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Abstract
Hand gesture plays an important role in communication among the hearing and speech 
disorders people. Hand gesture recognition (HGR) is the backbone of human–computer 
interaction (HCI). Most of the reported hand gesture recognition techniques suffer due 
to the complex backgrounds. As per the literature, most of the existing HGR methods 
have only selected a few inter-class similar gestures for recognition performance. This 
paper proposes a two-phase deep learning-based HGR system to mitigate the complex 
background issue and consider all gesture classes. In the first phase, inception V3 archi-
tecture is improved and named mIV3Net: modified inception V3 network to reduce the 
computational resource requirement. In the second phase, mIV3Net has been fine-tuned 
to offer more attention to prominent features. As a result, better abstract knowledge has 
been used for gesture recognition. Hence, the proposed algorithm has more discrimina-
tion characteristics. The efficacy of the proposed two-phase-based HGR system is val-
idated and generalized through experimentation using five publicly available standard 
datasets: MUGD, ISL, ArSL, NUS-I, and NUS-II. The accuracy values of the proposed 
system on five datasets in the above order are 97.14%, 99.3%, 97.4%, 99%, and 99.8%, 
which indicates significant improvement, i.e., 12.58%, 2.54%, 2.73%, 0.56%, and 2.02%, 
respectively, than the state-of-the-art HGR systems.
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1  Introduction

Computers significantly impact our daily lives due to the advancement of technology and 
their affordable low cost [2]. Hand gestures have been used as a communication language 
for hearing and speech disorders people. Worldwide, 430 million people have hearing loss, 
as per the world health organization (WHO). The researchers have predicted that this num-
ber may rise to 700 million by 2050 [3]. The “deaf” or “hard of hearing” can use only sign 
language in their communications among themselves and with others. Different countries 
have their own sign language. The researchers have paid large attention to helping hear-
ing and speech disorders people by evolving automatic sign language recognition (ASLR) 
algorithms. Besides, HGR has been widely used for other applications, i.e., designing 
touchless systems, robotics devices [38], medical applications, and smart environments 
[10], etc. The primary goal of designing an ASLR algorithm is the conversion of hand 
gestures into "voice" or "text" with better accuracy and less computational cost. In other 
words, the main goal of the HGR is to classify and identify hand gestures correctly. Several 
methods and concepts from several fields, including image processing and neural network, 
have been used in the hand gesture recognition methodology to learn various hand pos-
tures. The end goal of reliable HGR is high recognition accuracy. The evolution of convo-
lution neural networks, especially deep neural networks, excel in recognizing complicated 
patterns with complex backgrounds.

To help "deaf" or "hard of hearing", designing a robust hand gesture recognition system 
is an essential component for sign language interpretation. The population with hearing 
loss has a noticeable communication gap. A translator that converts gestures into verbal 
language can overcome this communication gap. A translator based on a robust HGR can 
help the hearing-loss population, which allows them to more easily and independently inte-
grate into society.

Generally, hand gestures are detected and recognized based on two approaches, i.e., 
“sensors mounted on the hand [16, 34, 52]” and “using a photography camera called 
vision-based sensors [15]”. The second approach has been considered better than the earlier 
one, because hands are free from sensors to perform gestures [48]. The second approach 
has again been divided into two categories, i.e., static and dynamic [47]. In static gesture 
recognition, the feature extraction approach has a key pre-processing role in the pattern 
recognition problem. In the traditional pattern recognition procedure, feature extraction is 
a vital step. The prominent selected features are responsible for discriminating the hand 
gestures into different classes. It is a very challenging task to recognize gestures from a 
complex background. There are some approaches for gesture recognition in complex back-
grounds [21, 54, 57]. Zhang et al. [54] presented HGR based on a hand pose estimator. In 
this method, the performance has been evaluated only in the indoor scenarios. The estima-
tion of joints may be limited in the occlusion and low illumination scenarios. Li et al. [21] 
employed YCbCr color space for the segmentation of hands. In another work, Zhou et al. 
[57] proposed a network for segmentation based on dilated residual network and decoder. 
The performances of the methods [21, 57] are limited due to the skin color background.

On the other hand, dynamic gestures [27, 33, 56] include head movements for “No” 
and “Yes” that can be predicted using only temporal context data. In this paper, we have 
focused on the static HGR system because the deaf typically expresses the alphabet and 
digits using hand poses and fingers. Most of the conventional feature extraction methods 
are unable to detect some important salient features for distinguishing inter-class similar 
gestures. As a result, most of the existing methods have selected a couple of basic dis-
criminating gestures for recognition. In this paper, all gesture classes given in five publicly 
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available datasets from various countries have been considered for recognition perfor-
mance. Recently, researchers have paid large attention to deep learning for HGR [1, 3, 7, 
17, 19, 21, 25, 31, 37, 49, 53, 54, 57]. Most of the existing approaches suffer from complex 
backgrounds and inter-class similarities.

The main contributions are as follows. 1. It has been observed from the literature that 
most of the existing HGR systems suffer from complex backgrounds and inter-class simi-
larities. This paper proposes a two-phase deep learning-based HGR system to mitigate the 
complex background issue and consider all gesture classes. In the first phase, inception 
V3 architecture is improved and named mIV3Net to reduce the computational resource 
requirement. In the second phase, mIV3Net has been fine-tuned to offer more attention to 
prominent features. As a result, better abstract knowledge has been used for gesture rec-
ognition. 2. For generalizations, mIV3Net has been tested on five different hand gesture 
datasets, i.e., MUGD, ISL, ArSL, NUS-I, and NUS-II, using two different validation strate-
gies. 3. Different transfer learning approaches have also been investigated along with the 
proposed one. 4. To show the efficiency, an optimal model is extracted by varying hyper-
parameters, i.e., learning rates, the number of epochs, batch size, and dropout rate. 5. This 
work also presents the prediction accuracy and analysis of each character of the five sign 
language datasets.

