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Abstract
The attention-enriched encoder-decoder framework has recently aroused great interest in
image captioning due to its overwhelming progress. Many visual attention models directly
leverage meaningful regions to generate image descriptions. However, seeking a direct tran-
sition from visual space to text is not enough to generate fine-grained captions. This paper
exploits a feature-compounding approach to bring together high-level semantic concepts and
visual information regarding the contextual environment fully end-to-end. Thus, we propose
a stacked cross-modal feature consolidation (SCFC) attention network for image captioning
in which we simultaneously consolidate cross-modal features through a novel compounding
function in amulti-step reasoning fashion. Besides, we jointly employ spatial information and
context-aware attributes (CAA) as the principal components in our proposed compounding
function, where our CAA provides a concise context-sensitive semantic representation. To
better use consolidated features potential, we propose an SCFC-LSTM as the caption gener-
ator, which can leverage discriminative semantic information through the caption generation
process. The experimental results indicate that our proposed SCFC can outperform various
state-of-the-art image captioning benchmarks in terms of popular metrics on the MSCOCO
and Flickr30K datasets.

Keywords Contextual representation · Cross-modal feature fusion · Image captioning ·
Stacked attention network · Visual and semantic information

1 Introduction

Automatically describing the content of images, known as image captioning, is a significant
task of artificial intelligence, which combines the field of computer vision (CV) with natural
language processing (NLP). Image captioning has several applications for image indexing,
social media platforms, visually impaired people, etc. Although this task seems easy for
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humans, it is complicated for machines. Machines should solve the problem of identify-
ing which objects and attributes are present in the image, and their interactions must be
expressed in natural language. The recent progress in deep neural networks has taken the
latest significant step towards a reliable solution in generating descriptions for images.

In particular, deep image captioning architectures have shown impressive results in dis-
covering the mapping between visual features and their correspondences in natural language.
The well-known encoder-decoder framework is used to perform the task. It contains a convo-
lutional neural network (CNN) for feature extraction and long short-term memory (LSTM)
to generate a sentence based on the static overall image feature vector [23, 24, 26, 31, 33].
Although the advancements in these techniques are encouraging, a bottleneck facing the
mentioned framework is that it is troublesome to mine all the visual information essential to
construct a caption that accurately describes the image.

Inspired by the presence of attention in the human visual system that tends to focus on
particular parts of the whole visual space [5, 7] visual attention has been proposed. Specif-
ically, rather than encoding an image into a single static vector, visual attention encourages
the model to selectively focus on salient areas of the image and use these areas to gener-
ate captions [50]. Besides, some models focus only on the salient regions without scanning
the entire image, which cannot capture the context. Although that approach is interesting,
it suffers from two main drawbacks, which motivate further significant research. The first
is that the model generates visual words rather than high-level semantic words. The other
problem is that they lack textual information, which leads to an inaccurate understanding
of image context. Several studies have shown that attribute-based methods aim to generate
more advanced semantic details to boost image captioning performance [49, 53, 54]. How-
ever, the downside of this effective approach is that incorporating all the existing attributes in
the image into the recurrent neural network (RNN) is unnecessary or even misleading. More
recent evidence highlights that there is a need for both visual and semantic information due to
their complementary nature [16, 43]. Despite the most significant benefit of their work, they
do not consider the interrelationship between visual and semantic information and combine
them to construct an abstract representation regardless of the image context.

Generally, generating a subjective sentence to describe the salient points in the image
requires more abstract words. In many cases, inferring these words needs to consider more
than one region in addition to high-level semantic concepts with an awareness of contextual
information. For example, in the caption, "soccer fans cheer their team and celebrate the
goal in a full stadium with open-air", it is surprising that none of the words can be classified
only from a bounding box visual region. Intuitively, when predicting words like "fans" and
"goal", the model must make inferences based on visual and semantic information under the
umbrella of contextual representation. Therefore, using the visual regions to generate fine-
grained captions is not enough. On the other side, involving high-level semantic concepts
and contextual information along with the region of interest (ROI) needs an advanced feature
fusion approach.

This paper sheds new light on cross-modal feature consolidation for the image caption-
ing task. Many previously proposed models of visual attention directly use meaningful
regions of images to generate descriptions. However, looking for a direct transition from
visual space to text is not enough to generate fine-grained captions. This paper leverages a
feature-compounding approach to gather high-level semantic concepts and visual informa-
tion regarding the contextual environment in a fully end-to-endmanner. Specifically, we form
our novel compounding function in the proposed stacked cross-modal feature consolidation
(SCFC) attention network. In particular, with progressive reasoning via multiple CFC layers,
the SCFC can gradually consolidate cross-modal knowledge to generate a rich representation
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through the caption generation process in every time step. We also construct our cross-modal
features as principal components in the compounding function to boost the captioning result.
Precisely, spatial-visual information, high-level semantic concepts, and contextual informa-
tion are all considered for preparing an abstract and richer representation of the given image.
To better use consolidated features potential, we further offer an SCFC-LSTM as the cap-
tion generator, which can leverage discriminative semantic information through the caption
generation process. Besides, our model is more attractive from the modelling perspective
because it can be trained fully end-to-end.

The contributions of this study are as follows:

1. A novel SCFC attention network is proposed. A compounding function is formed, which
can perform multistep reasoning on cross-modal features to promote the generation of
discriminative semantic features.

2. Our multi-aspect features as principal components in the compounding function contain
(1) spatial-visual information, (2) high-level semantic concepts, and (3) contextual infor-
mation to represent various aspects of the given image. Furthermore, there is no need for
an independent stage to extract these features since the proposed model can be trained
fully end-to-end with a single optimization level.

3. We provide SCFC-LSTM as the caption generator, which can use discriminatory seman-
tic information through the caption generation process, thereby generating fine-grained
captions.

