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Abstract
Maintenance of railroad track safety is of utmost importance as derailment accidents cause sig-
nificant loss to life and property. Inspection of railroad tracks and their components is necessary 
in order to ensure security and well-being of goods as well as humans. Fishplate is an essential 
component in the railroad track environment hence, periodic maintenance of fishplates is an 
imperative goal. In this paper, we propose a method for detection and segmentation of fishplate 
instances in high-altitude drone images (DI) for a closer-view and consequent inspection of fish-
plate instances. For this purpose, a novel two-stage Mask R-CNN-based framework termed as 
FishTwoMask R-CNN is proposed. A new fine-tuning strategy has been developed for the pur-
pose of improving the detections in the second stage (Stage 2) which includes a training trick of 
modifying the loss weights for Stage 2 training. In the first stage (Stage 1), we detect fishplate 
instances, which are then cropped and fed as input to Stage 2, along with Stage 1 dataset. The 
Stage 2 network is then trained through a modified weighted loss and produces final detections 
for segmentation and further inspection. The”layers” hyper-parameter is assigned as “heads” 
for Stage 1 and updated to “4 + ” for Stage 2. Also, the critical analysis of Mask R-CNN hyper-
parameters has been carried out during both the stages which has lead to an improved detec-
tion precision rate of 97% in Stage 2 as opposed to 47% in Stage 1. We evaluate our proposed 
approach on five different test image scenarios in order to view fishplate instance detection 
results. There has been statistical evaluation on out-of-distribution test images also in order to 
compute the metrics values. The comparative results have been evaluated using metrics of pre-
cision, recall, and F1-score on Mask R-CNN Stage 1 and Stage 2 along with Faster R-CNN and 
YOLOv5 methods. It is inferred that the proposed approach achieves appreciable metrics values 
and thus can be gathered suitable for fishplate instance segmentation in drone images.
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1  Introduction

Rail transportation networks are one of the primary modes of commuting all over the 
world. Periodic monitoring of railroad tracks and their components is necessary in order 
to ensure safety of passengers and goods in railroad environments. Fishplates are critical 
components in railroad track infrastructure. The inspection of fishplates is an important 
measure in maintaining railroad track safety. A fishplate, also referred as splice or rail 
joint bar, is a metal bar, which is bolted to the ends of two rail lines in order to join them 
together, as shown in Fig. 1d, 2d, 2e and 3d [3]. The malfunction of fishplates happens due 
to either loosening of nuts or bolts, cracking of the fishplates, or incorrect maintenance or 
tampering [13]. This may cause misalignment of track sections potentially leading to cata-
strophic failures such as derailment of trains [13].

There has been an advent of various sensing or image acquisition systems (IAS) along 
with machine learning and computer vision-based methods for fishplate monitoring. In 
[20] an IOT-based real-time fishplate monitoring module comprising of electrical pulse 
generator (EPG) and GSM-based systems is proposed. This proposed automated system 
monitors the condition of the railroad fishplate bolts in order to send warning signals 
and avoid accidents. The fishplate peak is distinguished in [7] while a sensor, developed 
from Turck sensor, is fixed under a wheeled car for collecting magnetic signals. Fishplate 
localization is performed in images captured through rail imaging system while travelling 
along rail [8]. Fiber Optic Sensing (FOS) has been used in [4] for structural health moni-
toring of fishplates.

However, these aforementioned IAS have variable limitations, which include low strain 
sensitivity jacketed fibers, broken bare fibers, and high installation expenses in case of 
FOS[6] along with inaccessibility for remote geographical locations, limited detection 
range and high cost in case of rail-mounted vehicles or inspection trains  [11, 26]. Also, 
records obtained through human inspectors are subjective and irregular. In such scenarios 
drone-based image acquisition systems are very beneficial. Drones are the latest trend for 
railroad environment monitoring as they offer various advantages such as ease of control, 
cost-effectiveness and flexibility while aiming inaccessible areas [26]. They are lightweight 
Unmanned Aerial Vehicles (UAVs) which also score over human inspectors, rail-mounted 
vehicles or inspection trains as they provide efficient track image acquisition without rail-
road traffic blockage.

Although drone-based image acquisition systems offer large number of benefits, how-
ever drone-based fishplate monitoring is observed to face the following challenges:

1.	 Rail lines have varying orientations as observed in drone images. Fishplates are used to 
join two rail lines together and orientation of rail lines affects orientation of fishplates. 
Thus such variances in the position and direction lead to complex fishplate detection 
scenarios in drone images.

2.	 Flying drones at various flight heights leads to capturing different sizes of fish-
plates in drone images due to varied views. In addition, fishplate may be mis-
construed in high-altitude drone images thus making fishplate detection in drone 
images a difficult problem.

3.	 Different illumination scenarios such as partially sunny/cloudy, sunny lead to illumina-
tion inconsistencies. In addition, partial occlusion of railroad track along with shaking of 
the drone due to environmental factors such as wind may cause low or uneven brightness 
as well as contrast as observed in different railroad environments captured in DI.
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This necessitates an adaptive method for fishplate detection in drone images.
As these challenges are observed for drone-based image acquisition, fishplate 

monitoring in drone images remains a difficult task. In order to overcome these 
shortcomings, a novel approach for fishplate detection in railroad images is pro-
posed and termed as FishTwoMask R-CNN. The motivation lies in detection and 

Fig. 1   Scenario 1 (a) Study Image 1(b) Extracted tracks 1 and 2 (c) Segments from extracted track 2 (d) 
Zoomed fishplate instances
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segmentation of tiny fishplate instances for obtaining their closer view for inspection 
in high-altitude drone images. This in turn is helpful for railroad track health moni-
toring for the provision of safety during transportation in order to avoid mishaps, 
which are indicative of loss of life and property.

The organization of the article are as follows: In Sect. 2, algorithms related to detec-
tion, and health monitoring of railroad tracks and their components is discussed. The 
image acquisition and data generation are discussed in Sect. 3. While image acquisi-
tion comprises of study area and datasets used, data generation highlights steps for 
Stage 1 and Stage 2 fishplate instances dataset creation. In Sect.  4 theoretical back-
ground is presented. The proposed method, comprising of Stage 1 and Stage 2 train-
ing, is discussed in Sect. 5. The evaluation of proposed method based on experimental 
results is discussed in Sect. 6 along with complexity analysis. Finally, conclusion and 
future work in the article are presented in Sect. 7.

Fig. 2   Scenario 2 (a) Study Image 2 (b) Extracted Tracks 1 and 2 (c), (f) Segments from extracted track 1 
(d), (e) Zoomed fishplate instances
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2 � Literature review

Various optimization and machine-learning techniques have been implemented for 
object classification and detection tasks in different real-life applications [9, 12]. 
In addition, object localization is performed for various field applications in railroad 
environment [24, 31]. Object detection and segmentation algorithms have also been 
developed for detection, segmentation and inspection of railroad tracks and their com-
ponents in railroad track environments [11]. The task of classifying and localizing mul-
tiple objects in an image is termed as Object detection. Semantic Segmentation can be 
defined as the classification of every pixel in an image labeled as the object class it 
belongs to. However, in this different objects belonging to the same class are undisguis-
able. Consequently, instance segmentation comes into picture. Instance segmentation is 
similar to semantic segmentation however, all objects of the same class are not merged 
into one big lump instead, each of the class objects are identified as a unique entity for 

Fig. 3   Scenario 3 (a) Study Image 3 (b) Extracted Tracks 1, 2 and 3 (c) Segments from extracted track 2 (d) 
Zoomed fishplate instances
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instance, each of the individual fishplates in a DI are distinguishable. Mask R-CNN is 
an efficient model for instance segmentation.

