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Abstract
In non-local means (NLM) method, weight of each pixel in the neighbor centered on the 
reference noisy pixel plays a different role for performance of NLM for image denoising. 
The reference noisy pixel is called center pixel. Usually, weight of each pixel including 
center pixel in the neighbor (neighbor pixel) is computed based on the distance between 
neighbor pixel and center pixel. This paper proposes a novel weight by studying the recent 
statistical nearest neighbors distance measurement (SNNDM) and gradient domain filter. 
The difference of each neighbor pixel including center pixel is considered sufficiently. The 
proposed weight is called the bilateral thresholding since it is similar to bilateral filtering in 
form. Test results show that the proposed method can deal with each neighbor pixel differ-
ently so that the desired performance is achieved.

Keywords Image denoising · Non-local means (NLM) · Statistical nearest neighbors 
distance measurement (SNNDM) · Bilateral thresholding · Gradient domain filter

1 Introduction

In the Multimedia era, denoising becomes a key challenge in the field of image processing 
[11]. A good denoised image can pave a way to many subsequent processing tasks such 
as image segmentation, object recognition and so on. For example, in [12], image denois-
ing method was used for image recognition. The goal of image denoising is to reconstruct 
the latent clean image from its noisy counterpart while preserving the fine structures, tex-
tures and details as accurately as possible. Currently, a wide variety of strategies including 
total variation [10, 19] have been proposed to remove the noise from the degraded image. 
Especially, non-local means (NLM) proposed by Buades et al. in 2005 [1] has always been 
popular. The denoising mechanism of NLM is: denoising of a given pixel is obtained as a 
weighted average of the surrounding pixels, with weights proportional to the patch simi-
larity measurement. In NLM, patch similarity is called non-local self-similarity (NLSS). 
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The emergence of NLSS has triggered a revolutionary change in the field of image pro-
cessing. A number of the state-of-the-art methods armed with NLSS have emerged. For 
example, BM3D was proposed in [2]. This method obtains good results by grouping of 
similar image and specially developed collaborative Wiener filtering. BM3D is a milestone 
work employing a NLSS for grayscale image denoising. Another celebrated evolved ver-
sion of NLM is the weighted nuclear norm minimization (WNNM) method in [8]. The 
method represented NLSS by using the weighted nuclear norm of similar patch matrices. 
Compared to BM3D, WNNM achieves better results with large performance gain. To bet-
ter restore the structure and the edge of image contaminated by noise, a novel multi-scale 
weighted group sparse coding model (MS-WGSC) was proposed for image denoising by 
simultaneously exploiting the NLSS prior from the original scale and a coarse scale in 
[17]. In the recent years, NLSS is also incorporated into the deep learning architecture so 
that more powerful denoising performance is shown. For example, in [13, 24], the NLSS 
denoising algorithms based on deep learning techniques were used to successfully deal 
with the different noisy image. Although these methods have achieved good performance, 
they are becoming increasingly complex. So, some scholars have been paying attention to 
NLM itself, optimizing and improving the original NLM. This is also the motivation for 
the proposed method.

1.1  Related work

Currently, there are also some important studies in which original NLM filter is discussed 
deeply. In these researches, the weighted average mechanism of NLM filter is further 
revealed and optimized. These studies have to some extent overcome the shortcomings of 
NLM, such as high computational complexity, difficulty in determining parameter values, 
and unreasonable center weight values. For example, the literature [7, 22] studied how to 
accelerate NLM to make it useful in practical application. The literature [16, 18, 21, 26–29, 
31] and [3, 9] concentrated their attention on how to determine the smoothing parameter, 
how to compute the weight of the center pixel (center weight) and how to select the weight 
function, respectively. These studies further improve NLM from different perspectives. 
This paper focuses on the distance between the pixels so that the proposed weight com-
putes the similarity between the pixels properly.

In [5], Alessandro Foi et al. installed the foveated self-similarity into NLM (NLM-Fov). 
Their studies show that the foveation operators producing the best denoising performance 
are in complete line with the directional preference of the human visual system. In [4], 
Vadim Fedorov et al. exploited the affine invariant self-similarities to design a new NLM 
filter. The similarity measure compares patches related by a local affinity and considers 
shape adaptive patches so that a better denoised result is provided. In [6], the statistical 
nearest neighbors distance measurement (SNNDM) was introduced into the NLM filter 
(NLM-SNN) for measuring the distance between two patches so that an improvement is 
obtained in the perceived image quality. In [14], the pixel-pixel unbiased distance, patch-
patch unbiased distance and coupled unbiased distance were used to construct the unbiased 
distance based non-local adaptive means. The tests in [14] show that a better performance 
than the state-of-the art denoising methods can be achieved by this method. All these meth-
ods tap the potential of different similarity measurement ways from different views. But, 
the methods in [4, 5] have a little complex. The method in [14] combines a few unbiased 
distance so that there is more complex. In contrast, the method in [6] is simple and effec-
tive. In addition, in [5, 14], NLM is carried out with the pixel wise scheme. In [4, 6], the 
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patch wise scheme of NLM is implemented. By comparison, the pixel wise implementation 
is simpler and more convenient. So, starting from the SNNDM proposed in [6], this paper 
will propose a novel distance similarity measurement method for the pixel wise NLM by a 
simple design.

It is noted that the proposed method is different from the recent closely related pixel 
wise NLM methods [27–29]. In [27], the center weight (CW) was researched carefully 
and then a wiener filter center weight (WFCW) was proposed. This NLM method is called 
NLM-WFCW. In [28], a multidirectional gradient domain nonlinear diffusion image 
denoising scheme (MGDID) was proposed by introducing the remedy reactor of the step 
size from the view of NLM. In essence, MGDID presented a novel center weight in itera-
tive implementation of NLM. In [29], a two-step iterative NLM scheme (TSNLM) was 
proposed by considering the role of the different center weights. The disadvantage of these 
NLM methods is that they only consider the role of center weight. Furthermore, more 
NLM filters are used to design MGDID in [28] and TSNLM in [29]. This increases the 
complexity of algorithm design and computation. The proposed method is like the original 
NLM in [1] and WFCW in [27], using only one NLM. The novelty of the proposed method 
lies in designing a new similarity measurement method that distinguishes and calculates 
the weights of different pixels.

