Multimedia Tools and Applications (2024) 83:10735-10754
https://doi.org/10.1007/511042-023-15980-z

®

Check for
updates

Protecting IP of deep neural networks with watermarking
using logistic disorder generation trigger sets

Huanjie Lin' - Shuyuan Shen'® - Haojie Lyu'

Received: 7 February 2022 / Revised: 11 March 2023 / Accepted: 4 June 2023 /
Published online: 24 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

As deep learning technology matures, it’s being widely deployed in fields like image classi-
fication and speech recognition. However, training a functional deep learning model requires
vast computing power and a large training dataset, leading to the emergence of a new business
model of selling pre-trained models. However, these models are highly susceptible to theft,
which poses a threat to the interests of their creators. Moreover, the network topology and
weight parameters are considered intellectual property. To address these challenges, a method
that can tag trained models to claim ownership without affecting their performance is neces-
sary. Therefore, we propose a novel neural network watermarking protocol. In this method,
the trigger set is constructed differently from previous methods by using a key obtained from
the authority to generate a scrambling sequence, followed by using the sequence to scramble
the pixels and assign their original labels. Finally, the trigger set is put into the network
training together with the original training set to complete the watermark embedding. Since
Logistic chaos mapping is nonlinear, unpredictable, and sensitive to initial values, we use
Logistic chaos mapping as the generation method of dislocation sequence. We involve a third-
party copyright center in the embedding process to prevent forgery attacks. The third-party
only needs to store the disruption key and timestamp for each owner, reducing their storage
burden. Our experimental results demonstrate that the ResNet model exhibits a mere 0.05
percentage point decrease in accuracy when using fine-tuning for watermark embedding, and
a mere 0.03 percentage point decrease when using the training-from-scratch method. On the
other hand, when using the SENet model, embedding watermarks via fine-tuning resulted
in a 1.35 percentage point decrease in classification accuracy, while embedding watermarks
from training-from-scratch resulted in a 0.94 percentage point increase in classification accu-
racy. Furthermore, our model exhibited robustness against various attacks in the robustness
experiments, including model fine-tuning, model compression, and watermark overlay.

B Shuyuan Shen
ssyuan16@m.scnu.edu.cn

Huanjie Lin
2020023847 @m.scnu.edu.cn

Haojie Lyu
2020023860 @m.scnu.edu.cn

1 School of Software, South China Normal University, Foshan 528225, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15980-z&domain=pdf
http://orcid.org/0000-0002-8868-2207

10736 Multimedia Tools and Applications (2024) 83:10735-10754

Keywords Deep learning models - Black-box watermarking -
Intellectual property protection - Pixel Shuffling - Logistic

1 Introduction

Deep learning techniques have evolved very rapidly in recent years, and due to their excel-
lent performance, it has been widely used in many challenging fields. Training DNN is a
very expensive process that requires: (a) access to a large amount of proprietary data to cap-
ture different scenarios in the target application; (b) significant computational resources; (c)
tuning the network topology like type and number of hidden layers; (d) setting the correct
training hyperparameters, like learning rate, batch size. Many large companies have also
started training deep learning models with the high computing power they have [3, 5, 11].
And then release them to other users as a way to make a profit. For example, the COCO
dataset [13] contains over 330,000 images and more than 2 million annotations. Training a
deep neural network (DNN) for image recognition using this dataset can take weeks even on
GPU-accelerated computers. Therefore, creating production-level trained DNN models has
significant commercial value and the need to protect these models from copyright infringe-
ment has become more urgent.

Traditional multimedia copyright protection [14, 26] methods use digital watermarking
technology [2], which embeds watermarks directly into digital carriers, which include mul-
timedia, documents, and software, without affecting the original features. In recent years,
researchers have borrowed some inspiration from the original digital watermark and proposed
digital watermark based on deep learning models for copyright protection [21, 27]. Previous
watermarking methods can be broadly classified into two types: one is white-box watermark-
ing, which achieves the purpose of embedding watermarks by modifying the weights among
the models. This method is similar to the principle of the original digital watermarking. The
other is called black-box watermarking, which does not require access to the internal param-
eters of the network. It is done by using a specific trigger set as the input to the network and
finally outputting a specified label. The ownership of the network is verified by ensuring that
the output label matches the specified label.

Existing black-box watermarking model approaches borrowed from backdoor attacks by
adding error labels to the original training set images or adding labels to abstract images
as trigger sets, which caused the original decision boundaries of the model to be modi-
fied. Moreover, the verification process of most existing watermarking model approaches
requires exposing their trigger sets, which may allow an attacker to perform targeted overlay
attacks based on the trigger sets, thus erasing the original watermark. To this end, an invis-
ible embedding/verification watermarking protocol is required to protect against fraudulent
attacks. We propose a new DNN watermarking framework based on the authority center. In
our framework, the owner initially generates two pairs of permutation sequences with the
key distributed by the authority center. Then the images are processed to generate the trigger
set and placed in the network for training along with the original training set. The verifica-
tion process is performed by inputting the trigger set images and comparing the label hits
to prove ownership. Our approach has several benefits. It combines Logistic chaos mapping
methods to generate trigger sets while keeping the image features unchanged and giving them
their original labels. This allows preserving model ownership without affecting the decision
boundary of the original classification task. It is done to maintain almost the same perfor-
mance accuracy as the original model while preserving the owner’s intellectual property. The

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10737

model can also distinguish the difference between the trigger set and the original training set
[9], avoiding the phenomenon of false alarm rate (FAR) when the model is not embedded
with a watermark. Unlike previous watermarking protocols, the authority center only needs
to keep the key and timestamp generated at the time of owner application in our method.
While relieving the pressure on the authority center to store large amounts of data, the trigger
set is protected from being exposed to the public. Attackers are unable to target attacks, and
the robustness of embedded watermark is greatly improved. A timestamp is generated at the
same time as the scrambled key is generated by the third-party authority center. This times-
tamp can indicate the order of copyright registration when an attacker causes a copyright
dispute by forging watermarks so that it can resist forgery attacks by attackers.