A comprehensive review on the merits and demerits of the existing works have been 
tabulated in Table 1. Faster R-CNN algorithms have been implemented for aerial super-
vision of railroad tracks in drone images [14, 21]. In [21] Faster R-CNN along with 
YOLO and other algorithms is developed for obstacle detection in railroad track aer-
ial images. Faster R-CNN is also developed for small object detection and the imbal-
anced dataset, based on images captured using unmanned aerial vehicles (UAV) [17]. In 
[24] railroad track health monitoring is performed through track assets detection using 
YOLOv3. It is observed that Faster R-CNN tends to be more complex than Yolo hence 
it is slower as compared to the single shot detection method. The reason being single 
shot methods do not require per region processing. Mask R-CNN [12] is advantageous 
over YOLOv5 and Faster R-CNN. Pixel-to-pixel alignment is the key to Mask R-CNN 
which is otherwise missing in Faster R-CNN [29]. Additionally, Mask R-CNN unifies 
both object detection and semantic segmentation to perform instance segmentation.

In [33] YOLOv5 and Mask R-CNN framework have been implemented for rails and 
fasteners localization and rail surface defect detection and segmentation respectively. 
The dataset has been captured using special rail inspection vehicle. In [5] Mask R-CNN 
algorithm has been devised for segmentation and extraction of rail and fastener areas 
while the dataset images have been collected using an inspection cart. The detection 
of railroad components such as rail, clip and spike is performed using Mask R-CNN 
on track images captured using iPhone 8 smartphone in [11]. In [10] iPhone 8 smart-
phone is used to collect images for the goal of automatic rail surface defects detection 
based upon Mask R-CNN. In aforementioned studies Mask R-CNN architecture has 
been implemented along with data samples being collected using inspection vehicles 
and phones. As observed, Mask R-CNN-based architecture is well-suited and very effi-
cient for the task of inspecting railroad tracks and their components.

In [9] Mask R-CNN is used for the detection of sleepers and spaces between sleepers 
in drone images. Alongside, Mask-R-CNN architecture enables segmentation in drone 
images during identification of healthy and missing rail fasteners [32]. Mask R-CNN is 
advantageous as like object detection it can handle multiple fishplate instances alongside 
differentiating the identities. For detection of fishplate instances in DI various image 
processing and statistical methods have been previously developed. In [23] feature-
based template matching has been implemented for fishplate detection in DI. However, 
this work has been computationally extensive as large number of features have been 
calculated beforehand in order to select one suitable feature. The work in [25] computes 
fishplate detection in drone images using Normalized correlation coefficient and Non-
maximum suppression. In this approach, a large number of false positives are observed. 
The fishplate detections are obtained in drone images captured at fixed heights, both 
in [23, 25]. Therefore, it can be concluded that Mask R-CNN method is explored in a 
limited manner for fishplate detection in railroad environment drone imagery making it 
seem a suitable architecture to achieve our goal.

Therefore, our aim is fishplate instance detection and segmentation for inspection 
purpose in drone images. These DI are captured at different flight heights, under uneven 
illumination and with varying rail line orientations in different railroad environments. 
To achieve this aim we propose the novel two-stage Mask R-CNN framework termed 
as FishTwoMask R-CNN and the main contributions of the proposed approach are sum-
marized as follows:



10373Multimedia Tools and Applications (2024) 83:10367–10392	

1 3

Ta
bl

e 
1  

C
om

pr
eh

en
si

ve
 re

vi
ew

 o
f e

xi
sti

ng
 w

or
ks

Re
fe

re
nc

e 
N

o
M

et
ho

d 
U

se
d

Tr
ac

k 
C

om
po

ne
nt

 F
oc

us
ed

M
er

its
D

em
er

its

[1
6]

Fa
st

er
 R

-C
N

N
 In

ce
pt

io
n 

v2
 a

nd
 

A
tr

ou
s m

od
el

s
Ve

ge
ta

tio
n 

an
d 

ob
st

ac
le

 d
et

ec
tio

n
Th

e 
In

ce
pt

io
n 

v2
 m

od
el

 p
ro

vi
de

s 
go

od
 p

er
fo

rm
an

ce
 w

hi
le

 A
tro

us
 

pr
ov

id
es

 e
ve

n 
be

tte
r p

er
fo

rm
an

ce
, 

es
pe

ci
al

ly
 fo

r s
m

al
l-s

ca
le

 o
bj

ec
ts

A
s d

ev
el

op
m

en
t o

f a
 d

ed
ic

at
ed

 d
at

as
et

 
fo

r d
iff

er
en

t r
ai

lro
ad

 te
rr

ai
ns

 is
 

re
co

m
m

en
de

d,
 it

 is
 in

fe
rr

ed
 th

at
 c

la
s-

si
fic

at
io

n 
kn

ow
le

dg
e 

in
 o

ne
 ra

ilr
oa

d 
te

rr
ai

n 
ca

nn
ot

 b
e 

tra
ns

fe
rr

ed
 to

 
an

ot
he

r r
ai

lro
ad

 te
rr

ai
n

[2
0]

Fa
st

er
 R

-C
N

N
, Y

ol
o

O
bs

ta
cl

e 
de

te
ct

io
n

Th
e 

de
te

ct
io

n 
m

od
el

s c
ou

ld
 b

e 
us

ed
 

fo
r r

ea
l-t

im
e 

ob
st

ac
le

 d
et

ec
tio

n
M

or
e 

da
ta

se
ts

 w
ith

 d
iv

er
si

ty
 c

ou
ld

 b
e 

co
lle

ct
ed

. A
 b

et
te

r h
ig

h-
en

d 
sy

ste
m

 
co

ul
d 

be
 u

se
d 

w
ith

 m
od

ifi
ca

tio
ns

 in
 

th
e 

de
ep

 n
eu

ra
l n

et
w

or
k 

m
od

el
s

[3
2]

Fa
st

er
 R

-C
N

N
C

at
en

ar
y 

su
pp

or
t d

ev
ic

e 
in

sp
ec

tio
n,

 
sm

al
l o

bj
ec

t d
et

ec
tio

n 
an

d 
im

ba
l-

an
ce

d 
da

ta
se

t

Im
pr

ov
ed

 F
as

te
r R

-C
N

N
 a

ch
ie

ve
s 

be
tte

r p
er

fo
rm

an
ce

 th
an

 c
la

ss
ic

 
m

et
ho

ds

A
vo

id
an

ce
 o

f c
at

eg
or

y 
im

ba
la

nc
e 

re
qu

ire
d

[7
]

Yo
lo

v3
Tr

ac
k 

A
ss

et
s d

et
ec

tio
n

M
ul

tip
le

 tr
ac

k 
as

se
ts

 a
re

 d
et

ec
te

d
N

et
w

or
k 

ar
ch

ite
ct

ur
e 

ch
an

ge
s r

eq
ui

re
d 

fo
r b

et
te

r p
er

fo
rm

an
ce

[3
0]