The main contribution of the proposed method is in: (1) the statistical nearest neigh-
bors distance measurement (SNNDM) is analyzed carefully; (2) to sufficiently consider 
the role of different neighbor pixel including the center pixel, the geometric distance is 
introduced into the computations of the weights of all neighbor pixels including the center 
pixel around the reference noisy pixel; (3) the relation between the parameters is discussed 
deeply; and (4) the tests show that the proposed method is effective by providing desired 
peak signal-to-ratio (PSNR), structural similarity (SSIM) and good visual effect. Further-
more, the proposed method is very simple.

The paper is organized as follows. In Section 2, one provides a detailed description of 
the proposed method. Then, in Section  3, the experimental results and comparisons are 
presented to demonstrate the effectiveness of the proposed method. Finally, one concludes 
this paper in Section 4.

2  The proposed method

In this section, the several aspects of the proposed method are detailed in turn. NLM filter 
is firstly reviewed. Then, the statistical nearest neighbors distance measurement (SNNDM) 
is introduced and analyzed. After that, bilateral thresholding is proposed to compute the 
weight of different pixel. At last, the parameters are discussed carefully.

2.1  Non‑local means filter

For any pixel at (x, y) in the image domain Ω, the observation model has the following 
formulation:

where I(x, y) denotes noisy image, s(x, y)represents original noise free image, and η(x, y) 
is independent and the zero-mean white Gaussian noise of variance σ2. For any pixel of 
interest (x, y), an estimate u(x, y) with the NLM filter is given by:

(1)I(x, y) = s(x, y) + �(x, y)
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where R is a search window around (x, y) and �
(
x, y, x′, y′

)
 is the weights that compare 

the neighborhood patches P(x, y) and P
(
x′, y′

)
 around (x, y) and 

(
x′, y′

)
 , respectively. The 

original weights are defined as:

where  h > 0  is the smoothing parameter controlling the filtering 
degree. ‖‖‖I(P(x, y)) − I

(
P
(
x�, y�

))‖‖‖
2

2,�
 is a weighted Euclidean distance between two image 

patches P(x, y) and P
(
x′, y′

)
 of size 

(
2Lp + 1

)
×
(
2Lp + 1

)(
Lp ≥ 0 is a integer

)
 defined as

where G�(i, j) =
1√
2��

exp
�

i2+j2

2�2

�
 is the Gaussian kernel with the smoothing parameter ρ > 0, 

and the (i, j) varies in the similar window R� . Some alternative strategies have been proposed to 
measure the distance between two different pixels to obtain the high image processing quality 
[4–6, 14]. In term of (3), the computation of the distance between the same two pixels I(x, y) will 
produce the center weight (CW) ω(x, y, x, y), and CW is always 1. This is unreasonable in prac-
tice. So, the CW problem has been discussed in [16, 18, 26–29] and some more effective CWs 
have been presented. In this paper, the proposed weight includes the computation of CW and all 
weights of other neighboring pixels. It is noted that (2) is expression of pixel wise NLM filter. (2) 
is turned into patch wise NLM filter when I

(
x′, y′

)
 is replaced with I

(
P
(
x′, y′

))
 . At this time, 

apart from the aggregation step, the estimate u(P(x, y)) of the noise-free patch of noisy patch is 
obtained. In the patch wise implementations of NLM filter, the weight of the patch I

(
P
(
x′, y′

))
 is 

computed as �
(
x, y, x′, y′

)
 in term of the pixel wise implementation. That is that computation of 

weight of pixel I
(
x′, y′

)
  in the pixel wise NLM is used as computation of weight of patch 

I
(
P
(
x′, y′

))
 in the patch wise NLM.

2.2  Statistical nearest neighbors distance measurement (SNNDM)

If the reference patch P(x, y) and its neighbor P
(
x′, y′

)
 are two noisy replicas of the same 

clean patch, one gets the expectation of the distance.

where.

The above (6) is called the nearest distance. From (5), one can draw a conclusion that the 
expected distance is not zero for two noisy replicas of the same patch. Therefore, for patch 

(2)u(x, y) =

∑
(x� ,y�)∈R

I
�
x�, y�

�
�
�
x, y, x�, y�

�
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�
x, y, x�, y�

�
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−
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h2

�
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wise NLM filter, unlike traditional distance measure method between two patches, the sta-
tistical nearest neighbors distance measurement (SNNDM) is adopted in [6]. According to 
SNNDM, one computes the similarity between patches whose distance from the reference 
patch is instead closed to its expectation. The SNNDM between two patches P

(
x′, y′

)
 and 

P(x, y) is defined as:

In (7), the P
(
x′, y′

)
 must satisfy:

where 
∼
o is 1 for the SNNDM approach. Here, τ ≥ 0is a threshold on P

(
x′, y′

)
 . τensures 

that the enough similar patches can be selected for every P(x, y). The traditional Euclidean 
nearest neighbors distance measurement is a special case of (7) with d2

SNN

(
x, y, x′, y′

)
 when 

∼
o = 0 . In [6], the SNNDM is used to improve the patch wise NLM filter. Compared to the 
nearest neighbors distance measurement (NNDM) NLM filter, the better denoising effect 
is achieved under the case that the fewer neighbor patches in search window are used. The 
details can be found in [6]. Inspired by [6], this paper will develop the weight function 
based on the distance measurement in the pixel wise NLM filter (2).

2.3  Bilateral thresholding

The proposed bilateral thresholding weight function is produced from three perspectives. 
The rationality of SNNDM will be incorporated into the new design of the weight function 
for the pixel wise NLM.

As mentioned earlier, SNNDM is produced by discussing two noisy replicas of the same 
clean patch. On the contrary case, NNDM is proper for two noisy image patches containing 
the same noise patch. At this time, d2

(
x, y, x′, y′

)
 will embody the ideal distance between 

P(x, y) and , but SNNDM will bring bigger distance error because some corresponding 
patches may have been abandoned. For example, for the case that the d2

SNN

(
x, y, x′, y′

)
> 𝜏 

but also d2
(
x, y, x�, y�

)
< −𝜏 +

∼
o ⋅ 2𝜎2 , one should pay more attention since as mentioned 

above that the pixel with smaller d2
(
x, y, x′, y′

)
 maybe has more contributions for NLM fil-

ter. In fact, the weight of the unselected (abandoned) patch is zero for SNNDM and NNDM 
for the patch wise NLM filter. This irrationality should not appear in the proposed pixel 
wise NLM filter. All neighborhood pixels should contribute to denoising. The roles of dif-
ferent pixels should be reflected by different weights. This is the fist perspective producing 
the proposed weight.

