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Abstract
The world we live in is dynamic by nature. Frequently, the environment changes in ways 
we cannot predict. In machine learning, the phenomenon that occurs when a model has 
its prediction effectiveness degraded due to unforeseen changes is known as concept drift. 
Applications of smart video surveillance tend to suffer from concept drift due to changes in 
illumination, weather, and scene structure. This work differs from previous ones as it brings 
focus to the problem of concept drift from a surveillance video perspective which presents 
additional challenges compared to other sources of data, such as high dimensionality, spa-
tial and temporal relations between data, and real-time constraints. The approaches and 
algorithms used to cope with concept drift are compared and discussed. We also present 
datasets and metrics used to evaluate the effectiveness of the algorithms.
As contributions, we present a new classification of concept drift adaptation methods, 
delineate the characteristics and limitations of techniques that deal with concept drift, and 
analyze practical aspects, such as real-time processing and memory constraints. Moreover, 
we conclude that informed concept drift adaptation methods have been employed 90% less 
than continuous adaptation ones.
Research directions include using established concept drift detection techniques applied 
to surveillance video data, exploring datasets for concept drift in surveillance, strategies 
to deal with the high dimensionality and volume of surveillance video data when adapting 
existing models, and the creation of frameworks to manage drift adaptation while applying 
computer vision tasks.
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1 � Introduction

Video surveillance systems have become essential tools to assist in the task of monitoring 
public and private spaces and identifying possible threats, therefore, protecting people and 
assets. In order to alleviate the burden of the surveillance personnel and to reduce human 
errors, smart video surveillance approaches aim to automatize tasks that involve the obser-
vation of actions, behaviors, or events that present any risk [109]. The advantages of this 
strategy over conventional video surveillance systems include providing the ability to pre-
vent incidents by analyzing suspicious behaviors, enabling analytical video capabilities that 
can be used for forensics and content-based retrieval, and identifying objects and actions 
of interest to monitor [54]. Recent advances in smart video surveillance are being made 
through the employment of machine learning models.

Traditionally, machine learning models are trained using a static set of data that rep-
resents or tries to generalize, all future examples presented to these models later. How-
ever, real-world environments are non-stationary, i.e., continually changing and evolving. 
Therefore, past data tends to, over time, not be able to describe the current context, and 
prediction models that have been trained using that data have their performance degraded. 
This phenomenon is described as concept drift [137], and, in recent years, techniques to 
deal with this event have been developed. One possible approach is to incorporate new 
information in streams so that, as soon as new data becomes available, it is used to update 
the model [55, 154]. Another approach is to detect when the drift occurs and then perform 
adaptation by retraining the model or switching to another one [27, 148].

Dealing with concept drift in predictive models used in surveillance video streams 
presents a set of challenges that are specific to this kind of application due to factors and 
constraints such as: (a) ideally, surveillance systems run endlessly, which implies large 
volumes of data being generated constantly; (b) surveillance cameras, especially those 
installed in outdoor environments, are in non-controlled environments where illumination 
and the characteristics of the scenario can change gradually or drastically; (c) although 
smart surveillance can serve as a post-analysis tool, to enable authorities or security per-
sonnel to take action, real-time computation is a concern.

Several comprehensive reviews and surveys of concept drift adaptation have been made 
in recent years [8, 28, 29, 41, 42, 68, 93]. However, none of them approached the addi-
tional challenges that surveillance video data imposes. Noticeably, in [41] the authors cat-
egorize the types of concept drifts and present the main drift detection techniques, propos-
ing a general drift adaptation taxonomy. This work is a comprehensive introduction to the 
problem of concept drift, thus, it does not provide details about any particular machine 
learning problem. In [8], the focus is placed on exploring feature drift, which occurs when 
a subset of features becomes irrelevant to the learned concept. In [93], in addition to an 
extensive literature overview of concept drift, the authors present real-world and synthetic 
datasets used to evaluate drift detection methods. However, no video dataset was presented, 
and also no analysis of what features and algorithms are being used to deal with this type 
of data. In [28] and [42], the authors also present concept drift datasets, but do not present 
any video dataset. More specifically, in [28] the authors mention some concept drift appli-
cations such as forecasting, recommendation systems, and energy demand prediction. A 
short consideration is made about the challenges that high-dimensional unstructured data 
presents (e.g., images), but they do not elaborate on how to deal with them. In [42], the 
authors propose a new unsupervised drift detection algorithm and compare its performance 
with other popular ones, evaluating it on low-dimensional datasets.
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None of these reviews, and to the best of our knowledge no other previous work, focus 
on surveillance video applications or on how to deal with complex video data in the pres-
ence of concept drift, but rather center attention on datasets in which the dimensions, i.e., 
number of features, are relatively low in comparison with video data.