The remaining part of the paper has been structured as follows. Section 2 presents the 
recent related literature. The research gap is discussed in Section 3. The proposed method-
ology for HGR using modified inception V3 is discussed in Section 4. Section 5 provides 
the experimental results and their discussions. Finally, the conclusion and future scopes 
have been shown in Section 6.

2 � Related work

Gesture recognition (GR) algorithms may be segregated into two categories based on ges-
ture acquisition [30]. In the first category, GR uses sensors that mount on the hand. This 
approach uses sensor-equipped electronic hand globes to collect gesture data, which can be 
processed further for investigations and classifications [16, 24, 43, 52]. This category has 
better robustness and accuracy, but has a limited range of applications due to the need for 
specialized equipment. The second category of GR is called vision-based methods, in which 
the first step is acquiring images via camera. The acquired images are then passed through 
various operations of an image processing for gesture recognition [31, 40]. This category 
has received considerable attention from researchers due to the relatively least requirements 
of specialized equipment. In the second category of GR, hand gestures are recognized and 
classified using traditional hand-crafted features [9, 28] and recent deep learning architec-
tures [1, 6–8, 14, 17, 19, 21–23, 25, 26, 29, 31, 32, 35, 37, 39, 41, 45, 49, 51, 53–55, 57].

An edge-oriented histogram was used by Nagarajan et al. [28] to detect static gestures. 
The authors derived features from the histogram. This method has an overall accuracy 
of 93.75%. A super pixel-based HGR system was introduced by Wang et  al. [50]. This 
approach is based on combining a Kinect depth camera with a unique superpixel earth 
mover’s distance metric. Here, markerless hand extraction is created by effectively utiliz-
ing Kinect’s depth and skeletal data. The performance accuracy of this approach is 75.8% 
and 99.6% on two open datasets. Gupta et al. [9] introduced the combined properties of the 
SIFT and HOG to recognize gestures. The classification process employed a typical KNN 
classifier. In this approach, some sample gestures from the dataset have been selected for 
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experimental evaluation. It has been observed from the literature that traditional feature 
extraction methods may overlook some of the important features during classification.

The HGR system based on deep learning, in the vision-based category, has received a lot 
of attention. Since deep learning is better at extracting features and taking advantage of cur-
rent advancements in computing. The HGR system using CNN was presented by Lin et al. 
[25]. The images in the dataset were registered using an Xbox Kinect camera. The authors 
attained 95.96% recognition accuracy. Li et al. [22] used new feature learning technology for 
identifying gestures, including the sparse auto-encoder. This technique is built for RGB-D 
images using principal component analysis and a sparse auto-encoder. This approach has 
99.05% recognition accuracy. Further, Oyedotun et al. [31] included complex neural networks 
with lower error rates. The authors recognized the whole set of 24 hand gestures from Moe-
slund’s database using deep learning. The maximum recognition rate attained was 92.83%.

Li et  al. [23] established a method for training CNN via soft consideration approach 
using RGB-D images. A global sum is generated to represent the entire image, focusing 
mostly on the relevant weights. This method has attained accuracy values of 98.5% and 
73.4%. Ranga et al. [37] have employed conventional feature extraction methods and con-
volutional neural networks for the recognition challenge. The authors evaluated the perfor-
mance of various classifiers. The authors reported 97.01% accuracy. Chevtchenko et al. [7] 
have combined traditional and deep learning-based features. An approach for the optimiza-
tion of hyperparameters was also recommended by Ozcan et al. [32]. The authors tested 
their approach using sign language digits and the Thomas Moeslund dataset. An accuracy 
of 98.09% was achieved on the Thomas Moeslund dataset.

Neethu et  al. [29] attempted to recognize hand gestures using finger detection with 
CNN. Wadhawan et al. [49] performance evaluation of CNN on sign language recognition 
uses various optimizers. The authors assessed the performance of the system using differ-
ent CNN models. According to experimental analysis, characteristics like the number of 
filters and layers have varied to reach the best level of validation accuracy. Furthermore, 
Liu et al. [26] proposed 19 layers of CNN for classifying and identifying hand gestures. 
This method has reported 99.2%. HGR system based on two-stage reported in [8]. For 
the job of segmenting and recognizing hand gestures, the authors took into consideration 
two stages. In the second stage, the segmented data and RGB information are combined 
for classification. An F-score of 88.10% has been revealed via experimental examination. 
Rathi et al. [39] created two-level architecture to classify and estimate the gesture classes. 
On a total of 12,048 test images, this method has an accuracy of 99.03%. However, the use 
of RGB-D data is a major limitation that requires a specialized depth sensor. The HGR 
systems designed in [6, 14, 35, 41, 45, 51, 53, 55] have used CNNs without modifying the 
structure, i.e., how many layers may be good enough for the task at the hand. Most of the 
methods are tested for some specific gesture classes. State-of-the-art deep CNN designs are 
computationally expensive and require a lot of labelled data during training. The literature 
has noted that traditional feature extraction methods overlook crucial features to differenti-
ate between classes of similar gestures. Simple discriminating gestures for recognition have 
been taken into account by the majority of existing methods.