In fact, after a series of manipulations, the non-local scheme (2) can be re expressed as:

where C(x, y) = ∑
(x� ,y� )∈R

�
�
x, y, x�, y�

� . It can be seen that (9) can be considered as one step 

multidirection gradient domain filter scheme. In (9), the information of multiple 
directions is used. The multidirection window is shown in Fig.  1. The multidirec-
tional gradient domain image denoising (MGDID) presented the good denoised 
results [28]. Let represents the differences of different distances in the different 

(7)d2
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(
x, y, x�, y�

)
= max

(
d2
(
x, y, x�, y�

)
− 2�2, 0

)

(8)d2
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(
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|||d

2
(
x, y, , x�, y�

)
− 2�o𝜎2||| < 𝜏

(9)u(x, y) = I(x, y) +
1

C(x, y)

�
(x� ,y�)∈N(x,y)

e
−
‖I(P(x,y))−I(P(x� ,y� ))‖22,�

h2
�
I
�
x�, y�

�
− I(x, y)

�
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direction (Δx, Δy) centered at (x, y) in the “square” search window, respectively. 
∇I(Δx, Δy)(x, y) is called gradient coefficient at (x, y) with directions (Δx, Δy). In [30], 
one implemented the local adaptive Wiener filter in the gradient domain because 
the gradient coefficients of image can be modeled as zero-mean Gaussian random 
variables with high local correlation. The gradient coefficient variance is estimated 
by using an approximate maximum likelihood (ML). So, the “signal” variance of 
the gradient coefficient of the latent clean image is expressed as:

where ο ≥ 0, and the q(x, y) in the size (2Lp + 1) × (2Lp + 1) local window is computed as 
d2
(
x, y, x′, y′

)
  by (6). Here, (11) is called the “signal” variance distance measurement 

(SVDM). From NLM filtering (2) and gradient domain filtering (9), one can draw a con-
clusion d2

SVDM

(
x, y, x′, y′

)
 is another statistical distance measurement. The d2

SVDM

(
x, y, x′, y′

)
 

is zero when q(x, y) ≤ 2οσ2 for patch P
(
x′, y′

)
  and P(x, y). But, in SNNDM, 

d2
SNNDM

(
x, y, x′, y′

)
 is considered infinity when d2

SNN

(
x, y, x�, y�

)
=
|||d2

(
x, y, x�, y�

)
− 2

∼
o𝜎2||| > 𝜏 for patch 

P
(
x′, y′

)
  and P(x, y). This means that the patch (pixel) with d2

SNN

(
x, y, x′, y′

)
> 𝜏 will be 

abandoned in the process of denoising .

(10)∇I(�x,�y)(x, y) = I(x + �x, y + �y) − I(x, y) = I
(
x�, y�

)
− I(x, y)

(11)d2
SVDM

(
x, y, x�, y�

)
= max

(
q(x, y) − 2o�2, 0

)

Fig. 1  The “square” search window
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The difference with SNNDM (7) and SVDM (11) lies mainly in that the two meas-
urements have different expressions for d2

SNN

(
x, y, x′, y′

)
> 𝜏 . In fact, both two different 

expressions have some disadvantages. For SNNDM, the disadvantage is that the unselected 
patch (pixel) is not considered as mentioned earlier. For SVDM, the disadvantage is also 
obvious. That is that the distance between two clean patches should all not be always set to 
zero when q(x, y) ≤ 2οσ2. In practice, two clean patches have difference on average. This is 
the second perspective producing the proposed weight.

The above analysis gave birth to a new weight based on the distance measurement. It is 
noted that if �

(
x, y, x′, y′

)
 in (2) is turned into:

and then NLM filter is changed into bilateral filtering in [20]. In (12), h2
s
 and h2 are two 

different smoothing parameters used in spatial and range weights. h2 in bilateral filtering 
plays the same role as that in NLM filter. Compared with bilateral filtering (12), NLM only 
computes the range weight. In addition, the range distance between two pixels takes into 
account two image patches instead of two single pixels. In NLM filter, the spatial distance 
is discarded. In the proposed method, the role of the spatial distance will be brought into 
full play. This is the third perspective producing the proposed weight. The pixel close to 
the center pixel in the spatial distance will have greater weight, and which has achieve suc-
cess in bilateral filtering.

The proposed weight function adopts the following form:

where.

From (13), the proposed distance measurement is as follow as:

Here, for the sake of the convenience, the smooth parameter h2
s
 and h2 are incorporated 

into (15). Compared to the traditional NLM filter, the proposed distance measurement 
includes both spatial distance measurement and range distance measurement based on the 
pixel intensities. Besides this, compared to the “signal” variance distance measurement 
d2
SVDM

(
x, y, x′, y′

)
 , a key difference lies in that the Gaussian weighted Euclidean distance 

between two image patches is used. Compared to the SNNDM d2
SNNDM

(
x, y, x′, y′

)
 with (7), 

the proposed distance aims to employ the difference of the different pixels in the neighbor 
of the pixel at (x, y) for the pixel wise NLM filter. And all the neighbors pixels are used. 
The patch wise NLM filter with (7) is a two-step algorithm in essence. The first step is the 
weighted computation based on the similar patches. The second step is the aggregation of 
multiple estimates of the reference noisy pixel. The proposed pixel wise NLM filter is one 

(12)�bi

(
x, y, x�, y�

)
= exp

(
−

(
x − x�

)2
+
(
y − y�

)2
h2
s

)
exp

(
−

(
I(x, y) − I

(
x�, y�

))2
h2

)

(13)
�pr

(
x, y, x�, y�

)
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(
−

(
x − x�

)2
+
(
y − y�

)2
h2
s

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�s(x,y,x

� ,y�)

exp

(
−
d2
pr

(
x, y, x�, y�
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h2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�r(x,y,x
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(14)d2
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(
x, y, x�, y�

)
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(‖‖I(P(x, y)) − I(P(x�, y�))‖‖22,� − opr�
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)

(15)d2
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(
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= −

[
ln�s

(
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)
+ ln�r

(
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step weighted method. The proposed method employing all neighbor pixels will demon-
strate the satisfied performance.