The rest of this paper is structured as follows. In Section 2, we briefly introduce chaotic
mapping and the principle of chaotic mapping encryption. Section 3 presents the details and
algorithm of the proposed DNN watermarking method. The experimental results and analysis
are presented in Section 4. Conclusions and outlook are drawn in the last section.

Our exploration of neural network watermarking models produces several key findings,
which we summarize below: 1) Most of the current neural network watermarking black box
methods use the idea of "backdoor attacks", which can have an impact on the accuracy of the
model’s original classification task. We design a new neural network copyright protection
watermarking framework based on logistic chaos mapping, in which the training set images
are chunked and dislocated by chaos mapping technique and given their original labels. This
reduces the impact of the model on the original classification task when learning the water-
marking task and improves the fidelity of the neural network watermarking. 2) The current
black-box watermarking method basically requires the introduction of a third-party author-
ity center to participate in the verification process, otherwise the owner’s own verification
process needs to be carried out publicly, which leads to the exposure of the trigger set, and
the attacker can carry out targeted attacks on it. Most of the existing third-party authority
center verification methods are that the owner submits his own trigger set and the model to
be verified, and the authority center inputs the trigger set into the network and calculates the
hit rate of the trigger set label to verify the ownership of the model. However, this format
may lead to copyright disputes when attackers forge their own trigger sets by trial and error
and submit them to a third-party authority center for verification. We construct suitable rules
for embedding and verifying the watermark between the model owner and the third-party
authority center, and adopt the way that the owner saves the dataset to be encrypted and the
authority center generates the key and saves the key to effectively resist forgery attacks by
attackers, while the authority center does not need to face the pressure of needing to store a
large amount of data.

2 Related work
2.1 DNN watermarking (white-box)

For white-box watermarking, the first attempt was made by Uchida et al. [21]. They borrowed
from the digital watermark to achieve the purpose of embedding watermarks by modifying
some of the weight parameters in the network. Their embedded watermarks information does
not affect the original performance of the network. Wang and Kerschbaum et al. [23] found
out that the scheme [21] modify the statistical distribution of the model, and this would result
in an attacker being able to not only detect the watermark, but even extract its embedding

@ Springer

10738 Multimedia Tools and Applications (2024) 83:10735-10754

length, and remove the original watermark by overwriting it. To improve the stability and
security of the embedded watermark, Wang et al. [22] built on Uchida’s approach by filtering
some weights that had a relatively small impact on the performance of the embedding model.
Using a separate neural network to generate the matrix for making operations. Wang and
Kerschbaum et al. [24] proposed a white-box watermarking method based on generative
adversarial networks, making the final parameter distribution indistinguishable from the
watermark-free version and therefore difficult to detect. Due to the limitations of white-
box watermarking, which requires access to the internal parameters and structure of the
model for watermark embedding and extraction, some scholars have proposed a method to
add watermarks to neural network models in a black-box manner, drawing on the idea of
backdoor attacks, so that watermark verification can be performed without extracting details
such as model parameters.

2.2 DNN watermarking (black-box)

For black-box watermarking, Adi et al. [1] made the first attempt to embed abstract images
as backdoor watermarks into neural networks. This method ensured ownership of the model
without the need for access and internal parameters and structures of the model. Based on Adi
et al., Zhang et al. [27] used a black-box method based on text, noise, and irrelevant pictures
in three different ways to generate the trigger set. On this basis, to apply backdoor technology
to embedded systems, the literature [6] proposed a watermarking method to protect the own-
ership of neural network models in embedded systems, using specific information generated
by arrays of bits as triggers to design backdoor watermarks. To protect against watermark
attacks, such as parameter fine-tuning and adversarial fine-tuning coverage. Le Merrer et al.
[10] adopted a trigger set construction method based on decision boundaries. This method
not only protected the model but also improved the performance of the model, but it had the
problem of causing false positives easily. The trigger set constructed by the previous method
was not relevant to the original training set, it was easy to erase the watermark by retraining
and fine-tuning. So Li et al. [15] proposed a custom filter to modify the original training set,
and the embedding process could only be done in the initial training of the model, which
also makes this method resistant to attack methods that removed watermarks by fine-tuning
or incremental training. However, this method had the problem that embedding watermarks
required the model to train from scratch and the size of the watermark was limited. In the
above method, watermarks were embedded by setting a trigger set with a specified label, but
these behaviors affected the decision boundaries of the original model on the original task.
The data distributions of backdoor watermarks and clean samples in the literature [1, 4, 6, 27]
were very different and less concealable. Therefore, the paper [12] exploited a blind backdoor
watermarking method through encoder generation, which could evade detection by human
eyes or partial detectors and was more stealthy. Zhong et al. [28] chose a new black-box
watermarking frame to embed watermarks in the model by adding new labels to the model’s
classification tasks. However, the watermark embedded in this way was easily detectable.
The above-mentioned watermarking scheme based on model backdoors, which classified
key samples with wrong labels, would inevitably have an impact on the decision boundaries
of the model on the original task. Considering that some model watermarks were not very
robust against pruning fine-tuning, the paper [18] pointed out an exponentially weighted
backdoor watermarking method that imposed the impact of the backdoor watermark on the
parameters on a larger value of the weight parameter (exponentially weighted implementa-
tion) to ensure that the watermark was more robust against pruning fine-tuning. Similarly, to

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10739

increase the robustness against distillation attacks, the watermark proposed in the paper [20]
was deployed in the prediction API of the model to dynamically add watermarks to some
queries by changing the prediction response of the client.