In this paper, we have proposed a two-phase deep learning-based HGR system to miti-
gate the complex background issue and considered all gesture classes. In the first phase, 
inception V3 architecture is modified and named mIV3Net to reduce the computational 
resource requirement. In the second phase, mIV3Net has been fine-tuned to offer more 
attention to prominent features. As a result, better abstract knowledge has been used for 
gesture recognition. Hence, the proposed algorithm has more discrimination characteristics 
and achieves better accuracy than the existing related methods.
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3 � Research gap

According to an assessment of the literature, hand gesture recognition has obtained considera-
ble success using conventional CNN-based methods like ResNet-50 [45], DenseNet-121 [43], 
MobileNet [12], etc. However, these deep neural networks require computational resources. 
Besides, the issue of gradient and negative learning is the major obstacle that deep architec-
tures must overcome. In these networks, the same modules are repeatedly stacked, which 
cause an over-adaption of hyperparameters for certain issues. Due to their sophisticated struc-
tures, these networks can be modified and used on platforms with limited time and processing 
resources. Therefore, we proposed a mIV3Net that reduces the repeatedly stacked approach 
by empirically selecting necessary layers and thus requiring less computational resources. 
mIV3Net has been fine-tuned to offer more attention to prominent features. Furthermore, 
depending on training data, most of the CNNs have an issue of overfitting and have lower 
accuracy. The mIV3Net network’s fundamental structure allows it to overcome this issue.

4 � Proposed methodology

This section discusses the overall HGR system, the architecture of the proposed mIV3Net, 
and fine-tuning of mIV3Net. The overall HGR system is shown in Fig. 1, where the pro-
cess of the system has been separated into three stages. In the first stage, the gestures from 
selected datasets are prepared to give input into mIV3Net, called pre-processing. Next, the 
features are extracted using mIV3Net. Finally, the extracted features are fed into the classi-
fier to segregate the gestures into the corresponding classes. Each stage of Fig. 1 has been 
discussed in the following subsection.

4.1 � Pre‑processing

The HGR system was tested using five different countries’ sign language datasets. The 
images in the datasets have various dimensions with variations in geometry. In our case, 
we have used the CNN model, i.e., mIV3Net, for the feature extractions. Since mIV3Net 
demands fixed-size input, the images were resized to 224 × 224x3. After the image resiz-
ing, the datasets were divided into two parts for training and testing. For the division, we 
incorporated two approaches. In the first one, randomly selected 70% and 30% datasets 
have been used for training and testing. In the other approach, i.e., leave-one-subject-out, 
the dataset created by the k-1 signer has been used for training and the remaining one for 
testing. During the testing phase, the procedure was simply repeated once for each signer. 
The average validation accuracy is taken into account following the k-th round. This kind 
of performance evaluation offers a more accurate judgement of model ability. Since some 
of the selected datasets do not have sufficient gestures, data augmentation was employed to 
prevent the problem of over-fitting. Data augmentation increases gesture images via differ-
ent signal processing operations, as discussed below, for training.

•	 Rotation: The training dataset’s images are randomly rotated up to five degrees.
•	 Translation: The images are randomly translated either vertically or horizontally. Their 

coordinates are changed throughout this operation.
•	 Shear: In this method, the vertical range of the original image pixels is linearly 

increased with the horizontal distance from a vertical line or decreased with the oppo-
site. In our experiment, a range of 0.2 has been chosen.



10592	 Multimedia Tools and Applications (2024) 83:10587–10613

1 3

•	 Zooming: In this case, randomly zoomed the images from the dataset. The zooming 
operation’s range is assumed to be 0.9. The size of the training datasets increased suf-
ficiently after data augmentation to overcome the overfitting issue.

4.2 � Feature extraction using mIV3Net

Generally, the recognition performance of a neural network enhances with increased depth, 
but with the cost of high computational and time requirements. Hence, transfer learning 
has been developed to reduce the cost of training. Transfer learning entails transferring the 
model parameters from a trained network to any other model to improve the training effi-
ciency. By sharing the parameters of the trained model using transfer learning, the new net-
work’s performance improves, rather than beginning from scratch. In the case of training 
from scratch, the amount of data required is very high. In contrast transfer learning approach 
reduces the data required during training. The number of hand gesture images in some 
selected datasets is not sufficient to train the neural network model from scratch. Therefore, 
transfer learning has been employed. Based on the advantages listed in the literature, empiri-
cally, we have chosen the inception V3 network [44] as the transfer learning, trained on an 
image net dataset (including more than one million copies having 1000 categories of image 
data). Without transfer learning, if we train the inception V3 network from scratch using a 
low-configured computer, it will take at least a few days to train it. A customized version of 
inception V3 has been used for feature extraction. The inception modules that are utilized 
to replace the convolution layers are one of the innovative features of inception V3. The 

Fig. 1   The data flow diagram depicting the working model
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inception module uses several conventional convolutional layers to extract features, and the 
result is a concatenation of the extracted feature. The inceptionV3 module contrast with a 
traditional convolution layer due to feature extraction from varied kernel size. Consequently, 
the extracted feature is not constrained to a fixed-scale local region. When the inception 
module is used to extract gesture characteristics, different kernel size helps the model to 
generalize for the various size. Inception V3 architecture is shown in Fig. 2. Inception V3 
architecture is improved and named mIV3Net: modified inception V3 network to reduce the 
computational resource requirement, as shown in Fig. 3. Here, we empirically selected the 
first eight concatenation modules of the inception V3, excluding the other modules. The rea-
son for this modification is that the recent CNNs have too much depth [23], hence needing 
large memory and computational resources. Additionally, these models reduce the HGR’s 
effectiveness by failing to encode the proper and necessary features from datasets. These 
observations led us to develop mIV3Net, which identifies the most crucial features for accu-
rately classifying gestures. mIV3Net’s less clumsy design makes possible to deploy it in low 
resource environment. Additionally, the suggested mIV3Net does not require segmentation 
of only the palm part of gestures, which simplifies the recognition process. After selecting 
the first eight concatenation modules of the inception V3, it is extended by adding zero pad-
ding, a convolution layer with 512 filters. Zero-padding is a general method for preventing 
information loss at the boundaries and controlling the decrease of sizes when using filters 
greater than 1 × 1. The modification mainly includes: the selection of appropriate layers; 

