
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:8359–8387
https://doi.org/10.1007/s11042-023-16008-2

1 3

DRLBTSA: Deep reinforcement learning based
task‑scheduling algorithm in cloud computing

Sudheer Mangalampalli1 · Ganesh Reddy Karri1 · Mohit Kumar2 ·
Osama Ibrahim Khalaf3 · Carlos Andres Tavera Romero4 ·
GhaidaMuttashar Abdul Sahib5

Received: 30 August 2022 / Revised: 26 April 2023 / Accepted: 11 June 2023 /
Published online: 17 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Task scheduling in cloud paradigm brought attention of all researchers as it is a challeng-
ing issue due to uncertainty, heterogeneity, and dynamic nature as they are varied in size,
processing capacity and number of tasks to be scheduled. Therefore, ineffective schedul-
ing technique may lead to increase of energy consumption SLA violations and makespan.
Many of authors proposed heuristic approaches to solve task scheduling problem in cloud
paradigm but it is fall behind to achieve goal effectively and need improvement especially
while scheduling multimedia tasks as they consists of more heterogeneity, processing
capacity. Therefore, to handle this dynamic nature of tasks in cloud paradigm, a schedul-
ing mechanism, which automatically takes the decision based on the upcoming tasks onto
cloud console and already running tasks in the underlying virtual resources. In this paper,
we have used a Deep Q-learning network model to addressed the mentioned scheduling
problem that search the optimal resource for the tasks. The entire extensive simulationsare
performed usingCloudsim toolkit. It was carried out in two phases. Initially random gener-
ated workload is used for simulation. After that, HPC2N and NASA workload are used to
measure performance of proposed algorithm. DRLBTSA is compared over baseline algo-
rithms such as FCFS, RR, Earliest Deadline first approaches. From simulation results it is
evident that our proposed scheduler DRLBTSA minimizes makespan over RR,FCFS, EDF,
RATS-HM, MOABCQ by 29.76%, 41.03%, 27.4%, 33.97%, 33.57% respectively. SLA vio-
lation percentage for DRLBTSA minimized overRR,FCFS, EDF, RATS-HM, MOABCQ
by48.12%, 41.57%, 37.57%, 36.36%, 30.59% respectively and energy consumption for
DRLBTSA over RR,FCFS, EDF, RATS-HM, MOABCQ by36.58%,43.2%, 38.22%,
38.52%, 33.82%existing approaches.

Keywords Cloud Computing · Task Scheduling · Machine Learning · Deep Q- Learning ·
Makespan · Energy consumption · SLA violation

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1485-8783
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16008-2&domain=pdf

8360 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

1 Introduction

Cloud Computing paradigm is a regime change in various industries, which changed
utilization of computing, storage and network infrastructures and laid a platform to
cope up with the evolvement of huge data in various industries especially to handle data
intensive computations, large chunks of data storage. Therefore, this paradigm evolved
as a utilization model through which all services i.e. computation, storage, network are
given to consumers as services on demand. This model initially evolved as virtual infra-
structure i.e., IaaS for various companies but later it was evolved as computing platform
where we can develop our applications and install various software’s by using different
services provided by cloud platform. Now a days cloud computing is useful in various
sectors and some of the domains are mentioned here but not limited i.e., healthcare,
education, entertainment, Government organizations, multimedia, transport, IoT, AI
and ML. In cloud paradigm, services related to IoT, AI, ML, image processing requires
huge processing capacity infrastructure as all these services consists of multimedia data
which need to be processed accurately and scheduling multimedia data is a challenge in
cloud paradigm. All the above-mentioned domains use various service models based on
SLA. SLA depends on user and organization to which services they are subscribed. It is
the responsibility of cloud provider to render services based on agreement and violation
of SLA should not be happened from the cloud provider. Many of users are accessing
virtual resources in cloud simultaneously and it is difficult to handle all these requests
and assign virtual resources according to SLA is a challenging task and cloud paradigm
provision resources automatically to users based on SLA without human intervention
and these provisioning of virtual resources to tasks are to be handled by a scheduler.

The effectiveness of cloud computing paradigm mainly depends on how scheduler
effectively manages tasks and schedules tasks onto suitable virtual resources. It also
effects various parameters i.e. energy consumption, SLA violation that leads to the
issues related to both cloud provider, user. If scheduler is not suitably mapping tasks to
virtual resources then it directly effects makespan, which takes high amount of execu-
tion time, which leads to decay in quality of service. If a task takes huge amount of
execution time then it may also incurs high amount of energy consumption. This can be
also one of the reason to effect quality of service. Finally, if a given task is not expected
to complete within stipulated time or if a task is provisioned for certain amount of time
to a virtual resource but if user is still accessing resource after the provisioned time then
it is a violation of SLA. It will happen in this paradigm due to improper scheduling of
tasks to virtual resources. Therefore, it will cause a problem to cloud provider in view
of SLA violations. Many of authors used heuristic techniques [4, 12, 17, 22] and nature
inspired approaches [1–3] for tackling task scheduling but still there is lacking of an
effective scheduler which schedules these dynamic tasks onto virtual resources appro-
priately while minimizing metrics such as energy consumption, makespan and SLA vio-
lations. Therefore, we have used a Machine learning technique i.e. Q-learning based on
reinforcement learning method to solve task scheduling problem focused on multimedia
tasks which fed to task manager by calculating priority of tasks, those tasks are fed to
Q-learning model which takes decision based on upcoming tasks and tasks running in
virtual machines. Tasks already running in VMs will be consolidated or migrated based
on upcoming tasks at cloud console and decision taken by the ML model employed
in scheduling algorithm while minimizing metrics makespan, SLA violation, energy
consumption.

8361Multimedia Tools and Applications (2024) 83:8359–8387

1 3

1.1 Motivation and contributions

The Cloud paradigm emerged as a utility computing approach where all computing, stor-
age, network infrastructure to be given as a utility to cloud user. When all these services
are given as utility with ease and seamless access, many of users will be attracted towards
this paradigm. Theend users around the world who are working in different sectors are
using cloud services based on their requirement. Providing cloud services to all users with-
out any interruption is a huge challenge in cloud computing because cloud resources are
heterogenous nature and upcoming requests are diverse as well as uncertain. Therefore,
for assigning virtual resources to user requests there is need of an efficient scheduling
approach that handles requests and map them onto virtual resources while maintaining the
quality of service and SLA violations. The above reason motivates us to do the research in
this area of cloud computing. We have also evaluated very important and primary parame-
ters, which influences the performance of cloud model i.e., makespan- which is time taking
to execute a task on a VM, SLA Violation- agreement made by cloud user and provider for
the services, Energy consumption- which is consumption of energy by VMS at computa-
tion and idle time. The objective of our research is to optimize all these parameters without
violating the conditions.

The contributions of the article are given below here.

1. A Scheduling algorithm is proposed by employing a ML technique which dynamically
takes decision according to upcoming and existing tasks.

2. Deep Q- Learning network model is used as a ML technique, which is based on Rein-
forcement learning, and it is integrated into scheduling module.

3. The Extensive simulations are carried on Cloudsim. Initially random workload have
been considered and then we have tested efficacy of our algorithm using HPC2N and
NASA parallel work logs for evaluation of parameters makespan, energy consumption
and SLA Violation.

4. The experimental results show that proposed approach DRLBTSA is superior to existing
round robin, FCFS, Earliest deadline first, RATS-HM, MOABCQalgorithms.

The remaining paper is organized as follows: Existing state of arts approaches are pre-
sented and compared in section 2, problem formulation and proposed methodology based
upon ML approach are discussed in section 3 & 4. The computing simulation results are
discussed in section 5 and conclusion is discussed in last section of the article.