Currently, the remained problem is the determination of the weight of the center 
pixel (CW) at (x, y). The proposed weight �pr

(
x, y, x′, y′

)
  is product of the spatial ker-

nel �s

(
x, y, x′, y′

)
  . For the CW ωpr(x, y, x, y), both ϕs(x, y, x, y) and ϕr(x, y, x, y) are 1 in 

term of (13). As a matter of fact, the CW plays an important role for the performance 
of NLM filter. So, some optimal weights are presented in the recent years. In [27], the 
Wiener filter center weight (WFCW) achieves the very good effect. For the proposed 
method, the proposed center pixel distance is.

where  R0 = R − (x, y). The signal variance at (x, y) is computed as:

At last, the range kernel of the proposed CW is expressed as:

The constant v is used to tune the denoising extent in local Wiener filter ϕr(x, y, x, y). 
As with [27], (18) shows ϕr(x, y, x, y) is larger in the flat domain, and smaller in the edge 
and other characteristic areas. This will be conducive to the preservation of image fea-
tures in the process of denoising.

The proposed complete weight function is produced as:

And then, the restored image with the proposed method is computed as:

The flowchart of the proposed method is shown in Fig.  2. It clearly and concisely 
indicates that the key in the proposed method lies in the calculation of the weight values 
in term of (19).

(16)d
2

pr
(x, y, x, y) =

1

∣ R0 ∣

∑
(x� ,y�)∈R0

‖‖I(P(x, y)) − I(P(x�, y�))‖‖22,�

(17)d2
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(x, y, x, y) = max

(
d
2
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(x, y, x, y) − v�2, 0

)
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v�2
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(x, y, x, y) + v�2
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�
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�
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�

v�2

d2
pr
(x,y,x,y)+v�2
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�
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�

(20)u(x, y) =
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I
�
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�
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�
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�

∑
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Fig. 2  The flowchart of the proposed modified NLM method
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2.4  Parameters

In the test, one takes one image as test image. The optimal parameters by hand can be 
obtained for the test image. And then, the optimal parameters of other images can be 
roughly considered to be around the optimal parameters of the test image. This is because 
each natural image is composed of similar features such as smooth domains, boundaries, 
textures, and details and etc. Thus, the parameters of other images can be roughly obtained. 
This strategy has been successfully used in the gradient domain methods in [28, 30].

Many parameters are involved in the proposed method. They include the size of 
search widow and similar window, the smoothing parameter h2

s
 of �s

(
x, y, x′, y′

)
 and h2 of 

�r

(
x, y, x′, y′

)
 , the offset parameter οpr in (14), the smoothing parameter ρ of Gaussian ker-

nel, etc.
For the sake of fair comparison, the size of search window and similar window is set to 

11 × 11 which is the same as selection of [27]. Then selection of Gaussian kernel is con-
sidered. If the smoothing parameter ρ of Gaussian kernel is too small, it cannot achieve the 
proper filtering effect, and if the smoothing parameter ρ of Gaussian kernel is too large, it 
will blur the image features. After a lot of attempts, the smoothing parameter ρ of Gaussian 
kernel is taken as 2 by hand. Based on which, Gaussian kernel Gρ is produced by the MAT-
LAB file “fspecial”. In the test, it is found that the difference between results obtained by 
using the proposed Gaussian kernel and results obtained by Gaussian kernel used by Man-
jon Herrera and Buades is subtle for the proposed modified NLM method, and due to fair 
comparison, the Gaussian kernel used by Manjon Herrera and Buades in [15] is adopted in 
the proposed modified NLM. Gaussian kernel used by Manjon Herrera and Buades avoids 
selection of the smoothing parameter ρ of Gaussian kernel. The details can be found in [15].

As for v in (19), it is taken to 2. This is because that d
2

pr
(x, y, x, y) is average of noisy 

gradient coefficient of different direction and different distance gradient domain in neigh-
bor around (x, y). From [30], the variance of Gaussian noise component contained in every 
noisy gradient coefficient is 2σ2. For so, 2 is a reasonable selection.

How to determine the value of the smoothing parameter h2
s
 , h2 and the offset parameter 

οpr? Let h2
s
= oshs0 and h2 = οrhr0(hs0 and hr0 are the initial value). Here, the offset param-

eter οs and οr is used to tune the corresponding parameter value. And then, one presents a 
simple fitted approach to describe οpr, οs and οr. Assume that these offset parameters vary 
linearly with noise level. The function model is as follows:

where f0 is preset optimal value under some noise level σ0 for some image. The (21) is used 
to get the corresponding functions of different offset parameter οpr, οs and οr.

Here, the peppers image is taken to obtain the initial values and optimal values. Let 
σ0 = 10, under this noise level, the corresponding parameters are tuned. For example, 
hs0 and hr0 are 40 and σ2, respectively. For οpr, f0 = οpr0 = 1. For οs, f0 = οs0 = 1. For οr, 
f0 = οr0 = 1. To determine the θ, let σ = 25. The corresponding οpr, οs and οr can be pre-
sented. And then, the different θ is determined. For οpr, θ = 0.08. For οs, θ =  − 0.02. For οr, 
θ =  − 0.02. Three functions are shown in the following, respectively.

(21)f = f0 + �
(
� − �0

) (
f ∈

{
opr, os, or

})

(22)opr = 1 + 0.08(� − 10)

(23)os = 1 − 0.02(� − 10)
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The function (22) demonstrates that οpr increases as σ increases. At this time, 
d2
pr

(
x, y, x′, y′

)
 decreases. This means more d2

pr

(
x, y, x′, y′

)
 is zero. More pixels around (x, y) 

will have the same value 1 of �r

(
x, y, x′, y′

)
 for higher noise level. At this time, the proper 

οs and οr will tune the denoising contribution of these pixels with the same d2
pr

 . The differ-
ences of pixels will be fully utilized. Some important notations in the proposed method are 
summarized in Table 1.

3  Experimental results

The aim of this section is to validate the performance of the proposed method. The com-
parison results are obtained by some NLM based methods using a NLM filter. They include 
the pixel wise methods using a NLM filter such as NLM-Stein [18], NLM-LJS [26], NLM-
Max [15], NLM-WFCW [27] and NLM-Fov [5] since the proposed method is a kind of 
pixel wise design using a NLM filer. Among these methods, NLM-Fov is a state-of-the-art 
method for NLM filter. To further verify the performance of the proposed method and also 
for the proposed method is variant of NLM-SNN, the patch wise NLM filter NLM-SNN 
[6] is also used to compare. All the simulations are performed under the MATLAB R2017a 
environment. The code of the proposed NLM comes from NLM-Max [15] and can also 
originate from NLM-LJS [25]. The performance is similar. Therefore, the result is produced 
by modified code only from [15]. The main difference lies in that the running time is dif-
ferent. The 10 grayscale test images including Cameraman (256 × 256), Lena (512 × 512), 
Montage (256 × 256), House (256 × 256), Pepper (256 × 256), Barbara (512 × 512), Boat 
(512 × 512), Hill (512 × 512), Couple (512 × 512) and Fingerprint (512 × 512) are used to 
evaluate subjective and objective performance of the different NLM filter.

