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Abstract
Task scheduling in cloud paradigm brought attention of all researchers as it is a challeng-
ing issue due to uncertainty, heterogeneity, and dynamic nature as they are varied in size, 
processing capacity and number of tasks to be scheduled. Therefore, ineffective schedul-
ing technique may lead to increase of energy consumption SLA violations and makespan. 
Many of authors proposed heuristic approaches to solve task scheduling problem in cloud 
paradigm but it is fall behind to achieve goal effectively and need improvement especially 
while scheduling multimedia tasks as they consists of more heterogeneity, processing 
capacity. Therefore, to handle this dynamic nature of tasks in cloud paradigm, a schedul-
ing mechanism, which automatically takes the decision based on the upcoming tasks onto 
cloud console and already running tasks in the underlying virtual resources. In this paper, 
we have used a Deep Q-learning network model to addressed the mentioned scheduling 
problem that search the optimal resource for the tasks. The entire extensive simulationsare 
performed usingCloudsim toolkit. It was carried out in two phases. Initially random gener-
ated workload is used for simulation. After that, HPC2N and NASA workload are used to 
measure performance of proposed algorithm. DRLBTSA is compared over baseline algo-
rithms such as FCFS, RR, Earliest Deadline first approaches. From simulation results it is 
evident that our proposed scheduler DRLBTSA minimizes makespan over RR,FCFS, EDF, 
RATS-HM, MOABCQ by 29.76%, 41.03%, 27.4%, 33.97%, 33.57% respectively. SLA vio-
lation percentage for DRLBTSA minimized overRR,FCFS, EDF, RATS-HM, MOABCQ 
by48.12%, 41.57%, 37.57%, 36.36%, 30.59% respectively and energy consumption for 
DRLBTSA over RR,FCFS, EDF, RATS-HM, MOABCQ by36.58%,43.2%, 38.22%, 
38.52%, 33.82%existing approaches.
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1 Introduction

Cloud Computing paradigm is a regime change in various industries, which changed 
utilization of computing, storage and network infrastructures and laid a platform to 
cope up with the evolvement of huge data in various industries especially to handle data 
intensive computations, large chunks of data storage. Therefore, this paradigm evolved 
as a utilization model through which all services i.e. computation, storage, network are 
given to consumers as services on demand. This model initially evolved as virtual infra-
structure i.e., IaaS for various companies but later it was evolved as computing platform 
where we can develop our applications and install various software’s by using different 
services provided by cloud platform. Now a days cloud computing is useful in various 
sectors and some of the domains are mentioned here but not limited i.e., healthcare, 
education, entertainment, Government organizations, multimedia, transport, IoT, AI 
and ML. In cloud paradigm, services related to IoT, AI, ML, image processing requires 
huge processing capacity infrastructure as all these services consists of multimedia data 
which need to be processed accurately and scheduling multimedia data is a challenge in 
cloud paradigm. All the above-mentioned domains use various service models based on 
SLA. SLA depends on user and organization to which services they are subscribed. It is 
the responsibility of cloud provider to render services based on agreement and violation 
of SLA should not be happened from the cloud provider. Many of users are accessing 
virtual resources in cloud simultaneously and it is difficult to handle all these requests 
and assign virtual resources according to SLA is a challenging task and cloud paradigm 
provision resources automatically to users based on SLA without human intervention 
and these provisioning of virtual resources to tasks are to be handled by a scheduler.

The effectiveness of cloud computing paradigm mainly depends on how scheduler 
effectively manages tasks and schedules tasks onto suitable virtual resources. It also 
effects various parameters i.e. energy consumption, SLA violation that leads to the 
issues related to both cloud provider, user. If scheduler is not suitably mapping tasks to 
virtual resources then it directly effects makespan, which takes high amount of execu-
tion time, which leads to decay in quality of service. If a task takes huge amount of 
execution time then it may also incurs high amount of energy consumption. This can be 
also one of the reason to effect quality of service. Finally, if a given task is not expected 
to complete within stipulated time or if a task is provisioned for certain amount of time 
to a virtual resource but if user is still accessing resource after the provisioned time then 
it is a violation of SLA. It will happen in this paradigm due to improper scheduling of 
tasks to virtual resources. Therefore, it will cause a problem to cloud provider in view 
of SLA violations. Many of authors used heuristic techniques [4, 12, 17, 22] and nature 
inspired approaches [1–3] for tackling task scheduling but still there is lacking of an 
effective scheduler which schedules these dynamic tasks onto virtual resources appro-
priately while minimizing metrics such as energy consumption, makespan and SLA vio-
lations. Therefore, we have used a Machine learning technique i.e. Q-learning based on 
reinforcement learning method to solve task scheduling problem focused on multimedia 
tasks which fed to task manager by calculating priority of tasks, those tasks are fed to 
Q-learning model which takes decision based on upcoming tasks and tasks running in 
virtual machines. Tasks already running in VMs will be consolidated or migrated based 
on upcoming tasks at cloud console and decision taken by the ML model employed 
in scheduling algorithm while minimizing metrics makespan, SLA violation, energy 
consumption.
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1.1  Motivation and contributions

The Cloud paradigm emerged as a utility computing approach where all computing, stor-
age, network infrastructure to be given as a utility to cloud user. When all these services 
are given as utility with ease and seamless access, many of users will be attracted towards 
this paradigm. Theend users around the world who are working in different sectors are 
using cloud services based on their requirement. Providing cloud services to all users with-
out any interruption is a huge challenge in cloud computing because cloud resources are 
heterogenous nature and upcoming requests are diverse as well as uncertain. Therefore, 
for assigning virtual resources to user requests there is need of an efficient scheduling 
approach that handles requests and map them onto virtual resources while maintaining the 
quality of service and SLA violations. The above reason motivates us to do the research in 
this area of cloud computing. We have also evaluated very important and primary parame-
ters, which influences the performance of cloud model i.e., makespan- which is time taking 
to execute a task on a VM, SLA Violation- agreement made by cloud user and provider for 
the services, Energy consumption- which is consumption of energy by VMS at computa-
tion and idle time. The objective of our research is to optimize all these parameters without 
violating the conditions.

The contributions of the article are given below here.

1. A Scheduling algorithm is proposed by employing a ML technique which dynamically 
takes decision according to upcoming and existing tasks.