Dealing with concept drift in surveillance video streams introduces additional complex-
ities. In this context, a fast and continuous flow produces a mutable, large volume of data. 
Data characteristics are constantly changing due to illumination, weather, complex interac-
tions, and scene changes; especially in non-controlled settings, as is the case in outdoor 
environments. Moreover, this type of data also presents challenges imposed by the high 
number of dimensions, scales, and spatio-temporal relations between video frames.

The goal of this systematic review is to comprehensively analyze the state of the art of 
recent approaches to deal with concept drift in the context of surveillance video streams. 
This systematic review aims to answer the following research questions:

•	 What are the existing methods and techniques to deal with concept drift in surveillance 
videos?

•	 What feature descriptors and machine learning algorithms are used by such methods 
and techniques?

•	 Which methods and techniques can be used in real-time?
•	 What are the datasets and evaluation metrics used?

The contribution of this work is a comprehensive analysis of aspects involving concept 
drift adaptation in surveillance contexts, including: (a) concept drift adaptation and the 
proposal of a new classification to describe the adaptation process; (b) the relation between 
learning strategies and computer vision tasks; (c) features and machine learning techniques 
used in surveillance contexts; (d) challenges imposed by real-time processing (e.g., com-
puting capacity, data volume); (e) the datasets employed; and (f) the metrics used to evalu-
ate the effectiveness of the proposed approaches.

In Section 2, we present the theoretical background and introduce concepts related to 
concept drift adaptation and learning settings. Section 3 describes the method used to con-
duct the systematic review. In Section 4, concept drift adaptation methods are outlined. In 
Section 5, the relation between learning settings and computer vision tasks is presented. In 
Section 6, we present the features and machine learning algorithms employed by the works. 
In Section  7, the characteristics of the employed real-time approaches are described. In 
Section 8, we report the datasets and metrics used to evaluate computer vision algorithms 
in the context of surveillance. In Section 9, we make our considerations about the results. 
Lastly, the overall conclusion and future research directions are given in Section 10.

2 � Theoretical background

In this section, the main concepts around concept drift adaptation in surveillance will be exposed.

2.1 � Concept drift

In a machine learning context, learning from examples, or acquiring concept, is what makes 
feasible the generation of a mathematical model that can make predictions or classifications 
based on feature points presented to it earlier. Concept drift [137] is a phenomenon that 
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occurs when the context changes in a way that the learned concept does not hold any longer. 
In other words, the real world presents contexts that are hidden from the model [159].

An example of concept drift in surveillance systems can be illustrated with a model 
created to detect anomalies in images from a video camera. Suppose that there were no 
images of rainy or snowy days in the dataset during the training phase. However, at the 
inference phase, images from outdoor cameras facing diverse weather conditions may 
cause the model to wrongly classify a rainy scene as an anomaly when it is actually a new 
context (Fig. 1).

A formal definition of concept drift, as given in [41], between the times t0 e t1 is pre-
sented in Eq. 1.

where pt0 represents the joint-distribution at the time t0 , between the set of input variables 
X and the output variable y.

According to [41], there are two categories of concept drift:

•	 Real concept drift: occurs when the data distribution p(y|X) changes so that the predic-
tion capacity is affected. This category of drift can happen with or without changes in 
p(X).