4. We verify the effectiveness of our method on the benchmark MS-COCO and Flickr30K
datasets. Experimental results show that the proposed method can achieve competitive
results with state-of-the-art methods.

2 Related works

A large number of articles on image captioning have been published to date [57]. Several
articles have used classical encoder-decoder frameworks, and some newer studies have used
transformers for image captioning [19, 30, 40, 41]. Specifically, we are interested in the visual
attention approaches used in the classical encoder-decoder framework, which has attracted
considerable interest due to its outstanding performance. Previous works combine a CNN to
encode an image into a single static visual feature map and then feed it into an RNN as a
decoder [23, 34, 46]. However, this static representation can lead to losing local information.

Inspired by the attention mechanism introduced in machine translation [3, 50] firstly pro-
posed spatial attention in image captioning, which integrates the hidden state of the last
step and visual features of patches to calculate the attention weights over different patches
in images. A weighted sum of all patches obtains the soft attention feature, and the hard
attention feature corresponds to visual information of the most important patch. Although
this has made great progress, it involves many meaningless patches, which leads to high
computational complexity and increased visual interference. [11] proposed scene-specific
contexts and employs selective search [44] to generate region proposals. Besides, [36] pro-
posed an area-based attention mechanism which allows a direct association between caption
words and image regions by modelling the dependencies between image regions, caption
words, and the hidden states. Furthermore, [32] highlights that the decoder may predict non-
visual words with little visual information from the image and introduce a visual sentinel to
decide whether to participate in the visual part or language model. Therefore, by introducing
adaptive attention, [32] indicates the need to consider processing non-visual words.
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Different types of attention mechanisms have been proposed that can use weekly super-
vised multiple instance learning (MIL) to learn advanced concepts and combine them into
sentences to solve the problem of generating non-visual words. [54] introduced a visual
attribute classifier to generate semantic concepts in which image features are a vector of
attribute classifier confidence. [53] has developed a novel attribute-guided model by inte-
grating inter-attribute correlations into MIL to add the high-level semantic attributes into
an RNN-based encoder-decoder framework to achieve better performance. They have con-
structed various architectures to feed these features to find the best way to incorporate
semantic attributes. However, all attribute words are considered equally essential and incor-
porated into the RNN at every time step. Involving all of the probable words in the image
may lead to generating some unrelated words to the image context in the final caption.

All in all, existing methods have tended to focus on either visual or attribute information.
Due to their complementarity, they lead to insufficient knowledge of the given image. The
other problem is that a few works consider the importance of preserving contextual informa-
tion in the caption generation process. The generation of a subjective sentence to point out
the salient event is strongly influenced by the scene in which the image appears.

3 The proposedmethod

This section introduces details of the proposed SCFC attention network for image captioning.
The overview of the proposed framework is illustrated in Fig.1. The framework comprises
three components: (1) the coupled visual detector and attributes predictor, (2) the SCFC
attention network, and (3) captioning with SCFC-LSTM. First, we extract visual regions
V = {v1, . . . , vn} , vi ∈ R

h, V ∈ R
n×h and semantic attributes A = {a1, . . . , ac} , ai ∈

R
|�|, A ∈ R

|�|×c from the given image in a coupled manner. Then, they are fed to the SCFC
module. After constructing cross-modal features as principal components, the proposed CFC

Fig. 1 The overview of the proposed SCFC for image captioning. Region proposals and attributes are extracted
at the first step and then fed to the SCFC cell in each time step to consolidate cross-modal features through
the caption generation process
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attention network is triggered to form a compounding function inspired by the multi-step
reasoning idea. Finally, the consolidated semantic features are forwarded to the SCFC-LSTM
to generate semantically fine-grained image captions.

3.1 Coupled visual detector and attribute predictor

Visual and semantic features are complementary to each other. With this in mind, we develop
a model that can leverage both to enhance the generation of visual and non-visual words like
”helping” and ”sitting”. In traditional works, predicting attributes is treated as an independent
task and depends on a standalone stage, increasing the overall number of model parameters.
Inspired by the end-to-end attribute detection in [18], we adopt an attribute predictor (AP)
that can be trained jointly with the whole captioning network. Different from previous studies
[2, 18], our visual detector (VD) can also be trained with the entire captioning network. In
particular, we argue that training feature extractors within the whole system can boost the
model to extract more task context-related features. We first detect a set of salient regions
of the image, and then on the top of the visual detector, we construct our attribute predictor.
The architecture of the coupled VD and AP is given in Fig. 2.

3.1.1 Visual detector

To extract the deep information of the salient candidate regions, we use ResNet-101 [17]
architecture to obtain feature maps of the input image.We employ amodified region proposal
network (RPN) [38] to detect regions in the given image with a set of rectangular region
proposals and corresponding confidence scores.

In the proposed architecture, after the final convolutional layer of ResNet-101 [17], a
3 × 3 sliding window moves across the feature map and maps it to a lower dimension
(e.g., 256-d). Multiple possible regions based on k fixed-ratio translation-invariant anchor
boxes are generated for each 3 × 3 window of the feature map. Thus, the regression layer
generates 4k output representing the bounding boxes of the regions, and the classification
layer generates 2k outputs representing the softmax probability of each of the k bounding
boxes as a confidence score. We set the value of k as 9, which includes 3 scales and 3 aspect
ratios for each scale. Finally, the bilinear interpolation [20, 22] is used to enhance the nearest
neighbour interpolationmethod in the original ROI pooling layer in [38] so that ourmodel can
extract a fixed-sized representation V = {v1, . . . , vn} , vi ∈ R

h, V ∈ R
n×h smoothly from

each region. Moreover, bilinear interpolation allows end-to-end backpropagation through the
region proposals.