2. Deep Q- Learning network model is used as a ML technique, which is based on Rein-
forcement learning, and it is integrated into scheduling module.

3. The Extensive simulations are carried on Cloudsim. Initially random workload have 
been considered and then we have tested efficacy of our algorithm using HPC2N and 
NASA parallel work logs for evaluation of parameters makespan, energy consumption 
and SLA Violation.

4. The experimental results show that proposed approach DRLBTSA is superior to existing 
round robin, FCFS, Earliest deadline first, RATS-HM, MOABCQalgorithms.

The remaining paper is organized as follows: Existing state of arts approaches are pre-
sented and compared in section 2, problem formulation and proposed methodology based 
upon ML approach are discussed in section 3 & 4. The computing simulation results are 
discussed in section 5 and conclusion is discussed in last section of the article.

2  Related works

The authors formulated a resource allocation and security mechanism [5], which used 
a hybrid ML, approach i.e., RATS-HM technique. Totally, this work was done in three 
stages. In the first stage, a Cat Swarm optimization technique was used to address makes-
pan, throughput. In the second stage, a DNN was used to address metrics such as band-
width, load on resources for efficient allocation of resources to tasks. Finally, in the third 
stage a security authentication scheme was implemented to provide security to data stored 
in cloud. The Cloudsim [7] is used as simulation toolkit to assess the FCFS, RR algorithms 
performance, results it was identified that proposed RATS-HM mechanism shown a great 
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influenceand surpass existing techniques for mentioned parameters. Authors in [26] pro-
posed task scheduling model for large-scale cloud computing systems to address parame-
ters i.e. task execution delay, resource utilization. Methodology chosen for this approach is 
a ML approach based on reinforcement learning. Four techniques are used for developing 
of scheduling mechanism i.e. RL, DQN, RNN-LSTM and DRL-LSTM. Matlab was used 
for simulation purpose. A real time dataset was taken from Google cluster, it was given as 
an input to algorithm, and among all techniques, DRL-LSTM performs better than other 
algorithms when they are compared with RR, PSO and SJF for above mentioned metrics.

Authors in [14], devised a scheduling mechanism AIRL based on reinforcement learn-
ing technique to schedule time sensitive requests in cloud. Main objective of AIRL is to 
minimize request response time, maximize success rate of user requests. Finally AIRL 
was compared over different schedulers i.e. RR, earliest, random, DQN. From Simulation 
results,the proposed AIRL shows a great effect over baseline algorithms. In [8], authors 
proposed scheduling algorithm which addresses QoS, cost of VMs, success rate, response 
time for scheduling model. This framework uses a DQN model, which works based on 
reinforcement learning. Entire experimentation was done on a real time cloud and it was 
evaluated against random, RR and earliest schedulers and from simulation results it was 
identified that DQN overcomes mentioned algorithms for mentioned parameters. [32], 
scheduling framework formulated minimizes execution time, waiting time of tasks. Authors 
used a ML technique i.e. CDDQLS based on reinforcement learning. Entire simulation car-
ried on Cloudsim, posed deadline and resource constraints. After simulation CDDQLS 
evaluated over Random, Time shared, Space shared algorithms and it shown a great impact 
for mentioned algorithms. [10] proposed task scheduling model formulated to minimize 
makespan. It uses a ML approach named as DQN which uses reinforcement learning strat-
egy for scheduling tasks. Experimentations conducted on MATLAB and compared against 
HEFT, CPOP algorithms. From results, it revealed that makespan greatly minimized over 
baseline mechanisms.

In [33], scheduling scheme designed to minimize makespan. A machine learning model 
used as methodology. QL-HEFT i.e. a combination of Q-Learning and HEFT algorithms. 
This process was done in two stages. In First phase, tasks will be sorted to get effective task 
allocation by Q-Learning. In second phase, processor allocation was done based on HEFT. 
Entire scheme implemented over Cloudsim. It compared with existing HEFT, CPOP algo-
rithms. Finally this scheme was shown impact over existing approaches with respect to 
makespan. In [9], Dynamic task scheduling model which aims minimization of energy 
consumption, utilization of CPU. It was modeled by using Q-learning technique which is 
a ML approach. This mechanism is totally lies in two phases. In first phase, all incoming 
tasks are assigned with a VM in cloud using M/M/S queuing mechanism. In Second phase, 
by using decisions of Q-Learning tasks are allocated to corresponding VMs in cloud. This 
approach was implemented on Cloudsim, evaluated over Random, Fair Schedulers. In [25], 
trust aware scheduling mechanism was developed to minimize makespan, to improve QoS 
and to address security challenges posed in cloud environment. This work was done in 
three phases i.e. computation of trust levels of VMs, computation of priorities of tasks and 
careful scheduling of tasks based on above mentioned conditions. It was implemented on a 
Hadoop cluster and data generated onto Hadoop clusters are collected from Google cloud 
platform real workload traces and evaluated over PSO,SJF, RR algorithms and finally from 
results trusted aware scheduling performs better than existing approaches.