Fig. 2   The architecture of inception V3

Fig. 3   The Proposed algorithms for hand gesture recognition
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dropout value; addition of a new layer in order to extract more detailed features, etc. Exten-
sive experiments are administered to attain the most salient layer features for recognition. 
Convolutional layers are useful for the extraction of features from images because they use 
weight sharing to address spatial redundancy. Redundancy decreases, and features get more 
specialized and informative as we move further into the network. This is mostly caused by 
the compression of information using subsampling layers and repeatedly cascading con-
volutions. The newly added convolutional layer will learn more information related to the 
selected hand gesture datasets.

4.3 � Classifier

The feature extractor designed in the earlier sub-section is extended using a newly added clas-
sifier. The new classifier consists of global average pooling, dropout, ReLu activation, fully 
connected layers, and SoftMax classifier. The global average pooling (GAP) maps features 
into a more robust form for a better understanding of patterns. In this paper, the fattening 
layer has been replaced with the GAP layer for better accuracy. It also reduces the problem of 

Fig. 4   The sample images in the datasets (a) NUS-II (b) NUS-I (c) ArSL (d) ISL (e) MUGD

Fig. 5   a Accuracy vs epoch plot for MUGD dataset (x-coordinate is epoch and y-coordinate is accuracy). b 
Loss vs epoch plot for MUGD dataset (x-coordinate is epoch and y-coordinate is loss)



10595Multimedia Tools and Applications (2024) 83:10587–10613	

1 3

overfitting. A dropout is applied before the fully connected layers as means of regularization. 
On top of dropout, a dense layer with a SoftMax classifier is used for classifying gestures into 
the corresponding class. Through experimental analysis, a suitable dropout rate and the num-
ber of convolution filters have been selected to obtain better gesture recognition accuracy.

4.4 � Fine‑tuning

We have fine-tuned the architecture and layers of an earlier trained model. In this 
approach, the earlier combined architecture is empirically modified as follows. The first 
four concatenation modules are frozen, and the remaining modules are retrained for better 
feature extraction. This fine-tuning is introduced to offer attention to important features. As 
a result, better abstract knowledge has been used for gesture recognition.

Fig. 6   Confusion matrix for MUGD dataset
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5 � Experimental results and discussions

In this section, we have first presented the implementation and training details of mIV3Net. 
Next, the performance metrics and five publicly available datasets are described. Fur-
ther, the quantitative and qualitative results are presented to demonstrate the efficacy of 
mIV3Net. Then, we discuss the computational complexity of the proposed system. Finally, 
the importance of mIV3Net is drawn in the ablation study.

5.1 � Implementation and training details

The experiments have been conducted using Keras. mIV3Net is trained using the follow-
ing hyperparameters, batch size: 16, dropout rate: 0.4, cost function: cross-entropy, opti-
mizer: RMSprop, and learning rate: 0.0004. All HGR algorithms are implemented using 

Table 1   The performance 
Analysis of MUGD dataset

Class Precision Recall F1-score

a 1.00 1.00 1.00
b 1.00 1.00 1.00
c 1.00 1.00 1.00
d 1.00 1.00 1.00
e 1.00 1.00 1.00
eight 1.00 1.00 1.00
f 1.00 1.00 0.92
five 1.00 1.00 1.00
four 1.00 1.00 1.00
g 1.00 1.00 0.92
h 1.00 1.00 1.00
i 1.00 1.00 1.00
j 1.00 1.00 1.00
k 1.00 1.00 1.00
l 1.00 1.00 1.00
m 1.00 1.00 1.00
n 1.00 1.00 1.00
nine 1.00 1.00 1.00
o 0.60 0.86 0.71
one 1.00 1.00 1.00
p 1.00 1.00 1.00
q 1.00 1.00 1.00
r 1.00 1.00 1.00
s 1.00 1.00 1.00
seven 1.00 0.71 0.83
six 1.00 1.00 1.00
t 1.00 1.00 1.00
three 1.00 1.00 1.00
two 0.78 1.00 0.88
u 1.00 1.00 1.00
v 0.71 0.71 0.71
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the online KAGGLE GPU kernel with Tesla P100 and 16 GB VRAM. The Laptop config-
uration is 11th Gen Intel(R) Core(TM) i7 and 16 GB RAM. The datasets are augmented 
to promote generalization and prevent over-fitting during training. We empirically selected 
the first eight concatenation modules of the inception V3. Next, it is extended by add-
ing zero padding, and convolution layer with 512 filters, which yields a feature extractor. 
Finally, the feature extractor is expanded using a newly added densely connected classi-
fier named mIV3Net. We train the mIV3Net using the selected datasets. The weight from 
ImageNet has been used to initialize the feature extractor’s first eight concatenation mod-
ules. We fine-tuned mIV3Net by freezing the first four concatenation modules. Initial layer 
freezing prevents them from changing their weights while training. The initial few layers 
were frozen for two reasons. Firstly, our datasets differ significantly from those used by 
ImageNet. Secondly, slightly more depth layers of the feature extractor contain more spe-
cialized features. The earlier layers have more generic and reusable features. Finally, we 
trained this fine-tuned model and achieved better results, as discussed in subsection 5.9.