Yo
lo

v5
, M

as
k 

R
-C

N
N

R
ai

l s
ur

fa
ce

 a
nd

 fa
ste

ne
rs

 d
ef

ec
t 

de
te

ct
io

n
M

as
k 

R-
C

N
N

 is
 fo

un
d 

effi
ci

en
t

M
or

e 
da

ta
 a

ug
m

en
ta

tio
n 

m
et

ho
ds

 to
 

ex
pa

nd
 th

e 
de

fe
ct

 sa
m

pl
es

. A
ls

o,
 fu

r-
th

er
 im

pr
ov

em
en

t o
f t

he
 ro

bu
stn

es
s 

of
 o

ur
 m

et
ho

d
[2

1]
M

as
k 

R
-C

N
N

, S
V

D
D

 (S
up

po
rt

 
Ve

ct
or

 D
at

a 
D

es
cr

ip
tio

n)
Fo

re
ig

n 
O

bj
ec

ts
 d

ef
ec

t d
et

ec
tio

n
D

et
ec

tio
n 

of
 fo

re
ig

n 
ob

je
ct

s i
n 

ba
l-

la
stl

es
s t

ra
ck

be
d 

im
ag

es
 w

hi
ch

 th
e 

al
go

rit
hm

 h
as

 n
ot

 le
ar

ne
d;

 a
nd

 st
ill

 
ob

ta
in

ed
 d

es
ira

bl
e 

re
su

lts

N
ee

d 
fo

r s
im

pl
ifi

ca
tio

n 
of

 th
e 

de
te

ct
io

n 
pr

oc
es

s a
nd

 in
cr

ea
se

 in
 th

e 
de

te
ct

io
n 

sp
ee

d 
in

 th
e 

fu
tu

re

[3
]

M
as

k 
R

-C
N

N
R

ai
l s

ur
fa

ce
 d

ef
ec

ts
 in

sp
ec

tio
n

M
as

k 
R-

C
N

N
 p

re
se

nt
s p

ro
m

is
in

g 
re

su
lts

 u
po

n 
co

m
pa

ris
on

 w
ith

 O
ts

u 
ta

ki
ng

 in
to

 c
on

si
de

ra
tio

n 
di

ffe
re

nt
 

lig
ht

in
g 

co
nd

iti
on

s a
nd

 se
ve

rit
ie

s

Pr
ed

ic
tio

n 
pe

rfo
rm

an
ce

 o
f t

he
 d

ev
el

-
op

ed
 m

od
el

 m
ay

be
 im

pr
ov

ed
 w

hi
le

 
m

or
e 

tra
in

in
g 

da
ta

 is
 u

se
d

[4
]

M
as

k 
R

-C
N

N
D

et
ec

tio
n 

of
 sl

ee
pe

rs
 a

nd
 sp

ac
es

 
be

tw
ee

n 
sl

ee
pe

rs
Sl

ee
pe

rs
 a

re
 lo

ca
te

d,
 c

om
pa

re
d 

us
in

g 
tw

o 
di

ffe
re

nt
 m

et
ho

ds
 b

as
ed

 o
n 

th
e 

O
ts

u 
m

et
ho

d 
an

d 
M

as
k 

R-
C

N
N

Ex
pa

ns
io

n 
to

w
ar

ds
 d

et
ec

tio
n 

of
 d

ef
ec

ts
 

in
 v

ar
io

us
 c

om
po

ne
nt

s a
lo

ng
si

de
 

de
ve

lo
pe

d 
au

to
no

m
ou

s U
AV



10374	 Multimedia Tools and Applications (2024) 83:10367–10392

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Re
fe

re
nc

e 
N

o
M

et
ho

d 
U

se
d

Tr
ac

k 
C

om
po

ne
nt

 F
oc

us
ed

M
er

its
D

em
er

its

[2
9]

M
as

k 
R

-C
N

N
R

ai
lro

ad
 fa

ste
ne

r f
au

lt 
de

te
ct

io
n

A
ch

ie
ve

d 
co

m
m

en
da

bl
e 

re
su

lts
 fo

r 
fa

ste
ne

r f
au

lt 
de

te
ct

io
n

Th
e 

dr
on

e 
im

ag
es

 a
re

 c
lo

se
ly

 c
ap

tu
re

d

[1
3]

H
an

dc
ra

fte
d 

Fe
at

ur
es

Fi
sh

pl
at

e 
de

te
ct

io
n

Pr
om

is
in

g 
re

su
lts

 w
ith

 le
ss

er
 n

um
be

r 
of

 fa
ls

e 
de

te
ct

io
ns

C
om

pu
ta

tio
na

lly
 in

te
ns

iv
e

[1
]

N
or

m
al

iz
ed

 C
or

re
la

tio
n 

co
effi

ci
en

t, 
Te

m
pl

at
e 

m
at

ch
in

g
Fi

sh
pl

at
e 

de
te

ct
io

n
Le

ss
 c

om
pu

ta
tio

na
lly

 in
te

ns
iv

e
La

rg
e 

N
um

be
r o

f f
al

se
 a

la
rm

s (
fa

ls
e 

po
si

tiv
es

)



10375Multimedia Tools and Applications (2024) 83:10367–10392	

1 3

1.	 The work proposes a novel two stage Mask R-CNN framework termed as FishTwoMask 
R-CNN for fishplate instances detection and segmentation in high-altitude drone images. 
This implies working with a tiny railroad component such as a fishplate within a large 
drone image. This algorithm is adaptive due to its ability to detect fishplate instances in 
drone images captured under different railroad environments. Our method is a hierarchi-
cal approach with only two Mask R-CNNs.

2.	 A new fine-tuning strategy has been proposed for the improved detection of the fishplate 
instance in drone images. This includes a training trick of modifying the loss weights for the 
second stage of training (Stage 2) in order to reach the top-performing level in the network.

3.	 The devised training method also comprises of changing the ‘layers’ hyper-parameter 
in the architecture while training in Stage 1 and Stage 2. Additionally, the cropped fish-
plate instances from the first stage are incorporated alongside the Stage 1 dataset for the 
second stage of training.

In order to achieve the goal of fishplate instance segmentation for railroad track safety 
monitoring in drone images, the images are acquired and the dataset for the two stages is 
generated as discussed in Sect. 3.

3 � Image acquisition and data generation

3.1 � Study area and datasets used

The images are acquired for generation of both Stage 1 and Stage 2 datasets. In this work, 
drone-based image acquisition has been performed using DJI phantom quadcopter. The 
drone specifications comprise of high definition 4 K resolution RGB colour camera along 
with GPS unit in order to capture geotagged standardized RGB (sRGB) images. Each 
image is of size 3000 × 4000 pixels. The total number of drone images in the acquired 
datasets is equivalent to 215. These drone images are captured over railroad tracks span-
ning across different track locations near Roorkee, Haridwar, India. These drone images 
are acquired frame by frame and comprise of fishplate instances captured at different loca-
tions, different flight heights, varied dates/ time and in uneven illumination as observed in 
complex railroad environments.