In [34], schedulingtechnique is formulated to optimize the significant QoS param-
eters and modeled by DQTS i.e. a combination of Q-learning and deep neural network. 
It was implemented on Workflowsim. Initial workload was generated randomly and used 
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synthetic datasets. It evaluated against existing models. From results, it shows impact 
over existing mechanisms for load balancing. In [28], edge computing-based task sched-
uling algorithm was developed to maximize task degree satisfaction and success ratios. 
It was modeled with DRL to solve task scheduling and resource allocation. It was imple-
mented by using python language and compared with FCFS and SJF state of art algo-
rithms. From results above-mentioned parameters were improved to a great extent. In 
[19], DeepJS, a job scheduling mechanism developed to improve makespan to address 
scheduling issues in cloud datacenters. It uses reinforcement learning integrated with 
bin packing algorithm. It simulated by cloudsim and workload taken from real world 
workload traces. It compared against existing models, which uses heuristics, finally 
from results DeepJS converges fast more and minimizes makespan compared with 
other approaches. In [36], authors formulated a QoS aware scheduler aims at response 
time, utilization of VMs and user request distributions among VMs. It was modeled by 
using Deep Reinforcement learning. It was implemented on a customized simulation 
environment. Real world traces of NASA workload were used for simulation and evalu-
ated over RR, FF, random, earliest and best fit approaches. From results, it observed 
that average response time minimized by DRL approach by 40% and success rate was 
improved by 93% over compared mechanisms. Authors in [11] formulated an effec-
tive scheduling mechanism in fog environment, which aims to reduce delay of service 
and computational costs. It was modeled by combining Deep Q-Learning and double 
Q-Learning mechanisms. It was implemented on ifogsim and evaluated against FF, GS 
and RS algorithms, evaluated metrics energy, cost, and these parameters shown a huge 
impact against existing algorithms. In [35],proposed workflow scheduling technique to 
address makespan, cost. Technique used in this technique was DQN model, which is 
a multi-agent technique based on reinforcement learning which gives rewards as time 
and cost. It was implemented on real time cloud environment i.e. AWS and extensive 
simulations were carried out and it shown huge impact in above-mentioned parame-
ters. Authors in [27] developed an energy efficient task scheduler, which uses RANN 
model. GA used to generate dataset, which is of 18 million instances. It implemented on 
MATLAB, evaluated over existing approaches, this proposed task scheduler overcomes 
existing models by makespan, energy consumption, required active racks, execution 
overhead.In [5], an efficient resource allocation with light weight authentication scheme 
developed by authors. A hybridized mechanism developed i.e. RATS-HM. It consists 
of three steps. In first step, they used ICS-TS which optimizes makespan of scheduling 
mechanism, In second step, they used GO-DDN which is a deep neural network mecha-
nism for efficient allocation of resources and in final step a light weight authentication 
mechanism developed. Experimentations conducted extensively on Cloudsim. From 
results, RATS-HM allocated resources effectively to users while addressing deadline 
constraints. In [16], a workload balancing strategy proposed by authors by addressing 
parameters i.e. cost, degree of imbalance, resource utilization. MOABCQ i.e. Q-learn-
ing added to modified ABC approach to model scheduling strategy. Extensive simula-
tions conducted on Cloudsim. MOABCQ approach evaluated using realtime workload 
datasets and synthetic workloads. It compared with existing approaches and from results 
MOABCQ shows significant impact on existing approaches. In [29], authors used deep 
reinforcement learning approach used to propose energy aware task scheduling model 
developed to minimize energy consumption, makespan, resource utilization. It com-
pared over SOTA approaches and deep reinforcement approach outperformed for above 
specified parameters. [37] proposed a task scheduling approach addresses energy con-
cerns in datacenters for realtime workloads. DRL methodology used for energy aware 
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scheduling. Extensive simulations revealed energy aware scheduling mechanism tackled 
realtime jobs in datacenters by minimizing energy consumption while improving QoS 
services provided by cloud provider.

From the above Table 1, all existing scheduling algorithms uses different variations of 
reinforcement learning techniques and addressed metrics, which we have mentioned in 
above table. Despite usage of above metrics task scheduling is still ineffective and therefore 
we have used Deep Q-Learning network to schedule tasks effectively by considering priori-
ties of tasks and schedule them by the decision of ML model i.e. DQN addressed metrics 
makespan, SLA Violation, Energy consumption.

In the below section, we have accurately defined problem, mentioned proposed system 
architecture in detailed manner.

3  Problem definition and proposed system architecture

In this section, problem definition is given below.

Definition Assume we have K tasks, which are indicated as tK = {t1, t2, t3, …tK}, n VMs 
which are indicated as VMn = {VM1, VM2, VM3, …, VMn}, pphysical hosts indicated 
Hp = {H1, H2, H3, …, Hp} and r datacenters indicated DCq = {DC1, DC2, DC3, …. . DCq}. 
Scheduling problem defined in such a way that these K tasks are scheduled on to n VMs 
sitting in p physical hosts in turn resided in q datacenters. Incoming task priorities to be 
considered before scheduling onto VMs priorities of tasks are considered and fed to DQN 
model, which takes scheduling decision based on upcoming and current running tasks in 
underlying resources, which minimizes makespan, SLA violation and Energy consump-
tion. The below table represents notations of proposed architecture (Table 2).

The optimal task scheduling architecture is represented in Fig.  1, which considers 
diverse requests from different users simultaneously. After submission of tasks to cloud 
interface application task manager collects those requests and calculates priorities of all 
tasks based on length of task, processing capacities of tasks. Further, it will be fed to 
DQN model based on task priorities, which is integrated with scheduling model. From 
the recommendations of scheduler, which is integrated with DQN model, have to sched-
ule tasks appropriately onto the VMs. Initially, scheduler need to send these prioritized 
tasks onto execution queue and send these tasks onto VMs. In this proposed architecture, 
after every certain time interval T our scheduler needs to keep track of upcoming requests 
and resource manager about virtual resources. For every time interval T scheduler, which 
consists of DQN, model keeps track of upcoming requests, executing requests in VMs and 
virtual resources in resource manager. Therefore, based on these conditions scheduler will 
take a decision dynamically i.e. mapping a task to new VM or mapping a task to an exist-
ing VM or migrating existing tasks to another VMs if a VM is sufficient storage and pro-
cessing capacity to accommodate running tasks. We have used Deep Q-Learning model as 
a methodology to schedule tasks intelligently based on the above said conditions for every 
time intervalT. It will update its decisions of scheduling to scheduler, takes care scheduling 
tasks appropriately onto VMs. Main aim of this scheduler to effectively task mapping to 
VMs based on their priorities minimizing parameters named as makespan, SLA Violation 
and Energy consumption. Initially evaluation of priorities of tasks need to check depend-
encies of task priorities of tasks. Therefore, evaluation of priorities of tasks entire load on 
VMs need to be calculated. The overall load on VMs can be identified by following eq. 1.
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Where lon indicates current running n number of VMs.
After calculation of current load on VMs, as all VMs are running in p physical hosts. 

Therefore, overall load on hosts are calculated using eq. 2.

(1)loVM =

∑

lon

(2)loHp
= loVM∕

∑

Hp

Table 2  Notations used in 
Proposed System Architecture

Notation Meaning

tK Tasks
VMn Virtual Machines
Hp Physical Hosts
DCq Datacenters
loVM Current running load on virtual machines
loHp Current running load on Hosts
trp Threshold value identification
prVM

ca
Processing capacity of a VM

tl
k

Task length
tprio Task Priority
ettk Execution time of a task
fttk Finishing time of a task
dlt Deadline constraint
mk Makespan of a task
econ Energy consumption
γn Active state of VM
τn Idle state of VM
resutil Resource utilization
SLAV SLA Violation
Tover
i

Total over loaded time of physical hosts
Tover−active
i

Total active time of physical hots

T
pd

j
Performance degradation of VM

T
cpc

j
Requested CPU capacity of VM for specific time

St State space
At Action space
σ Rate of Learning
ret Reward function
£ Discount factor
St state of a task t at time T
SVM
Tt

State of a VM for a task t at time T
Mω Replay Memory
ε Time for Learning agent
f Frequency of learning
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Where loHp indicates load on p physical hosts, loVM indicates current load on all VMs, 
Hp indicates hosts.

