2016

T. Roughgarden. CS364A: Algorithmic game theory (Stanford University course), lecture #9: Beyond

quasi-linearity, October 2013

Ruiyun Yu, Jiannong Cao, Rui Liu, Wenyu Gao, Xingwei Wang, and Junbin Liang. Participant incentive

mechanism toward quality-oriented sensing: Understanding and application. ACM Trans. Sen. Netw.,

15(2):21:1-21:25, February 2019

Samarjit Roy, Dhiman Sarkar, and Debashis De. Dewmusic: crowdsourcing-based internet of music

things in dew computing paradigm. Journal of Ambient Intelligence and Humanized Computing, page

2103-2119, Feb 2021

J. Schummer and R. V. Vohra. Mechanism design without money. In E. Tardos N. Nisan, T. Roughgarden

and V. V. Vazirani, editors, Algorithmic Game Theory, pages 209—242. Cambridge University Press, New

York, 2007

Shahzad Sarwar Bhatti, Xiaofeng Gao, and Guihai Chen. General framework, opportunities and challenges

for crowdsourcing techniques: A comprehensive survey. Journal of Systems and Software, 167:110611,

2020

Shapley L, Scarf H (1974) On cores and indivisibility. Journal of Mathematical Economics 1:23-37

. Y. Singer. Budget feasible mechanisms. In Proceedings of the 2010 IEEE 5157 Annual Symposium

on Foundations of Computer Science, FOCS 10, pages 765-774, Washington, DC, USA, 2010. IEEE

Computer Society

V. K. Singh, S. Mukhopadhyay, F. Xhafa, and P. Krause. A quality-assuring, combinatorial auction based

mechanism for IoT-based crowdsourcing. In Advances in Edge Computing: Massive Parallel Processing

and Applications, volume 35, pages 148—177. 10S Press, 2020

@ Springer

9892 Multimedia Tools and Applications (2024) 83:9873-9892

31. Slivkins A, Vaughan JW (2014) Online decision making in crowdsourcing markets: Theoretical chal-
lenges. SIGecom Exchanges 12(2):4-23

32. Syed Thouheed Ahmed, Vinoth Kumar, and JungYoon Kim. Aitel: ehealth augmented intelligence based
telemedicine resource recommendation framework for IoT devices in smart cities. IEEE Internet of Things
Journal, pages 1-1, 2023

33. Venkatraman S, Surendiran B (2020) Adaptive hybrid intrusion detection system for crowd sourced
multimedia internet of things systems. Multimedia Tools and Applications 79:3993—4010

34. Vikash Kumar Singh, Sajal Mukhopadhyay, Fatos Xhafa, and Aniruddh Sharma. A budget feasible peer
graded mechanism for iot-based crowdsourcing. Journal of Ambient Intelligence and Humanized Com-
puting, 11(4):1531-1551, Jan 2020

35. Wang Xiumin, Tushar Wayes, Yuen Chau, Zhang Xinglin (2020) Promoting users’ participation in mobile
crowdsourcing: A distributed truthful incentive mechanism (dtim) approach. IEEE Transactions on Vehic-
ular Technology 69(5):5570-5582

36. Wen Yutian, Shi Jinyu, Zhang Qi, Tian Xiaohua, Huang Zhengyong, Hui Yu, Cheng Yu, Shen Xuemin
(2015) Quality-driven auction-based incentive mechanism for mobile crowd sensing. IEEE Transactions
on Vehicular Technology 64(9):4203-4214

37. Xiaolong Xu, Qing Cai, Guoming Zhang, Jie Zhang, Wei Tian, Xiaorui Zhang, and Alex X. Liu. An incen-
tive mechanism for crowdsourcing markets with social welfare maximization in cloud-edge computing.
Concurrency and Computation: Practice and Experience, 33(7):e4961, 2021. 4961 cpe.4961

38. Xiaowen Gong and Ness Shroff. Incentivizing truthful data quality for quality-aware mobile data crowd-
sourcing. In Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, Mobihoc’ 18, pages 161-170, New York, NY, USA, 2018. ACM

39. P.Xu, A. Srinivasan, K. K. Sarpatwar, and K. Wu. Budgeted online assignment in crowdsourcing markets:
Theory and practice. In Proceedings of the 16" Conference on Autonomous Agents and MultiAgent
Systems, AAMAS’17, pages 1763—1765, Richland, SC, 2017. International Foundation for Autonomous
Agents and Multiagent Systems

40. Ying Hu, Yingjie Wang, Yingshu Li, and Xiangrong Tong. An incentive mechanism in mobile crowd-
sourcing based on multi-attribute reverse auctions. Sensors, 18(10), 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

	A truthful mechanism for time-bound tasks in IoT-based crowdsourcing with zero budget
	Abstract
	1 Introduction
	2 Related prior works
	3 System model and problem formulation
	4 Proposed mechanism: TMTTC
	4.1 Tasks distribution rule
	4.1.1 Outline of tasks distribution rule
	4.1.2 Detailing of tasks distribution rule

	4.2 Tasks assignment rule
	4.2.1 Outline of tasks assignment rule
	4.2.2 Detailing of tasks assignment rule

	5 Example elaborating TMTTC
	6 Analysis of TMTTC
	7 Experiments and results
	7.1 Simulation setup
	7.2 Result analysis

	8 Conclusion and future works
	Acknowledgements
	References