For the proposed method, the parameters have been determined in Section  2.4. For 
NLM-Stein, NLM-LJS and NLM-WFCW, as with [27], for the smoothing parameter h, 
the value is σ. The search window and similar window is the same as that of the proposed 
method. The used Gaussian kernel is that used by Manjon Herrera and Buades in [15]. 
For NLM-Fov and NLM-SNN, the parameters of each method have been set according to 
the values given by their respective authors in the corresponding referred codes. Only for 
NLM-SNN, his taken to σ so that the better result is get.

(24)or = 1 − 0.02(� − 10)

Table 1  Some important notations for the proposed method

Notation Meaning

οpr It is the offset parameter in (14).
οs It is the offset parameter in h2

s
= oshs0 in the spatial kernel.

οr It is the offset parameter in h2 = οrhr0 in the range kernel.
θ It is the parameter in the proposed parameter tuned model (21). It varies with οpr, οs and οr.
d2
pr

It is the distance expression in the proposed range kernel between pixels.
ϕr It is the proposed range kernel.
ϕs It is the proposed spatial kernel.
ωpr It is the proposed weight.
v It is concerned with the computation of CW in (19). It is set to 2.
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The denoising performance is measured in term of the peak signal-to-ratio (PSNR) and 
structural similarity (SSIM) index. PSNR measures the intensity similarity between the 
noise-free image s and the denoised image u. It is defined as.

where MSEis the mean squared error between the original noise-free image s and the 
reconstructed u. SSIM [23] can understand the structure between the noise-free image s 
and the denoised image u. It is defined as.

where �si
 and �ui

 are the average of local image patch si and ui, respectively. �2
si
 , �2

ui
 are vari-

ances and �siui is the covariance of si and ui. c1 and c2 are constants. Author Wang et al. of 
[23] suggests using the down sampling version SSIM. The corresponding Matlab code 
comes from https:// ece. uwate rloo. ca/ ~z70wa ng/ resea rch/ ssim/.

3.1  Role of spatial kernel ϕs

The denoised image with ωcpr = ϕr is yielded from an estimate using the proposed method. 
Although the noise is removed, excessive smoothness affects the visual effect in a sense 
(see Fig. 3b). Then the denoised image with ωcpr = ϕsϕr avoids the disadvantage of exces-
sive smoothness. The result in Fig. 3c is more natural than that in Fig. 3b (see the cap-
sicum in the lower part of Figs.  3a, b and c). In addition, the PSNR and SSIM values 
of the denoised image in Fig.  3b are 28.45  dB and 0.8210, respectively; the PSNR and 
SSIM values of the denoised image in Fig. 3c are 28.67 dB and 0.8341, respectively. In a 
word, compared to the result without spatial kernel, the results using the proposed method 
with spatial kernel have different degrees of ascension in term of subjective and objective 
performance.

(25)PSNR = 10log10

(
2552

MSE

)
dB

(26)SSIM(s, u) =
1

N1N2

N1N2∑
i=1

(
2�si

�ui
+ c1

)(
2�siui + c1

)
(
�2
si
+ �2

ui
+ c1

)(
�2
si
+ �2

ui
+ c2

)

Fig. 3  Comparison of denoised result without ϕsand denoised result with ϕs using the proposed method for 
Peppers (256 × 256). a Original image; b denoised image without ϕs; c denoised image with ϕs

https://ece.uwaterloo.ca/~z70wang/research/ssim/
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3.2  Comparison of the proposed method and the related NLM methods

Tables 2, 3 and 4 present the PSNR and SSIM results of NLM-Stein, NLM-LJS, NLM-
Max, NLM-WFCW and the proposed method forσ = 10, 20, 30, respectively. One can find 
that the proposed method always outperforms other several methods in PSNR and SSIM 
in almost all cases. Except for Fingerprint and House at σ = 10, the proposed method is 
slightly inferior to the highest PSNR or SSIM among the obtained results. For Fingerprint, 
in PSNR performance, 31.09 dB with the proposed method is inferior to 31.19 dB with 
NLM-LJS. For House, in SSIM performance, 0.8963 with the proposed method is inferior 
to 0.8967 dB with NLM-LJS. However, in all other cases, the proposed method achieves 
the best results. Furthermore, the advantage of the proposed method becomes more obvi-
ous when the noise level increases.

Table  5 presents PSNR and SSIM results averaged over all the test images for every 
noise level σ (σ ∈ {10, 20, 30}) and for all three noise levels for Proposed and several other 
NLM methods. It is noted that the center weight strategy of the proposed method comes 
from my previous work NLM-WFCW proposed in 2021. The comparison with NLM-
WFCW is an ablation study. The comparison shows that the proposed method has weak 
improvement in noise level 10, while the improvement has become increasingly signifi-
cant in noise levels 20 and 30. At the noise 30, compared to NLM-WFCW, the averaged 
gains are 0.40 dB in PSNR and 0.0128 in SSIM, respectively. For all three noise levels, 
compared to NLM-WFCW, the averaged gains are 0.24 dB in PSNR and 0.0085 in SSIM, 
respectively.

In a word, compared to other methods, the proposed method is more stable and excel-
lent in PSNR and SSIM.