2.3 Chaotic features

Chaos has superior features, such as the sensitivity of initial value, nonlinear, and unpre-
dictability of the chaotic sequence [19]. These features can be applied in image encryption:
(1) Non-periodic: it is chaotic and nonlinear, hence using it as an encryption algorithm can
improve the security of the algorithm. (2) Sensitivity: sensitivity to initial conditions. The
chaotic system is so sensitive to its initial conditions that a slight change in the initial state
can lead to disproportionately huge consequences. (3) Unpredictable: it is unpredictable for
the chaotic sequence in the long term. The attacker cannot predict the original image and the
key. Therefore, the encryption algorithm can be designed by a chaotic system to achieve the
purpose of encryption.

2.4 Principle of chaotic logistic map encryption

The principle of chaotic Logistic map encryption is to input the encryption key into the chaotic
system, and then design the encryption algorithm by chaotic sequence [25]. Therefore, the
initial value and parameters are designed as keys. The chaotic sequence is unique once
the initial value and parameters are assigned. Because of this property of chaotic mapping,
this method can generate a lot of non-repetitive random sequences, which ensures the non-
generalizability of the watermark and the security of the watermark at the same time.

One dimensional Logistic map is a very simple chaotic map in mathematical form. How-
ever, the system has extremely complex dynamic behavior and is widely used in the field of
secure communication. The mathematical expression is shown in Eq. 1.

Xpp1=p-(1—Xp), nw€[0,4], X €0, 1] ey

Itis proposed by mathematical ecologist May in 1976 from an influential review published
in the journal Nature [17]. The parameter u is the Logistic parameter. Research has shown
that when X € [0,1], the Logistic map is in a chaotic state. The possible values obtained by
iteration for different values of u for a certain value of X are depicted in Fig. 1.

The points in Fig. 1 show all possible X ranges. From the figure, we can see that the closer
the w is to 4, the closer the range of X values is to be evenly distributed over the entire region
from O to 1. Therefore, the Logistic control parameter we need to select should be as close
to 4 as possible. After the value of i has been determined, we turn to the effect of the initial
value X on the overall system. Chaotic systems get very different structures when the initial
value changes very little, and this is also true in Logistic chaotic mappings.

Figure 2 shows the images of the difference between the two Logistic sequences at the
initial values X = 0.6339002 and X(’) =0.6339001 with u = 3.99. It is obvious that in the
first 20 or so iterations, the difference between the two is small and approximately equal to
0. However, as the number of iterations increases, the values of the two sequences show an
irregular situation and the difference between them is larger. Therefore, it can be seen that
the system has a good avalanche effect. When we use the Logistic chaos system, we can let
the system first iterate a certain number of times before using the generated values, so that
the original situation can be better masked and the avalanche effect can be expanded, which
can have better safety.

@ Springer

10740 Multimedia Tools and Applications (2024) 83:10735-10754

0.9r

Fig. 1 Bifurcation of Logistic image

The trigger set needs to be constructed in such a way to ensure the model to be protected
cannot be classified correctly before embedding the watermark and has little impact on the

0 10 20 30 40 50 80 70 80 90 100
Number of iterations

Fig.2 Subtraction of two Logistic series

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10741

original decision boundary after embedding the watermark. We generate the dislocation
sequence by Logistic chaos mapping to dislocate the original training set and give it the
original label, which can achieve both of these requirements. After dislocation, the chunked
histogram of the trigger set remains consistent with the original training set and is not correctly
recognized by the neural network. When the model learns the trigger set features, the impact
on the original classification accuracy of the model can be reduced because the label given to
the trigger set by our method is the correct label of its original image. Our proposed neural
network protection schemes to preprocess input images with a secret key before training or
testing a model. A model f is trained by preprocessed images with a key K for the first
time. To test the trained model, test images are also preprocessed with the same key K before
testing so that the adversaries cannot use the model without the key. The next subsection
details the preprocessing that is used in the proposed model protection method.

3 The details of our proposed method

To protect the intellectual property of neural network owners, we propose a novel water-
marking protocol based on the Logistic chaotic mapping. We distribute the key through the
authority. Then we use the key to generate two pairs of chaotic sequences to process the
images to generate the trigger set. Finally, we put the original training set and the trigger
set into the network together for training, so that the network learns both the classification
task and the watermarking task, which means the embedding process of the watermark is
completed. In the watermark verification phase, we submit the images to be processed (trig-
ger set images before generation) to the validation authority, which processes the images
according to the corresponding keys saved in the database and is authenticated by it without
public disclosure to prevent attackers from more targeted attacks. Finally, when the network
tag hit rate reaches a threshold value, that is, ownership verification is successful, otherwise,
verification fails. The overall flow of the watermarking protocol is shown in Fig. 3.

The neural network protection method schemes to preprocess input images with a secret
key before training or testing a model. A model f is trained by preprocessed images with
a key K for the first time. To test the trained model, test images are also preprocessed with
the same key K before testing so that the adversaries cannot use the model without the key.

(5)
apply O A Network Model
O "7‘. 1, e ’ Date Set
Owner Authority The original
(i) 1(8) training set
timestamp [1 - .)
logistic @ @) :g/
Secret disorder —> |~ ?L;:p|m
Key abels
1 .
1 E7L - > The generated (10}
trigger set compare !
1
]

Original
labels

Fig.3 Flow chart

@ Springer

10742 Multimedia Tools and Applications (2024) 83:10735-10754

The next subsection details the preprocessing that is used in the proposed model protection
method.