5.2 � Evaluation metric

The efficacy of the HGR system has been evaluated using accuracy, precision, recall, 
and F1-score. Accuracy measures correctly classified classes, whereas F1-score deal-
ings incorrectly identified classes. The weighted harmonic means of precision and 
recall have been considered for calculating the F1-score. The accuracy and F1-score of 
mIV3Net have been evaluated for similar and imbalanced class distributions. The per-
formance metrics have been mathematically expressed as follows.

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

Fig. 7   a Accuracy vs epoch plot for  ISL dataset (x-coordinate is epoch and y-coordinate is accuracy). b 
Loss vs epoch plot for ISL dataset (x-coordinate is epoch and y-coordinate is loss)
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where TP, FP, TN, and FN represent true positive, false positive, true negative, and false 
negative, respectively.

5.3 � Datasets

MUGD [4], ISL [3], ArSL [20], NUS-I [36], and NUS-II [36] datasets have been used 
to test mIV3Net and compared methods. These datasets have been created from images 
taken with varying illumination and cluttered backgrounds. Figure 4 depicts some sam-
ple images from the datasets.

(4)F1-score = 2 ×
Precision ∗ Recall

Precision + Recall

Fig. 8   Confusion matrix for ISL dataset
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Massey University Gesture Dataset (MUGD)  In this dataset, 2524 images from ASL 
gestures are included in the MUGD, which consists of 36 distinct alphabets, i.e., 
classes from a to z and integers from 0 to 9. The images were taken with a consist-
ent black background from five participants in five distinct directions, including left, 
right, bottom, and top.

Table 2   The performance 
Analysis of ISL dataset

Class Precision Recall F1-score

A 0.95 1.00 O.97
B 0.97 1.00 0.99
C 1.00 0.99 0.99
D 0.96 0.98 0.97
E 1.00 1.00 1.00
F 1.00 0.97 0.98
G 1.00 1.00 1.00
H 1.00 0.97 0.99
I 1.00 0.94 0.97
K 1.00 1.00 1.00
L 0.79 1.00 0.89
M 0.88 0.96 0.92
N 1.00 0.87 0.93
O 1.00 1.00 1.00
P 1.00 1.00 1.00
Q 1.00 1.00 1.00
R 1.00 0.92 0.96
S 0.97 1.00 0.99
T 1.00 1.00 1.00
U 1.00 1.00 1.00
V 1.00 0.72 0.84
W 0.95 1.00 0.97
X 1.00 1.00 1.00
Y 1.00 1.00 1.00

Fig. 9   a Accuracy vs epoch plot for ArSL dataset (x-coordinate is epoch and y-coordinate is accuracy). b 
Loss vs epoch plot for ArSL dataset (x-coordinate is epoch and y-coordinate is loss)
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ISL dataset  As no standardized dataset is available for ISL, gestures are collected from the 
online provided in [3]. Except for J and Z, this dataset includes 200 images for each ISL alpha-
bet set and the total consists of 4962 images. Figure 4 depicts the gestures for this dataset.

Arabic dataset (ArSL)  This dataset is publicly available in [20], which contains 32 ArSL 
classes and 54,094 grayscale images with various lighting and backgrounds. Figure  4 
shows the ArSL samples.

NUS‑I dataset  Ten gesture classes, with 24 example images each, can be found in this dataset. 
Here, the hand gestures have recorded by altering the subject’s position and size of the hand.

NUS‑II dataset  This dataset has ten classes using alphabets starting from a to j. The pos-
tures are carried out by many individuals with various hand sizes and shapes with a complex 

Fig. 10   Confusion matrix for ArSL dataset
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background to incorporate natural variances. The dataset is challenging because of the gestures 
performed by forty people of various societies, genders, and ages (in years) from 22 to 56.

5.4 � Quantitative analysis

mIV3Net has been trained by the aforementioned training configuration for five datasets. Two 
cross-validation techniques have been adopted to test the efficacy of the proposed method. 
In the first method, a random 70:30 split was done between the training and testing portions 
of the datasets. In the next one, the leave-one-subject-out approach has been used to check 
the generality of the HGR system across various datasets. The performance of the proposed 
HGR system considering each gesture from various datasets is presented in subsections 5.4.1 
to 5.4.5. Two separate comparative analyses have been presented in subsections 5.5 and 5.6.

Table 3   The performance 
analysis of ArSL dataset

Class Precision Recall F1-score

ain 1.00 1.00 1.00
al 0.98 1.00 0.99
aleff 0.94 1.00 0.97
bb 1.00 0.96 0.98
dal 0.98 1.00 0.99
dha 0.99 0.92 0.95
dhad 1.00 1.00 1.00
fa o.88 1.00 0.94
gaaf 0.81 0.86 0.84
ghain 0.97 0.96 0.97
ha 0.99 0.88 0.93
haa 0.99 0.94 0.97
jeem 0.99 1.00 0.99
kaaf 1.00 0.78 0.87
khaa 0.94 0.99 0.97
la 1.00 0.93 0.96
laam 0.99 1.00 0.99
meem 0.97 1.00 0.99
nun 0.96 0.99 0.97
ra 1.00 0.97 0.98
saad 1.00 0.93 0.96
seen 0.89 0.90 0.89
sheen 0.80 1.00 0.89
ta 0.91 0.99 0.95
taa 0.95 0.98 0.97
thaa 0.99 0.95 0.97
thal 1.00 0.96 0.98
toot 0.99 0.98 0.99
waw 0.97 0.97 0.97
ya 0.98 0.97 0.98
yaa 1.00 0.93 0.96
zay 0.93 1.00 0.96
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5.4.1 � Results for MUGD dataset

A 70:30 split have been done between the training and testing portions of the MUGD data-
set. Figure 5 depicts the accuracy curve for mIV3Net over the varying number of epochs. 
The validation data’s confusion matrix is depicted in Fig. 6. Precision, Recall, and F1-score 
of gestures are presented in Table 1. Figure 6 shows that most gesture classes have been 
correctly classified using the proposed approach. Four gesture classes have been misclas-
sified with the accuracy of 0.86, 0.71, 0.71, and 0.43. The accuracy of class zero is lowest 
due to interclass similarity with class 0 (letter). The overall accuracy of mIV3Net with-
out fine-tuning is 90.61%, which has been improved to 97.14% due to fine-tuning. Hence, 
mIV3Net is performing well for the MUGD dataset due to fine-tuning.