Some of the fishplate instances in drone images are as shown in Fig. 1d, 2d, 2e and 3d. 
The description of datasets,used as source for Stage 1 and Stage 2 datasets creation, is as 
mentioned in Table 2 and includes SID ( sample ID), DOA( date of acquisition), central 

Table 2   Datasets Description

SN SID F
h
(m) DOA Central Lat/Long GSD (cm) Illumination Scenario No. of 

images in 
dataset

(1) S1mp 22 m 10–05-2018 29°51′0.6129″N/ 
77°52′50.9917″E

0.89 Sunny, Little occlusion 56

(2) S2mp 25 m 07–07-2017 29°51′14.9380″N/ 
77°52′5.8300″E

1.06 Dark 63

(3) S3mp 11 m 25–04-2017 29°46′3.3522″N/ 
78°0′35.0221E

0.47 Little bright 96
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latitude and longitude, flight height (Fh), GSD( ground sample distance) [26], illumination 
scenarios and total number of images present in the dataset. GSD is indicative of how big 
each pixel is on the ground [26]. The changes in flight height (Fh) lead to changes in corre-
sponding pixel size which consequently changes number of pixels between two rail lines of 
a rail line pair. Therefore, the calculated pixels are essential during rail line pair selection. 
The notationsS1mp , S2mp and S3mp denote IDs of p th fishplate instance segment acquired 
from the m th extracted track of their respective i th drone image Di acquired in datasets for 
train and test purpose for Stage 1 and Stage 2. The method used for railroad track extrac-
tion from railroad track images is DroneRTEF as proposed and discussed in [26]. Fishplate 
instances from three different datasets are described as follows:

Scenario 1: Sample instance(s) p 
(

S1mp
)

 , segmented from extracted tracks Em of Study 
Image 1 from dataset D1 , are as shown in Fig. 1a. Study Image 1 is captured on a sunny 
day at 4:46 p.m. at 22 m flight height. A little amount of occlusion is observed in the 
image. The extracted tracks (Tracks 1 and 2) are as shown in Fig.  1b. The segments 
from extracted track 2 can be viewed in Fig.  1c while the fishplate instances can be 
viewed in Fig. 1d.
Scenario 2: Sample instance(s) p 

(

S2mp
)

 , segmented from extracted tracks Em of Study 
Image 2 from dataset D2 , are as shown in Fig.  2a. These fishplate instances are seg-
mented from Study Image 2 which is captured at 2:51 p.m. and at a flight height of 25 m 
in low brightness (dark) environment. The extracted tracks 1 and 2 can be viewed in 
Fig. 2b. The segments from extracted track 1 can be viewed in Fig. 2c, 2f while Fig. 2d, 
2e depict zoomed fishplate instances.
Scenario 3: Sample instance(s) p 

(

S3mp
)

 , segmented from extracted tracks Em of Study 
Image 3 from dataset D3 , are as depicted in Fig. 3a. The Study Image 3 is captured at 
11 m at 11:53 a.m. on a little brighter day. The extracted tracks 1, 2 and 3 are observed 
in Fig.  3b while Fig.  3c depicts segments from extracted track 2. Figure  3d shows 
zoomed fishplate instances.

3.2 � Data generation

The datasets acquired in Sect. 3.1 form the data acquisition module of the FishTwoMask 
R-CNN architecture. The input images in the datasets are of importance as correct rep-
resentation of fishplate ground truth images is helpful in developing Stage 1 and Stage 2 
datasets as discussed in Sect. 3.2.

3.2.1 � Stage 1 Dataset description

The drone images Di undergo various preprocessing steps in order to form Stage 1 fishplate 
instances dataset. The Stage 1 dataset creation flowchart is represented in Fig. 4 and the 
same is explained algorithmically in Fig. 6. Drone-based image acquisition is carried out 
for obtaining t drone images 

(

Dt

)

 of the railroad environments. The g railroad tracks are 
then extracted from the acquired images [26]. The segmentation of each of these extracted 
railroad track images is performed into a total of n overlapping smaller sized railroad track 
segmentsSimp . The railroad track segments Simp with fishplate instances ‘fishplate’ are then 
selected to form dataset Dataorig1 which comprises of segments with fishplate samples, as 
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discussed in Step 3- Step 7 (Fig. 6). The matching criteria of fishplate in the Simp is check-
ing for the presence of fishplate though visual inspection of these ground truth segments. 
The has ‘fishplate’ in Step 6 of Algorithm 1 (Fig. 6) indicates whether fishplate instance(s) 
are present in Simp and can be viewed through naked eyes in the segment. Consequently, the 
Simp are examined and if fishplate instance(s) are found in the Simp segments then those cor-
responding Simp are selected and added to Dataorig1 as discussed in Step 7 (Fig. 6).These 
Dataorig1 segments are then augmented for obtaining new images, as mentioned in Step 
8 (Fig. 6). These new segment images in the augmented dataset Aug1 exhibit a variety of 
conditions for fishplate instances such as different brightness, scales, locations, and orien-
tations. As depicted in Step 9 (Fig. 6) the functions of shuffle and rename are performed on 
the combined original Dataorig1 and augmented Aug1 datasets in order to obtain Stage 1 
fishplate instances datasetData1.

3.2.2 � Stage 2 Dataset description

The requirement for Stage 2 dataset arises as, after Stage 1 training, incorrect detections 
are observed (discussed in Sect.  5.1). Consequently, for Stage 2, we have developed the 
dataset from Stage 1 fishplate instances dataset Data1 and termed it as Data2 . The pictorial 
depiction is provided in Fig. 5 along with the algorithm, which is as discussed in Fig. 7. 
In Fig. 7 Data1 is considered as the input. In Step 2 (Fig. 7), the resultant bounding boxes 
obtained as outputs from Data1 in Stage 1 training, are used to crop the instances from the 
corresponding segments. The top left coordinates (x, y) of the bounding box along with the 

Fig. 4   Description of Stage 1 dataset creation
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width w , height h are required for cropping using 
[

x, y, x + w, y + h
]

 . This forms the fishinst1 
dataset. The cropping step is of significance as in order to get more context for the fishplate 
instances for better analyses, our approach includes first localizing the fishplate instances 
in Stage 1 segments and cropping around them, then using these cropped portions of the 
segments for Stage 2.

These cropped images in fishinst1 dataset are evaluated for fishplate instances ‘fishplate’. 
If this image comprises of the fishplate instance, it is added to the fishplate instances data-
set fishinstdata1 or else it is discarded. The has ‘fishplate’ in Step 3 of Algorithm 2 (Fig. 7) 
indicates whether a visible fishplate instance structure is present in the cropped image 
fishinst1 . The fishplate presence is checked again in Step 3 as fishinst1 is sourced from 
Data1.

As Data1 is divided into test and train images therefore it is important to check presence 
of fishplate instances in fishinst1 images especially in those sourced from test images. The 
fishinstdata1 is then combined with the Stage 1 fishplate instances dataset Data1 . In Step 5 
(Fig. 7) combining Data1 & fishinstdata1 indicates merging both the datasets together in order 
to apply the functions of shuffle and rename onto this combined fishplate instances dataset. 
This forms Stage 2 fishplate instances dataset Data2 , which is then fed to Stage 2 for training.