3.1 Watermark generation

The process of watermark generation is steps (D to) in Fig. 3. We apply for a secret
key K from the third-party authority, and the authority center generates the key K while
recording the timestamp 7. Then, we use the key K to generate two pairs of pseudo-random
sequences for block randomization and intra-block randomization. The process of generating
the scrambled sequences will be described in 3.4 Additional Content. The following are steps
for preprocessing input images, where w and 4 denote the width and height of an image.

1. From left to right, top to bottom, divide x into the block with a size of M such that
{Bl,Bz,...,B%X%}

2. Generate a random sequence Q1 and Q; using Logistic mapping

3. Sort the random sequence Q1, Q> to generate the integer-disorder sequence Ay, A

Ar={ri,r2, oo, 1u} ()
where r; is the sorted value ql.l in the Q1 sequence and u = §; x %; the r; is a positive
integer

Az = {51, 52, ..., Su} 3)

where s; is the sorted value qi2 in the Q7 sequence and v = M x M; the s; is a positive
integer
4. Perform position replacement on each image block using A1, and every new block B/ as

B/ = Br,~ (4)

1

where i indicates the position of the block, and r; indicate the location of block replacement

5. The pixel values within each block are expanded in turn to obtain { Bi/ (1), Bl.’ 2, ..., Bl.’ (M x

M) }. The pixel dislocation for each block using A, and generate a pre-processed image,
and every pixel of each block

B/'(j) = B/(s)) ®)

where j indicates the position of each pixel in the block, and s; indicate the location of
pixel replacement in the block

Figure 4 is an example of a 32x32 pixel image used in our experiment. The small size of the
image may result in some blurriness. At this point, we produce trigger set images as shown
in Fig. 4 that have the characteristics that the unembedded neural network cannot classify
correctly and retain some features of the original training set. We successfully embed the
watermark while ensuring that the decision boundary of the original task is not affected and
the watermark does not suffer from a false alarm rate. We summarize our concrete process
of watermark generation in Algorithm 1.

3.2 Watermark embedding

The process of watermark embedding corresponds to step @ in Fig. 3. In the embed-
ding process of the watermark, we obtained from the entire training dataset D =
{(x1, 1), s (Xm, Ym)} Where (x;, y;) is a pair of an input image and m is the size of the
data set. We extract n images (p1, p2, ..., pn) and corresponding labels (/1, I2, ..., [,;) from

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754

10743

CIFAR10-ResNet18

100 s
oo
bt
SN
98 N
W,
R
ool
%6 I .
x\\ 37 \\\
A -
W) T N,
—_ g, ,’/ \‘\
X 94 = R
@ N
e \
g
O A\
< » \
N
\
.- A,
\
\
\
\
% x
x
\\
\
—e— Model Accuracy(Fine-tuning) N
-<-- Watermark Extaction Rate(Fine-tuning) \\
88 Model Accuracy(Scratch) ‘\\
Watermark Extaction Rate(Scratch) \\
---- Threshold of Watermark Extaction Rate »
0 5 10 15 20 25 30 35 40

Number of fine-tuning epoch

CIFAR100-SENet18

100 = —e— Model Accuracy(Fine-tuning)
““““ - -+-- Watermark Extaction Rate(Fine-tuning)
SN Model Accuracy(Scratch)
N Watermark Extaction Rate(Scratch)
95 e ---- Threshold of Watermark Extaction Rate
‘ﬂ\\
\
W
\
%0 R
\\
\
\
\\
S 5
2 Y
5 85 \\
© N\ A
3 \\ S
S \ 70 S5g
< 80 % 4 LY
/ N
s o,
\ I/ >
\ /
\ /
\ /
5 \\ /
N/
o
70
—4—‘——_"/’.\
P—#_/
65

0 5 10 15 20 25
Number of fine-tuning epoch

Fig.4 Example of the trigger set

them, and then generate the trigger set Dy, = {(pe1, 1), ...

30 35 40

, (pen, 1)} by the algorithm in

3.1 Watermark Generation. We put the original training set and the generated trigger set into
the Model f training together, so that the neural network to be protected learns the mapping
between the trigger set and the corresponding labels while learning the original classification
task. Due to the special way our method constructs the trigger set, the trigger set remains
consistent with the chunked mean histogram of the original training set images. This allows

@ Springer

10744 Multimedia Tools and Applications (2024) 83:10735-10754

Algorithm 1 Watermark Creating

Input:
Number of trigger set: n
Training set to be encrypted: Dy = { pi.li }3_,
Block Randomization: A
Intra-block Randomization: Aj
Size of Block: M, M =24.8...
Output:
Trigger Set data: Dym = { perli}_;

: function Watermark_Creating()

: Dym <0

: for eachroundi=1,2,...n do
pe; < encrypt(p;)
Add((pe;, i), Dwm)

: end for

: return Dy,

U RWN—

the network to complete the embedding of the watermark in a relatively short time and with
minimal impact on the original classification task of the network.

3.3 Watermark verifying

Algorithm 2 Watermark Verifying

Input:
Training set to be encrypted: D, = { py.lx }z=1
DL Model h
Number of trigger set: n
Threshold ©
Output:
Owner’s copyright verification results(True or False)

1: function Watermark_ Verifying()

2:

3: correct < 0

4: for eachroundi=1,2,...n do
5: pe; < encrypt(p;)

6: r; < f(pe;)

7: if /; =r; then

8: correct <— correct + 1
9: endif

10: end for

11: if correct > t then
12: return True

13: else

14: return False

15: end if

Finally, the verification phase of the watermark, as shown in steps & to @ in Fig. 3. When
a copyright dispute arises in our neural network, we can extract n images (p1, p2, ..., Pn)
known only to ourselves and their original labels (1, /2, ..., [;;) from the original training set,

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10745

and then hand them over to authority center for authentication. The authority center obtains
the trigger set (pey, pea, ..., pe,) by combining the images (p1, p2, ..., Pn) using the same
permutation algorithm with the key K kept in the database. Then, the authority center puts
the trigger set into the network to be verified and derives t by comparing the consistency
between the labels (ry, 2, ..., r,) output from the network and the real labels (I1, l2, ..., I;).
When the calculated ¢ is greater than the pre-defined threshold 7, in other words, t > t,
ownership is verified. The specific authentication process can be seen in Algorithm 2.