2 Related works

The authors formulated a resource allocation and security mechanism [5], which used
a hybrid ML, approach i.e., RATS-HM technique. Totally, this work was done in three
stages. In the first stage, a Cat Swarm optimization technique was used to address makes-
pan, throughput. In the second stage, a DNN was used to address metrics such as band-
width, load on resources for efficient allocation of resources to tasks. Finally, in the third
stage a security authentication scheme was implemented to provide security to data stored
in cloud. The Cloudsim [7] is used as simulation toolkit to assess the FCFS, RR algorithms
performance, results it was identified that proposed RATS-HM mechanism shown a great

8362 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

influenceand surpass existing techniques for mentioned parameters. Authors in [26] pro-
posed task scheduling model for large-scale cloud computing systems to address parame-
ters i.e. task execution delay, resource utilization. Methodology chosen for this approach is
a ML approach based on reinforcement learning. Four techniques are used for developing
of scheduling mechanism i.e. RL, DQN, RNN-LSTM and DRL-LSTM. Matlab was used
for simulation purpose. A real time dataset was taken from Google cluster, it was given as
an input to algorithm, and among all techniques, DRL-LSTM performs better than other
algorithms when they are compared with RR, PSO and SJF for above mentioned metrics.

Authors in [14], devised a scheduling mechanism AIRL based on reinforcement learn-
ing technique to schedule time sensitive requests in cloud. Main objective of AIRL is to
minimize request response time, maximize success rate of user requests. Finally AIRL
was compared over different schedulers i.e. RR, earliest, random, DQN. From Simulation
results,the proposed AIRL shows a great effect over baseline algorithms. In [8], authors
proposed scheduling algorithm which addresses QoS, cost of VMs, success rate, response
time for scheduling model. This framework uses a DQN model, which works based on
reinforcement learning. Entire experimentation was done on a real time cloud and it was
evaluated against random, RR and earliest schedulers and from simulation results it was
identified that DQN overcomes mentioned algorithms for mentioned parameters. [32],
scheduling framework formulated minimizes execution time, waiting time of tasks. Authors
used a ML technique i.e. CDDQLS based on reinforcement learning. Entire simulation car-
ried on Cloudsim, posed deadline and resource constraints. After simulation CDDQLS
evaluated over Random, Time shared, Space shared algorithms and it shown a great impact
for mentioned algorithms. [10] proposed task scheduling model formulated to minimize
makespan. It uses a ML approach named as DQN which uses reinforcement learning strat-
egy for scheduling tasks. Experimentations conducted on MATLAB and compared against
HEFT, CPOP algorithms. From results, it revealed that makespan greatly minimized over
baseline mechanisms.

In [33], scheduling scheme designed to minimize makespan. A machine learning model
used as methodology. QL-HEFT i.e. a combination of Q-Learning and HEFT algorithms.
This process was done in two stages. In First phase, tasks will be sorted to get effective task
allocation by Q-Learning. In second phase, processor allocation was done based on HEFT.
Entire scheme implemented over Cloudsim. It compared with existing HEFT, CPOP algo-
rithms. Finally this scheme was shown impact over existing approaches with respect to
makespan. In [9], Dynamic task scheduling model which aims minimization of energy
consumption, utilization of CPU. It was modeled by using Q-learning technique which is
a ML approach. This mechanism is totally lies in two phases. In first phase, all incoming
tasks are assigned with a VM in cloud using M/M/S queuing mechanism. In Second phase,
by using decisions of Q-Learning tasks are allocated to corresponding VMs in cloud. This
approach was implemented on Cloudsim, evaluated over Random, Fair Schedulers. In [25],
trust aware scheduling mechanism was developed to minimize makespan, to improve QoS
and to address security challenges posed in cloud environment. This work was done in
three phases i.e. computation of trust levels of VMs, computation of priorities of tasks and
careful scheduling of tasks based on above mentioned conditions. It was implemented on a
Hadoop cluster and data generated onto Hadoop clusters are collected from Google cloud
platform real workload traces and evaluated over PSO,SJF, RR algorithms and finally from
results trusted aware scheduling performs better than existing approaches.

In [34], schedulingtechnique is formulated to optimize the significant QoS param-
eters and modeled by DQTS i.e. a combination of Q-learning and deep neural network.
It was implemented on Workflowsim. Initial workload was generated randomly and used

8363Multimedia Tools and Applications (2024) 83:8359–8387

1 3

synthetic datasets. It evaluated against existing models. From results, it shows impact
over existing mechanisms for load balancing. In [28], edge computing-based task sched-
uling algorithm was developed to maximize task degree satisfaction and success ratios.
It was modeled with DRL to solve task scheduling and resource allocation. It was imple-
mented by using python language and compared with FCFS and SJF state of art algo-
rithms. From results above-mentioned parameters were improved to a great extent. In
[19], DeepJS, a job scheduling mechanism developed to improve makespan to address
scheduling issues in cloud datacenters. It uses reinforcement learning integrated with
bin packing algorithm. It simulated by cloudsim and workload taken from real world
workload traces. It compared against existing models, which uses heuristics, finally
from results DeepJS converges fast more and minimizes makespan compared with
other approaches. In [36], authors formulated a QoS aware scheduler aims at response
time, utilization of VMs and user request distributions among VMs. It was modeled by
using Deep Reinforcement learning. It was implemented on a customized simulation
environment. Real world traces of NASA workload were used for simulation and evalu-
ated over RR, FF, random, earliest and best fit approaches. From results, it observed
that average response time minimized by DRL approach by 40% and success rate was
improved by 93% over compared mechanisms. Authors in [11] formulated an effec-
tive scheduling mechanism in fog environment, which aims to reduce delay of service
and computational costs. It was modeled by combining Deep Q-Learning and double
Q-Learning mechanisms. It was implemented on ifogsim and evaluated against FF, GS
and RS algorithms, evaluated metrics energy, cost, and these parameters shown a huge
impact against existing algorithms. In [35],proposed workflow scheduling technique to
address makespan, cost. Technique used in this technique was DQN model, which is
a multi-agent technique based on reinforcement learning which gives rewards as time
and cost. It was implemented on real time cloud environment i.e. AWS and extensive
simulations were carried out and it shown huge impact in above-mentioned parame-
ters. Authors in [27] developed an energy efficient task scheduler, which uses RANN
model. GA used to generate dataset, which is of 18 million instances. It implemented on
MATLAB, evaluated over existing approaches, this proposed task scheduler overcomes
existing models by makespan, energy consumption, required active racks, execution
overhead.In [5], an efficient resource allocation with light weight authentication scheme
developed by authors. A hybridized mechanism developed i.e. RATS-HM. It consists
of three steps. In first step, they used ICS-TS which optimizes makespan of scheduling
mechanism, In second step, they used GO-DDN which is a deep neural network mecha-
nism for efficient allocation of resources and in final step a light weight authentication
mechanism developed. Experimentations conducted extensively on Cloudsim. From
results, RATS-HM allocated resources effectively to users while addressing deadline
constraints. In [16], a workload balancing strategy proposed by authors by addressing
parameters i.e. cost, degree of imbalance, resource utilization. MOABCQ i.e. Q-learn-
ing added to modified ABC approach to model scheduling strategy. Extensive simula-
tions conducted on Cloudsim. MOABCQ approach evaluated using realtime workload
datasets and synthetic workloads. It compared with existing approaches and from results
MOABCQ shows significant impact on existing approaches. In [29], authors used deep
reinforcement learning approach used to propose energy aware task scheduling model
developed to minimize energy consumption, makespan, resource utilization. It com-
pared over SOTA approaches and deep reinforcement approach outperformed for above
specified parameters. [37] proposed a task scheduling approach addresses energy con-
cerns in datacenters for realtime workloads. DRL methodology used for energy aware

8364 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

scheduling. Extensive simulations revealed energy aware scheduling mechanism tackled
realtime jobs in datacenters by minimizing energy consumption while improving QoS
services provided by cloud provider.

From the above Table 1, all existing scheduling algorithms uses different variations of
reinforcement learning techniques and addressed metrics, which we have mentioned in
above table. Despite usage of above metrics task scheduling is still ineffective and therefore
we have used Deep Q-Learning network to schedule tasks effectively by considering priori-
ties of tasks and schedule them by the decision of ML model i.e. DQN addressed metrics
makespan, SLA Violation, Energy consumption.

In the below section, we have accurately defined problem, mentioned proposed system
architecture in detailed manner.

3 Problem definition and proposed system architecture

In this section, problem definition is given below.