4 � Theoretical background

The goal of this work is fishplate instance detection and segmentation for fishplate 
instance monitoring purpose and this is facilitated through development of a two-stage 
Mask-RCNN method while a brief review on the network is discussed here in Sect. 4. 

Fig. 5   Steps for Stage 2 dataset creation
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Mask R-CNN has been developed by the Facebook AI Research group in 2017 [12]. 
Mask R-CNN extends Faster R-CNN by adding a branch for prediction of the high-
quality segmentation mask for each instance in conjunction with the existing branch 
for bounding box regression and classification. The feature extraction is performed 
using the backbone network which is ResNet. The backbone is followed by a Region 
proposal network (RPN) along with two head branches. One of them is for the bound-
ing box regressor while the other is subjected to classification. The added branch takes 
into account the region of interest (ROI), extracted using RPN, in a fully convolutional 
network in order to predict an instance mask for the ROI. Mask R-CNN has a complex 
loss function calculated as the weighted sum of different losses as represented in Eq. 1. 
The weights of the network are adjusted accordingly during training while the total 
loss is being calculated as:

In Eq. 1, the RPN class loss rpn_class_loss and bounding box loss rpn_bbox_loss are 
in relation with the output of the RPN. The RPN class loss, a binary classification loss, is 
assigned to improper classification of anchor boxes by RPN and is positive incase intersec-
tion over union (IoU) between proposed region and the ground truth(GT) bounding box 
is > 0.5. This is to be increased incase multiple fishplate detections do not happen in final 

(1)

loss = w1 × rpn_class_loss + w2 × rpn_bbox_loss

+ w3 × mrcnn_class_loss + w4 × mrcnn_bbox_loss

+ w5 × mrcnn_mask_loss

Fig. 6   Algorithm for Stage 1 Data Generation

Fig. 7   Algorithm for Stage 2 Data Generation
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output. The RPN bounding box loss is equated as a regression loss between the four corner 
points of the GT bounding box and proposed region bounding box. This weight is tuned in 
case the bounding box needs to be corrected. The class loss mrcnn_class_loss is assigned 
to improper classification of fishplate present in region proposal. The weight correspond-
ing to bounding box loss mrcnn_bbox_loss is increased if correct classification of fishplate 
class is attempted however, precise localization is not achieved. For mrcnn_mask_loss the 
corresponding mask loss weight is increased if pixel level identification of fishplates is of 
importance. For Stage 2 the mask loss and bounding box loss weights are emphasized upon 
which is helpful in boosting the performance during training. 

Recall that our main objective is fishplate inspection in high-altitude drone images. This 
accounts to segmentation of fishplate instance in the railroad track drone images. The size 
of the fishplate is very small compared to the drone image, hence making fishplate instance 
segmentation hard. Using Mask R-CNN on the drone image segment will give pixel wise 
decision regarding classification into fishplate instance or not. For this purpose, we have 
designed the proposed method in Sect. 5.

5 � Proposed method and implementation

The advantage of the Mask R-CNN in FishTwoMask R-CNN architecture is that it pro-
vides with both the bounding box and semantic segmentation. Thus, this caters to a 
multi-stage approach for the purpose of semantic segmentation using the same archi-
tecture. Mask R-CNN [12] implementation, performed by Matterport [1], has been the 
core of our experiments. The code is implemented using Tensorflow framework (version 
1.12.0) along with Keras (version 2.2.4) from Google and it has been run on an HP Z8 
G4 Workstation with NVIDIA Quadro P5000 graphics card. The original implementa-
tion of Mask R-CNN uses a fixed learning rate (lr) equivalent to 0.02 which is decreased 
to 0.002(towards the end) along with a weight decay of 0.0001. In the Tensorflow 
implementation by Matterport lr of 0.001 is set with a comment stating weight explo-
sion might be due to optimizer differences. The proposed method is trained using hyper-
parameters described in Table  3 for both stages. Alongside, “layers” hyper-parameter is 
assigned as ‘heads’ for Stage 1 and ‘4 + ’ for Stage 2 respectively. The “layers” hyper-
parameter allows selecting which layers to train. Consequently, ‘heads’ denotes train-
ing the RPN, classifier and mask heads of the network( all layers but the backbone) for 
Stage 1 while ‘4 + ’ is equivalent to training Resnet stage 4 and up for Stage 2. The Mask 
R-CNN hyper-parameter evaluation has been performed on a high performance comput-
ing (HPC) system. Varied values of Mask R-CNN hyper-parameters such as loss weights 

Table 3   Training hyper-
parameters of Stage 1 and Stage 
2 Mask R-CNN in Proposed 
architecture

Parameters/ models Stage 1 Mask R-CNN Stage 2 Mask R-CNN

Learning rate 0.001 0.001
Momentum 0.9 0.9
Weight Decay 0.0001 0.0001
Steps 1000 1000
Loss weights [1,1,1,1,1] [1,1,1,1.5,2]
Backbone/base Resnet101 Resnet101
Train images 835 1794
Test images 206 205
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(rpn_class_loss, rpn_bbox_loss,mrcnn_class_loss,mrcnn_bbox_loss and mrcnn_mask_loss) , weight 
decay, learning rate, momentum, backbone, steps per epoch need to be evaluated in parallel 
for obtaining optimum results on the training network. These values need to be chosen from 
a list for instance the mrcnn_mask_loss is evaluated on a list of values [1, 1.5, 2]. Similar 
evaluations are performed by providing different set of hyper-parameters, in parallel.

The Stage 1 comprises of analyzing the fishplate instance segments in their original 
view/ scale, and the Stage 2 focuses on the fishplate instances upon cropping, along with 
Stage 1 dataset, for further analysis. The flowchart is depicted in Fig. 8 and the algorithm 
is discussed in Fig.  9. In the proposed algorithm Data1 is obtained as input for Stage 1 
training and Mask R-CNN model is computed, as discussed in Sect. 5.1. The fishplateloc 
is obtained for evaluation of maski . The incorrect detections are observed on test images 
in Stage 1 training (discussed in Sect.  5.1). Therefore Data2 is generated (discussed in 
Sect.  3.2.2) and computed upon by fine-tuned and training trick modified Mask R-CNN 
in the Stage 2 training (discussed in Sect. 5.2). This step outputs fishplateloc, maskj and 
determines if there is a missed, false or no detection. The two stages of the architecture are 
as discussed in Sect. 5.1 and 5.2 respectively.

5.1 � Stage 1 Training

The flowchart for the proposed method FishTwoMask R-CNN is shown in Fig. 8. The three 
datasets used for datasets generation, as discussed in Table 2, are obtained under differ-
ent railroad track environmental scenarios hence different distributions are considered. In 
Stage 1 the Mask R-CNN network, pre-fit on the COCO dataset, is used as a starting point 
and then the weights are tuned on Stage 1 fishplates instances Data1 dataset using transfer 
learning. The Mask R-CNN loss weights w1,w2,w3,w4 and w5 are initialized with default 

Fig. 8   Flowchart for proposed approach FishTwoMask R-CNN
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values of 1,1,1,1 and 1 respectively. The ‘heads’ “layers”, comprising of the RPN, clas-
sifier and mask heads of the network, is trained during this stage alongside other hyper-
parameters as discussed in Table 3 for Stage 1. In Step 2 –Step 3 (Fig. 9) Stage 1 produces 
masks maski for fishplate instances in segments if fishplateloc is detected as a result. This 
indicates fishplate instances locations, using bounding boxes, might have been detected in 
segments. The evaluation of maski is then performed statistically and visually. The results 
of the evaluation are indicative of performance of Stage 1 training. To obtain these results 
the experiments have been performed and discussed in Sect. 6.1 for visual analysis, while 
metrics evaluation for Stage 1 is discussed in Table 5 (Sect. 6.2). Incorrect detections are 
observed while trained model is tested on new test images, which are outside the distri-
bution of the dataset images used in the training. It can be observed that the detections 
produce false alarms. Therefore, the resulting bounding boxes from this stage are used to 
crop the portions around the fishplate instances. These cropped images are then fed to the 
second stage for Stage 2 training.