3.4 Additionnal content

Since the current black-box watermarking approach in which the authority verifiers are only
involved in the verification process is not sufficient to resist forgery attacks. We design
a watermarking framework that is adapted to the trigger set construction method for the
interaction between the owner and the authority center. The key for trigger set construction
is kept by the authority, therefore avoiding the situation where an attacker forges his key to
construct a trigger set.

For the generation process of two sets of pseudo-random permutation sequences, we first
used Logistic chaos mapping for the initial values a, b1 for multiple rounds.

ap =p-ap_1-(1—ay,_1) (6)
by=p -by_1-(1—=by_y) @)

where 7 is the number of iterations, n > 100
After a certain number of accumulations, new ‘111 = ay,, ‘112 = b, are obtained as the
input values of Equation 1 to obtain two pseudo-random sequences Q1 = {ql1 , qzl, s q,‘l 1,

0> =1{q}.43. ... q}}. 1 1 1
Gp =W Gp_y -1 —g,_1) (@)

where 7 is the number of image blocks
Gy =1-qy i (1—gqy) ©

where m is the number of pixel points in the image block

4 Experiments

In this section, we evaluate the performance of our watermarking protocol on two training
sets on two different neural networks. First, we will introduce some relevant settings for our
experiments. Then we will test the fidelity and effectiveness of watermarking experiments.
Finally, we will test the robustness of watermark under various attacks (fine-tuning attack,
compression attack, overwriting attack).

4.1 Experimental settings

We train and test the ResNet18 [7] and SENet18 [8] using two image classification data sets:
CIFAR10 and CIFAR100, for each network. CIFAR10 and CIFAR100 are two renowned
datasets widely employed in the field of machine learning and computer vision for image
classification tasks. CIFAR10 comprises 60,000 color images with a dimension of 32x32

@ Springer

10746 Multimedia Tools and Applications (2024) 83:10735-10754

Table 1 Effectiveness analysis

Watermark Extraction Accuracy
Model Data set Unmarked Model Watermark Fine-tuning Scratch
Extraction Accuracy

ResNet18 CIFAR10 13.00 100.00 100.00
SENet18 CIFAR100 0.40 100.00 100.00

pixels, categorized into 10 classes, each containing 6,000 images. The classes include com-
mon objects such as airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. This dataset is highly regarded as a benchmark for assessing image classification
models due to its small size, simple structure, and high-quality annotations. On the other
hand, CIFAR100 poses a greater challenge for image classification, with 100 classes, each
containing 600 images. The classes are divided into 20 superclasses, with five subclasses in
each. This dataset offers a more diverse set of images, including insects, flowers, household
appliances, and vehicles, providing a broader range of objects for model training and eval-
uation. In [2, 27] the trigger set is generated by giving "error labels" to the original images,
so it distorts the decision boundaries of the original network. Our approach is to generate a
scrambled sequence by an irreversible encryption algorithm, which encrypts the images and
assigns their original labels while keeping the image chunking mean histogram unchanged,
thus reducing the impact on the original classification task of the network.

4.2 Effectiveness and false alarm rate

The effectiveness of watermark refers to the ability of neural network owners to successfully
verify their copyright in our Logistic chaos encryption algorithm scheme. It requires that the
model with an embedded watermark has a very high accuracy rate for the input trigger set
verification.

In contrast, FAR analysis requires a low hit rate for the input trigger set of the network
without an embedded watermark to ensure that the model does not have problems such as
false positives. Table 1 shows the watermark accuracy of the private model before and after
embedding the watermark respectively.

From Table 1, we can see that the extraction rate of the model for the trigger set is only
13% and 0.4% when the model is not trained with watermark information. This corresponds
to a random probability for a ten-class task, which means that the model cannot recognize the
trigger set. After the model is trained on the trigger set, the extraction rate of the embedded
watermark can reach 100%, either by fine-tuning the training of the embedded watermark
or by training from scratch, which indicates that the total watermark information embedded
can be correctly recognized and proves the validity of the watermark.

4.3 Fidelity

The fidelity experiments are designed to test the magnitude of the impact of watermark
embedding on the original performance of the protected model.

In Table 2, the values in the third column indicate the classification accuracy of the
original task when the model is not embedded in the watermark, while the accuracy of the

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10747

Table 2 Fidelity analysis

Marked Model Accuracy

Model Data set Unmarked Model Accuracy Fine-tuning Scratch
ResNet18 CIFARI10 91.38 91.33 91.35
SENet18 CIFAR100 68.03 66.68 68.97

original classification task after the model is embedded in the watermark is indicated in
the fourth and fifth columns. We can see that for the model ResNet watermark embedding
degrades by only 0.05 percentage points when using fine-tuning embedding and by only
0.03 percentage points when embedding the watermark using the scratch approach. In model
SENet, the classification accuracy decreases by 1.35 percentage points when embedding
the watermark by fine-tuning, but improves by 0.94 percentage points when embedding the
watermark by scratch. As shown in Table 2, the model does not change significantly in model
accuracy before and after watermark embedding, which also indicates that our watermarking
framework distorts the original classification decision boundary of the model to a negligible
extent.

4.4 Robustness analysis

Robustness is one of the key elements for the neural network watermark. Unlike normal digital
watermarks, neural network models black-box watermarking may occur with verification
failure after fine-tuning and retraining of the network. And the embedded watermark also
needs to be resistant to attackers using network cropping, watermark overwriting, and other
ways to attack the neural network. In the following subsections, we assess the robustness
of our model against three types of attacks: fine-tuning, model compression and watermark
overwriting.