Definition Assume we have K tasks, which are indicated as tK = {t1, t2, t3, …tK}, n VMs
which are indicated as VMn = {VM1, VM2, VM3, …, VMn}, pphysical hosts indicated
Hp = {H1, H2, H3, …, Hp} and r datacenters indicated DCq = {DC1, DC2, DC3, …. . DCq}.
Scheduling problem defined in such a way that these K tasks are scheduled on to n VMs
sitting in p physical hosts in turn resided in q datacenters. Incoming task priorities to be
considered before scheduling onto VMs priorities of tasks are considered and fed to DQN
model, which takes scheduling decision based on upcoming and current running tasks in
underlying resources, which minimizes makespan, SLA violation and Energy consump-
tion. The below table represents notations of proposed architecture (Table 2).

The optimal task scheduling architecture is represented in Fig. 1, which considers
diverse requests from different users simultaneously. After submission of tasks to cloud
interface application task manager collects those requests and calculates priorities of all
tasks based on length of task, processing capacities of tasks. Further, it will be fed to
DQN model based on task priorities, which is integrated with scheduling model. From
the recommendations of scheduler, which is integrated with DQN model, have to sched-
ule tasks appropriately onto the VMs. Initially, scheduler need to send these prioritized
tasks onto execution queue and send these tasks onto VMs. In this proposed architecture,
after every certain time interval T our scheduler needs to keep track of upcoming requests
and resource manager about virtual resources. For every time interval T scheduler, which
consists of DQN, model keeps track of upcoming requests, executing requests in VMs and
virtual resources in resource manager. Therefore, based on these conditions scheduler will
take a decision dynamically i.e. mapping a task to new VM or mapping a task to an exist-
ing VM or migrating existing tasks to another VMs if a VM is sufficient storage and pro-
cessing capacity to accommodate running tasks. We have used Deep Q-Learning model as
a methodology to schedule tasks intelligently based on the above said conditions for every
time intervalT. It will update its decisions of scheduling to scheduler, takes care scheduling
tasks appropriately onto VMs. Main aim of this scheduler to effectively task mapping to
VMs based on their priorities minimizing parameters named as makespan, SLA Violation
and Energy consumption. Initially evaluation of priorities of tasks need to check depend-
encies of task priorities of tasks. Therefore, evaluation of priorities of tasks entire load on
VMs need to be calculated. The overall load on VMs can be identified by following eq. 1.

8365Multimedia Tools and Applications (2024) 83:8359–8387

1 3

Ta
bl

e
1

 E
xi

sti
ng

 T
as

k
sc

he
du

lin
g

m
ec

ha
ni

sm
s u

si
ng

 M
L

Te
ch

ni
qu

es

A
ut

ho
rs

Te
ch

ni
qu

e
Si

m
ul

at
io

n
En

vi
ro

nm
en

t
Pa

ra
m

et
er

s

[5
]

R
A

TS
-H

M
C

lo
ud

si
m

M
ak

es
pa

n,
 th

ro
ug

hp
ut

[2
6]

R
L,

 D
Q

N
, R

N
N

-L
ST

M
 a

nd
 D

R
L-

LS
TM

.
M

at
la

b
Ta

sk
 E

xe
cu

tio
n

D
el

ay
, r

es
ou

rc
e

ut
ili

za
tio

n
[1

4]
A

IR
L

C
us

to
m

iz
ed

 si
m

ul
at

or
Re

sp
on

se
 ti

m
e,

 S
uc

ce
ss

 ra
te

[8
]

D
Q

N
Re

al
 ti

m
e

cl
ou

d
en

vi
ro

nm
en

t.
Q

oS
, V

M
 C

os
t,

Su
cc

es
s r

at
e

an
d

re
sp

on
se

 ti
m

e.
[3

2]
C

D
D

Q
LS

C
lo

ud
si

m
Ex

ec
ut

io
n

tim
e,

 w
ai

tin
g

tim
e

of
 ta

sk
s.

[1
0]

D
Q

N
M

at
la

b
M

ak
es

pa
n.

[3
3]

Q
L-

H
EF

T
C

lo
ud

si
m

M
ak

es
pa

n
[9

]
Q

-L
ea

rn
in

g
C

lo
ud

si
m

En
er

gy
 C

on
su

m
pt

io
n

an
d

C
PU

 U
til

iz
at

io
n.

[2
5]

Re
in

fo
rc

em
en

t L
ea

rn
in

g
H

ad
oo

p
cl

us
te

r
M

ak
es

pa
n,

 Q
oS

[3
4]

D
Q

TS
W

or
kfl

ow
si

m
M

ak
es

pa
n,

 Q
oS

[2
8]

D
R

L
Py

to
rc

h
Ta

sk
 d

eg
re

e
sa

tis
fa

ct
io

n
an

d
su

cc
es

s r
at

io
[1

9]
D

ee
pJ

S
C

lo
ud

si
m

M
ak

es
pa

n
[3

6]
D

ee
p

Re
in

fo
rc

em
en

t l
ea

rn
in

g
C

us
to

m
iz

ed
 si

m
ul

at
io

n
en

vi
ro

nm
en

t
Re

sp
on

se
 ti

m
e,

 V
M

 u
til

iz
at

io
n

tim
e

[1
1]

D
ee

p
Q

-L
ea

rn
in

g
an

d
D

ou
bl

e
Q

ue
ue

 L
ea

rn
in

g
Ifo

gs
im

D
el

ay
 o

f S
er

vi
ce

 a
nd

 C
om

pu
ta

tio
na

l c
os

ts
.

[3
5]

D
Q

N
AW

S
cl

ou
d

M
ak

es
pa

n
an

d
co

m
pu

ta
tio

na
l c

os
ts

[2
7]

R
A

N
N

M
A

TL
ab

M
ak

es
pa

n,
 e

ne
rg

y
co

ns
um

pt
io

n,
 e

xe
cu

tio
n

ov
er

he
ad

, r
eq

ui
re

d
ac

tiv
e

ra
ck

s.
[5

]
R

A
TS

-H
M

C
lo

ud
si

m
Re

sp
on

se
 ti

m
e,

 R
es

ou
rc

e
ut

ili
za

tio
n,

 e
ne

rg
y

co
ns

um
pt

io
n

[1
6]

M
O

A
B

C
Q

C
lo

ud
si

m
M

ak
es

pa
n,

 c
os

t,
th

ro
ug

hp
ut

, d
eg

re
e

of
 im

ba
la

nc
e

[2
9]

D
ee

p
Re

in
fo

rc
em

en
t a

pp
ro

ac
h

M
A

TL
A

B
M

ak
es

pa
n,

 th
ro

ug
hp

ut
, r

es
ou

rc
e

ut
ili

za
tio

n,
 e

ne
rg

y
co

ns
um

pt
io

n
[3

7]
ES

R
JS

C
lo

ud
si

m
Su

cc
es

s r
at

e,
 re

sp
on

se
 ti

m
e,

 e
ne

rg
y

co
ns

um
pt

io
n

8366 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

Where lon indicates current running n number of VMs.
After calculation of current load on VMs, as all VMs are running in p physical hosts.

Therefore, overall load on hosts are calculated using eq. 2.

(1)loVM =

∑

lon

(2)loHp
= loVM∕

∑

Hp

Table 2 Notations used in
Proposed System Architecture

Notation Meaning

tK Tasks
VMn Virtual Machines
Hp Physical Hosts
DCq Datacenters
loVM Current running load on virtual machines
loHp Current running load on Hosts
trp Threshold value identification
prVM

ca
Processing capacity of a VM

tl
k

Task length
tprio Task Priority
ettk Execution time of a task
fttk Finishing time of a task
dlt Deadline constraint
mk Makespan of a task
econ Energy consumption
γn Active state of VM
τn Idle state of VM
resutil Resource utilization
SLAV SLA Violation
Tover
i

Total over loaded time of physical hosts
Tover−active
i

Total active time of physical hots

T
pd

j
Performance degradation of VM

T
cpc

j
Requested CPU capacity of VM for specific time

St State space
At Action space
σ Rate of Learning
ret Reward function
£ Discount factor
St state of a task t at time T
SVM
Tt

State of a VM for a task t at time T
Mω Replay Memory
ε Time for Learning agent
f Frequency of learning

8367Multimedia Tools and Applications (2024) 83:8359–8387

1 3

Where loHp indicates load on p physical hosts, loVM indicates current load on all VMs,
Hp indicates hosts.