•	 Virtual concept drift: occurs when the data distribution p(X) changes without altering 
p(y|X) . It is also the case when p(y|X) is not available for inference.

2.1.1 � Concept drift detection

Detecting concept drift can be achieved by using change detection algorithms. Usually, the 
metrics monitored are the classification error or the accuracy returned by a machine learn-
ing model. The methods to detect drift can be roughly divided into sequential analysis, 
statistical process control, and distribution-based [41].

Sequential analysis methods continuously use the most recent observations to evaluate 
if the mean of the input data significantly deviates from an allowed value. CUSUM [113] 
and Page-Hinkley [113] are algorithms that belong to this category.

Statistical process control algorithms keep track of the statistical properties of the data 
distribution. The probability of error is also evaluated by considering a prediction and its 
true label. This type of method also defines distinct levels of change, such as warning and 
drift levels. Examples of this type of method are DDM [40] and EDDM [5].

(1)∃X ∶ pt0 (X, y) ≠ pt1 (X, y)

Fig. 1   Example of concept drift in surveillance. The image to the left corresponds to the initial concept. 
Concerning the image to the right, due to severe rains, most of the area is flooded, which changed the char-
acteristics of the data. Source: Office of Information Technology of USP (STI-USP)
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Distribution-based methods aim to compare two data distribution windows (i.e., subsets 
of the data over time). These distributions include a reference window and a window con-
taining the most recent data. Both windows are then compared using statistical tests to infer 
whether a change was introduced or not. ADWIN [13] and VFDTc [39] are methods that 
lie in this category.

2.2 � Learning setting

Based on the learning objective, the learning setting can be classified into supervised, 
unsupervised, and semi-supervised.

Supervised learning  It is employed when, for every set of input variables, there is 
one or multiple known target variables. According to [41], real concept drift can only be 
verified in a supervised learning setting because it is possible to measure the discrepancy 
between a prediction and its ground truth.

Unsupervised learning  As opposed to supervised learning, in this type of learn-
ing setting, the examples do not need to have an annotated target variable, i.e., ground 
truth. The input variables themselves are used to model the output. Labeling videos is 
a time-consuming task since, usually, each second of a video produces 25 to 30 frames. 
Therefore, unsupervised learning proves itself to be an advantageous approach. How-
ever, the accuracy of unsupervised algorithms tends to be relatively lower than the 
supervised ones, given the fact that knowing the target variable beforehand provides a 
clearer objective [19], [64].

Semi‑supervised learning  A combination of supervised and unsupervised learn-
ing, semi-supervised learning requires the annotation of a subset of the training exam-
ples, which reduces the workload associated with the labeling process. An example 
of a problem that can potentially be addressed with this setting is anomaly detection. 
In this task, only video segments identified as normal are annotated and used to train 
a model that learns what normal video clips are like. During inference time, it is pos-
sible to tell how much a video clip deviates from the normal and then classify it as 
normal or abnormal.

2.3 � Knowledge acquisition

In order to cope with concept drift, machine learning models need to be updated with new 
concepts, i.e., newly acquired knowledge must be added to the existing model. Three dif-
ferent strategies of knowledge acquisition are found in the literature: batch, incremental, 
and active learning.

Batch learning  A naive approach to adding new knowledge to a model is to train the 
model from scratch. This approach is known as batch learning [35] and requires all train-
ing examples to be present before the training process starts. The time taken to re-train the 
whole model is a factor that can make the adaptation process a time-consuming step and, 
therefore, not ideal for surveillance scenarios where timely actions are needed.
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Incremental/Online learning  This type of learning allows continuous integration of 
knowledge into an existing model. It naturally fits within non-stationary environments 
where the context is constantly changing. In the literature, incremental and online learn-
ing are at times defined separately [44], but also used interchangeably [114, 159]. In this 
review, the terms incremental and online will refer to algorithms that can gradually add 
new information to an existing model.