4.4.1 Model fine-tuning

Model fine-tuning refers to users of the network retraining the neural network model with a
certain amount of training data. As the model decision boundaries are slightly altered, this
may result in the corruption or the disappearance of the watermarking information in the
model. In our experiments, we assume that the user gets the network model and then trains it
for 40 epochs of fine-tuning to adjust the network. We determine whether the watermark can
resist the fine-tuning attack by verifying whether the hit rate of the trigger set is higher than the
threshold t. Here we set the threshold value of 90% for the CIFAR10 dataset corresponding
to the trigger set and 70% for the CIFAR100 dataset corresponding to the trigger set.

In Fig. 5 we record the original accuracy of the model and the verification accuracy of
the watermark after fine-tuning 0 - 40 epochs for the two networks with different embedding
methods. In Fig. 5, the solid line shows the original classification accuracy of the model,
and the dashed line shows the extraction accuracy of the model for the watermark. The
blue and orange colors represent two different watermark embedding methods: fine-tuning
and scratch. We can obtain that the watermarking accuracy can be maintained above the
threshold in all cases except when the watermark is embedded in the ResNet network using
the fine-tuning approach, where the watermarking accuracy drops to 87% after 40 epochs

@ Springer

10748 Multimedia Tools and Applications (2024) 83:10735-10754

CIFAR10-ResNet18
100 ~<

98 A

96 . .

94 v

Accuracy(%)

92

\
20 x
\\
\
—e— Model Accuracy(Fine-tuning) N
-<-- Watermark Extaction Rate(Fine-tuning) \\
88 Model Accuracy(Scratch) ‘\\
Watermark Extaction Rate(Scratch) \\
---- Threshold of Watermark Extaction Rate »
0 5 10 15 20 25 30 35 40
Number of fine-tuning epoch
CIFAR100-SENet18
100 = —e— Model Accuracy(Fine-tuning)
““““ - -+-- Watermark Extaction Rate(Fine-tuning)
SN Model Accuracy(Scratch)
N Watermark Extaction Rate(Scratch)
95 e ---- Threshold of Watermark Extaction Rate
‘ﬂ\\
N
W,
\
%0 R
\\
\\
\\
S .
3 “
g “
-] N Al
o % 7 ~,
O 3, 4 S
< 80 N / S
\ / R
\\ ,/ \‘
\ /
\ /
\ /
\ /
5 % s
\
A
70
—4—‘——_"/’.\
P—#_/
65
0 5 10 15 20 25 30 35 40

Number of fine-tuning epoch

Fig.5 Robustness against fine-tuning attacks

of fine-tuning training. This also indicates that our watermark is highly robust to fine-tuning

training.

4.4.2 Model compression attacks

To further compress deep learning models, while ensuring that the models have the same
accuracy as before, model compression methods are becoming increasingly useful in deep

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10749

CIFAR10-ResNet18(Finetuning)
Wl 00 e 0 w0 O esm e Threshold of Watermark Extaction Rate
mmm Model Accuracy
mmm Watermark Extaction Rate

0| T

80.0

70.0

60.0

Accuracy(%)

50.0

40.0

30.0

20.0° 03

Pruning rate

CIFAR10-ResNet18(Scratch)

Wweel @30 e 0 e | e Threshold of Watermark Extaction Rate
mmm Model Accuracy
W Watermark Extaction Rate

9.0

80.0

70.0

60.0

Accuracy(%)

50.0

40.0

30.0

20.01

0.3
Pruning rate

Fig.6 Robustness against compression attacks (ResNet18)

learning models. There examining the ability to resist compression attacks is also part of
verifying the robustness of the watermark. We use the TensorFlow Model Optimization
Toolkit to prune our model. Figures 6 and 7 show the effect of model compression on
watermark detection accuracy and original task accuracy at different trimming rates.

In Figs. 6 and 7, the blue column indicates the accuracy of the model’s original classi-
fication task, and the orange column indicates the watermark detection accuracy. The blue
dashed line indicates the threshold value that needs to be reached for the accuracy of the

@ Springer

10750 Multimedia Tools and Applications (2024) 83:10735-10754

CIFAR100-SENet18(Fine-tuning)
1000l e Threshold of Watermark Extaction Rate
e Model Accuracy
mmm Watermark Extaction Rate

90.0

80.0

70.0

60.0

Accuracy(%)

50.0

40.0

30.0

20.0

0.2 0.25
Pruning rate

CIFAR100-SENet18(Scratch)

1000] 0 s mmm Threshold of Watermark Extaction Rate
mmm Model Accuracy
mmm Watermark Extaction Rate

90.0

80.0

70.0

60.0

Accuracy(%)

50.0

40.0

30.0

20.0

0.2 0.25
Pruning rate

Fig.7 Robustness against compression attacks (SENet18)

model watermark. The x-axis indicates the ratio of model pruning, and the y-axis indicates
classification accuracy. The first of the bar charts in Fig. 6 shows the values for the model with
the fine-tuning method of embedding the watermark, the second bar chart shows the values
for the model with the scratch method of embedding the watermark, and Fig. 7 is based on
the same principle. Figure 6 shows before the pruning rate are less than 25%, the detection
accuracy of the watermark is greater than the threshold value of 90%. When the pruning rate
exceeds 25%, the original classification accuracy of the model is also greatly reduced, which

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10751

Table 3 Robustness against overwriting attacks (ResNet18)

Owner’s type of watermark Fine-tuning Scratch
embedding method

Date ratio (%) 10 20 30 10 20 30

Original model accuracy (%) 91.33 91.33 91.33 91.26 91.26 91.26

Model accuracy after training (%) 87.20 90.25 91.66 87.20 90.45 91.16

Accuracy of owner’s WM 45.00 63.00 89.00 32.00 58.00 91.00
extraction after training (%)

Accuracy of attacker’s WM 84.00 100.00 100.00 100.00 100.00 100.00

extraction after training (%)

means that the model has lost its original function and the validation is meaningless. In Fig.
7 for the SENet18 network experiments, we set the watermarking accuracy threshold to 80%
for one hundred classifications. We can see in the figure that the watermarking accuracy can
be kept above the threshold when the model pruning rate is less than 25%. While the pruning
rate exceeds 25% the original accuracy of the model decreases seriously and the model has
lost its original value.