After calculation of load on VMs and physical hosts, identified a threshold value as
cloud computing paradigm is dynamic and to process huge number of requests by VMs in
a balanced manner and this load balancer need to work according to the requests coming
onto VMs. Therefore, to have a load balancer in our model, a threshold value was calcu-
lated. Threshold value should be dynamic as cloud workloads are not static and different
parameters such as upcoming requests, existing resource capacity etc. Therefore, threshold
value in this model can be calculated using following eq. 3.

Where trp is a dynamic threshold value identified in our work, loHp

i
 is load on p physical

hosts. This threshold value continuously changing as workload in cloud is dynamic and
based on threshold value, utilization of hosts are calculated whether they are underutilized,
balanced or over utilized. Utilization of hosts can be calculated using following eqs. 4, 5
and 6 respectively.

The below eq. 4 used to calculate over utilization of hosts.

The below eq. 5 used to calculate underutilization of hosts.

(3)trp =

∑p

i=1
lo

Hp

i

p

(4)VMn > tr p
−

∑

loVM

Fig. 1 Proposed optimal task scheduling Architecture

8368 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

The below eq. 6 used to calculate balanced utilization of hosts

From above equations, 4, 5 and 6 utilization of hosts through dynamic threshold value
is calculated. Now, to schedule appropriate workload over cloud resources (VMs), need to
calculate the processing power of resources as calculated in eq. 7. It is defined as multi-
plication of number of processing elements in VM, number of processing instructions per
second in VM. It calculated by using following equn. Mentioned below.

The above equation shows that it is processing capacity of particular VM in n number of
VMs considered in our architecture and after this entire processing capacity of VMs calcu-
lated as follows by using eq. 8.

Now after calculation of processing capacities of VMs, priorities of upcoming requests
calculated based upon dependencies or inter-dependency, size of tasks, required resources
by the request and many more parameters. Therefore, length of task is calculated using fol-
lowing eq. 9.

After calculation of length of task then priority of an incoming task onto scheduler can
be calculated by using below equation.

Based on priorities of tasks these are moved onto execution queue and map those tasks
by scheduler to appropriate VMs. For this scheduling model, we have also considered a
dead line constraint in a way that task should complete its execution before deadline i.e. dlt.

In this research work, our focus is to address parameters i.e. makespan, SLA Viola-
tion, Energy Consumption. Whenever makespan is evaluated, to calculate execution time
because makespan is evaluated based on how much execution time it is taking for a task to
run on a certain VM. Execution time of task for a certain task calculated by using follow-
ing equation.

For every task, which is scheduled into execution, queue gets a VM based on its avail-
ability in resources and it all depends on finishing time of a task. Therefore, finishing time
of task calculated using below equation.

(5)VMn < trp −
∑

loVM

(6)VMn = trp −
∑

loVM

(7)prVM
ca

= prno ∗ prmips

(8)ovr pr
vm

=

∑

prVM
ca

(9)tl
k
= tmips ∗ tpr

(10)t prio
=

tl
k

prVM
ca

(11)ettk =
ett

prVM
ca

(12)fttk =
∑

VMn + ettk

8369Multimedia Tools and Applications (2024) 83:8359–8387

1 3

In this model, we assumed that each task should complete its execution within speci-
fied deadline. Therefore, for every task we are scheduling in this model finish time should
always be less than or equal to its deadline. It is indicated as below.

Here after mentioning deadline constraint, calculation of execution time, finish time
then we have calculated makespan as in any scheduling model or mechanism makes-
pan needs to be minimized. It is defined as execution time of tasks running over virtual
resources. It is calculated as follows.

From above eq. 15 δij is set to 1 if task tk is assigned to VM i.e. VMn otherwise set to 0.
Thus, from eqs. 14 and 15 makespan is calculated.
Our next focus to minimize the energy consumption in cloud computing paradigm. It is

one of significant and impactful parameters in cloud paradigm. As for processing the huge
workloads, need the large scale infrastructure or cloud resources, which leads to increase
the energy consumption as well as large emissions of CO2 [21, 38]and damages environ-
ment. Therefore, we are focusing on minimizing energy consumption in cloud paradigm.
In Cloud model, energy consumption based on consumption for computing time, idle time.
In this model for a VM energy consumption is calculated as follows. In cloud computing
model any VM either should be in active state i.e. computing instructions or it should be in
idle state represented in below eq. 16.

Energy consumption of all n VMs are calculated by using following equation

Energy consumption in datacenter calculated as follows

Thus, from eqs. 16, 17, 18 and 19 Energy consumption in cloud computing calculated.
Our next focus is to minimize SLA Violation in cloud computing. Here, we need to

discuss importance of SLA Violation. Service Level Agreement is one of the important
perspective in terms of both user and cloud provider as if our system does not work accord-
ing to SLA then problems will be persisted for both cloud provider and user. Therefore, it
is important to design our scheduler, which should not violate SLA made between both
user and cloud provider. Thus, we have defined SLA violation in cloud computing by using
below equation.

(13)fttk ≤ dlt

(14)mk
= max

(

ftVMn

)

(15)min ft
(

tkVMn

)

=

∑k

i=1

∑n

j=1
�ijft

(

tkVMn

)

(16)VMn =

(

�n Active State of VM

�n Idle State of VM

)

(17)econ
VMn

= ftn ∗ �n +
(

mk
− ftn

)

∗ �n

(18)min
con
act

= (emx − emn) ∗ resutil + emn

(19)econ =
∑

econ
VMn

+min
con
act

8370 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

Where p indicates number of physical hosts, Tover
i

 indicates total time for which host
gets overloaded, Tover−active

i
 indicates amount of time a host lies in active state.Tpd

j
 indicates

estimation of performance degradation for a VM, Tcpc

j
 indicates requested CPU capacity of

a VM during its specified time.

4 Methodology

This section precisely discusses about methodology used to design our scheduling algo-
rithm. We have used a reinforcement learning approach [31], which takes adaptive deci-
sions. It is a machine learning approach, which considers inputs and gives decisions
based on the history of previous events. Over a period of time it learns from previous
decisions and makes adaptive decisions. For any Reinforcement learning approach there
are three basic parts. They are 1. Input and Output states- The data which we are given

(20)SLAV =

1

p

∑p

i=1

Tover
i

Tover−active
i

∗

1

n

∑n

j=1

T
pd

j

T
cpc

j

Proposed Methodology Pseudo Code

8371Multimedia Tools and Applications (2024) 83:8359–8387

1 3

as an input to the model is Input and the output state is to represent an outcome pro-
cessed by algorithm based on data given as Input. 2. Rewards- This state is a representa-
tion of outcome by algorithm with positive or negative reward. 3. Artificial Intelligence
framework- This can be used to take a decision based on input supplied to algorithm and
gives outcomes through which rewards will be generated that may be good or bad. If
those rewards generated at a time T are positive and framework captures those positive
rewards and continue towards the next state for much more optimal decisions. If rewards
are negative, it will learn from that experience and it will try to improve its decision
making for the next state.

The complete functionalities of proposed methodology presented in the form of
pseudo code.

Time complexity of the proposed Methodology:
The total time complexity of proposed methodology depends on time complexities

of individual components of proposed methodology. Let’s break down each component
and analyze its time complexity:

1. Collect requests and calculate task priorities: Time complexity of this component is
O(n), n indicates number of requests received from cloud interface application.

2. Feed task priorities to DQN model: The time complexity of this component depends
on the implementation of the DQN model. In general, the time complexity of a single
forward pass through a neural network with n layers is O(n), since each layer involves
a matrix multiplication operation.

3. Schedule tasks onto VMs: The time complexity of this component depends on the
implementation of the scheduler and the DQN model. The time complexity of schedul-
ing tasks using a DQN model is typically higher than traditional scheduling algorithms
like round robin, as it involves training a neural network on a large dataset. The time
complexity of adding tasks to the execution queue and scheduling them onto VMs
depends on the implementation of the execution queue and VM manager.

4. Keep track of upcoming requests and resources every T time interval: The time com-
plexity of this component is O(1), since it involves fetching the upcoming requests and
virtual resources from the resource manager.