5.2 � Stage 2 Training

Assessment of the segmentation is performed upon evaluation of the performance of the 
Stage 1 model on the test set images. This is conducted through analysis of experiments and 
evaluation metrics values obtained in the Stage 1 as discussed in Sect. 6.1 and Table 5. This 
helps us determine if the extra steps of cropping the images alongside training another model 
(for Stage 2) are worth the effort. From the experiments discussed in Sect. 6.1 and evaluation 
in Table 5, it is observed that fishplate instances may not have been correctly detected by the 
network in Stage 1. In Stage 2, we are more focused about the correct localizations, no missed 
detections and the pixel-level identification. After the localization of the fishplate instances in 
Stage 1, the bounding boxes are used for cropping the fishplate instances portions for the pur-
pose of analysis in Stage 2 training. The padding with extra pixels is performed on each side 
of the bounding box before using it, in order to crop the image to get more information about 
the fishplate, for better analysis. The bounding box of the fishplate instances helps us access 
the accuracy of the localization in Stage 1 and Stage 2.

The Stage 1 network investigates the entire drone image segment in order to locate and 
segment around fishplate instances, as discussed in Sect.  5.1. For Stage 2, we primarily 
take into account Stage 1 fishplate instances dataset along with Data1 and fishinstdata1 

Algorithm 3: Proposed Approach 

Input: 1Data
Output: Fishplate instances location fishplateloc on test images

1. Compute Mask R-CNN 

2. if fishplateloc achieved

3. Evaluate imask for location 

4. Else obtain 2Data
5. Compute Mask R-CNN

6. if fishplateloc achieved

7. Evaluate jmask for location

8. Else report missed, false or no detection

Fig. 9   Proposed Architecture Algorithm
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to form Data2(discussed in Sect. 3.2.2). Therefore, for Stage 2, the loss weights are tuned 
on Stage 2 dataset Data2 . The Mask R-CNN in Stage 2 has also been pre-fit on COCO 
dataset for the starting point while the modified loss weights are then trained on Stage 2 
dataset Data2 . To test the hypothesis, the weights associated with the bounding box and 
mask which are w4 , and w5 respectively, as in Eq. 1, are increased to 1.5 and 2.0 from 1.0 
and 1.0 respectively while the remaining w1,w2,w3 weights are set to 1.0( default value). 
The bounding box weight w4 needs to be increased as the detection process requires precise 
and correct localization of fishplate samples in image segments with training ‘4 + ’ stage. 
The bounding box weight is increased as the detection process is dependent on finding the 
proper bounding box around the fishplate instance. Therefore, there is a slight increase in 
order to locate the bounding box and mask maskj first before attempting the segmenta-
tion. It is hypothesized that fishplate samples are visually structurally similar across data-
sets and pixel level identification is important, so emphasizing on the mask loss weight w5 
while training would help in boosting model performance. The rest of the hyper-parameters 
for Stage 2 are as discussed in Table 3. In Step 6-Step 7 (Fig. 9) Stage 2 training model 
result maskj is evaluated visually through experiments that have been performed and dis-
cussed in Sect. 6.1 and statistically in Table 5 (Sect. 6.2). The visual results for Stage 2 in 
Fig. 11(Sect. 6.1) show promising detections and can hence be proved through statistical 
evaluation of Stage 2 trained model as shown in Table 5 (discussed in Sect. 6.2).

The visual description for fishplate instance segmentation in proposed approach is 
as shown in Fig. 10. The fishplate instance segment dataset Data1 is inputted in Stage 1, 
Stage 1 training is conducted using initial weights as trained on this dataset (discussed 
in Sect.  5.1) and the located masksmaski,for fishplateloc, are obtained on the segment 
as shown in blue and red color. The experiments are then performed for evaluation of 

Table 4   Training hyper-parameters for YOLOv5 and Faster R-CNN

Parameters/ models Learning rate Momentum Weight Decay Train images Test images

Yolov5 0.01 0.9 0.0005 1372 228
Parameters/ models Learning rate Images per batch Steps Train images Test images
Faster R-CNN 0.001 4 1000 1360 213

Table 5    Evaluation of metrics on 80 test images (40 test images each for fishplate and no fishplate 
instances)

50W8E1.0L 59W8E1.0L 60W32E1.5L 60W34E1.0L 100W37E1.5L

Accuracy 0.504 0.530 0.444 0.466 0.868

Precision 0.452 0.473 0.402 0.429 0.975

Recall 0.840 0.860 0.820 0.796 0.780

F1 score 0.587 0.610 0.539 0.557 0.867

Read stage abbreviation as below
50W8E1.0L : 50.h5 W eight file from 8th E valuation with bounding box Loss equal to 1.0

1st Stage 2nd Stage
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obtained masks in Stage 1 model. Upon evaluation it is observed that Stage 2 training is 
required hence the bounding boxes obtained from these Stage 1 segments, are used for 
cropping fishplate instances segments, which along with Data1 are used to create Data2 for 
Stage 2 (as discussed in Sect. 3.2.2). It is observed in Stage 2 that upon Stage 2 training (as 
discussed in Sect. 5.2), the maskj for fishplateloc is depicted in red color. Thus, we obtain 
the fishplate instance locations through masks in FishTwoMask R-CNN which can be used 
for final segmentation and further inspection of fishplate instance component.

6 � Experimental results and discussion

As discussed in Sect. 5, the detection and segmentation task of fishplate instances in FishT-
woMask R-CNN comprises of two stages: Stage 1 is localizing the fishplate instances in 
the image segments and cropping these instances while Stage 2 takes as input the Stage 1 
dataset and cropped images in order to determine the correct and precise fishplate instance 
locations. This two stage process in FishTwoMask R-CNN for fishplate instance detec-
tion process is as shown in Fig. 10. The evaluation of the proposed method is as shown 
in Sect. 6.1 along with discussion on metrics in Sect. 6.2. In Sect. 6.1 test images from 
new datasets, apart from existing test images, have also been considered for test purposes. 
The description for these datasets is provided in the respective experimental scenarios in 
Sect. 6.1.