Table 2  PSNR and SSIM values on Proposed and several other NLM methods for σ = 10

Index NLM-Stein NLM-LJS NLM-Max NLM-WFCW Proposed

Cameraman PSNR
SSIM

32.38
0.8996

33.02
0.9094

31.39
0.8948

33.14
0.9149

33.18
0.9165

Lena PSNR
SSIM

34.63
0.9531

35.12
0.9612

35.14
0.9594

35.21
0.9607

35.30
0.9627

Montage PSNR
SSIM

34.65
0.9446

34.88
0.9385

31.79
0.9495

35.41
0.9511

35.46
0.9519

House PSNR
SSIM

34.81
0.8812

35.31
0.8967

35.45
0.8938

35.49
0.8950

35.54
0.8963

Peppers PSNR
SSIM

33.02
0.9030

33.49
0.9067

33.39
0.9150

33.91
0.9186

33.98
0.9204

Barbara PSNR
SSIM

33.20
0.9646

33.75
0.9690

33.73
0.9686

33.85
0.9700

33.90
0.9712

Boat PSNR
SSIM

32.14
0.9342

32.92
0.9522

32.80
0.9466

33.00
0.9504

33.12
0.9540

Hill PSNR
SSIM

31.88
0.9129

32.65
0.9408

32.40
0.9310

32.78
0.9371

32.89
0.9417

Couple PSNR
SSIM

32.26
0.9351

32.89
0.9520

32.64
0.9468

33.04
0.9503

33.16
0.9541

Fingerprint PSNR
SSIM

30.19
0.9868

31.19
0.9871

31.01
0.9853

31.08
0.9874

31.09
0.9874
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Table 3  PSNR and SSIM values on Proposed and several other NLM methods for σ = 20

Index NLM-Stein NLM-LJS NLM-Max NLM-WFCW Proposed

Cameraman PSNR
SSIM

28.62
0.8136

29.32
0.8373

29.19
0.8272

29.57
0.8309

29.63
0.8399

Lena PSNR
SSIM

31.30
0.9071

31.62
0.9194

31.94
0.9198

31.97
0.9207

32.28
0.9269

Montage PSNR
SSIM

30.56
0.8980

30.58
0.8818

30.15
0.8999

31.56
0.8992

31.63
0.9052

House PSNR
SSIM

31.78
0.8383

31.82
0.8338

32.50
0.8432

32.51
0.8416

32.67
0.8468

Peppers PSNR
SSIM

29.59
0.8464

29.78
0.8415

30.37
0.8593

30.55
0.8596

30.73
0.8681

Barbara PSNR
SSIM

29.53
0.9119

29.89
0.9261

30.18
0.9259

30.25
0.9274

30.50
0.9335

Boat PSNR
SSIM

28.71
0.8489

29.22
0.8823

29.60
0.8802

29.72
0.8840

30.07
0.8997

Hill PSNR
SSIM

28.36
0.8130

29.05
0.8572

29.38
0.8569

29.53
0.8619

29.91
0.8799

Couple PSNR
SSIM

28.21
0.8450

28.79
0.8775

29.10
0.8782

29.29
0.8827

29.71
0.8996

Fingerprint PSNR
SSIM

26.33
0.9206

26.87
0.9468

27.43
0.9455

27.49
0.9480

27.73
0.9569

Table 4  PSNR and SSIM values on Proposed and several other NLM methods for σ = 30

Index NLM-Stein NLM-LJS NLM-Max NLM-WFCW Proposed

Cameraman PSNR
SSIM

26.89
0.7723

27.16
0.7736

27.52
0.7694

27.77
0.7700

27.86
0.8013

Lena PSNR
SSIM

29.07
0.8628

29.39
0.8778

29.82
0.8796

29.82
0.8796

30.34
0.8876

Montage PSNR
SSIM

27.89
0.8535

28.03
0.8269

28.63
0.8444

29.31
0.8425

29.53
0.8821

House PSNR
SSIM

29.03
0.7907

29.18
0.7756

29.99
0.7862

29.97
0.7832

30.44
0.8157

Peppers PSNR
SSIM

27.00
0.7928

27.33
0.7803

28.21
0.8046

28.28
0.8037

28.69
0.8341

Barbara PSNR
SSIM

26.92
0.8569

27.34
0.8771

27.70
0.8746

27.70
0.8790

28.03
0.8884

Boat PSNR
SSIM

26.52
0.7836

27.05
0.8208

27.56
0.8240

27.58
0.8253

28.08
0.8423

Hill PSNR
SSIM

26.71
0.7458

27.22
0.7921

27.66
0.7986

27.68
0.8002

28.09
0.8174

Couple PSNR
SSIM

25.80
0.7588

26.43
0.8053

26.86
0.8094

26.90
0.8111

27.40
0.8320

Fingerprint PSNR
SSIM

23.67
0.8400

24.31
0.8901

25.05
0.8917

25.06
0.8927

25.61
0.9144
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Figures  4 and 5 present the visual comparisons of results of NLM-Stein, NLM-LJS, 
NLM-Max, NLM-WFCW and the proposed method.

In Fig. 4, noisy Barbara (512 × 512) image with σ = 20 is processed. Figures 4c, d, e, f 
and g are the denoised results with NLM-Stein, NLM-LJS, NLM-Max, NLM-WFCW and 
the proposed method, respectively. Figure 4h shows the bright dot block on table legs in 
the lower left corner with original Barbara, NLM-LJS, NLM-WFCW and the proposed 
method in turn from left to right. One notices that there is a rectangular area in the lower 
right corner of Fig. 4g for the proposed method. In Figs. 4c and e, the dot block in this area 
is invisible compared to that in Fig. 4g. This is because the smooth strength in the edges 
and details domain for the proposed method is reasonably reduced in the whole denoising 
process compared to NLM-Stein and NLM-Max. For NLM-LJS, NLM-WFCW and the 
proposed method, the area is well preserved. But, for the bright dot block on table legs in 
the lower left corner of Fig. 4a, the presentations with NLM-LJS, NLM-WFCW and the 
proposed method have some differences. The result with proposed method is more faithful 
to the original image. For example, for the original image, the mean and standard devia-
tion of the bright dot block is 46.62 and 22.81, respectively. For the result Fig. 4d with 
NLM-LJS, the mean and standard deviation of the bright dot block is 46.08 and 10.83, 
respectively. For the result Fig.  4f with NLM-WFCW, the mean and standard deviation 
of the bright dot block is 44.78 and 10.97, respectively. For the result Fig.  4g with the 
proposed method, the mean and standard deviation of the bright dot block is 45.61 and 
13.31, respectively. It can be see that the proposed method is closer to the original image 
features in term of standard deviation compared to NLM-LJS and NLM-WFCW. Although 
the mean with NLM-LJS is closer to that of original image, there are many obvious noise 
points in the result with NLM-LJS (see Fig. 4h). Visually, the bright dot block on table 
legs with the proposed method is brighter in comparison with that with NLM-WFCW and 
NLM-LJS. And noise is handled well with the proposed method (see Fig. 4h).