5. Make dynamic decisions: The time complexity of this component depends on the num-
ber of decisions to be made, and the time complexity of each decision. In general, time
complexity of component is O(m), where m is number of decisions to be made.

Overall, time complexity of algorithm can be approximated as O(n + f + s + m),
where n is number of requests received, f is time complexity of feeding the task priori-
ties to the DQN model, s is the time complexity of scheduling tasks onto VMs, and m is
the time complexity of making dynamic decisions.

Reinforcement learning approach uses agents to take decisions based on inputs given
to system. Generally, any machine-learning model consists of different states. Therefore,
agents will take specific actions based on input, which generates rewards either good or
bad. These rewards can be useful for the decision to be taken by the algorithm in the
next state. Reinforcement learning approach works based on these rewards and agents
will try to take actions in next state based on reward generate in this current state. This
approach learns from its previous states whether it is a good or bad reward and will take
its decisions over a period of time. This adaptive nature i.e. self-learning based on its
previous states is one of the advantage of reinforcement learning approach.

8372 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

The above Fig. 2 gives representation of task scheduling using deep reinforcement
learning in which, agent will learn through history of incoming user request sequences
i.e. agent will be trained through previous user requests or tasks which are coming onto
cloud console. Initially, a Prioritized user request is to be given as input to agent and it
should make a scheduling decision based on situation in cloud environment. Decision
would be given as an output of executed task or user request, which is (e.g. makespan,
energy consumption, SLA violation in our study) a reward for an agent. If the value of
reward is bad then agent improve its decision by updating its parameters of model. If the
value of the reward is good then it will be stored in the current state and it will be used
for the next time when decision is to be made by the agent in the next state.

In reinforcement learning, we have used Q- learning for our scheduling model [30].
This Q- learning is one of the most powerful technique as it doesn’t need any knowledge
of current system. It will make decisions based on past actions stored as Q-function
as a pair with two states indicated a q(S, A). It will updates its states by using below
equation.

Where σ is rate of learning and value of it is in between (0,1). ret is reward for taking
action i.e. At for state St. £ is discount factor and its value lies in between (0,1).

From above equation for every iteration, q-learning model needs to check for rewards
and updates its decisions according to model by using above equation. In classical
q-learning, all q values are stored in q-table but to apply these q-learning model to a
problem such as scheduling in cloud computing it is difficult to adaptive and optimal
decisions for classical model as number of states and actions are comparably high for
task scheduling technique. Therefore, we want to use a deep neural network in combi-
nation with reinforcement learning which can be helpful for our scheduling problems
in cloud computing. Therefore, we have used a Deep Reinforcement Learning model
[39] to tackle the problem of scheduling in cloud computing. Moreover, that Deep

(21)q
(

St,At
)

← q
(

St,At
)

+ � ∗

[

ret + £ ∗ maximumaq
(

St+1,A
)

− q
(

St,At
)]

Fig. 2 Deep reinforcement learning technique for scheduling the tasks

8373Multimedia Tools and Applications (2024) 83:8359–8387

1 3

Reinforcement Learning approach already proved in various types of scheduling tech-
niques in cloud computing as mentioned in [15, 26]. Therefore, combining deep neural
network with reinforcement learning used for task scheduling in our model. The main
reason to usethis scheduling model is to make it as a smart scheduler no prior knowl-
edge will be given to agent and algorithm need to take a decision when real time data
is given as input. It consists of different states as in q-learning, which consists of action
space and state space.

4.1 Action space

In action space, as we have already mentioned n VMs which we have considered in this
work. All incoming requests initially fed to task manager and after each task priority will
be calculated and given to scheduler and it consists of DQN model which takes decision
and sends tasks to a execution queue with respect to priorities of tasks. Then based on deci-
sion of Scheduler they need to execute on VMs according to the entry of tasks in queue
according to their priorities. Thus, action space in our model is defined as follows.

4.2 State space

In this subsection, we are defining a state space where it consists of state of a task at spe-
cific time and state of a VM at that time when task arrives.

Let us assume that a task t arrives at time T and it is to be represented as Tt. Then, state
of this task can be represented as follows

Where St is a state of a task t at time T and SVM
Tt

 is a state of a VM when a task t comes
on to a VM at time T.

Where tl
k
 is length ofk tasks, t prio is priority of ktasks, ettk is execution time of ktasks, fttk

is finish time of ktasks, mk makespan of ktasks, econ
VMn

 energy consumption of n VMs, SLAV
is SLA Violation.

4.3 Reward function

Aim of this study is to find optimal mapping between cloud resources, mixed tasks with
help of our DRLBTSA scheduler to optimize significant QoS parameters energy consump-
tion, time, SLA violation. Thus, our reward function should be in terms of minimization of
metrics mentioned in our work. It can be defined as follows.

(22)A =

[

VM1,VM2,VM3,… ,VMn

]

(23)STt = St ∪ SVM
Tt

(24)STt =
[

tl
k
, t prio, ettk , ft

tk ,mk, econ
VMn

, SLAV
]

(25)re = min

(

mk, econ
VMn

, SLAV
)

8374 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

4.4 Training the agent

When incoming tasks arrived at scheduler DRLBTSA agent need to make decision in
current state by considering priorities of tasks and resources available in Physical hosts
and according to that it should map tasks to VMs. For this to happen, our DQN model
need to be trained in such a way that initially it should map a task to a VM by consider-
ing above said condition with a probability ρ and its value decrease over to zero with
respect to time. Therefore, initially DQN agent explores randomly and give its decision
and later it gives its decisions by previous q-values stored in q-table. To make it happen,
experience replay, fixed q-target values are to be used in algorithm. Whenever agent
takes decisions over a period of time it will gain experience and it is to be represented
as experience replay here in our work. Whenever a decision is taken by agent it will
gives you a reward and it is represented as ret and further state is to be represented as
St + 1. These experiences will be stored as values in a memory to be represented as replay
memory indicated as ω. The values to be stored in this replay memory are (At, St, ret,
St + 1) and capacity of a replay memory to be represented as Mω, and replay memory can
be taken as batches and indicated as Gω. Whenever iterations are to be run and values
in replay memory are to be updated and here iterations are to be called as batches. In
our work, entire training was done in offline. After completion of training to our agent
then it will become intelligent enough to take decisions in a smart way. In our work, 50
neurons were used for hidden layers in DQN model. We have kept scheduling time for
taking decision for an agent is 10 ms, frequency of learning is f = 1, time for learning of
agent taken as ε. The proposed DRLBTSA algorithm is shown below.

Proposed DRLBTSA- Proposed Deep reinforcement learning based Task Scheduling Algorithm in Cloud
Computing.

8375Multimedia Tools and Applications (2024) 83:8359–8387

1 3

The above algorithm flow is discussed here in a detailed manner. Initially all parameters
such as batch size, replay memory, learning frequency, learning rate and discount factor are
initialized. In the next step, q-function consists of state space and action space are initial-
ized to zero. In the next step, for each event i.e. for every incoming task comes to cloud
platform priority of tasks are calculated. For every event, scheduler need to choose action
space i.e. VMs for corresponding state space i.e. tasks based on priority of tasks, avail-
ability of resources in physical hosts. Based on this condition, every time scheduler need
to make a decision. In the next step, tasks according to their priorities to be scheduled to
corresponding VMs with a random probability if it is a first task which is to be scheduled
for first time otherwise DRLBTSA need to take a decision from existing q-table available
for agent. After this step when action space to be chosen for every state space a reward will
be generated. Here in our work, it is minimization of parameters i.e. makespan, energy
consumption, SLA Violation. Reward value can be calculated by using eq. 25. If it is posi-
tive reward, reward score will be improved and if it is negative then it have to improve
i.e. scheduler need to improve based on its experience. If positive rewards are encountered
i.e. makespan, energy consumption, SLA violation they will be updated as minimized val-
ues of the current state. Rewards either positive or negative they will be stored in replay
memory. After evaluating rewards it should update its state space to the next state by using
eq. 21. This process continues until last state space i.e. task is encountered (Fig. 3).