After calculation of load on VMs and physical hosts, identified a threshold value as 
cloud computing paradigm is dynamic and to process huge number of requests by VMs in 
a balanced manner and this load balancer need to work according to the requests coming 
onto VMs. Therefore, to have a load balancer in our model, a threshold value was calcu-
lated. Threshold value should be dynamic as cloud workloads are not static and different 
parameters such as upcoming requests, existing resource capacity etc. Therefore, threshold 
value in this model can be calculated using following eq. 3.

Where trp is a dynamic threshold value identified in our work, loHp

i
 is load on p physical 

hosts. This threshold value continuously changing as workload in cloud is dynamic and 
based on threshold value, utilization of hosts are calculated whether they are underutilized, 
balanced or over utilized. Utilization of hosts can be calculated using following eqs. 4, 5 
and 6 respectively.

The below eq. 4 used to calculate over utilization of hosts.

The below eq. 5 used to calculate underutilization of hosts.

(3)trp =

∑p

i=1
lo

Hp

i

p

(4)VMn > tr p
−

∑

loVM

Fig. 1  Proposed optimal task scheduling Architecture
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The below eq. 6 used to calculate balanced utilization of hosts

From above equations, 4, 5 and 6 utilization of hosts through dynamic threshold value 
is calculated. Now, to schedule appropriate workload over cloud resources (VMs), need to 
calculate the processing power of resources as calculated in eq. 7. It is defined as multi-
plication of number of processing elements in VM, number of processing instructions per 
second in VM. It calculated by using following equn. Mentioned below.

The above equation shows that it is processing capacity of particular VM in n number of 
VMs considered in our architecture and after this entire processing capacity of VMs calcu-
lated as follows by using eq. 8.

Now after calculation of processing capacities of VMs, priorities of upcoming requests 
calculated based upon dependencies or inter-dependency, size of tasks, required resources 
by the request and many more parameters. Therefore, length of task is calculated using fol-
lowing eq. 9.

After calculation of length of task then priority of an incoming task onto scheduler can 
be calculated by using below equation.

Based on priorities of tasks these are moved onto execution queue and map those tasks 
by scheduler to appropriate VMs. For this scheduling model, we have also considered a 
dead line constraint in a way that task should complete its execution before deadline i.e. dlt.

In this research work, our focus is to address parameters i.e. makespan, SLA Viola-
tion, Energy Consumption. Whenever makespan is evaluated, to calculate execution time 
because makespan is evaluated based on how much execution time it is taking for a task to 
run on a certain VM. Execution time of task for a certain task calculated by using follow-
ing equation.

For every task, which is scheduled into execution, queue gets a VM based on its avail-
ability in resources and it all depends on finishing time of a task. Therefore, finishing time 
of task calculated using below equation.

(5)VMn < trp −
∑

loVM

(6)VMn = trp −
∑

loVM

(7)prVM
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ca
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(12)fttk =
∑
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In this model, we assumed that each task should complete its execution within speci-
fied deadline. Therefore, for every task we are scheduling in this model finish time should 
always be less than or equal to its deadline. It is indicated as below.

Here after mentioning deadline constraint, calculation of execution time, finish time 
then we have calculated makespan as in any scheduling model or mechanism makes-
pan needs to be minimized. It is defined as execution time of tasks running over virtual 
resources. It is calculated as follows.

From above eq. 15 δij is set to 1 if task tk is assigned to VM i.e. VMn otherwise set to 0.
Thus, from eqs. 14 and 15 makespan is calculated.
Our next focus to minimize the energy consumption in cloud computing paradigm. It is 

one of significant and impactful parameters in cloud paradigm. As for processing the huge 
workloads, need the large scale infrastructure or cloud resources, which leads to increase 
the energy consumption as well as large emissions of  CO2 [21, 38]and damages environ-
ment. Therefore, we are focusing on minimizing energy consumption in cloud paradigm. 
In Cloud model, energy consumption based on consumption for computing time, idle time. 
In this model for a VM energy consumption is calculated as follows. In cloud computing 
model any VM either should be in active state i.e. computing instructions or it should be in 
idle state represented in below eq. 16.

Energy consumption of all n VMs are calculated by using following equation

Energy consumption in datacenter calculated as follows

Thus, from eqs. 16, 17, 18 and 19 Energy consumption in cloud computing calculated.
Our next focus is to minimize SLA Violation in cloud computing. Here, we need to 

discuss importance of SLA Violation. Service Level Agreement is one of the important 
perspective in terms of both user and cloud provider as if our system does not work accord-
ing to SLA then problems will be persisted for both cloud provider and user. Therefore, it 
is important to design our scheduler, which should not violate SLA made between both 
user and cloud provider. Thus, we have defined SLA violation in cloud computing by using 
below equation.

(13)fttk ≤ dlt
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Where p indicates number of physical hosts, Tover
i

 indicates total time for which host 
gets overloaded, Tover−active

i
 indicates amount of time a host lies in active state.Tpd

j
 indicates 

estimation of performance degradation for a VM, Tcpc

j
 indicates requested CPU capacity of 

a VM during its specified time.

4  Methodology

This section precisely discusses about methodology used to design our scheduling algo-
rithm. We have used a reinforcement learning approach [31], which takes adaptive deci-
sions. It is a machine learning approach, which considers inputs and gives decisions 
based on the history of previous events. Over a period of time it learns from previous 
decisions and makes adaptive decisions. For any Reinforcement learning approach there 
are three basic parts. They are 1. Input and Output states- The data which we are given 
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Proposed Methodology Pseudo Code
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as an input to the model is Input and the output state is to represent an outcome pro-
cessed by algorithm based on data given as Input. 2. Rewards- This state is a representa-
tion of outcome by algorithm with positive or negative reward. 3. Artificial Intelligence 
framework- This can be used to take a decision based on input supplied to algorithm and 
gives outcomes through which rewards will be generated that may be good or bad. If 
those rewards generated at a time T are positive and framework captures those positive 
rewards and continue towards the next state for much more optimal decisions. If rewards 
are negative, it will learn from that experience and it will try to improve its decision 
making for the next state.