Fig. 2 The architecture of the coupled VD and AP in our approach. Given an image, the figure shows the
process of detecting visual regions V and attributes A
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3.1.2 Attribute predictor

The proposedAP uses the extracted salient regions and the attribute embedding EA generated
by embedding LSTM as a by-product to model the similarity between object features and
attributes during the detection process. As shown in Fig. 3, the probability that a given image
contains an attribute is predicted in two steps.

In the first step, we map the attribute embedding and the object features to the same space
using two fully connected layers. Then, these are combined using matrix multiplication to
measure the similarity. The output of these steps feeds to a softmax layer to generate the
raw probability matrix Praw ∈ R

1000×k , where Pi j
raw stands the raw probability that the j th

region contains the i th attribute ai . Praw is obtained based on (1).

Praw = sigmoid
(
(WAPE A)T ⊗ WvV

T
)

(1)

where WAP ∈ R
d×e and Wv ∈ R

d×h are trainable parameters. E ∈ R
e×|�| represents the

embedding of all the words in the vocabulary � with embedding size e, A ∈ R
|�|×c is

the one-hot index matrix of the c attributes, ⊗ denotes the matrix multiplication, and the
superscript T is the transpose operation.

In the second step, the probability values in each row of Praw are combined using the
noisy-OR multiple instance learning (MIL) [10] to generate the final probability Pi (2) that

Fig. 3 The structure of our proposed SCFC-LSTM. Peephole connections and our consolidated input are
shown with red and blue lines, respectively
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the input image contains the i th attribute ai .

pi = 1 −
n∏
j=0

(
1 − Pi j

raw

)
(2)

We face two imbalanced training set problems for training the coupled visual detector and
attribute predictor. The number of regions proposed in the RPN network could be as high as
several hundred thousand,most ofwhich are negative examples since there is no object inside.
Only a fixed number of samples with a fixed object/not-object score is sampled in classical
training to overcome the class imbalance problem. Besides, the ground truth attribute vectors
are sparse, as a few attributes appear in the ground truth captions.

Focal loss [28] (3) is leveraged to defeat this problem, in which all pre-located concrete
anchors are taken for trainingwith a dynamically cross-entropy loss. Although all anchors are
considered, overwhelming the detector is prevented by weighting the losses of easy samples.
Likewise, this modification applies to the attribute predictor, where we treat the non-existent
attributes in the ground truth captions as negative examples in RPN.

FL(p) =
{

−α(1 − p)γ log(p), y=1

−(1 − α)pγ log(1 − p), otherwise
(3)

We define the visual detector loss LV D and attribute predictor loss LAP as (4) and (5),
whereLreg is the smoothL1 loss used in the regression layer. t∗i and p∗

i are the regression tar-
get and object/not-object labels. λ is a balancing weight, Ncls and Nreg are the normalization
terms, and Npos is the number of positive attributes.

LV D = 1

Ncls

∑
i

F L(pi ) + λ
1

Nreg

∑
i

p∗
i Lreg(ti , t

∗
i ) (4)

LAP = 1

Npos

c∑
j=1

FL(p j ) (5)

It should be noted that y = 1 in (3) means the anchor contains an object, and the attribute
a j exists in the ground truth captions when we calculate LV D and LAP losses, respectively.
Further, α, γ and λ hyper-parameters are empirically set to 0.3|0.95, 2|2, and 10|− for visual
detector and attribute predictor losses, respectively. Finally, the LV DAP loss is calculated
using (6).

LV DAP = LV D + 0.5LAP (6)

3.2 SCFC attention networks

At the heart of our proposed method is a compounding function to consolidate cross-modal
features so that we can guide the language model in the caption generation process. Our com-
pounding function aims to combine cross-modal features in a multi-step fashion and enable
the model to attend to the constructed discriminative features in generating all semantic-
level words. In the initial step, we form our principal components to feed into the proposed
compounding function, which comes from two different modalities: textualH and visual V .
Then, we define our novel recursive function to compound cross-modal features through the
attention networks.
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3.2.1 The principal components

We define our principal components from two modalities: textualH and visual V . The visual
element is provided from the output of the visual detector. In this case,we have a set of regional
feature maps to participate in the compounding function. As the second component, we
leverage semantic attributes regarding the contextual environment. Previous studies employ
semantic attention to involve high-level semantic concepts in the caption generation process.
The kernel of semantic attention-based methods drives the model to dynamically attend to
semantically essential attributes in each time step regarding the contextual information. This
core has been formed by learning an attention activation state vector to calculate the weight
of each attribute. Existing methods meet this goal by adding elementwise the hidden state
vector of the language LSTM from the previous time step and each attribute vector. Then, the
weight of each is computed through the softmax layer, and the “soft” approach is followed
to obtain the output attention by using the weighted sum of the detected attributes. Note that
the output attention vector may contain irrelevant attributes, making the attention guidance
vague. We provide two toy examples inspired by a comprehensive investigation conducted
in [16] to find the best function for measuring the similarity in considering extreme cases to
make sense better.

In the first case, consider the attribute vector A as an all-one vector, and the hidden state
of the language LSTM h is an all-zero vector expressing there is no contextual information.
As h is an all-zero vector, there is no correlation between the attribute vector and the context.
Hence, the attention activation state vector should be an all-zero vector meaning no associ-
ation between the context and the attribute vector. In the second case, imagine the attribute
vector A is an all-zero, and the hidden state of the language LSTM h is an all-one vector,
which indicates there are no high-level concepts in the given image. Thus, the corresponding
attention activation state vector is supposed to be an all-zero vector, which shows no cor-
relation between the context and the attribute vector. Although the expected result in both
examples is an all-zero vector, the attention activation state vector taken by the traditional
semantic attention mechanism is an all-one vector leading to the inaccurate weights added
to the detected attributes. From the examples, we can find that in some cases, the "soft"
attention mechanism may lack an appropriate measure of the correlation between contextual
information and high-level semantic concepts. The Context-Aware Attribute CAA suggested
in this paper seeks to address this issue by formulating a function measuring the correlation
between the predicted attributes and contextual information. Besides, we use the Attention
LSTM [2] to represent the contextual information rather than take the hidden state of the
language LSTM leading to a proper dynamic representation of the image context condition
in the current linguistic context.