5.4.2 � Results for ISL dataset

The training and testing components of the ISL dataset were divided at 70:30. The accu-
racy curve for mIV3Net over various epoch counts is shown in Fig.  7. Figure  8 shows 
the confusion matrix for the validation data. Table  2 displays the precision, recall, and 
F1-score of gestures. Figure 8 shows that most gesture classes have been correctly clas-
sified using the proposed method. There are only two gesture classes, i.e., “R” and “V”, 
which have recognition accuracy of 87% and 57%. It can be observed that class “V” has 
been misclassified to class “W” due to similarity in gesture performance. The overall accu-
racy of mIV3Net is 98.6% which has been improved to 99.3% with the help of fine-tuning. 
As a result of fine-tuning, mIV3Net is functioning well for the ISL dataset.

5.4.3 � Results for ArSL dataset

The training and testing data of the ArSL dataset have segregated 70:30. The accuracy curve 
for mIV3Net over various epoch counts is shown in Fig. 9. Figure 10 shows the confusion 
matrix for the validation data. Table 3 displays the precision, recall, and F1-score of gestures. 
Figure 10 shows that accuracies for 22 gesture classes, which are more than 95%, whereas, 
for seven gesture classes, the accuracies are between 92–95%. The remaining three gesture 
classes have accuracies of 88%, 86%, and 78%. It is noteworthy that just three classes are more 

Fig. 11   a Accuracy vs epoch plot for NUS-I dataset (x-coordinate is epoch and y-coordinate is accuracy). b 
Loss vs epoch plot for NUS-I dataset (x-coordinate is epoch and y-coordinate is loss)
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perplexed, and the remaining classes have comparable accuracy, which may be due to fine-
tuning of mIV3Net. Thus, it can be inferred that mIV3Net has better classification capability.

5.4.4 � Results for NUS‑I dataset

The NUS-I dataset was split between training and testing halves at 70:30. Figure  11 
displays the accuracy curve for mIV3Net over various epoch counts. The confu-
sion matrix for the validation data is displayed in Fig.  12. The precision, recall, and 
F1-score of gestures are shown in Table 4. It can be seen from Fig. 12 that the recogni-
tion accuracy is 99%, except for one gesture class, which has an accuracy of 86%. A 
better accuracy may occur due to the better feature extraction capability of mIV3Net. 
We have noted that the validation accuracy was 91.3% without fine-tuning, which has 
improved to 99% due to fine-tuning.

Fig. 12   Confusion matrix for NUS-I dataset
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5.4.5 � Results for NUS‑II dataset

The mIV3Net has been trained using the above-mentioned training setup and achieved an 
average accuracy of 99.8% on the validation dataset. The NUS-II dataset has been split for 
training and testing in a ratio of 7:3. An accuracy curve during training and testing over the 
number of epochs for mIV3Net is shown in Fig. 13. The confusion matrix for the valida-
tion data, as shown in Fig. 14. The precision, recall, and F1-score of each gesture is shown 
in Table 5. It can be observed from Fig. 14 that eight gesture classes have been correctly 
recognized, while two gesture classes, i.e., “a” and “c” have an accuracy of 98%. It can be 
mentioned that the overall recognition accuracy is 99.8% using fine-tuning of mIV3Net, 
whereas it was 90.50% without fine-tuning.

5.5 � Comparative analysis of the proposed method with related recent methods 
using random split cross‑validation

Tables  6 and 7 display the accuracy of mIV3Net and other compared techniques for 
the five datasets using random split. When compared to other approaches, it can 
be seen from Table  6 that mIV3Net achieves a greater accuracy rate. Notably, the 

Table 4   The performance 
analysis of NUS-I dataset

Class Precision Recall F1-score

g1 1.00 1.00 1.00
g2 1.00 1.00 1.00
g3 1.00 0.99 1.00
g4 1.00 0.98 1.00
g5 1.00 1.00 1.00
g6 1.00 0.97 1.00
g7 1.00 0.86 0.92
g8 1.00 1.00 1.00
g9 1.00 1.00 1.00
g10 0.86 1.00 0.92

Fig. 13   a Accuracy vs epoch plot for NUS-II dataset (x-coordinate is epoch and y-coordinate is accuracy). 
b Loss vs epoch plot for NUS-II dataset (x-coordinate is epoch and y-coordinate is loss)
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enhancements in accuracy values of mIV3Net are 12.58%, 19.2%, 20.14%, and 36.31% 
over HyFiNet [5], DenseNet-121 [13], ResNet-50 [11], and MobileNetV2 [42], respec-
tively, on MUGD dataset. In another dataset, i.e., NUS-I, the proposed mIV3Net 
has better performance than HyFiNet [5], ResNet-50 [11], MobileNetV2 [42], and 
DenseNet-121 [13] in terms of accuracy by 0.56%, 7.82%, 12.28%, and 33.37%, 
respectively. For the complex background dataset, i.e., NUS-II, the proposed mIV3Net 
attains enhancement in the accuracy of 2.02%, 2.7%, 13.37%, and 14.2% over HyFi-
Net [5], ResNet-50 [11], DenseNet-121 [13], and MobileNetV2 [42], respectively. It 
can be observed that HyFiNet [5] is a second better method due to the inclusion of an 
attention block of hybrid features. But, gesture recognition accuracy is slightly lower 
than mIV3Net. Table  7 shows that for the ISL dataset, mIV3Net improvement rates 
are 1.84%, 5.8%, 8.4%, and 11.75% over E-WOA-Deep CNN [19], Multilevel HOG 
[17], mRMR- PSO [3], and TOPSIS [17], respectively. In another dataset, i.e., ArSL, 