5 Simulation set up and experimental results

This section discusses simulation, results of our work. Entire simulation is conducted on
cloudsim [7] simulator. We have identified real time parallel worklogs from HPC2N [13]
and NASA [23] which are of high performance computing clusters, those workloads are
given input to our algorithm. After that we have fabricated different datasets on our own
with different distributions and those were explained here in a detailed manner.

5.1 Configuration settings for simulation

Our simulation was carried out on cloudsim [7]. We have done extensive simulations
using cloudsim [7]. In our work, initially we fabricated datasets in such a way that tasks
have to be with different distributions and these workload distributions are fed to sched-
uler. Then to test our work efficiency, we used HPC2N [13], NASA [23] worklogs from
high performance computing clusters. The fabricated datasets distributions are consid-
ered as follows i.e. Uniform, Normal, left and right skewed distributions. We represent all
these datasets with uniform, normal, left and right skewed distributions as d1, d2, d3, d4.
Worklogs of HPC2N and NASA are represented as d5 and d6. Uniform distribution tasks
means all types of tasks distributed in an equal manner. Normal distribution represents
more number of medium size tasks, less number of small and large tasks. Left skewed
distribution indicates more number of small tasks, less number of large tasks. Finally Right
skewed distribution indicates less number of small tasks, more number of large tasks. We
have intentionally fabricated these distributions as we need to verify how our algorithm
behaves with different types of tasks. Finally we have given HPC2N and NASA parallel
worklogs as d5 and d6 datasets as input to algorithm to check its efficiency through real-
time workload. After giving workload as input to algorithm, we have evaluated our DRL-
BTSA against existing baseline algorithms RR, FCFS, Earliest deadline first, RATS-HM,

8376 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

Fig. 3 Flowchart of proposed approach

8377Multimedia Tools and Applications (2024) 83:8359–8387

1 3

Table 3 Configuration Settings
in Simulation

Name of the entity Quantity

No. of tasks 1000
Task length 700,000
Ram of Host 32 GB
Storage of Host 4 TB
Bandwidth 1000 MBPS
No. of VMs 35
Ram of VMs 4 GB
Bandwidth of VM 200 MBPS
VMM Xen
Operating System MAC
No. of Datacenters 10

Table 4 Parameter Settings for various algorithms

Name of the Algorithm Parameter Values

MOABCQ [16] Size of Population 1000
Number of VMs 100
Maximum number of iterations 50
Employed bees 200
Onlooker bees 800

RATS-HM [5] Cloudlets 1600
Number of tasks 300
Memory 500 MB
Physical host capacity 500GB
Number of VMs 4

RR [6] Hypervisor Xen
Memory of VM 256 MB
MIPS 1000
Bandwidth 1000Mbps
Number of Processing elements 1
VM image size 10,000 MB
Length of Cloudlets 1000
Cloudlet allocation policy Timeshared

FCFS [18] Hypervisor Xen
Memory of VM 512 MB
MIPS 256
Bandwidth 1000Mbps
Number of Pes 1
Length of Cloudlets 1000
Cloudlet allocation policy Spaceshared

EDF [24] No. of Cloudlets 100
No. of VMs 150
Memory of VM 2048 MB
Bandwidth 1050Mbps
Number of Pes 1

8378 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

MOABCQ algorithms. We have taken standard configuration settings for our simulation
from [20]. The following Table 3 clearly mention configuration settings required for simu-
lation, Table 4 indicates various parameter settings of compared approaches with proposed
DRLBTSA.

5.2 Calculation of makespan

Makespan of tasks are evaluated using configuration settings available in Table 3 and dif-
ferent workloads are given to our DRLBTSA scheduler. Initially we have given workloads
of d1, d2, d3, d4, d5 and d6 datasets and evaluated makespan using these datasets. We have
evaluated our work against existing baseline algorithms RR, FCFS, Earliest deadline first.
DRLBTSA ran for 100 iterations. Below Table 5 indicates calculation of makespan.

The above Table 5 shows makespan of different tasks with different fabricated datasets
i.e. d1, d2, d3, d4 with different distributions and workloads from HPC2N [13], NASA
[23]. From Table 4, it was clearly shows that our DRLBTSA algorithm minimized makes-
pan over RR, FCFS, EDF,RATS-HM,MOABCQ algorithms.

The above Fig. 4 and Table 4 clearly shows that our proposed DRLBTSA approach
evaluated over RR, FCFS, EDF, RATS-HM, MOABCQ algorithms and from simulation
results makespan is minimized over the mentioned algorithms.

Table 5 Evaluation of makespan

No. of Tasks RR FCFS EDF RATS-HM MOABCQ DRLBTSA

d1
100 785.67 623.8 689.8 694.7 687.35 523.9
500 951.9 1276.9 728.9 893.45 875.36 683.9
1000 1518.8 2120.9 1876.9 1784.34 1762.17 1342.6
d2
100 856.43 734.28 672.99 746.78 778.35 512.89
500 1058.9 1453.9 1023.78 1167.24 1087.21 612.99
1000 1745.8 1983.78 1345.77 1784.24 1563.26 1145.9
d3
100 789.34 698.53 587.87 636.72 843.21 487.98
500 1004.25 1247.54 1067.92 1147.89 1098.12 678.36
1000 1498.52 1867.78 1532.98 1632.99 1621.78 1002.78
d4
100 689.67 567.38 606.19 783.32 832.18 424.43
500 978.54 1124.79 934.89 1107.78 1058.32 557.45
1000 1278.88 1457.26 1557.12 1421.53 1326.28 912.34
d5
100 1456.78 1321.99 1145.34 1273.41 1287.21 825.67
500 1714.87 2098.78 1634.37 1876.23 1921.56 1297.32
1000 2478.99 3178.99 2279.56 2172.94 2098.32 1576.99
d6
100 567.98 612.87 574.35 875.32 913.45 432.56
500 745.78 1045.89 812.47 1056.12 998.78 687.99
1000 1134.45 1654.35 1152.34 1037.45 1178.35 923.56

8379Multimedia Tools and Applications (2024) 83:8359–8387

1 3

5.3 Calculation of energy consumption

Energy consumption is evaluated using configuration settings available in Table 3 and dif-
ferent workloads are given to our DRLBTSA scheduler. Initially we have given workloads
of d1, d2, d3, d4, d5 and d6 datasets and evaluated Energy Consumption using these data-
sets. We have evaluated our work against existing baseline algorithms RR, FCFS, EDF,
RATS-HM, MOABCQ. DRLBTSA ran for 100 iterations. Below Table 6 indicates calcula-
tion of Energy Consumption.

(a) uniformdistribution of Tasks (b) Normal distribution of Tasks

(c) Left Skewed distribution of Tasks (d) Right skeweddistribution of Tasks

(e) HPC2N Parallel worklogs (f) NASA Parallel worklogs

Fig. 4 Calculation of makespan using DRLBTSA

8380 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

The above Table 6 shows Energy consumption of different tasks with different fabri-
cated datasets i.e. d1, d2, d3, d4 with different distributions and workloads from HPC2N
[13], NASA [23]. From Table 5, it was clearly shows that our DRLBTSA algorithm mini-
mized energy consumption over RR, FCFS, EDF,RATS-HM, MOABCQ algorithms.

The above Fig. 5 and Table 5 clearly shows that our proposed DRLBTSA approach
evaluated over RR, FCFS, EDF, RATS-HM, MOABCQ algorithms and from simulation
results Energy Consumption is minimized over the mentioned algorithms.

5.4 Calculation of SLA violation

SLA Violation is evaluated using configuration settings available in Table 3 and differ-
ent workloads are given to our DRLBTSA scheduler. Initially we have given workloads
of d1, d2, d3, d4, d5 and d6 datasets and evaluated SLA Violation using these datasets.
We have evaluated our work against existing baseline algorithms RR, FCFS, EDF, RATS-
HM, MOABCQ. DRLBTSA ran for 100 iterations. Below Table 7 indicates calculation of
Energy Consumption.