As illustrated in (7), attention LSTM takes the mean pooled image feature v̄ = 1
N

∑
i vi ,

the previous hidden state of the SCFC LSTM and encoding of the previously generated word
as the inputs. These inputs provide the attention LSTMwith maximum context regarding the
state of the language LSTM, the overall content of the image, and the partial caption output
generated so far, respectively.

hattt = LST M[(hSCFC
t−1 ⊕ v̄ ⊕ E�t ), h

att
t−1] (7)

where E stands for the word embeddingmatrix shared with the attribute detector module, and
�t is the one-hot encoding of the inputword at time step t . Further, we choose linear functions
tomeasure the correlation between the predicted attributes and contextual information as low-
cost functions in terms of computational efficiency and simplicity. Due to our refinement
purpose, we define �cr as the element-wise multiplication. Thus, the semantic attention
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distribution β
j
t over each attribute a j

t can be calculated using (8) and (9).

b j
t = �cr (h

att
t , E A j

t ) (8)

β
j
t = so f tmax(b j

t ) (9)

where b j
t denotes the attention activation state vector of each attribute. Then, we can construct

the context-aware attributes CAAt by multiplying the embedding of each attribute by its
weight based on (10).

CAAt =
c∑

j=1

(β
j
t · E A j

t ) (10)

It should be noted that the proposed CAA vector is supposed to represent those attributes
that are associated with contextual information. Intuitively, the coexistence of the final
attribute set can preserve the context dynamically in each time step through the caption
generation process.

In summary, a set of regional feature maps, semantically embedding of the attributes,
and contextual information are all considered to form our principal components of the com-
pounding function. From this information,we provide visual elementV = {v1, . . . , vn} , vi ∈
R
h, V ∈ R

n×h as the first component, and our suggested context-aware attribute CAA as the
second component H coming from textual modality.

3.2.2 Compounding function

Given the principal components V andH, we propose a new recursive function to consolidate
cross-modal features in a multi-step fashion. In particular, we define an SCFC Attention
Network to perform the consolidation.We then set up a stacked network with more SCFCs to
operate together to simulatemulti-step reasoning. Firstly,we introduceCFC, a fully functional
operating standalone, and in the rest of this section, we look at how the stacked networkworks
as a recursive compounding function.

In the SCFC, we first measure the inter-modality relations between principal component
pairs to determine the relevance degree of the cross-modal features. Like the previous part,
we use �cr for calculating the relevance degree as below:

αi,t = tanh(�cr (WV,αvi ,WH,αHt )) (11)

Di,t = so f tmax(WT
α,Dαi,t ) (12)

whereWV,α ∈ R
d×h ,WH,α ∈ R

d×e andWT
α,D ∈ R

h are learned parameters. By determining
the relevance degree Di,t between textual component H and visual sub-components vi , we
calculate attended visual component V as follows:

Ṽ I
t =

∑
i

Di,tVi (13)

The calculated Ṽ I
t represents the visual element, which is strained with the textual com-

ponent at each time step t . To solidify the impact of the textual information, we define the
compact cross-modal representation Ut as a second-order combination as follows:

Ut = Ṽ I
t + Ht (14)
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The output Ut is an informative representation in which the principal components V and
H of a given image are encoded. Compared with the models that only adopt combined
visual and semantic attention, our model constructs a richer Ut by imposing higher weights
on the visual elements that are more relevant to the context-aware attributes. However, for
abstract semantic words, a single CFC is insufficient for making inferences on the cross-
modal features and generating an all-round representation. Therefore, we stacked SCFCs to
iterate the above procedure imitating the multi-step reasoning approach in multi-modal tasks.
Mathematically, for the sth CFC layer, the SCFC takes the following formulas:

αs
i,t = tanh(�cr (W

s
V,αvi ,W

s
H,αHs−1

t )) (15)

Ds
i,t = so f tmax(Ws,T

α,Dαs
i,t ) (16)

whereHs−1
t is the textual element from the previous SCFC layer at each time step t . It should

be noted that we initialize H0
t with the context-aware attributes vector. In each reasoning step,

the attended visual componentV and the cross-modal representationUt are obtained as below:

Ṽ I ,s
t =

∑
i

Ds
i,tVi (17)

U s
t = Ṽ I ,s

t + Hs−1
t (18)

We repeat this algorithm S times and then use the finalU S
t concatenatedwith the contextual

representation hattt as (7) to serve it to the SCFC-LSTM to generate semantically fine-grained
sentences.

Ut = U S
t ⊕ hattt (19)

3.3 Captioning with SCFC-LSTM

There are several LSTM variants. In our work, we adopt the peephole LSTM [13, 15] model
as our caption generator, which is expressed as follows:

it = σ(Wi xt + Riht−1 + Pict−1 + bi )

ft = σ(W f xt + R f ht−1 + Pf ct−1 + b f )

ot = σ(Woxt + Roht−1 + Poct + bo)

gt = tanh(Wgxt + Rght−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct )

(20)

where it , ft , ot , ct and ht are the input gate, forget gate, output gate, memory cell, and
hidden state of the peephole LSTM, respectively. σ indicates the sigmoid function, xt shows
the word input at the time step t . P∗ ∈ R

N , W∗ ∈ R
N×M , R∗ ∈ R

N×N , and b∗ ∈ R
N

denote peephole, input, recurrent, and bias weights, respectively, where N is the number of
LSTM blocks and M is the dimension of inputs. It is worth mentioning that adding peephole
connections means that we let the gate layers look at the cell state. In other words, when
determining input gates, forget gates and output gates, there is a need to utilize the previous
time step of the cell state ct .