4.4.3 Watermark overwriting attacks

One effective way for the attacker to cause a copyright dispute over a neural network model
is an overlay attack. In our experiments, we assume that the attacker knows the watermarking
construction method, but only knows at most 30% of the original training data, and does not
know our key sequence. We assume that the attacker generates the trigger set by his key and
retrains the network. Finally, we count the impact of the attacker on the original watermark
with 10%, 20%, and 30% of the training data.

As can be seen in Table 3, the attacker’s watermark is indeed successfully embedded and
the owner’s watermark is partially erased in the cases where the attacker owns 10% and 20%
of the dataset. But the original accuracy of the model is much degraded, which the attackers
do not want to get. And in the case where the attacker has 30% of the dataset, although the
model accuracy remains the same, the original watermark of the owner is not well erased,
which also indicates that the attacker’s overwriting attack fails.

Table 4 Robustness against overwriting attacks (SENet18)

Owner’s type of watermark Fine-tuning Scratch
embedding method
Date ratio (%) 10 20 30 10 20 30
Original model accuracy (%) 66.68 66.68 66.68 68.97 68.97 68.97
Model accuracy after training (%) 62.90 65.80 65.56 57.00 66.10 66.70
Accuracy of owner’s WM 5.40 32.20 37.00 3.40 22.00 45.80
extraction after training (%)
Accuracy of attacker’s WM 13.20 39.60 95.80 13.40 100.00 100.00

extraction after training (%)

@ Springer

10752 Multimedia Tools and Applications (2024) 83:10735-10754

Table 5 Model fidelity of Zhang et al. [27], Zhong et al. [28], Maung and Kiya [16] and our method

Model Unmarked Model Marked Model ﬁdelity(AOA;oAl x 103)
Accuracy(Ag) Accuracy(A1)

Zhangetal. 78.6 78.49 1.40

Zhongetal. 91.92 87.46 48.52

Maung etal. 95.45 92.99 25.77

Proposed 91.38 91.35 0.33

Table 4 summarizes that for the SENet18 network whether the attacker has 10%, 20%
or 30% of the dataset overlaying the watermark leads to severe degradation of the model
accuracy, which also shows that our watermark is strongly robust to overwriting attacks.

4.5 Comparison with existing

Since the current black-box watermarking methods embed different models, we use a more
reasonable way to compare the model fidelity. The specific calculation formula is as follows:

0— Ap

A 3
f=" 0 (10)

0

Where f is the influence of watermark embedding on model fidelity, Ag is the unmarked
Model Accuracy, A is the marked Model Accuracy. The smaller the value of f, the lower
the effect of watermark embedding on the original accuracy of the model.

In the experiment, we use the CIFAR10 dataset as a general dataset and compare it with
literature [16, 27, 28]. After generating the corresponding watermark samples, we use 50
epochs of fine-tuning to train the network to embed the watermark.

Table 5 displays three columns of data. The first column represents the model’s classi-
fication accuracy prior to watermark embedding, while the second column represents the
accuracy post-embedding. Finally, the last column demonstrates the extent of the proposed
watermark protocol’s impact by showcasing the original accuracy calculated using Equation
10. Tables 5 demonstrate that the approaches proposed by Zhong et al. [28] and Maung and
Kiya [16] have a more significant impact on the accuracy of the model, leading to a reduc-
tion in the original classification accuracy. This outcome contradicts our primary objective
of safeguarding the model. While Zhang et al. [27] method has a less severe impact on the
model’s accuracy, our proposed approach still outperforms it, offering enhanced performance
and resistance against potential forgery attacks by adversaries.

5 Conclusion

We propose a novel watermarking protocol to protect the intellectual property of neural
networks. We use a Logistic chaos mapping-based dislocation approach to generate trigger
sets, which ensures that the model cannot correctly classify the trigger sets when the water-
mark is not embedded. And the trigger set retains the histogram and labels of the original
images unchanged, which makes the model less influential on the original decision boundary
when learning the watermarking task. Because of features such as Logistic nonlinearity and
unpredictability, an attacker cannot predict the permutation sequence. In the watermarking

@ Springer

Multimedia Tools and Applications (2024) 83:10735-10754 10753

verification process, the entire verification process of the authority is not open to the pub-
lic, which also makes it impossible for attackers to find the features of our trigger set, thus
effectively resisting the more targeted forgery attacks and overwriting attacks. This paper pro-
poses a watermarking framework for achieving copyright protection of deep neural models.
However, this is just the beginning. The protection of intellectual property for deep neural
networks is a relatively new problem, and there is still much room for improvement and
further research. Currently, most of the proposed watermarking frameworks for protecting
the copyright of deep neural network models are based on the classification tasks of neu-
ral network models. Designing a watermarking framework that is applicable to any type of
neural network model will have broad prospects. Therefore, as future work, we plan to con-
tinue researching methods to make watermarks more resistant to stronger and more targeted
attacks, and to explore different watermark embedding techniques to adapt to different types
of neural network models.