The complete functionalities of proposed methodology presented in the form of 
pseudo code.

Time complexity of the proposed Methodology:
The total time complexity of proposed methodology depends on time complexities 

of individual components of proposed methodology. Let’s break down each component 
and analyze its time complexity:

1. Collect requests and calculate task priorities: Time complexity of this component is 
O(n), n indicates number of requests received from cloud interface application.

2. Feed task priorities to DQN model: The time complexity of this component depends 
on the implementation of the DQN model. In general, the time complexity of a single 
forward pass through a neural network with n layers is O(n), since each layer involves 
a matrix multiplication operation.

3. Schedule tasks onto VMs: The time complexity of this component depends on the 
implementation of the scheduler and the DQN model. The time complexity of schedul-
ing tasks using a DQN model is typically higher than traditional scheduling algorithms 
like round robin, as it involves training a neural network on a large dataset. The time 
complexity of adding tasks to the execution queue and scheduling them onto VMs 
depends on the implementation of the execution queue and VM manager.

4. Keep track of upcoming requests and resources every T time interval: The time com-
plexity of this component is O(1), since it involves fetching the upcoming requests and 
virtual resources from the resource manager.

5. Make dynamic decisions: The time complexity of this component depends on the num-
ber of decisions to be made, and the time complexity of each decision. In general, time 
complexity of component is O(m), where m is number of decisions to be made.

Overall, time complexity of algorithm can be approximated as O(n + f + s + m), 
where n is number of requests received, f is time complexity of feeding the task priori-
ties to the DQN model, s is the time complexity of scheduling tasks onto VMs, and m is 
the time complexity of making dynamic decisions.

Reinforcement learning approach uses agents to take decisions based on inputs given 
to system. Generally, any machine-learning model consists of different states. Therefore, 
agents will take specific actions based on input, which generates rewards either good or 
bad. These rewards can be useful for the decision to be taken by the algorithm in the 
next state. Reinforcement learning approach works based on these rewards and agents 
will try to take actions in next state based on reward generate in this current state. This 
approach learns from its previous states whether it is a good or bad reward and will take 
its decisions over a period of time. This adaptive nature i.e. self-learning based on its 
previous states is one of the advantage of reinforcement learning approach.
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The above Fig.  2 gives representation of task scheduling using deep reinforcement 
learning in which, agent will learn through history of incoming user request sequences 
i.e. agent will be trained through previous user requests or tasks which are coming onto 
cloud console. Initially, a Prioritized user request is to be given as input to agent and it 
should make a scheduling decision based on situation in cloud environment. Decision 
would be given as an output of executed task or user request, which is (e.g. makespan, 
energy consumption, SLA violation in our study) a reward for an agent. If the value of 
reward is bad then agent improve its decision by updating its parameters of model. If the 
value of the reward is good then it will be stored in the current state and it will be used 
for the next time when decision is to be made by the agent in the next state.

In reinforcement learning, we have used Q- learning for our scheduling model [30]. 
This Q- learning is one of the most powerful technique as it doesn’t need any knowledge 
of current system. It will make decisions based on past actions stored as Q-function 
as a pair with two states indicated a q(S, A). It will updates its states by using below 
equation.

Where σ is rate of learning and value of it is in between (0,1). ret is reward for taking 
action i.e. At for state St. £ is discount factor and its value lies in between (0,1).

From above equation for every iteration, q-learning model needs to check for rewards 
and updates its decisions according to model by using above equation. In classical 
q-learning, all q values are stored in q-table but to apply these q-learning model to a 
problem such as scheduling in cloud computing it is difficult to adaptive and optimal 
decisions for classical model as number of states and actions are comparably high for 
task scheduling technique. Therefore, we want to use a deep neural network in combi-
nation with reinforcement learning which can be helpful for our scheduling problems 
in cloud computing. Therefore, we have used a Deep Reinforcement Learning model 
[39] to tackle the problem of scheduling in cloud computing. Moreover, that Deep 
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Fig. 2  Deep reinforcement learning technique for scheduling the tasks
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Reinforcement Learning approach already proved in various types of scheduling tech-
niques in cloud computing as mentioned in [15, 26]. Therefore, combining deep neural 
network with reinforcement learning used for task scheduling in our model. The main 
reason to usethis scheduling model is to make it as a smart scheduler no prior knowl-
edge will be given to agent and algorithm need to take a decision when real time data 
is given as input. It consists of different states as in q-learning, which consists of action 
space and state space.

4.1  Action space

In action space, as we have already mentioned n VMs which we have considered in this 
work. All incoming requests initially fed to task manager and after each task priority will 
be calculated and given to scheduler and it consists of DQN model which takes decision 
and sends tasks to a execution queue with respect to priorities of tasks. Then based on deci-
sion of Scheduler they need to execute on VMs according to the entry of tasks in queue 
according to their priorities. Thus, action space in our model is defined as follows.

4.2  State space

In this subsection, we are defining a state space where it consists of state of a task at spe-
cific time and state of a VM at that time when task arrives.

Let us assume that a task t arrives at time T and it is to be represented as Tt. Then, state 
of this task can be represented as follows

Where St is a state of a task t at time T and SVM
Tt

 is a state of a VM when a task t comes 
on to a VM at time T.

Where tl
k
 is length ofk tasks, t prio is priority of ktasks, ettk is execution time of ktasks, fttk 

is finish time of ktasks, mk makespan of ktasks, econ
VMn

 energy consumption of n VMs, SLAV 
is SLA Violation.

4.3  Reward function

Aim of this study is to find optimal mapping between cloud resources, mixed tasks with 
help of our DRLBTSA scheduler to optimize significant QoS parameters energy consump-
tion, time, SLA violation. Thus, our reward function should be in terms of minimization of 
metrics mentioned in our work. It can be defined as follows.