Previous studies utilize semantic features associated with either particular input locations
or high-level semantic concepts as additional inputs of the language model at each time step.
On the contrary, our model provides the cross-modal consolidated feature U to guide the
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description generation. As shown in Fig. 1, we load the constructed feature U into cell state
C at each time step. Intuitively, peephole connections also allow the current time step of the
gate to be aware of cross-modal informative semantic feature U in a more governable way.
Thus, the fourth line in (20) must be updated as below:

gt = tanh
(
Wgxt + WUUt + Rght−1 + bg

)
(21)

where WU indicate a weight matrix. Finally, the probability distribution over each word in
the vocabulary pt and the word to be generated at time step t is predicted as:

hSCFC
t = LST MP (hSCFC

t−1 , xt ,Ut ) (22)

yt ∼ pt = so f tmax(WhhSCFC
t ) (23)

where W indicates a weight matrix, and LST MP denotes the LSTM with peephole connec-
tions.

3.4 Model training

The model training process consists of two rounds. In the first round, given a target ground
truth sequence y∗

1:T , we optimize the model with the classical cross-entropy (XE) loss as
(24), where θ stands for the captioning model parameters.

LXE (θ) = −
T∑
t=1

log(pθ (y
∗
t |y∗

1:t−1)) (24)

In the second round,we leverage deep reinforcement learning (RL) to address the exposure
bias problem, which means the model has never been exposed to its predictions, resulting in
accumulated errors during the inference process. From the initialization of the model trained
by cross-entropy, we investigate to minimize the negative expected score corresponding to
the model parameter as below:

LR(θ) = −Ey1:T ∼pθ [r(y1:T )] (25)

where r is the evaluation scoremetric optimizedwith theCIDEr-D [45] score. Considering the
self-critical sequence training (SCST) [39], we approximate the gradient by theREINFORCE
algorithm, given by:

∇LR(θ) ≈ −(r(ys1:T ) − r(ŷ1:T ))∇θ log pθ (y
s
1:T ) (26)

where ys1:T is a randomly sampled caption, and r(ŷ1:T ) is the baseline score of the max
sampled caption.

Our proposed model is trained using a single-level optimization. Specifically, the model
is optimized with the overall loss function Lo, as shown in (27). LV DAP is defined as (6),
and Lcap is cross-entropy and reinforcement learning losses in the first and second rounds,
respectively.

Lo = Lcap + LV DAP (27)
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4 Experiments

4.1 Datasets

We validate the proposed model on well-known datasets, including MSCOCO [29] and
Flicker30k [55]. MSCOCO contains 82,783 images for training and 40,504 images for vali-
dation. Each image has five annotated sentences. We employ the Karpathy splits [23], used
widely for reporting results in prior works. This split contains 113,287 training images and
5K images for validation and testing. Flickr30k consists of 31,783 images obtained from
Flickr. For a fair comparison, we use the publicly split [23] with 29,783 images for training,
1K for validation, and 1K for testing. Like MSCOCO, each image is annotated with five
reference captions.

4.2 Evaluationmetrics

We report the performances with the popular metrics for image captioning, including BLEU-
N [35],METEOR [9], CIDEr [45], ROUGE-L [27], and SPICE [1].Weuse the code published
by the Microsoft COCO evaluation server to calculate all metrics. BLEU is computed by
measuring the similarity of the generated sentences and the reference sentences in n-grams.
METEOR is evaluated by comparing the various segments of sentences between the candidate
caption and the reference caption. CIDEr is a consensus-based metric introduced specifically
for image captioning tasks, which calculates consensus in image description by performing
TFIDF weighting for all n-grams. ROUGE-L is used to evaluate the adequacy and fluency of
machine translation, which employs the longest common subsequence between a candidate
sentence and a set of reference sentences to measure their similarity at the sentence level.
SPICE is determined by employing an F-score measured over tuples in the reference and
candidate scene graphs, obtained through dependency parse trees.

4.3 Experimental settings

4.3.1 Data preprocessing

We adopt the standard practice and apply only minimal text preprocessing, tokenizing on
white space, converting all tokens to lowercase, and discarding rare words that occur fewer
than five times, resulting in the remaining words in the vocabulary of sizes 10,010 and 6,864
for MSCOCO and Flickr30k respectively. In particular, we replace less frequently occurring
words with a special token < UNK >.

4.3.2 Implementation details

Our ground truth includes positive boxes and attribute vectors where coordinate annotations
are obtained from the MSCOCO-2014 object detection dataset. To build the ground truth
attribute, we select c most common words in the training caption corpus, where we set
c = 1000 as in [12]. Then, we construct an attribute vector to determine whether each
word exists in each image’s description. We employ ResNet-101 with weights pre-trained
on ImageNet [8] without fine-tuning in all the training phases. Our visual detector extracts
regional features with a size of 36 × 2048-d according to the corresponding confidence
scores as suggested in [2]. Similar to [18], attributes share the same embedding with the
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corresponding words, where each word is embedded in a 1000 dimensional word embedding
space. The dimensions of both attention LSTM and SCFCLSTM hidden states are set to
2048-d. The Adam optimizer [25] with β2 = 0.9, β2 = 0.999 is utilized to minimize the
loss function in (26). The basic learning rate is 1× 10−4. Dropout [42] and gradient clipping
techniques [14] are used. In the first round of training, we adopt teacher-forced learning [48],
in which we provide the ground truth words up to t − 1, and not the words it generated in the
previous time step to train the prediction at t for sequence learning. In the testing phase, the
maximum allowable sentence length is set to 20. We use the beam search strategy, and the
beam size is set to 3. For more details on the implementation and source code of the proposed
model, refer to https://github.com/MozhganPourKeshavarz/SCFC.