6.1 � Evaluation of proposed method

The test images have been randomly selected from the image sets and the results are as 
depicted in Fig. 11. To a great extent the results reflect the field performance for Stage 
1 and Stage 2 in the proposed architecture. The test images represent different sce-
narios with drone image segments extracted from DI captured at varied illumination 
scenarios, flight heights, and orientations. The training for Stage 1 and Stage 2 Mask 
R-CNN methods in the proposed architecture FishTwoMask R-CNN is as discussed 
in Sect.  5.1 and Sect.  5.2 respectively. To assess the performance of the proposed 
method, we have used three different evaluation metrics: Precision, Recall, F-1 score 
[30]. For the purpose of evaluation, test images from five different railroad environ-
mental scenarios have been discussed in Sect. 6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5 respec-
tively. The description of the new test images has been provided in the respective Sec-
tions (Sect. 6.1.2, Sect. 6.1.3 and Sect. 6.1.5).

6.1.1 � Experimental Scenario 1

The test image Fig.  11a has been captured as per Scenario 1, discussed in Sect.  3.1, 
with the central latitude/longitude coordinates of 29°51′0.2884″N/ 77°52′52.8059″E 
respectively. The Stage 1 test image output indicates presence of fishplate at the correct 
location masked with blue color, along with two false detections for fishplate locations 
masked in green and red as shown in Fig.  11b. The two false detections are rail line 
areas having no fishplate instances. However, at Stage 2 in FishTwoMask R-CNN the 
test image output in Fig. 11c indicates elimination of false detections while outputting 
only correct fishplate location marked in red color.
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6.1.2 � Experimental Scenario 2

This test image in Fig. 11d has been captured dated 21–06-2017 at a height of 25.2 m with 
the central latitude/ longitude coordinates of 29°46′3.8871″N/ 78°0′35.2280″E respec-
tively. The illumination scenario can be inferred as sunny. It is observed that the image 
contains no fishplate. Although, Stage 1 showcases false detection on rail line area masked 
as fishplate location in red as shown in Fig. 11e however, Stage 2 test image output is cor-
rect as no fishplate is detected as in Fig. 11f which is as per ground truth observation.

6.1.3 � Experimental Scenario 3

The test image shown in Fig. 11g has been captured on 30–08-2017 at a height of 25 m 
with central latitude/longitude coordinates of 29°49′39.5516″N/ 77°55′30.0578″E respec-
tively. The image has been captured on a bright sunny day. However, the track has been 
overshadowed by the train running on the rail lines in the railroad environment. The image 
has no fishplate and both Stage 1 as well as Stage 2 test images output correctly regarding 
absence of fishplate as observed in Fig. 11h, 11i respectively.

Fig. 10   Fishplate instance detection process in FishTwoMask R-CNN. The Stage 1 and Stage 2 in the archi-
tecture are depicted as marked Stage 1 and Stage 2
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6.1.4 � Experimental Scenario 4

The test image in Fig. 11j has been captured as per Scenario 3 with the central latitude/
longitude coordinates of 29°46′3.3522″N/78°0′35.0221″E respectively. It is observed that 
both Stage 1 and Stage 2 test image output showcase correct fishplate location in red as per 
ground truth observation as shown in Fig. 11k, and 11l respectively.

Fig. 11   Fishplate instances detections depicted in test images captured under different environmental sce-
narios as discussed in Sect. 6
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6.1.5 � Experimental Scenario 5

The test image in Fig. 11m is captured on 21–06-2017 at a height of 25.2 m with the cen-
tral latitude/ longitude coordinates of 29°46′3.8871″N/ 78°0′35.2280″E respectively. The 
image comprises of one fishplate. However it is observed that even though Stage 1 test 
image output showcases correct fishplate location masked as red still four incorrect fish-
plate locations masked as blue, green, yellow, pink can also be seen in Fig. 11n. The incor-
rect locations are rail line areas having no fishplate instances. The architecture at Stage 2 is 
unable to detect the fishplate in the test image as observed in Fig. 11o.

6.2 � Metrics evaluation and discussion

The visual evaluation of the proposed method is performed as discussed in Sect. 6.1 and 
shown in Fig. 11 (c), (f),(i),(l),(o) which are Stage 2 (final) detection results. The fishplate 
test images undertaken for performing experimental results have been captured in different 
railroad environments at varied heights, locations and different dates/time. The purpose of 
statistical evaluation is in terms of computation of the metrics. The description of the met-
rics is as given in Eq. 6, Eq. 7, Eq. 8, and Eq. 9.

In this work we assume, True Positive (TP) as number of correct fishplate instance 
matches, True Negative (TN) as no fishplate instances correctly rejected, False Positive (FP) 
as proposed fishplate instances that are incorrect and False Negative (FN) as matches that 
are not correctly detected. The metrics are computed as mean values on 80 test images (40 
test images each for fishplate and no fishplate instances (absence of fishplate instance in the 
test image)), 100 test images (50 test images each of fishplate and no fishplate instances), 
and 116 test images (58 test images each for fishplate and no fishplate instances). The values 
of TP, TN, FP, and FN are computed through Eq. 2, Eq. 3, Eq. 4 and Eq. 5. TPfish denotes TP 
values for fishplate instances, TNnofish denotes TN calculated on no fishplate instances while 
FPfish,FPnofish denotes FP values calculated on fishplate and no fishplate instances respec-
tively. FNfish denotes FN values computed for fishplate instances respectively. The analysis 
results of various evaluations for mean values for 80 test images are represented in Table 5. 
The final Stage 1 and Stage 2 results have been highlighted in the red boxes. The Table 8 
and Table 9 in Appendix I highlight metrics values for 100 and 116 test images respectively.

Various evaluations have been performed with different sets of w4,w5 loss weights along-
side different training “layers” in order to obtain best detection results for both stages. Few 
of these combinations have been listed in Table 5. For Stage 1 the notations of 50W8E1.0L 
indicate 50.h5 weight file from 8th evaluation with w4 , w5 equal to 1.0., 1.0 respectively, 
and 59W8E1.0L indicate 59.h5 weight file from 8th evaluation with w4 , w5 weight equal to 
1.0.,1.0 respectively. For Stage 2 60W32E1.5L indicates 60.h5 weight file from 32nd evalu-
ation with w4 , w5 equal to 1.5., 1.0 respectively, 60W34E1.0L indicates 60.h5 weight file 
from 34th evaluation with w4 , w5 equal to 1.0., 1.0 respectively, and 100W37E1.5L indicates 
100.h5 weight file from 37th evaluation with w4 , w5 of 1.5, 2.0 respectively. Upon critical 
analysis of the Stage 1 and Stage 2 metrics values, 59W8E1.0L and 100W37E1.5L have 
been chosen for Stage 1 and 2 respectively. As observed the metrics values of Stage 2 are 
higher than those in Stage 1 except that recall for Stage 1 is higher than recall for Stage 2.

(2)TP = TPfish

(3)TN = TNnofish
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6.2.1 � Metrics evaluation

The metrics: Precision, Recall and F1 score are computed on the following previous algo-
rithms for fishplate detection in DI: Normalized Correlation Coefficient-based Template 
Matching [25], Features-based template Matching [23] alongside Stage 1 and Stage 2 
Mask R-CNN. In [25] the normalized correlation coefficient is evaluated on the image- pair 
while non-maximum suppression method is used for merging nearby fishplate detections in 
DI. A large number of false positives are observed in this method which is indicated, upon 
calculation, through the precision and F1-score values shown in Table 6. This is the case as 
these metrics are a function of FP, as depicted in Eq. 7 and Eq. 9. The work in [23] com-
putes various feature descriptors and their respective Separability Index (SI)values, which 
is computationally intensive as it involves handcrafted feature extraction. As observed in 
Table 6 the precision, and  F1-score values are higher than the work in [25] but lower than 
respective Stage 1 and Stage 2 metrics values. However, recall values for [23] are observed 
to be lower than for [25] as well as from Stage 1 and Stage 2 in proposed approach.