Fig. 14   Confusion matrix for NUS-II dataset
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mIV3Net outperforms SIFT-LDA [46], mRMR-PSO [3], CNN [18], and Aly et  al. 
[1] in terms of accuracy by 2.73%, 5.7%, 7.4%, and 10.55%, respectively. It can be 
observed that mIV3Net has a competitive performance with the SIFT-LDA [46] and 
outperform other methods. The SIFT-LDA paper has considered a small dataset, but 
the whole dataset has been used in our method. mRMR-PSO [3] is the second bet-
ter method due to its better feature selection approach. In CNN [18], low accuracy is 
achieved due to the shallow architecture compared to the other methods. We want to 
mention that the recognition accuracy is 92.54%, which has sufficiently improved to 
97.4% due to the proposed fine-tuning approach.

5.6 � Comparative analysis of the proposed method with related recent methods 
using leave‑one‑subject‑out cross‑validation

To show the efficacy of mIV3Net on unseen data, leave-one-subject-out cross-validation 
has been employed, which provides more generalization. The comparison of mIV3Net 
with the state-of-the-art techniques via leave-one-subject-out cross-validation is shown in 
Tables 8 and 9. It can be observed that mIV3Net has achieved enhancement in accuracy 
values on various datasets, i.e., 9.50% to 14.66% on MUGD, 25.24% to 29.20% on NUS-
I, 2.40% to 30.69% on NUS-II, 3.06% to 12.95% on ISL, and 3.27% to 11.54% on ArSL. 
Tables 8 and 9 show that gesture recognition accuracy values of all considered networks 
are lower in leave-out-subject-out cross-validation, as compared to random split. The 
reduction may be due to unseen data, moreover, the proposed approach has better perfor-
mance than the compared ones, and shows the generalization capability.

Table 5   The performance 
analysis of NUS II dataset

Class Precision Recall F1-score

a 1.00 0.98 0.99
b 1.00 1.00 1.00
c 1.00 0.98 0.99
d 1.00 1.00 1.00
e 1.00 1.00 1.00
f 0.98 1.00 0.99
g 1.00 1.00 1.00
h o.98 1.00 0.99
i 1.00 1.00 1.00
j 1.00 1.00 1.00

Table 6   The performance 
comparision of the proposed 
method with the state-of-art 
approaches on MUGD, NUS-I, 
NUS-II datasets in random split

Method used Datasets

MUGD NUS-I NUS-II

DenseNet-121 [13] 77.94 65.63 86.43
HyFiNet [5] 84.56 98.44 97.78
MobileNetV2 [42] 60.83 86.72 85.60
ResNet-50 [11] 77 91.18 97.10
mIV3Net 97.14 99 99.8
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5.7 � Qualitative analysis

Figure  15 displays the response of fine-tuned mIV3Net and the current networks 
on the datasets MUGD, ISL, ArSL, NUS-I, and NUS-II. In contrast to current HGR 
techniques, Fig.  15 demonstrates that fine-tuned mIV3Net can represent better salient 
features, hence achieving better accuracy. The suggested fine-tuned mIV3Net, which 
results in more accurate hand gesture identification, is shown to preserve the most prev-
alent elements necessary for differentiating hand motions, as shown in Fig.  16. As a 
result, the class activation map shows that mIV3Net performs better than the current 
cutting-edge HGR methods.

5.8 � Computational load

The computational load of the mIV3Net is compared with Inception V3 architecture, 
as shown in Table 10. It can be observed that the number of trainable parameters has 
been drastically reduced, i.e., 5.9  M, as compared to Inception V3, i.e., 23.8  M. The 
requirement of memory for storage is also less in the proposed method, i.e., 133.64 MB, 
whereas 179.3 MB for Inception V3. Besides, the training time requirement is around 
63% less as compared to Inception V3. Based on the experimental results and computa-
tional load requirement, it can be inferred that the proposed mIV3Net with fine-tuning 
provides generalized solutions for HGR. Also, considering the inference time, it may be 
used for real-time applications.

Table 7   The performance 
comparision of the proposed 
method with the state-of-art 
approaches on ISL, ArSL 
datasets in randam split

Datasets Method used Accuracy (%)

ISL TOPSIS [17] 86.85
Multilevel HOG [17] 92.8
mRMR- PSO [3] 90.2
E-WOA-Deep CNN [19] 96.76
mIV3Net 99.3

ArSL Aly et al. [1] 86.85
SIFT-LDA [46] 94.67
CNN [18] 90
mRMR-PSO [3] 91.7
mIV3Net 97.4

Table 8   The performance 
comparision of the proposed 
method with the state-of-art 
approaches on MUGD, NUS-I, 
NUS-II datasets in leave-one-
subject-out

Method used Datasets

MUGD NUS-I NUS-II

DenseNet-121 [13] 74.72 58.30 57.31
HyFiNet [5] 77.44 62.26 61.49
MobileNetV2 [42] 72.28 49.89 85.60
ResNet-50 [11] 74.42 58.49 58.11
mIV3Net 86.94 87.50 88
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5.9 � Ablation study