4.3.3 State-of-the-art studies

We confirm the effectiveness of our method by comparing its performance with the following
state-of-the-art works:

1. NIC [46]: The first encoder-decoder framework that takes an image as input in an encoder
and feeds the encoded representation into the first time step of the LSTM-based decoder
to generate the corresponding description.

2. Soft-Att [50] and Hard-Att [50]: Two different spatial attention mechanisms are intro-
duced to guide the model to selectively attend to the salient image regions in either
deterministic “Soft” attention or stochastic “Hard” attention.

3. Sem-Att [54]: First, the semantic concepts are detected in the image as an independent
task. Then, the global image features and the detected semantic concepts are combined,
and they are progressively fed into the language model through the caption generation
process.

4. LSTM-A [53]: They have suggested a novel attribute detector integrating inter-attribute
correlations into multiple-instance learning (MIL) to leverage correlations between
attributes. Then, they use five different forms to combine those semantically attributes
into the LSTM.

5. SCA-CNN [6]: This is an improved version of visual attention that incorporates spatial,
channel, and multi-layer image features to dynamically adjust the context of sentence
generation.

6. SCST [39]: An advanced reinforcement learning (RL) based trainingmethod is proposed
for image captioning.

7. Ada-Att [32]: Adaptive attention with a visual sentinel is proposed to determine whether
to attend to the visual features or the visual sentinel.

8. RFNet [21]: They have proposed a novel recurrent fusion network (RFNet) that can
exploit the interactions between the outputs of the image encoders and generate new
compact and informational representations for the decoder.

9. Up-Down [2]: A combined top-down and bottom-up attention mechanism is introduced
that enables attention to be determined at the level of objects and other salient image
regions.

10. GCN-LSTM [52]: They have built a graph convolutional network over the detected
objects in an image that integrates semantic and spatial object relationships into the
image encoder in an encoder-decoder framework.

11. ARL [47]: This work considers a solution to integrate intra-regional relationships into
visual content and proposes a novel visual attention mechanism to implicitly model the
relationships between image regions.
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12. SGAE [51]:A scene graph auto-encoder has been proposed that incorporates collocations
and contextual inference into the encoder-decoder architecture as the language inductive
bias by using the scene graph of the image and a trained dictionary.

13. CAVP [56]: They have proposed a new RL-based learning method and introduced a
pairwise relationship learning approach in the decoder.

14. LBPF [37]: They have suggested a look back method to embed previously visual infor-
mation and a predict forward strategy to look into the future to boost image captioning
performance by utilizing linguistic coherence.

15. MAD+SAP [18]: This work expands semantic attention by introducing a subsequent
attribute predictor module to dynamically predict a concise attribute subset at every time
step to mitigate the variety of image attributes.

4.3.4 Quantitative results

Table 1 illustrates the contrastive performance comparison results on the MS-COCO dataset.
The table shows that our proposed model outperforms the state-of-the-art models by a large
margin in all evaluation metrics, specifically CIDEr. For a fair comparison, we also sepa-
rately report the results of the ensemble models. These evaluation results indicate that the
SCFC attention network boosts image captioning performance. Compared with the tradi-
tional neural image captioner NIC [46], classical visual attention Soft-Att [50], and Hard-Att
[50] as benchmarks, our improvement is primarily due to the more effective collaboration of
visual and semantic information. Compared with SCA-CNN [6] and LBPF [37], our model
uses advanced semantic concepts to generate more diverse and semantic-enriched captions.
Although Sem-Att [54] and LSTM-A [53] leverage attributes, our model canmore accurately
measure the correlation between attributes and contextual information, and there is no need
for a separate network to train the attribute detector. Compared with methods that explore
visual semantic regions by pre-training a visual detector with a large dataset (such as Visual
Genome) before implementing the image captioning network (Up-Down [2], MAD+SAP
[18]), we leverage the cross-modal feature consolidation layer to make up for the lack of dis-
criminative semantic feature representation. RFNet [21] further improves image captioning
performance by investigating the spatial attention mechanism.

In contrast, we employ an attention mechanism considering both semantic concepts and
spatial regions. ARL [47] and GCN-LSTM [52] consider the visual relationship among
regions in the image by discovering the high-level connections between regions that encode
semantic concepts, thereby improving image captioning performance. At the same time,
our model can capture these regions in compounding functions through the SCFC layers.
CAVP [56] proposes a new RL-based learning method employed in our learning procedure
to improve image captioning performance. MAD+SAP [18] utilizes visual and semantic
information and focuses on the role of attributes. While keeping in mind the complementary
nature of visual and semantic information, we propose a fully end-to-end model with a novel
consolidation layer to efficiently generate more fine-grained captions. Unlike SGAE [51],
which requires pre-training a scene graph generator and a dictionary, our model relies on the
visual feature as the only input.