The comparative analysis is performed, through evaluation metrics, with the exist-
ing popular object detection algorithms: YOLOv5, Faster R-CNN, alongside Stage 1 & 
Stage 2 Mask R-CNN in proposed approach FishTwoMask R-CNN, as shown in Table 7. 
In this work YOLOv5 has been trained using Tesla T4 with batch size, input image size, 
and number of epochs as 16, 416, and 100 respectively. The training hyper-parameters for 
Faster R-CNN network along with rest of the hyper-parameters for YOLOv5 are presented 
in Table 4. It is observed that during test image evaluations each of the metrics values for 
Stage 1 are much lower than corresponding Stage 2 values except recall values. In Table 7 it 
is observed that Faster R-CNN has obtained metrics values of precision, recall and F1-score 
higher than respective YOLOv5 metrics values in this work. It can also be well observed 
that Mask R-CNN in Stage 1 of the proposed approach achieves recall and F1-score higher 
than Faster R-CNN indicating that most of the fishplate instances have been located. The 
Stage 2 achieves higher metrics values than those for Faster R-CNN. Also, it can well be 
inferred that Mask R-CNN, at any stage, is an extension of the functionality of Faster R-CNN 
and very-efficient. The results for the proposed method FishTwoMask R-CNN have been 
depicted in blue in Table 7. The Stage 2 of FishTwoMask R-CNN (proposed approach) has 
obtained higher metrics values as compared to Stage 1 Mask R-CNN except for recall hence, 
the adaptation in the loss weights w4 andw5 , in Eq. 1, from 1 and 1 to 1.5 and 2 respectively 

(4)FP = FPfish + FPnofish

(5)FN = FNfish

Table 6   Comparative analysis with previous methods through Metrics performance

Metrics Evaluation

Models/Metrics Precision Recall F1 Score

Normalized Correlation Coefficient and Template 
Matching [1]

0.011552 0.670886 0.022713

Features-based Template Matching [23] 0.133 0.641 0.220
Stage 1 Mask R-CNN 0.473 0.860 0.610
FishTwoMask R-CNN (Proposed Approach) 0.975 0.780 0.867
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is observed to have reflected the desired changes in the detection results. Also, the changes in 
the “layers” from ‘ heads’ to ‘4 + ’ along with reinforcement of cropped fishplate instances in 
the Stage 2 dataset can be held accountable for the improvement and precise detection results.

6.3 � Complexity analysis

Fishplate instances are critical railroad track components essential to maintain railroad track 
safety and avoid mishaps, which are indicative of loss of life and property, as discussed in 
Sect. 1. Therefore, it is important to locate fishplate instances accurately even with compa-
rable amount of computational overhead leading to increase in model complexity. As fish-
plates are tiny objects in the railroad track drone images, Stage 1 Mask R-CNN does not 
yield good results. Also, artefacts such as illumination, similar color rail lines deteriorate 
these metrics values for Stage 1. Alongside these challenges, problems posed for DI as dis-
cussed in Sect. 1, are also taken into consideration. Consequently, need for Stage 2 Mask 
R-CNN arises and the metrics are also indicative of good results marked in blue in Table 6 
and Table 7. As the fishplate component is very small compared to drone image size as well 
as a critical component for safety therefore, this makes correct detections, with an overhead 
on time, as the foremost goal. The time complexity for the method during evaluation is cal-
culated through computation on each of the test images which is ≈ 1310.312636 s (Stage 1 
with 11 s/ image) and achieved ≈ 1286.798505 s (Stage 2 with 10 s /image).

7 � Conclusion

In this paper, we have proposed a novel adaptive two-stage Mask R-CNN framework 
termed as FishTwoMask R-CNN for fishplate instances detection and segmentation in 
drone images for further inspection of railroad track health. During the process of achiev-
ing our goal the following observations have been made:

(6)Accuracy = TP + TN∕(TP + TN + FP + FN)

(7)Precision = TP∕(TP + FP)

(8)Recall = TP∕(TP + FN)

(9)F1score = 2 ∗ Precision ∗ Recall∕(Precision + Recall)

Table 7   Comparative analysis 
with deep learning models 
through Metrics performance

Metrics Evaluation

Models/Metrics Precision Recall F1 score

Yolov5 0.400 0.666 0.499
Faster R-CNN 0.500 0.750 0.600
Stage 1 Mask R-CNN 0.473 0.860 0.610
FishTwoMask R-CNN
(Proposed Approach)

0.975 0.780 0.867
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	 I	 This framework is divided into two stages. The Stage 1 involves creation of fishplate 
instances dataset from segmented railroad track DI and training using these original 
images. However, it is observed this gives a precision and an F1-score of only 47% and 
61% respectively. In order to remove false detections and boost detection accuracy the 
cropped fishplate instances along with the original Stage 1 dataset are used for training 
purpose in Stage 2. It is observed that the framework then achieved a detection precision 
rate of 97% with an F1-score of 86%.

	 II	 The Stage 2 network in the proposed architecture is henceforth trained using differ-
ent weights for loss function components. This helps in improving performance of 
the framework on different test datasets acquired from different distributions while 
indicating potential field applications in the future.

	 III	 The change in the “layers” hyper-parameter value from Stage 1 to Stage 2 also indicates 
potential improvements in the precision, recall and F1-score values in the proposed archi-
tecture.

	 IV	 The work has been tested on different railroad track environmental scenarios and our 
algorithm has performed well on all of them thus, indicating the robustness of the 
proposed method.

	 V	 The fishplate instances detection in DI has been evaluated using other previously 
developed methods such as Features-based Template matching [23] as well as exist-
ing object recognition algorithms such as Faster R-CNN and YOLOv5. The proposed 
algorithm is observed to achieve better detections as well as evaluation metrics values 
than the respective values in most of the aforementioned algorithms.

Appendix I

Tables 8 and 9

Table 8    Evaluation of metrics on 100 test images (50 test images each for fishplate and no fishplate 
instances)

50W8E1.0L 59W8E1.0L 60W32E1.5L 60W34E1.0L 45W35E1.0L 100W37E1.5L

Accuracy 0.453 0.490 0.423 0.434 0.820 0.829

Precision 0.407 0.431 0.375 0.400 0.955 0.956

Recall 0.767 0.810 0.750 0.733 0.700 0.717

F1 score 0.532 0.563 0.500 0.518 0.808 0.819

1st Stage 2nd Stage

Table 9    Evaluation of metrics on 116 test images (58 test images each for fishplate and no fishplate 
instances)

50W8E1.0L 59W8E1.0L 60W32E1.5L 60W34E1.0L 45W35E1.0L 100W37E1.5L

Accuracy 0.459 0.473 0.420 0.435 0.843 0.843

Precision 0.409 0.414 0.371 0.394 0.962 0.944

Recall 0.794 0.833 0.779 0.765 0.735 0.750

F1 score 0.540 0.553 0.502 0.520 0.833 0.836

1st Stage 2nd Stage
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