(22)A =

[

VM1,VM2,VM3,… ,VMn

]

(23)STt = St ∪ SVM
Tt

(24)STt =
[
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k
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(25)re = min
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, SLAV
)
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4.4  Training the agent

When incoming tasks arrived at scheduler DRLBTSA agent need to make decision in 
current state by considering priorities of tasks and resources available in Physical hosts 
and according to that it should map tasks to VMs. For this to happen, our DQN model 
need to be trained in such a way that initially it should map a task to a VM by consider-
ing above said condition with a probability ρ and its value decrease over to zero with 
respect to time. Therefore, initially DQN agent explores randomly and give its decision 
and later it gives its decisions by previous q-values stored in q-table. To make it happen, 
experience replay, fixed q-target values are to be used in algorithm. Whenever agent 
takes decisions over a period of time it will gain experience and it is to be represented 
as experience replay here in our work. Whenever a decision is taken by agent it will 
gives you a reward and it is represented as ret and further state is to be represented as 
St + 1. These experiences will be stored as values in a memory to be represented as replay 
memory indicated as ω. The values to be stored in this replay memory are (At, St, ret, 
St + 1) and capacity of a replay memory to be represented as Mω, and replay memory can 
be taken as batches and indicated as Gω. Whenever iterations are to be run and values 
in replay memory are to be updated and here iterations are to be called as batches. In 
our work, entire training was done in offline. After completion of training to our agent 
then it will become intelligent enough to take decisions in a smart way. In our work, 50 
neurons were used for hidden layers in DQN model. We have kept scheduling time for 
taking decision for an agent is 10 ms, frequency of learning is f = 1, time for learning of 
agent taken as ε. The proposed DRLBTSA algorithm is shown below.

Proposed DRLBTSA- Proposed Deep reinforcement learning based Task Scheduling Algorithm in Cloud 
Computing.
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The above algorithm flow is discussed here in a detailed manner. Initially all parameters 
such as batch size, replay memory, learning frequency, learning rate and discount factor are 
initialized. In the next step, q-function consists of state space and action space are initial-
ized to zero. In the next step, for each event i.e. for every incoming task comes to cloud 
platform priority of tasks are calculated. For every event, scheduler need to choose action 
space i.e. VMs for corresponding state space i.e. tasks based on priority of tasks, avail-
ability of resources in physical hosts. Based on this condition, every time scheduler need 
to make a decision. In the next step, tasks according to their priorities to be scheduled to 
corresponding VMs with a random probability if it is a first task which is to be scheduled 
for first time otherwise DRLBTSA need to take a decision from existing q-table available 
for agent. After this step when action space to be chosen for every state space a reward will 
be generated. Here in our work, it is minimization of parameters i.e. makespan, energy 
consumption, SLA Violation. Reward value can be calculated by using eq. 25. If it is posi-
tive reward, reward score will be improved and if it is negative then it have to improve 
i.e. scheduler need to improve based on its experience. If positive rewards are encountered 
i.e. makespan, energy consumption, SLA violation they will be updated as minimized val-
ues of the current state. Rewards either positive or negative they will be stored in replay 
memory. After evaluating rewards it should update its state space to the next state by using 
eq. 21. This process continues until last state space i.e. task is encountered (Fig. 3).

5  Simulation set up and experimental results

This section discusses simulation, results of our work. Entire simulation is conducted on 
cloudsim [7] simulator. We have identified real time parallel worklogs from HPC2N [13] 
and NASA [23] which are of high performance computing clusters, those workloads are 
given input to our algorithm. After that we have fabricated different datasets on our own 
with different distributions and those were explained here in a detailed manner.

5.1  Configuration settings for simulation

Our simulation was carried out on cloudsim [7]. We have done extensive simulations 
using cloudsim [7]. In our work, initially we fabricated datasets in such a way that tasks 
have to be with different distributions and these workload distributions are fed to sched-
uler. Then to test our work efficiency, we used HPC2N [13], NASA [23] worklogs from 
high performance computing clusters. The fabricated datasets distributions are consid-
ered as follows i.e. Uniform, Normal, left and right skewed distributions. We represent all 
these datasets with uniform, normal, left and right skewed distributions as d1, d2, d3, d4. 
Worklogs of HPC2N and NASA are represented as d5 and d6. Uniform distribution tasks 
means all types of tasks distributed in an equal manner. Normal distribution represents 
more number of medium size tasks, less number of small and large tasks. Left skewed 
distribution indicates more number of small tasks, less number of large tasks. Finally Right 
skewed distribution indicates less number of small tasks, more number of large tasks. We 
have intentionally fabricated these distributions as we need to verify how our algorithm 
behaves with different types of tasks. Finally we have given HPC2N and NASA parallel 
worklogs as d5 and d6 datasets as input to algorithm to check its efficiency through real-
time workload. After giving workload as input to algorithm, we have evaluated our DRL-
BTSA against existing baseline algorithms RR, FCFS, Earliest deadline first, RATS-HM, 
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Fig. 3  Flowchart of proposed approach
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Table 3  Configuration Settings 
in Simulation

Name of the entity Quantity

No. of tasks 1000
Task length 700,000
Ram of Host 32 GB
Storage of Host 4 TB
Bandwidth 1000 MBPS
No. of VMs 35
Ram of VMs 4 GB
Bandwidth of VM 200 MBPS
VMM Xen
Operating System MAC
No. of Datacenters 10

Table 4  Parameter Settings for various algorithms

Name of the Algorithm Parameter Values

MOABCQ [16] Size of Population 1000
Number of VMs 100
Maximum number of iterations 50
Employed bees 200
Onlooker bees 800

RATS-HM [5] Cloudlets 1600
Number of tasks 300
Memory 500 MB
Physical host capacity 500GB
Number of VMs 4

RR [6] Hypervisor Xen
Memory of VM 256 MB
MIPS 1000
Bandwidth 1000Mbps
Number of Processing elements 1
VM image size 10,000 MB
Length of Cloudlets 1000
Cloudlet allocation policy Timeshared

FCFS [18] Hypervisor Xen
Memory of VM 512 MB
MIPS 256
Bandwidth 1000Mbps
Number of Pes 1
Length of Cloudlets 1000
Cloudlet allocation policy Spaceshared

EDF [24] No. of Cloudlets 100
No. of VMs 150
Memory of VM 2048 MB
Bandwidth 1050Mbps
Number of Pes 1
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MOABCQ algorithms. We have taken standard configuration settings for our simulation 
from [20]. The following Table 3 clearly mention configuration settings required for simu-
lation, Table 4 indicates various parameter settings of compared approaches with proposed 
DRLBTSA.