Acknowledgements It is an honor to be part of Dr. Shen’s team. I would also like to thank my partner for her
great support in my work. The Basic Research partially supported the project (Grant No.2020B 1515120089,
No.2021A1515011171, No.202102080410, and No.202102080282).

Declarations
Conflict of interest The authors declare that they have no conflict of interest.

References

1. Adi Y, Baum C, Cisse M, Pinkas B, Keshet J (2018) Turning your weakness into a strength: watermarking
deep neural networks by backdooring. In: 27th {USENIX} Security Symposium ({USENIX} Security 18).
pp 1615-1631
2. Asikuzzaman M, Pickering MR (2017) An overview of digital video watermarking. IEEE Trans Circuits
Syst Video Technol 28(9):2131-2153
3. Dargan S, Kumar M, Ayyagari MR, Kumar G (2020) A survey of deep learning and its applications: a
new paradigm to machine learning. Arch Comput Meth Eng 27(4):1071-1092
4. Darvish Rouhani B, Chen H, Koushanfar F (2019) Deepsigns: an end-to-end watermarking framework
for ownership protection of deep neural networks. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. pp 485-497
5. DengL, YuD (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3—4):197—
387
6. Guo J, Potkonjak M (2018) Watermarking deep neural networks for embedded systems. In: 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, pp 1-8
7. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp 770-778
8. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp 7132-7141
9. Jia H, Choquette-Choo CA, Chandrasekaran V, Papernot N (2021) Entangled watermarks as a defense
against model extraction. In: 30th {USENIX} Security Symposium ({USENIX} Security 21)
10. Le Merrer E, Perez P, Trédan G (2020) Adversarial frontier stitching for remote neural network water-
marking. Neural Comput Appl 32(13):9233-9244
11. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436-444
12. LiZ, Hu C, Zhang Y, Guo S (2019) How to prove your model belongs to you: A blind-watermark based
framework to protect intellectual property of DNN. In: Proceedings of the 35th Annual Computer Security
Applications Conference. pp 126—137
13. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollar P, Zitnick CL (2014) Microsoft
coco: Common objects in context. In: Computer Vision—ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, pp 740-755

@ Springer

10754 Multimedia Tools and Applications (2024) 83:10735-10754

14. Liu Y, Tang S, Liu R, Zhang L, Ma Z (2018) Secure and robust digital image watermarking scheme using
logistic and RSA encryption. Expert Syst Appl 97:95-105

15. LiH, Wenger E, Shan S, Zhao BY, Zheng H (2019) Piracy resistant watermarks for deep neural networks.
Preprint at http://arxiv.org/abs/1910.01226

16. Maung Maung AP, Kiya H (2021) Piracy-resistant DNN watermarking by block-wise image transforma-
tion with secret key. In: Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia
Security. pp 159-164

17. May RM (2004) Simple mathematical models with very complicated dynamics. The Theory of Chaotic
Attractors 85-93

18. Namba R, Sakuma J (2019) Robust watermarking of neural network with exponential weighting. In:
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security. pp 228-240

19. Shafer DS (1995) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and
engineering (Steven H. Strogatz). SIAM Rev 37(2):280-281

20. Szyller S, Atli BG, Marchal S, Asokan N (2021) Dawn: dynamic adversarial watermarking of neural
networks. In: Proceedings of the 29th ACM International Conference on Multimedia. pp 4417-4425

21. Uchida Y, Nagai Y, Sakazawa S, Satoh S (2017) Embedding watermarks into deep neural networks. In:
Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval. pp 269-277

22. WangJ, WuH, Zhang X, Yao Y (2020) Watermarking in deep neural networks via error back-propagation.
Electron Imag 2020(4):22-1

23. Wang T, Kerschbaum F (2019) Attacks on digital watermarks for deep neural networks. In: ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
pp 2622-2626

24. Wang T, Kerschbaum F (2021) Riga: covert and robust white-box watermarking of deep neural networks.
In: Proceedings of the Web Conference 2021. pp 993-1004

25. Yang F, Mou J, Liu J, Ma C, Yan H (2020) Characteristic analysis of the fractional-order hyperchaotic
complex system and its image encryption application. Signal Process 169:107373

26. Zhang LY, Zheng Y, Weng J, Wang C, Shan Z, Ren K (2018) You can access but you cannot leak:
defending against illegal content redistribution in encrypted cloud media center. IEEE Trans Dependable
Secure Comput 17(6):1218-1231

27. ZhangJ, GuZ, Jang J, Wu H, Stoecklin MP, Huang H, Molloy I (2018) Protecting intellectual property of
deep neural networks with watermarking. In: Proceedings of the 2018 on Asia Conference on Computer
and Communications Security. pp 159-172

28. Zhong Q, Zhang LY, Zhang J, Gao L, Xiang Y (2020) Protecting IP of deep neural networks with
watermarking: a new label helps. Advances in Knowledge Discovery and Data Mining 12085:462

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://arxiv.org/abs/1910.01226

	Protecting IP of deep neural networks with watermarking using logistic disorder generation trigger sets
	Abstract
	1 Introduction
	2 Related work
	2.1 DNN watermarking (white-box)
	2.2 DNN watermarking (black-box)
	2.3 Chaotic features
	2.4 Principle of chaotic logistic map encryption

	3 The details of our proposed method
	3.1 Watermark generation
	3.2 Watermark embedding
	3.3 Watermark verifying
	3.4 Additionnal content

	4 Experiments
	4.1 Experimental settings
	4.2 Effectiveness and false alarm rate
	4.3 Fidelity
	4.4 Robustness analysis
	4.4.1 Model fine-tuning
	4.4.2 Model compression attacks
	4.4.3 Watermark overwriting attacks

	4.5 Comparison with existing

	5 Conclusion
	Acknowledgements
	References