Active learning  Active learning [138] comprehends strategies to receive annotations 
given by an oracle (e.g., human) by selecting only the most relevant instances, i.e., the 
ones classified with the most uncertainty. In this way, the model would benefit from having 
newly annotated examples that can be used for training and adaptation to new contexts, and 
the oracle would have to label fewer instances, thus, saving time and effort.

2.4 � Computer vision tasks in surveillance

Computer vision [10] involves techniques to analyze and interpret images. Video 
streams are a rich source of analysis where several computer vision tasks can be per-
formed. In the context of video surveillance, these tasks aim to reveal potential risks to 
protect people and assets.

Anomaly detection  [122,  134,  161] is the task of telling apart abnormal events from 
normal ones in a dataset. In videos, the detection of anomalies can provide information 
on where the anomalies are (spatial information, i.e., coordinates inside a frame) and 
also when the anomalies happen (temporal information) without necessarily indicating 
their spatial location.

Activity recognition and  localization   [59,  128,  153] are tasks that learn predeter-
mined activities from the input data. In surveillance videos, examples of activities are 
car crashes, fire, robbery, violence, and trespassing. This task can be employed when the 
objective is clear, e.g., for a camera installed on a highway, it is possible to have a model 
specialized in car crashes.

Image classification   [73, 77, 92] can also be used in videos. It aims to process each 
video frame and then classify them with respect to a target variable. An example of image 
classification in a surveillance context is gun detection.

Object detection   [24,  124,  162] is a task where in addition to knowing what an 
object is, it is also relevant to find the location of that object in the image. The loca-
tion of an object is usually given by a set of coordinates that represent a bounding box 
around that object.

Re‑identification   (Re-ID) [53, 63, 69] is a task that aims to match objects in different 
frames and, in this way, re-identifying specific objects. It can be used in biometric systems 
and also to identify suspects in video surveillance feeds.
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3 � Research method

The systematic review was conducted based on [67], which defines the phases of planning, 
conduction, and report.

The search string was defined as: (video* OR camera* OR visual OR feed) AND 
("incremental" OR "continual learning" OR "active learning" OR "continuous learning" 
OR "online learning" OR "on-line learning" OR "adaptive learning" OR "drift" OR "con-
cept shift" OR "dataset shift" OR "covariate shift" OR "non-stationary" OR "nonstation-
ary") AND ("surveillance" OR "analytics" OR "security") AND NOT (tracking OR educa-
tion OR classroom OR student).

The search was performed in the scientific databases: IEEE Explore,1 ACM Digital 
Library2 and SCOPUS.3 In order to select the studies, the inclusion and exclusion criteria 
were defined as presented in Table 1.

To be included, a study must fulfill all the inclusion criteria and cannot fulfill any of the 
exclusion criteria.

Note that, for the exclusion criterion E1, only machine learning approaches were con-
sidered because concept drift itself is a term defined in a machine learning context [137, 
159]. As for the exclusion criterion E2, the term drift, in an object tracking context, has 
a meaning that differs from drift in concept drift. Drift in object tracking, as defined by 
[156], occurs when the tracking fails because a significant part of the tracked object is no 
longer in the updated template. Concept drift is more general and does not focus on sin-
gle objects in an image, but rather on global characteristics that can change and impact a 
model’s performance.

As shown in Fig. 2, a total of 627 papers were found during the searching phase. After 
removing 125 duplicates, 44 studies were selected based on the inclusion and exclusion 
criteria defined earlier.

Table 1   Inclusion (I) and exclusion (E) criteria adopted in the Systematic Review

Criterion Description

I1 Studies that address concept drift adaptation in the context of surveillance videos.
I2 Studies that propose solutions to concept drift through techniques such as continuous learning, 

active learning, online learning, and adaptive learning.
E1 Studies that only perform image processing techniques without employing any machine learning 

model. i.e., motion detection, and border detection.
E2 Studies that address drift in tracking.
E3 Studies that do not propose any solution for the concept drift issue.
E4 Studies not published or not available in scientific databases or libraries.
E5 Studies not available for the researcher conducting the systematic review.
E6 Studies in which the method is not described.
E7 Studies in which the research goal is not clear.
E8 Studies that do not present evaluation metrics.
E9 Studies published before the year 2015.