From Fig. 4, the proposed method is better in the preservation of image features. This 
merit is shown in Fig.  5. In which, noisy Peppers image with σ = 10 is processed. Fig-
ures.  5c, d, e, f and g are the denoised results with NLM-Stein, NLM-LJS, NLM-Max, 
NLM-WFCW and the proposed method, respectively. One can find that there is a rectan-
gular area in the lower left corner of Fig. 5g for the proposed method. In Fig. 5e, the area 
emerges in the same position, but this area is over-smoothed compared to that in Fig. 5g. 
For NLM-Stein and NLM-LJS, the area is well preserved. But, there are the left noise in a 
lot of other areas in Figs. 5c and d because of the insufficient denoising. For NLM-WFCW 
and the proposed method, the good visual effect is achieved.

Table 5  PSNR and SSIM results averaged over all the test images for every noise level σ and for all three 
noise levels for Proposed and several other NLM methods

σ Index NLM-Stein NLM-LJS NLM-Max NLM-WFCW Proposed

10 PSNR
SSIM

32.92
0.0.9315

33.52
0.9414

32.79
0.9391

33.69
0.9436

33.76
0.9456

20 PSNR
SSIM

29.30
0.8643

29.69
0.8804

29.98
0.8836

30.24
0.8856

30.49
0.8957

30 PSNR
SSIM

26.95
0.8061

27.34
0.8220

27.90
0.8283

28.01
0.8387

28.41
0.8515

Average PSNR
SSIM

29.72
0.8673

30.19
0.8812

30.23
0.8830

30.65
0.8891

30.89
0.8976
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In a word, compared to other methods, the proposed method can better preserve tex-
tures, details and remove the noise. This is because the difference of pixels is used suffi-
ciently in the proposed method.

NLM-Max is a classical method, and other NLM filters are produced by replacing 
the center weight (CW) of NLM-Max. Only for the proposed method, the spatial ker-
nel need also be computed. Therefore, compared to the NLM-Max, for each pixel, the 
proposed method need only mainly a few addition and product operations in calculating 

Fig. 4  Comparison of the restoration results from the different methods. Zoom into file for a better view. 
a Original Barbara (512 × 512) image; b noisy image (σ = 20); c-g shows restored Barbara images using 
NLM-Stein, NLM-LJS, NLM-Max, NLM-WFCW and the proposed method, respectively; h shows the 
bright dot block on table legs in the lower left corner with original Barbara, NLM-LJS, NLM-WFCW and 
the proposed method in turn from left to right
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the variance of pixel in the proposed CW and spatial kernel (please see Eq. (19)), so the 
computational time increment for the proposed method is negligible. Here, for NLM-
Max and the proposed method, the average running time is measured by code from 
[15]. For example, for the size 256 × 256 and 512 × 512 image, the running times with 
NLM-Max are 20.12 s and 80.33 s, respectively. The running times with the proposed 
method are 20.13 s and 80.34 s, respectively. It can be said that the proposed method 
has achieved good performance with little increase in computing time.

Fig. 5  Comparison of the restoration results from the different methods. Zoom into file for a better view. 
a Original Peppers (256 × 256) image; b noisy image (σ = 10); c-g shows restored Peppers images using 
NLM-Stein, NLM-LJS, NLM-Max, NLM-WFCW and the proposed method, respectively
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3.3  Comparison of the proposed method and two state‑of‑the‑art NLM methods

To further verify the effectiveness of the proposed method, two state-of-the-art NLM filters 
are used to compare. Here, the compared code presented by the corresponding authors is 
written in a similar form to that of [25]. For the sake of fair comparison, the running time 
is measured by modified code from [25] for the proposed method.

Figures 6, 7 and Tables 6 and 7 present the comparative results between NLM-Fov and 
Proposed. Visually, the result with NLM-Fov looks smoother in the case of shrinking and 
appears many minor false details in case of magnification (see Figs. 6 and 7). Although 
the proposed method show the block effects, it better preserves the contrast of structure, 
has less artifacts around edges and looks more natural (see the capsicum in the lower 
part of Figs. 7a, b and c). In a word, two methods have their own advantages. These have 
been embodied in PSNR and SSIM in Tables 6 and 7. The performance of two methods 
is comparative. Although the foveated NLM filter has shown the state-of-the-art perfor-
mance, the current research demonstrates that the proposed window based NLM filter by 
specific design also can compete with the foveated NLM filter. Furthermore, the proposed 

Fig. 6  Comparison of the restoration results from NLM-Fov and Proposed for noise level σ = 20. Zoom into 
file for a better view. a Original House (256 × 256) image; b-c shows restored House images using NLM-
Fov and the proposed method, respectively

Fig. 7  Comparison of the restoration results from NLM-Fov and Proposed for noise level σ = 30. Zoom into 
file for a better view. a Original Peppers (256 × 256) image; b-c shows restored Peppers images using NLM-
Fov and the proposed method, respectively



7412 Multimedia Tools and Applications (2024) 83:7395–7416

1 3

method can hardly increase the calculation time compared with NLM-Max. But NLM-Fov 
increases the calculation time by over 50% compared with NLM-Max (For fair compari-
son, the implementation by NLM-Max comes from code of NLM-Fov). This is because 
that the proposed method only uses a Gaussian filter in the computation of weight but 
NLM-Fov employs more filters in essence.

Figures  8, 9 and Tables  8 and 9 present the comparative results between NLM-SNN 
and Proposed. Figure 8 with the proposed method produces more obvious artifacts around 
the edges (see “Hello World” in Fig. 8c). But, Fig. 9c with proposed method better pre-
serves the features and contrasts in camera compared to Fig. 9b with NLM-SNN. Likewise, 
from Tables 8 and 9, these have been embodied in PSNR and SSIM. In general, the perfor-
mance of the two methods is comparable. They have their own characteristics and strength. 
Furthermore, the proposed method can produce the result with less time. For NLM-SNN, 