The above Table 7 shows SLA Violation of different tasks with different fabricated
datasets i.e. d1, d2, d3, d4 with different distributions and workloads from HPC2N [13],

Table 6 Evaluation of Energy Consumption

No. of Tasks RR FCFS EDF RATS-HM MOABCQ DRLBTSA

d1
100 79.78 82.5 69.72 72.43 71.43 28.54
500 88.57 95.8 79.89 85.14 80.18 49.78
1000 121.8 113.9 131.25 123.12 114.76 98.23
d2
100 80.71 95.47 77.57 83.57 69.38 34.25
500 92.45 72.35 87.88 79.38 75.48 41.98
1000 112.21 124.76 113.29 108.21 102.52 90.88
d3
100 68.67 74.89 59.46 78.13 73.31 47.28
500 79.29 118.23 92.47 83.17 87.99 32.76
1000 103.25 134.98 121.09 109.21 105.21 100.78
d4
100 74.89 89.32 72.78 68.43 64.80 30.59
500 65.09 109.87 87.23 94.21 82.17 41.28
1000 118.99 130.22 102.28 99.87 96.48 82.19
d5
100 69.98 71.30 62.47 72.75 77.67 32.99
500 84.15 114.37 91.79 89.18 84.25 45.99
1000 103.36 129.46 105.91 112.75 107.21 88.74
d6
100 77.99 62.43 83.57 87.46 69.13 37.92
500 81.73 93.98 92.89 95.37 74.23 62.88
1000 112.99 102.9 124.89 119.67 108.33 74.89

8381Multimedia Tools and Applications (2024) 83:8359–8387

1 3

NASA [23]. From Table 6, it was clearly shows that our DRLBTSA algorithm minimized
SLA violation over RR, FCFS, EDF,RATS-HM, MOABCQ algorithms.

The above Fig. 6 and Table 6 clearly shows that our proposed DRLBTSA approach
evaluated over RR, FCFS, EDF,RATS-HM,MOABCQ algorithms and from simulation
results SLA Violation is minimized over the mentioned algorithms.

(a) uniformdistribution of Tasks (b) Normal distribution of Tasks

(c) Left Skewed distribution of Tasks (d) Right skewed distribution of Tasks

(e) HPC2N Parallel worklogs (f) NASA Parallel worklogs

Fig. 5 Calculation of Energy Consumption using DRLBTSA

8382 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

5.5 Results discussion

In this section, we discussed about results of evaluated parameters and their improvement over
existing algorithms i.e. RR, FCFS, EDF, RATS-HM, MOABCQ. We have clearly mentioned
about improvement of our DRLBTSA over existing baseline algorithms for parameters makes-
pan, energy consumption, SLA Violation. The below Tables 8, 9 and 10 indicates improve-
ment of makespan, energy consumption, SLA Violation.

Table 8 clearly represents our proposed DRLBTSA improves makespan over compared
existing algorithms with different varying workloads.

Table 9 clearly represents our proposed DRLBTSA improves Energy Consumption over
compared existing algorithms with different varying workloads.

Table 10 clearly represents our proposed DRLBTSA improves SLA Violation over com-
pared existing algorithms with different varying workloads. In Tables 8, 9 and 10 improve-
ment of results means it is minimization of parameters mentioned in our work.

Table 7 Evaluation of SLA Violation

No. of Tasks RR FCFS EDF RATS-HM MOABCQ DRLBTSA

d1
100 23.87 19.24 21.23 26.17 21.21 16.56
500 18.92 16.74 17.8 18.34 16.11 12.29
1000 12.56 8.53 12.4 11.77 10.37 5.89
d2
100 25.23 20.45 18.92 19.22 17.11 15.78
500 17.76 19.89 14.45 13.11 12.41 9.21
1000 11.24 8.22 12.36 10.21 11.33 7.78
d3
100 28.67 22.86 24.45 17.36 16.19 14.32
500 19.78 17.34 18.72 19.67 18.11 10.12
1000 15.99 11.25 12.21 11.87 12.06 8.45
d4
100 23.56 19.21 18.21 17.22 14.22 12.21
500 14.45 13.12 11.14 12.31 12.05 9.34
1000 11.24 10.9 9.5 11.12 10.33 5.7
d5
100 32.34 34.23 26.24 19.13 18.87 17.23
500 24.45 26.89 19.25 17.28 16.43 8.78
1000 19.23 17.7 8.9 12.08 10.22 4.6
d6
100 30.78 36.26 28.78 24.32 21.12 15.34
500 23.99 21.9 19.67 20.99 19.34 10.23
1000 15.8 16.56 10.45 18.42 17.21 3.56

8383Multimedia Tools and Applications (2024) 83:8359–8387

1 3

6 Conclusion and future work

The scheduling of diverse workload over cloud paradigm is a challenge issue, due to
dynamism and heterogeneity nature of cloud computing. It is very difficult to map tasks
to precised VMs. Many existing authors proposed various scheduling mechanisms to
map tasks to VMs but still there is a chance to do research in this area for mapping of
tasks to appropriate VMs. The scheduling in cloud model is highly dynamic scenario

(a) uniformdistribution of Tasks (b) Normal distribution of Tasks

(c) Left Skewed distribution of Tasks (d) Right skewed distribution of Tasks

(e) HPC2N Parallel worklogs (f) NASA Parallel worklogs

Fig. 6 Calculation of Energy Consumption using DRLBTSA

8384 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

as many of miscellaneousworkload request the resources in multi-tenant environment
to accomplished the demand based upon the processing capacities. To effectively map
every task onto suitable VM, we have proposed DRLBTSA approach that find the opti-
mal resources considering priority of taskswhile minimizing makespan, SLA Viola-
tion, Energy Consumption. We have used a machine-learning model i.e. DQN-model to
solve task scheduling problem in our research. This DQN model is one of the variants of
Deep Reinforcement learning. In this work, we have extensively done the simulations on
cloudsim and input to algorithm is done through fabricated datasets different distribu-
tions, realtime parallel worklogs from HPC2N, NASA. We have evaluated our algorithm
against existing baseline algorithms i.e. FCFS, RR, EDF, RATS-HM, MOABCQ. This

Table 8 Improvement of
makespan over existing
algorithms

Improvement of makespan for DRLBTSA over existing algorithms

RR FCFS EDF RATS-HM MOABCQ

d1 21.6% 36.5% 22.6% 24.37% 23.29%
d2 37% 45.5% 25.3% 38.5% 33.74%
d3 34% 43.1% 31.9% 36.5% 39.12%
d4 35% 39.8% 38.8% 42.8% 41.11%
d5 34.5% 43% 26.8% 30.48% 30.28%
d6 16.5% 38.3% 19% 31.14% 33.85%

Table 9 Improvement of Energy
Consumption over existing
algorithms

Improvement of Energy consunption for DRLBTSA over existing
algorithms

RR FCFS EDF RATS-HM MOABCQ

d1 39.1% 39.5% 37.13% 37.09% 33.72%
d2 41.4% 42.8% 40.04% 38.37% 32.45%
d3 28.01% 44.8% 33.76% 33.15% 32.15%
d4 40.5% 53.2% 41.2% 41.31% 36.72%
d5 34.87% 46.7% 35.5% 39.27% 37.68%
d6 35.57% 32.2% 41.7% 41.92% 30.19%

Table 10 Improvement of
SLA Violation over existing
algorithms

Improvement of SLA Violation for DRLBTSA over existing algo-
rithms

RR FCFS EDF RATS-HM MOABCQ

d1 37.2% 21.91% 32.4% 38.27% 27.01%
d2 39.5% 32.5% 28.3% 22.99% 19.76%
d3 48.9% 36% 40.6% 32.76% 29.06%
d4 44.66% 36.9% 29.88% 32.98% 25.57%
d5 59.74% 61.1% 43.73% 36.88% 32.76%
d6 58.7% 61% 50.5% 54.28% 49.4%

8385Multimedia Tools and Applications (2024) 83:8359–8387

1 3

simulation ran for 100 iterations. From results, it observed that our proposed approach
i.e., DRLBTSA shown impact over baseline algorithms for above mentioned parame-
ters. In future, we will test the efficacy of DRLBTSA by deploying in open stack and we
want to generate realtime workloads in open stack environment and test the efficacy of
our scheduler.