To further verify the effectiveness of the proposed model, we report the evaluation results
of the test split of the Flickr30k dataset in Table 2. We evaluate the proposed model on the
online MSCOCO test server. Table 3 reports the performance of the SCFC and other state-
of-the-art works. The proposed method also achieves the best performance in most metrics.
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Table 2 Performance analysis of
the proposed SCFC and other
state-of-the-art methods on the
Flicker30K publicly split using
the cross-entropy loss, where
B@N, M, R, C and S are the
short forms of BLEU-N,
METEOR, ROUGE-L,
CIDER-D, and SPICE scores

B@1 B@4 M R C S

NIC [57] 66.3 18.3 - - - -

Soft Att [50] 66.7 19.1 18.49 - - -

Hard Att [50] 66.9 19.9 18.46 - - -

Sem-Att [54] 64.7 23.0 18.9 - - -

SCA-CNN [8] 66.2 22.3 19.5 - - -

Ada-att [34] 67.7 25.1 20.4 - 53.1 -

ARL [14] 69.8 27.7 21.5 48.5 57.4 -

SCFC[31] 71.2 27.9 22.2 49.2 58.1 15.9

The most significant number in each column is marked in boldface

4.4 Ablation studies

4.4.1 Incrementally validation

We also conduct extensive experiments to incrementally validate our method and thoroughly
show the behaviour of the proposed method. We use the following parts to ablate our model:

• Base: We construct a baseline model by following [2] to integrate an attention LSTM
to the language LSTM coupled with our visual detector. Note that unlike [2], our visual
detector can be trained jointly with the whole captioning network.

• Base+VDsemAtt: We inject our attribute detector through the traditional semantic atten-
tion as an extra input to the language LSTM.

• Base+CAA: To show the effectiveness of our proposed CAA, we incorporate detected
attributes through the context-aware attributes module into the Base model.

• CAA+SCFC: We add the proposed stacked cross-modal feature consolidation attention
network to the ablative model Base+CAA. Compared to the entire model, this variant
does not adopt SCFC-LSTM.

• CAA+SCFC+SCFC-LSTM: The proposed model with CAA, SCFC attention network,
and SCFC-LSTM.

The experimental results of the ablated models are reported in Table 4. The number in
brackets denotes the number of stacked layers in the SCFC attention network. Our basemodel
achieves comparable performance to [2]. The results of Base+VDsemAtt and Base+CAA
demonstrate that using attributes in forming the textual component can provide better results
than leveraging visual elements alone (Base). In comparison, our context-aware attributes
module improves the model performance significantly. In particular, our ablative model
Base+CAA can achieve 37.6 and 124.8 in the BLEU-4 and CIDEr, respectively, making the
relative improvement over our baseline model with classical semantic attention by 0.6% and
2.9%, respectively. The proposed CAA performs better than traditional semantic attention
on the BLEUN metric. Indicating running detected attributes through the caption genera-
tion process, regarding how much they are consistent with the contextual environment of
the current step, can guide the model to attend to more context-related attributes resulting in
meaningful and fluent sentences. The experiment of CAA+SCFC+ SCFC-LSTM(s), which is
the full model with a different number of CFC layers, verifies the effectiveness of our stacked
cross-modal feature consolidation attention network. In particular, our model CAA+SCFC+
SCFC-LSTM(3) achieves a relative improvement of 0.9%, 1.9%, 1.3%, 1.3%, 8.0%, and
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Table 4 The results of ablated models (Base, Base+VDsemAtt, BASE+CAA, CAA+SCFC) and our entire
model CAA+SCFC+SCFC-LSTM{N} on the MSCOCO test split in CIDER-D score optimization training in
terms of BLEU-N(B@N), METEOR(M), ROUGE-L(R), CIDER-D(C), and SPICE(S)

B@1 B@4 M R C S

Base 79.8 37.0 27.7 57.4 121.9 21.4

Base+ADsemAtt 80.0 37.4 28.1 57.7 123.4 21.5

Base+CAA 80.2 37.6 28.3 57.9 124.8 21.7

CAA+SCFC {1} 80.5 37.9 28.6 58.3 126.1 21.9

CAA+SCFC+SCFC-LSTM {1} 80.6 38.1 28.7 58.4 127.2 22.0

CAA+SCFC+SCFC-LSTM {2} 80.7 38.6 28.9 58.5 128.7 22.2

CAA+SCFC+SCFC-LSTM {3} 80.7 38.9 29.0 58.7 129.9 22.1

{N} indicates the different number of CFC layers used

0.7% in terms of BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr, and SPICE, respec-
tively. Besides, our model CAA+SCFC+SCFC-LSTM(1) improves results compared with
the CAA+SCFC(1) ablative models proofing the positive influence of adopting SCFC-LSTM
rather than the standard LSTM.

These evaluation results indicate the efficacy of the SCFC layer. By comparing our entire
model with its variants, it is not difficult to determine whether the proposed SCFC can
combine complementary features to dynamically modulate a richer semantic representation
of a given image at each time step. The evaluation results of models with more than one CFC
layer further confirm this assertion. The entire model with three stacked CFC layers achieves
a relative improvement of 8.5% in the CIDEr metric, which is remarkable in generating
semantic-enriched descriptions.

4.4.2 Context-aware attributes analysis

Figure 4 shows the impact of semantic attention weights through our proposed context-aware
attribute module at each step in our grown model. We only present the attention weights
of three probable attributes from the attribute detector output for visual simplicity. While
sentences are being generated, variations of the corresponding distinct time-varying weights
are adjusted to the current context.

To better understand our model, we preserve three scenarios in CAA weights’ changes
and attributes’ contribution in the generated captions. First, those high probability attributes
obtain highweights used in the generated caption. This case almost happenswhen an attribute
can be paired with a well-defined shape region or words describing an action. For example, in
Fig. 4(c), the words "man", "playing", and "frisbee" are picked at the exact time step meaning
our CAA can attend accurately to these categories of words. Second, those attributes with
a high probability not only obtain high weights but also do not participate in the generated
captions. This case takes placewhen attributes are not consistent with contextual information.
For instance, in Fig. 4(b), although the word "kitchen" is predicted with a high probability
(0.97%), it does not achieve a high weight. Besides, it orients the semantic tendency of the
model when words like "decorating" and "cake" are generated, which is the power of the
CAA module. Third, those high-probability attributes do not reach high weights through the
CAA. Nevertheless, they take a seat in the generated caption. This case shows the ability of
the CAA to leverage common catchwords in either spoken or written language. The term
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Fig. 4 Examples of attention weights’ changes along with the generation of captions

"city street" in Fig. 4(a) is a good example indicating the attention to theword "city", although
almost a low probability predicts it.