5.2  Calculation of makespan

Makespan of tasks are evaluated using configuration settings available in Table 3 and dif-
ferent workloads are given to our DRLBTSA scheduler. Initially we have given workloads 
of d1, d2, d3, d4, d5 and d6 datasets and evaluated makespan using these datasets. We have 
evaluated our work against existing baseline algorithms RR, FCFS, Earliest deadline first. 
DRLBTSA ran for 100 iterations. Below Table 5 indicates calculation of makespan.

The above Table 5 shows makespan of different tasks with different fabricated datasets 
i.e. d1, d2, d3, d4 with different distributions and workloads from HPC2N [13], NASA 
[23]. From Table 4, it was clearly shows that our DRLBTSA algorithm minimized makes-
pan over RR, FCFS, EDF,RATS-HM,MOABCQ algorithms.

The above Fig.  4 and Table  4 clearly shows that our proposed DRLBTSA approach 
evaluated over RR, FCFS, EDF, RATS-HM, MOABCQ algorithms and from simulation 
results makespan is minimized over the mentioned algorithms.

Table 5  Evaluation of makespan

No. of Tasks RR FCFS EDF RATS-HM MOABCQ DRLBTSA

d1
100 785.67 623.8 689.8 694.7 687.35 523.9
500 951.9 1276.9 728.9 893.45 875.36 683.9
1000 1518.8 2120.9 1876.9 1784.34 1762.17 1342.6
d2
100 856.43 734.28 672.99 746.78 778.35 512.89
500 1058.9 1453.9 1023.78 1167.24 1087.21 612.99
1000 1745.8 1983.78 1345.77 1784.24 1563.26 1145.9
d3
100 789.34 698.53 587.87 636.72 843.21 487.98
500 1004.25 1247.54 1067.92 1147.89 1098.12 678.36
1000 1498.52 1867.78 1532.98 1632.99 1621.78 1002.78
d4
100 689.67 567.38 606.19 783.32 832.18 424.43
500 978.54 1124.79 934.89 1107.78 1058.32 557.45
1000 1278.88 1457.26 1557.12 1421.53 1326.28 912.34
d5
100 1456.78 1321.99 1145.34 1273.41 1287.21 825.67
500 1714.87 2098.78 1634.37 1876.23 1921.56 1297.32
1000 2478.99 3178.99 2279.56 2172.94 2098.32 1576.99
d6
100 567.98 612.87 574.35 875.32 913.45 432.56
500 745.78 1045.89 812.47 1056.12 998.78 687.99
1000 1134.45 1654.35 1152.34 1037.45 1178.35 923.56
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5.3  Calculation of energy consumption

Energy consumption is evaluated using configuration settings available in Table 3 and dif-
ferent workloads are given to our DRLBTSA scheduler. Initially we have given workloads 
of d1, d2, d3, d4, d5 and d6 datasets and evaluated Energy Consumption using these data-
sets. We have evaluated our work against existing baseline algorithms RR, FCFS, EDF, 
RATS-HM, MOABCQ. DRLBTSA ran for 100 iterations. Below Table 6 indicates calcula-
tion of Energy Consumption.

(a) uniformdistribution of Tasks (b) Normal distribution of Tasks

(c) Left Skewed distribution of Tasks (d) Right skeweddistribution of Tasks

(e) HPC2N Parallel worklogs (f) NASA Parallel worklogs

Fig. 4  Calculation of makespan using DRLBTSA
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The above Table 6 shows Energy consumption of different tasks with different fabri-
cated datasets i.e. d1, d2, d3, d4 with different distributions and workloads from HPC2N 
[13], NASA [23]. From Table 5, it was clearly shows that our DRLBTSA algorithm mini-
mized energy consumption over RR, FCFS, EDF,RATS-HM, MOABCQ algorithms.

The above Fig.  5 and Table  5 clearly shows that our proposed DRLBTSA approach 
evaluated over RR, FCFS, EDF, RATS-HM, MOABCQ algorithms and from simulation 
results Energy Consumption is minimized over the mentioned algorithms.

5.4  Calculation of SLA violation

SLA Violation is evaluated using configuration settings available in Table  3 and differ-
ent workloads are given to our DRLBTSA scheduler. Initially we have given workloads 
of d1, d2, d3, d4, d5 and d6 datasets and evaluated SLA Violation using these datasets. 
We have evaluated our work against existing baseline algorithms RR, FCFS, EDF, RATS-
HM, MOABCQ. DRLBTSA ran for 100 iterations. Below Table 7 indicates calculation of 
Energy Consumption.

The above Table  7 shows SLA Violation of different tasks with different fabricated 
datasets i.e. d1, d2, d3, d4 with different distributions and workloads from HPC2N [13], 

Table 6  Evaluation of Energy Consumption

No. of Tasks RR FCFS EDF RATS-HM MOABCQ DRLBTSA

d1
100 79.78 82.5 69.72 72.43 71.43 28.54
500 88.57 95.8 79.89 85.14 80.18 49.78
1000 121.8 113.9 131.25 123.12 114.76 98.23
d2
100 80.71 95.47 77.57 83.57 69.38 34.25
500 92.45 72.35 87.88 79.38 75.48 41.98
1000 112.21 124.76 113.29 108.21 102.52 90.88
d3
100 68.67 74.89 59.46 78.13 73.31 47.28
500 79.29 118.23 92.47 83.17 87.99 32.76
1000 103.25 134.98 121.09 109.21 105.21 100.78
d4
100 74.89 89.32 72.78 68.43 64.80 30.59
500 65.09 109.87 87.23 94.21 82.17 41.28
1000 118.99 130.22 102.28 99.87 96.48 82.19
d5
100 69.98 71.30 62.47 72.75 77.67 32.99
500 84.15 114.37 91.79 89.18 84.25 45.99
1000 103.36 129.46 105.91 112.75 107.21 88.74
d6
100 77.99 62.43 83.57 87.46 69.13 37.92
500 81.73 93.98 92.89 95.37 74.23 62.88
1000 112.99 102.9 124.89 119.67 108.33 74.89
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NASA [23]. From Table 6, it was clearly shows that our DRLBTSA algorithm minimized 
SLA violation over RR, FCFS, EDF,RATS-HM, MOABCQ algorithms.