Data availability Authors not interested to disclose the availability of data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

 1. Abualigah L, Alkhrabsheh M (2022) Amended hybrid multi-verse optimizer with genetic algorithm for
solving task scheduling problem in cloud computing. J Supercomput 78(1):740–765

 2. Adhikari M, Srirama SN, Amgoth T (2022) A comprehensive survey on nature-inspired algo-
rithms and their applications in edge computing: Challenges and future directions. Softw Pract Exp
52(4):1004–1034

 3. Agrawal K, Khetarpal P (2022) Computational intelligence in edge and cloud computing. J Inf Optim
Sci 43:607–613

 4. Amer DA et al (2022) Elite learning Harris hawks optimizer for multi-objective task scheduling in
cloud computing. J Supercomput 78(2):2793–2818

 5. Bal PK et al (2022) A Joint Resource Allocation, Security with Efficient Task Scheduling in Cloud
Computing Using Hybrid Machine Learning Techniques. Sensors 22(3):1242

 6. Biswas D et al (n.d.) Optimized Round Robin Scheduling Algorithm Using Dynamic Time Quantum
Approach in Cloud Computing Environment

 7. Calheiros RN et al (2011) CloudSim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms. Softw Pract Exp 41(1):23–50

 8. Cheng F et al (2022) Cost-aware job scheduling for cloud instances using deep reinforcement learning.
Clust Comput 25(1):619–631

 9. Ding D et al (2020) Q-learning based dynamic task scheduling for energy-efficient cloud computing.
Futur Gener Comput Syst 108:361–371

 10. Dong T et al (2020) Task scheduling based on deep reinforcement learning in a cloud manufacturing
environment. Concurr Comput Pract Exp 32(11):e5654

 11. Gazori P, Rahbari D, Nickray M (2020) Saving time and cost on the scheduling of fog-based IoT appli-
cations using deep reinforcement learning approach. Futur Gener Comput Syst 110:1098–1115

 12. Ghafari R, HassaniKabutarkhani F, Mansouri N (2022) Task scheduling algorithms for energy optimi-
zation in cloud environment: a comprehensive review. Clust Comput 25:1035–1093

 13. HPC2N: The HPC2N Seth log; 2016. http:// www. cs. huji. ac. il/ labs/ paral lel/ workl oad/l_ hpc2n/.0
 14. Huang Y et al (2021) Deep adversarial imitation reinforcement learning for QoS-aware cloud job

scheduling. IEEE Syst J 16:4232–4242
 15. Karthiban K, Raj JS (2020) An efficient green computing fair resource allocation in cloud computing

using modified deep reinforcement learning algorithm. Soft Comput 24(19):14933–14942
 16. Kruekaew B, WarangkhanaKimpan. (2022) Multi-objective task scheduling optimization for load bal-

ancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforce-
ment learning. IEEE Access 10:17803–17818

 17. Kumar R, Bhagwan J (2022) A comparative study of meta-heuristic-based task scheduling in cloud
computing. In: Artificial Intelligence and Sustainable Computing. Springer, Singapore, pp 129–141

 18. Lahande P, Kaveri P (2022) Implementing FCFS and SJF for finding the need of Reinforcement Learn-
ing in Cloud Environment. ITM Web of Conferences. Vol. 50. EDP Sciences

 19. Li F, Bo H (2019) Deepjs: Job scheduling based on deep reinforcement learning in cloud data center.
Proceedings of the 2019 4th international conference on big data and computing

 20. Madni SHH et al (2019) Hybrid gradient descent cuckoo search (HGDCS) algorithm for resource
scheduling in IaaS cloud computing environment. Clust Comput 22(1):301–334

http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/.0

8386 Multimedia Tools and Applications (2024) 83:8359–8387

1 3

 21. Mohanapriya N et al (2018) Energy efficient workflow scheduling with virtual machine consolidation
for green cloud computing. J Intell Fuzzy Syst 34(3):1561–1572

 22. Nabi S et al (2022) AdPSO: adaptive PSO-based task scheduling approach for cloud computing. Sen-
sors 22(3):920

 23. NASA (n.d.): https:// www. cse. huji. ac. il/ labs/ paral lel/ workl oad/l_ nasa_ ipsc/
 24. Nayak SC et al (2022) An enhanced deadline constraint based task scheduling mechanism for cloud

environment. J King Saud Univ Comput Inf Sci 34(2):282–294
 25. Rjoub G, Bentahar J, Wahab OA (2020) BigTrustScheduling: Trust-aware big data task scheduling

approach in cloud computing environments. Futur Gener Comput Syst 110:1079–1097
 26. Rjoub G et al (2021) Deep and reinforcement learning for automated task scheduling in large-scale

cloud computing systems. Concurr Comput Pract Exp 33(23):e5919
 27. Sharma M, Garg R (2020) An artificial neural network based approach for energy efficient task sched-

uling in cloud data centers. Sustain Comput Inform Syst 26:100373
 28. Sheng S et al (2021) Deep reinforcement learning-based task scheduling in iot edge computing. Sen-

sors 21(5):1666
 29. Siddesha K, Jayaramaiah GV, Singh C (2022) A novel deep reinforcement learning scheme for task

scheduling in cloud computing. Clust Comput 25(6):4171–4188
 30. Spano S et al (2019) An efficient hardware implementation of reinforcement learning: The q-learning

algorithm. IEEE Access 7:186340–186351
 31. Staddon JER (2020) The dynamics of behavior: Review of Sutton and Barto: Reinforcement learning:

An introduction. J Exp Anal Behav 113(2):485–491
 32. Swarup S, Shakshuki EM, Yasar A (2021) Task scheduling in cloud using deep reinforcement learn-

ing. Procedia Comput Sci 184:42–51
 33. Tong Z et al (2020) QL-HEFT: a novel machine learning scheduling scheme base on cloud computing

environment. Neural Comput & Applic 32(10):5553–5570
 34. Tong Z et al (2020) A scheduling scheme in the cloud computing environment using deep Q-learning.

Inf Sci 512:1170–1191
 35. Wang Y et al (2019) Multi-objective workflow scheduling with deep-Q-network-based multi-agent

reinforcement learning. IEEE Access 7:39974–39982
 36. Wei Y et al (2018) DRL-scheduling: An intelligent QoS-aware job scheduling framework for applica-

tions in clouds. IEEE Access 6:55112–55125
 37. Yan J et al (2022) Energy-aware systems for real-time job scheduling in cloud data centers: A deep

reinforcement learning approach. Comput Electr Eng 99:107688
 38. Zhang X et al (2019) Energy-aware virtual machine allocation for cloud with resource reservation. J

Syst Softw 147:147–161
 39. Zhou G, Tian W, Buyya R (2021) Deep reinforcement learning-based methods for resource scheduling

in cloud computing: A review and future directions. arXiv preprint arXiv:2105.04086

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Sudheer Mangalampalli1 · Ganesh Reddy Karri1 · Mohit Kumar2 ·
Osama Ibrahim Khalaf3 · Carlos Andres Tavera Romero4 ·
GhaidaMuttashar Abdul Sahib5

 * Sudheer Mangalampalli
 sudheerkietmtech@gmail.com

1 School of Computer Science and Engineering, VIT-AP University, Amaravati, AP, India
2 Department of Information Technology, NIT Jalandhar, Jalandhar, India

https://www.cse.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/
http://orcid.org/0000-0002-1485-8783

8387Multimedia Tools and Applications (2024) 83:8359–8387

1 3

3 Al-NahrinNanorenewable Energy Research Center, Al-Nahrin University, Bhagdad, Iraq
4 Universidad Santiago de Cali, Cali, Colombia
5 Department of Computer Engineering, University of Technology, Bhagdad, Iraq

	DRLBTSA: Deep reinforcement learning based task-scheduling algorithm in cloud computing
	Abstract
	1 Introduction
	1.1 Motivation and contributions

	2 Related works
	3 Problem definition and proposed system architecture
	4 Methodology
	4.1 Action space
	4.2 State space
	4.3 Reward function
	4.4 Training the agent

	5 Simulation set up and experimental results
	5.1 Configuration settings for simulation
	5.2 Calculation of makespan
	5.3 Calculation of energy consumption
	5.4 Calculation of SLA violation
	5.5 Results discussion

	6 Conclusion and future work
	References