4.4.3 The role of SCFC attention layers

Regarding the generation of visual and non-visual words, feature compounding is beneficial
to image captioning. Comparing sentences generated by the SCFC attention network and
those generated by the Base model reveals this assertion. In particular, the compounding
function in the SCFC layers aims to bring together semantic attributes and visual regions,
leading to the generation of fine-grained captions.

We compare the result captions generated by the various number of CFC layers against the
baselinemodel, as shown in Fig. 5. The figure shows that our SCFC attention network enables
the model to perform reasoning on the input image. In particular, the captions generated by
more CFC layers contain high-level words inferred by some regions and their association
with some attributes that encode a semantic concept. For example, the terms "washing" in the
lower-left part and "catch" in the upper-right part of Fig. 5 are such high-level words that our
model can generate accurately. Furthermore, the phrase "working in a computer lab" in the
upper-right part of the figure is an excellent example of generating a conceptual expression
through multiple reasoning steps.

It is worth noting that captions with one CFC layer contain both visual and non-visual
words regarding contextual information, indicating the strength of a standalone CFC layer.
For instance, in the second example of the first row in Fig. 5, the words "standing" and
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Fig. 5 Examples of caption results. The captions are generated by the Base model, SCFC, with one/two/three
CFC layers in the yellow box to the solid green box, respectively

"looking" as non-visual words, and the words "sink" and "window" as visual words show
that our model can selectively attend to both visual and non-visual words resulting better
captions.

4.4.4 Model ensemble

Ensembles [4] have been a straightforward and effective way to enhance machine learning
systems’ performance for a long time. In deep architectures, one only needs to train multiple
models independently on the same task, potentially varying some training circumstances and
aggregating their predictions to make the outcome at inference time. For a fair comparison,
we also report the ensemble performance of three SCFCmodels with different stacked SCFC
layers in the range of 1 to 3. The result is presented in Table 1 as SCFC[�]. Compared with
each model’s results, the ensemble model boosts the performance significantly, which means
various semantic-level words need a different number of reasoning steps. This achievement
hints at further research on the dynamic number of stacked SCFC layers.

4.4.5 Parameter size analysis

Increasing the number of stacked SCFC layers can imitate themulti-step reasoning procedure
leading to the generation of fine-grained captions. Besides, deepening the SCFC increases
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Fig. 6 The results of ablated models (BU-SCFC[s], Gwf-SCFC[s]) and our entire model SCFC[s] where s
denotes the different number of CFC layers on the MSCOCO test split in CIDEr-D score optimization training
in terms of BLEU-4

the overall parameter size, which can slow down the speed of convergence. To further verify
the influence of growing SCFC, we conduct two experiments as follows:

• BU-SCFC: Replace our visual detector with the pre-trained bottom-up attention.
• Gwf-SCFC:Replace ourword embeddingwith the pre-trainedGlovewithout fine-tuning.

The experimental results are shown in Fig. 6. The figure shows that increasing the number
of SCFCs in the ablative models can further enhance the captioning performance. These
improvements significantly occur in the model with three SCFC layers. In particular, the
ablative model BU-SCFC achieves a relative improvement of 0.34% in terms of BLEU-
4 compared with the SCFC model with the same stacked SCFC numbers. Although this
improvement is remarkable, it comes at the cost of a lack of end-to-end training capability.
It should be noted that we do not use these parameter reduction tricks in any of the other
comparison results.

4.4.6 Influence of beam size k

There are two standard procedures in the test phase to predict the next token in sentence
generation. The first one is the greedy method, in which the token with the highest score
at each time step is determined and used to predict the next token until it grasps the end
flag or the maximum length of the caption. The second one is to use beam search to choose
the best k subsequences at each time step and use them as applicants to generate the best k
subsequences in the next time step. To examine the influence of the beam size in the testing
step, we analyze the performances of our grown model with the various numbers of CFC
layers with different beam sizes in the common range of 1 to 5 on the MSCOCO dataset.
Figure 7 shows the results obtained by the normalization step according to the highest score
of each evaluation metric. From the figure, we can find that as the beam size k increases,
BLUE-4will be enhanced in all model variations meaning we can generate sentences fluently
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Fig. 7 The effect of beam size k on BLEU and CIDEr in our proposed SCFC with one/two/three CFC layers
from left to right

by increasing the beam size in the range set in our experiment. In contrast, when the beam
size k is 3, the CIDEr metric will reach its peak, except in the model with one CFC layer
where the result with the beam size of 4 is slightly ahead of the result with the beam size
of 3.

5 Conclusion

This paper presents an SCFC attention network for image captioning to make reasoning in
multiple steps on the cross-modal features, thereby achieving a compact and informative
representation in the caption generation process. We demonstrate that compounding multi-
modal information can boost the generation of discriminative features to generate all-level
semantic words. We first form the textual component via context-aware attributes, which
can jointly train through the captioning network training with the visual detector. We then
propose an SCFC attention network to consolidate cross-modal features multiple times, imi-
tating a multi-step reasoning procedure. Besides, we suggest the SCFC-LSTM encourage the
model to look at the consolidated representation in a more controlled way. Our SCFC can
generate more fine-grained captions. To validate the effectiveness of the proposed method,
we conduct extensive experiments. Experimental results show that our method outperforms
state-of-the-art models trained by both RL-based and cross-entropy losses. We also plan to
design a dynamic SCFC attention network for image captioning tasks when the number of
steps parameter depends on the word that should be generated rather than a predefined fixed
number.

Data availability statement All datasets used in this study are well-known benchmarks freely available on the
Internet.
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