The above Fig.  6 and Table  6 clearly shows that our proposed DRLBTSA approach 
evaluated over RR, FCFS, EDF,RATS-HM,MOABCQ algorithms and from simulation 
results SLA Violation is minimized over the mentioned algorithms.

(a) uniformdistribution of Tasks (b) Normal distribution of Tasks

(c) Left Skewed distribution of Tasks (d) Right skewed distribution of Tasks

(e) HPC2N Parallel worklogs (f) NASA Parallel worklogs

Fig. 5  Calculation of Energy Consumption using DRLBTSA
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5.5  Results discussion

In this section, we discussed about results of evaluated parameters and their improvement over 
existing algorithms i.e. RR, FCFS, EDF, RATS-HM, MOABCQ. We have clearly mentioned 
about improvement of our DRLBTSA over existing baseline algorithms for parameters makes-
pan, energy consumption, SLA Violation. The below Tables 8, 9 and 10 indicates improve-
ment of makespan, energy consumption, SLA Violation.

Table  8 clearly represents our proposed DRLBTSA improves makespan over compared 
existing algorithms with different varying workloads.

Table 9 clearly represents our proposed DRLBTSA improves Energy Consumption over 
compared existing algorithms with different varying workloads.

Table 10 clearly represents our proposed DRLBTSA improves SLA Violation over com-
pared existing algorithms with different varying workloads. In Tables 8, 9 and 10 improve-
ment of results means it is minimization of parameters mentioned in our work.

Table 7  Evaluation of SLA Violation

No. of Tasks RR FCFS EDF RATS-HM MOABCQ DRLBTSA

d1
100 23.87 19.24 21.23 26.17 21.21 16.56
500 18.92 16.74 17.8 18.34 16.11 12.29
1000 12.56 8.53 12.4 11.77 10.37 5.89
d2
100 25.23 20.45 18.92 19.22 17.11 15.78
500 17.76 19.89 14.45 13.11 12.41 9.21
1000 11.24 8.22 12.36 10.21 11.33 7.78
d3
100 28.67 22.86 24.45 17.36 16.19 14.32
500 19.78 17.34 18.72 19.67 18.11 10.12
1000 15.99 11.25 12.21 11.87 12.06 8.45
d4
100 23.56 19.21 18.21 17.22 14.22 12.21
500 14.45 13.12 11.14 12.31 12.05 9.34
1000 11.24 10.9 9.5 11.12 10.33 5.7
d5
100 32.34 34.23 26.24 19.13 18.87 17.23
500 24.45 26.89 19.25 17.28 16.43 8.78
1000 19.23 17.7 8.9 12.08 10.22 4.6
d6
100 30.78 36.26 28.78 24.32 21.12 15.34
500 23.99 21.9 19.67 20.99 19.34 10.23
1000 15.8 16.56 10.45 18.42 17.21 3.56
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6  Conclusion and future work

The scheduling of diverse workload over cloud paradigm is a challenge issue, due to 
dynamism and heterogeneity nature of cloud computing. It is very difficult to map tasks 
to precised VMs. Many existing authors proposed various scheduling mechanisms to 
map tasks to VMs but still there is a chance to do research in this area for mapping of 
tasks to appropriate VMs. The scheduling in cloud model is highly dynamic scenario 

(a) uniformdistribution of Tasks (b) Normal distribution of Tasks

(c) Left Skewed distribution of Tasks (d) Right skewed distribution of Tasks

(e) HPC2N Parallel worklogs (f) NASA Parallel worklogs

Fig. 6  Calculation of Energy Consumption using DRLBTSA
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as many of miscellaneousworkload request the resources in multi-tenant environment 
to accomplished the demand based upon the processing capacities. To effectively map 
every task onto suitable VM, we have proposed DRLBTSA approach that find the opti-
mal resources considering priority of taskswhile minimizing makespan, SLA Viola-
tion, Energy Consumption. We have used a machine-learning model i.e. DQN-model to 
solve task scheduling problem in our research. This DQN model is one of the variants of 
Deep Reinforcement learning. In this work, we have extensively done the simulations on 
cloudsim and input to algorithm is done through fabricated datasets different distribu-
tions, realtime parallel worklogs from HPC2N, NASA. We have evaluated our algorithm 
against existing baseline algorithms i.e. FCFS, RR, EDF, RATS-HM, MOABCQ. This 

Table 8  Improvement of 
makespan over existing 
algorithms

Improvement of makespan for DRLBTSA over existing algorithms

RR FCFS EDF RATS-HM MOABCQ

d1 21.6% 36.5% 22.6% 24.37% 23.29%
d2 37% 45.5% 25.3% 38.5% 33.74%
d3 34% 43.1% 31.9% 36.5% 39.12%
d4 35% 39.8% 38.8% 42.8% 41.11%
d5 34.5% 43% 26.8% 30.48% 30.28%
d6 16.5% 38.3% 19% 31.14% 33.85%

Table 9  Improvement of Energy 
Consumption over existing 
algorithms

Improvement of Energy consunption for DRLBTSA over existing 
algorithms

RR FCFS EDF RATS-HM MOABCQ

d1 39.1% 39.5% 37.13% 37.09% 33.72%
d2 41.4% 42.8% 40.04% 38.37% 32.45%
d3 28.01% 44.8% 33.76% 33.15% 32.15%
d4 40.5% 53.2% 41.2% 41.31% 36.72%
d5 34.87% 46.7% 35.5% 39.27% 37.68%
d6 35.57% 32.2% 41.7% 41.92% 30.19%

Table 10  Improvement of 
SLA Violation over existing 
algorithms

Improvement of SLA Violation for DRLBTSA over existing algo-
rithms

RR FCFS EDF RATS-HM MOABCQ

d1 37.2% 21.91% 32.4% 38.27% 27.01%
d2 39.5% 32.5% 28.3% 22.99% 19.76%
d3 48.9% 36% 40.6% 32.76% 29.06%
d4 44.66% 36.9% 29.88% 32.98% 25.57%
d5 59.74% 61.1% 43.73% 36.88% 32.76%
d6 58.7% 61% 50.5% 54.28% 49.4%
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simulation ran for 100 iterations. From results, it observed that our proposed approach 
i.e., DRLBTSA shown impact over baseline algorithms for above mentioned parame-
ters. In future, we will test the efficacy of DRLBTSA by deploying in open stack and we 
want to generate realtime workloads in open stack environment and test the efficacy of 
our scheduler.
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