An ablation study has been conducted to assess the effect of mIV3Net and to validate the effi-
cacy of fine-tuning. We have performed two experiments to justify the above claim. The first 

Table 9   The performance 
comparision of the proposed 
method with the state-of-art 
approaches on ISL, ArSL 
datasets in leave-one-subject-out

Datasets Method used Accuracy (%)

ISL TOPSIS [17] 79.73
Multilevel HOG [17] 85.66
mRMR- PSO [3] 83.03
E-WOA-Deep CNN [19] 89.62
mIV3Net 89.68

ArSL Aly et al. [1] 79.71
SIFT-LDA [46] 87.53
CNN [18] 82.86
mRMR-PSO [3] 84.58
mIV3Net 87.8

Fig. 15   The graphical representation of accuracy on the datasets (a) MUGD, (b) ISL, (c) ArSL, (d) NUSI, 
and (e) NUS-II. (x-coordinate is methods, and y-coordinate is accuracy, numbers in the panels show the 
accuracy of the methods)
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experiment assesses the effect of selecting an appropriate number of concatenation modules 
from Inception V3. The Inception V3 network is modified by empirically selecting the first 
eight concatenation modules and excluding the remaining ones. The experimental results for 
various ranges of concatenation modules for five selected datasets have been presented in 
Table 11. It is evident that 1–8 concatenation modules attain an increase in accuracy values 
over 1–7 and 1–9, i.e., 11.24% and 4.1% for MUGD, 2.25% and 2.23% for ArSL, 1.91% and 
2.32% for ISL, 4.16% and 2.73% for NUS-I, and 3.67% and 7.33% for NUS-II, respectively. 
The top concatenation modules have more abstract knowledge of the ImageNet dataset. The 
initial weights on the top concatenation modules may not be helpful for the hand gesture data-
set. The initial eight concatenation modules capture the salient, refined edge information, dis-
criminable semantic structure, and fine features of hand signs. Deep models’ initial convolu-
tion layers are more likely to extract finer details than deeper layers. As a result, the feature 
quality gradually deteriorates at the deeper layer, leading to a gradient saturation problem. This 
issue has been fixed by adding a new convolution layer block that adds low-level features dis-
covered from the chosen hand gesture dataset to the top-layer features. The effectiveness of 
the proposed fine-tuned mIV3Net is assessed in the second experiment. We have fine-tuned 
the mIV3Net by empirically retraining the network from the fourth concatenation module on 
selected hand gesture datasets, which capture more prominent features of the hand gesture 
dataset. The experimental results by varying the number of concatenation modules for retrain-
ing are shown in Table 11. It can be observed that retraining from the fourth achieves better 
than the others. Due to fine-tuning, the recognition accuracy values have been improved from 

Fig. 16   The class activation map of mIV3Net on MUGD, NUS-I, NUS-II, ISL, and ArSL datasets

Table 10   Comparision of computational load of mIV3Net with Inception V3. Here the letters M, MB, S 
stands for millions, megabytes, seconds respectively

Method used Memory #Parameters Training time

Inception V3 179.3 MB 23.85 M 697.954 S
mIV3Net 133.64 MB 16.5 M 256.890 S
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90.61% to 97.14% on the MUGD dataset, 98.62% to 99.3% on the ISL dataset, 92.54% to 
97.4% on the ArSL dataset, and 91.32% to 99% on the NUS-I dataset, and 90.5% to 99.8% on 
the NUS-II dataset. Table 11 shows that the proposed approach (with fine-tuned) provides a 
better classification of gestures due to fine-tuned. Nevertheless, the accuracy of the suggested 
method is also better than some existing techniques, even without being fine-tuned.

6 � Conclusions and future works

mIV3Net: Modified inceptionV3 network, a lightweight, portable CNN-based network, 
is suggested in the study for effective hand gesture identification. mIV3Net is simpler 
to implement in a limited-resource environment due to its simple architectural design. 
mIV3Net has been fine-tuned and generalized using five publicly available datasets. 
The fine-tuned mIV3Net provides better salient features, hence achieving better accu-
racy. The suggested fine-tuned mIV3Net, which results in more accurate hand gesture 
identification, is shown to preserve the most prevalent elements necessary for differen-
tiating hand gestures. Extensive experimentation has been conducted on five datasets: 
MUGD, ISL, ArSL, NUS-I, and NUS-II of distinct languages under various conditions 
like complex background, uniform background, and varying cell size, to validate the 
mIV3Net. The experimental results demonstrate that in terms of classification accuracy, 
mIV3Net outperforms pre-trained models. The accuracy values of the proposed system 
on five datasets in the above order are 97.14%, 99.3%, 97.4%, 99%, and 99.8%, which 
are enhanced by 12.58%, 2.54%, 2.73%, 0.56%, and 2.02%, respectively, than the exist-
ing methods. In future work, some more deep neural networks may be used as ensemble 
learning for better classification accuracy.
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Table 11   The performance 
comparision of the proposed 
method "Without fine-tunning" 
and "With fine-tunning"

Datasets Without fine-tunning With fine-tunning

(1–7) (1–8) (1–9) (from 3) (from 4) (from 5)

MUGD 79.37 90.61 86.51 95.63 97.14 93.89
ArSL 90.29 92.54 90.31 96.48 97.4 98.32
ISL 96.69 98.6 96.28 99 99.3 98.85
NUS-I 87.14 91.3 98.57 98.23 99 97.59
NUS-II 86.83 90.50 83.17 99.39 99.8 98.4
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