Table 6  PSNR and SSIM values on Proposed and NLM-Fov for σ = 10, 20, 30

Index NLM-Fov Proposed NLM-Fov Proposed NLM-Fov Proposed

σ 10 20 30
Cameraman PSNR

SSIM
31.70
0.9064

33.18
0.9165

29.26
0.8396

29.63
0.8399

27.81
0.7931

27.86
0.8013

Lena PSNR
SSIM

35.06
0.9633

35.30
0.9627

32.43
0.9315

32.28
0.9269

30.68
0.9006

30.34
0.8876

Montage PSNR
SSIM

33.62
0.9496

35.46
0.9519

30.59
0.9093

31.63
0.9052

29.00
0.8698

29.53
0.8821

House PSNR
SSIM

35.41
0.8977

35.54
0.8963

32.90
0.8526

32.67
0.8468

31.13
0.8176

30.44
0.8157

Peppers PSNR
SSIM

33.38
0.9178

33.98
0.9204

30.51
0.8667

30.73
0.8681

28.68
0.8225

28.69
0.8341

Barbara PSNR
SSIM

33.60
0.9714

33.90
0.9712

30.31
0.9358

30.50
0.9335

27.97
0.8935

28.03
0.8884

Boat PSNR
SSIM

32.85
0.9554

33.12
0.9540

30.12
0.9018

30.07
0.8997

28.35
0.8521

28.08
0.8423

Hill PSNR
SSIM

32.82
0.9455

32.89
0.9417

30.07
0.8816

29.91
0.8799

28.44
0.8267

28.09
0.8174

Couple PSNR
SSIM

32.77
0.9566

33.16
0.9541

29.93
0.9067

29.71
0.8996

27.96
0.8529

27.40
0.8320

Fingerprint PSNR
SSIM

30.37
0.9851

31.09
0.9874

27.52
0.9609

27.73
0.9569

25.71
0.9249

25.61
0.9144

Table 7  PSNR and SSIM results 
averaged over all the test images 
for every noise level σ and for all 
three noise levels for Proposed 
and NLM-Fov

σ Index NLM-Fov Proposed

10 PSNR
SSIM

33.16
0.9449

33.76
0.9456

20 PSNR
SSIM

30.36
0.9005

30.49
0.8957

30 PSNR
SSIM

28.57
0.8554

28.41
0.8515

Average PSNR
SSIM

30.70
0.9002

30.89
0.8976



7413Multimedia Tools and Applications (2024) 83:7395–7416 

1 3

selection of patch and aggregation of multiple estimates costs more times. For example, 
for the size 256 × 256 and 512 × 512 image, the average running times with the proposed 
method are about 0.70 s and 2.68 s, respectively. But, for the size 256 × 256 and 512 × 512 
image, the average running times with NLM-SNN are 9.02  s and 62.05  s, respectively. 
Obviously, the proposed method saves plenty of time.

By comparison, the proposed method is superior to the several excellent NLM filters 
such as NLM-Stein, NLM-LJS, NLM-Max and NLM-WFCW in subjective and objective 
performance. At the same time, the proposed method is also a state-of-the-art NLM filter 
by the comparative results with NLM-Fov and NLM-SNN.

4  Conclusion

By exploring the spatial kernel to remedy the statistical nearest neighbor distance meas-
urement (SNNDM) in the weight computation in NLM filter, in this paper one proposes 
a bilateral thresholding to calculate the weight of each pixel in neighbor at the reference 

Fig. 8  Comparison of the restoration results from NLM-SNN and Proposed for noise level σ = 10. Zoom 
into file for a better view. a Original Montage (256 × 256) image; b-c shows restored Montage images using 
NLM-SNN and the proposed method, respectively

Fig. 9  Comparison of the restoration results from NLM-SNN and Proposed for noise level σ = 30. Zoom 
into file for a better view. a Original Cameraman (256 × 256) image; b-c shows restored Cameraman images 
using NLM-SNN and the proposed method, respectively
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noisy pixel. In order to make full and proper use of the differences of different pix-
els, the center weight and other weights are also treated differently. Some simulations 
are taken on several grayscale natural images to investigate the performance of the pro-
posed method. The results prove the proper and simple weight function design can bring 
superiority with negligible differences in calculation time to other related NLM filter 
approaches such as NLM-Stein, NLM-LJS, NLM-Max and NLM-WFCW in PSNR, 
SSIM and visual performance. Furthermore, the proposed method is on par with the-
state-of-the-art NLM methods such as NLM-Fov and NLM-SNN in PSNR, SSIM and 
visual comprehensive performance, but the proposed method can save plenty of running 
time. In addition, it is noted that the proposed pixel wise NLM method originates from 
the patch wise SNNDM and other analysis. In the future, one will seek more appropriate 

Table 8  PSNR and SSIM values on Proposed and NLM-SNN for σ = 10, 20, 30

Index NLM-SNN Proposed NLM-SNN Proposed NLM-SNN Proposed

σ 10 20 30
Cameraman PSNR

SSIM
33.59
0.9197

33.18
0.9165

29.73
0.8399

29.63
0.8399

27.68
0.7723

27.86
0.8013

Lena PSNR
SSIM

35.18
0.9615

35.30
0.9627

32.00
0.9203

32.28
0.9269

30.01
0.8797

30.34
0.8876

Montage PSNR
SSIM

36.40
0.9572

35.46
0.9519

32.38
0.9069

31.63
0.9052

29.69
0.8492

29.53
0.8821

House PSNR
SSIM

35.78
0.9025

35.54
0.8963

32.63
0.8360

32.67
0.8468

30.48
0.7808

30.44
0.8157

Peppers PSNR
SSIM

34.13
0.9184

33.98
0.9204

30.45
0.8561

30.73
0.8681

28.26
0.7968

28.69
0.8341

Barbara PSNR
SSIM

33.98
0.9704

33.90
0.9712

30.73
0.9361

30.50
0.9335

28.51
0.8934

28.03
0.8884

Boat PSNR
SSIM

33.05
0.9536

33.12
0.9540

29.77
0.8903

30.07
0.8997

27.77
0.8287

28.08
0.8423

Hill PSNR
SSIM

32.83
0.9412

32.89
0.9417

29.65
0.8666

29.91
0.8799

27.86
0.8000

28.09
0.8174

Couple PSNR
SSIM

33.29
0.9561

33.16
0.9541

29.55
0.8914

29.71
0.8996

27.39
0.8239

27.40
0.8320

Fingerprint PSNR
SSIM

30.79
0.9876

31.09
0.9874

27.29
0.9523

27.73
0.9569

25.30
0.9127

25.61
0.9144

Table 9  PSNR and SSIM results 
averaged over all the test images 
for every noise level σ and for all 
three noise levels for Proposed 
and NLM-SNN

σ Index NLM-SNN Proposed

10 PSNR
SSIM

33.91
0.9468

33.76
0.9456

20 PSNR
SSIM

30.42
0.8896

30.49
0.8957

30 PSNR
SSIM

28.29
0.8337

28.41
0.8515

Average PSNR
SSIM

30.88
0.8900

30.89
0.8976
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distance measurement ways to compute the weight of neighbor pixel to improve patch 
wise NLM filter.
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