1  https://​ieeex​plore.​ieee.​org/​Xplore
2  https://​dl.​acm.​org
3  https://​www.​scopus.​com

https://ieeexplore.ieee.org/Xplore
https://dl.acm.org
https://www.scopus.com
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Two studies were included manually due to their relevance to this review. Both stud-
ies do not explicitly mention surveillance, but they propose relevant methods to deal 
with concept drift in videos. The first one is [27], where the authors propose a Convo-
lutional Neural Network (CNN) [78] that can be re-trained only at specific layers that 
were potentially affected by concept drift. The other one is [81], where the authors pro-
pose a Support Vector Machine (SVM) [15] model that can learn incrementally but also 
forget about irrelevant information. The overall information extracted from the papers is 
shown in Table 2.

4 � Concept drift adaptation

Concept drift adaptation methods can be divided into the ones that can be adapted in a 
continuous way and the ones that can be adapted in an informed manner. Based on the 
approaches to deal with drift analyzed in the papers of this review, we propose a new clas-
sification of how concept drift adaptation takes place, illustrated in Fig. 3. This classifica-
tion is different from previous ones [41, 93] as it brings the dimension of active learning 
and draws the relationship between adaptation types and knowledge acquisition strategies.

Continuous adaptation methods use the newly and continually arriving input data to 
gradually update the model. In contrast, informed methods keep track of concept drifts, 
and when one occurs, that information is used to update the model.

Informed adaptation methods can have multiple strategies with respect to how machine 
learning models are updated once concept drift is detected. To generalize, as shown in 
Fig.  3, we further divided the adaptation of informed methods into two categories. The 
first is model selection/ensemble, which means that, in the presence of concept drift, either 
a new model will be generated or selected from a pool of existing models, or an ensemble 
strategy will be used with the existing or newly produced models. The second category is 

Fig. 2   Systematic review process
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model retraining, which can happen either globally, by replacing the existing model, or 
locally, by adapting only parts of the current model.

Continuous adaptation methods rely on incremental learning to seamlessly add new 
instances to the already existing model (Fig. 3). These new instances can be acquired using 
active learning, which selects only the most informative instances to be labeled by a human 
oracle. Or without a specific strategy for acquiring knowledge, which can be called passive 
learning. In Table 2, we present how the studies in this review are classified concerning 
their adaptation method.

Informed Adaptation  From the 46 papers in the review, only 9% employed informed 
adaptation. In [112], the authors use a drift detection method to train new models when a 
drift is identified. In [148], the drift is detected by comparing the similarity between known 
data points and newly added ones. Upon drift detection, an algorithm selects a new model 
from a pool of existing models or trains a new one from scratch. That new model provides 
better accuracy than the one previously used. In [104], drift detection is used as an alert 
mechanism applied to road traffic. It also “forgets” old concepts, a technique called decre-
mental learning by the authors, which is able to drop concepts that are no longer relevant. 
In [27], the authors use an adapted version of CUSUM as the drift detection method. When 
drift is detected, only the affected layers of the CNN are retrained, while the rest is left 
untouched.

Continuous Adaptation  Continuous adaptation methods correspond to 91% of the ana-
lyzed papers. From these works, the combination of incremental and active learning is used 
in 21% of the papers, whereas incremental learning with passive learning is used in 79% of 
the studies.

In [149] and [6], the authors propose ways to automatize and simplify the labeling pro-
cess to make active learning feasible in surveillance. A visual-interactive labeling strat-
egy is proposed by [51], where model-based suggestions and visual cues are combined to 
ease the labeling process for users. In [55], contextual information is obtained from the 
newly arriving data to improve the selection of informative instances for posterior human 

Fig. 3   Classification of concept 
drift adaptation
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labeling. Thus, once the instances are appropriately labeled, the new examples incremen-
tally are added to the model. Similarly to [51], in [55], the authors use an algorithm to 
select the most informative examples for user annotation. In [139], the authors use the 
output of object detection algorithms to select objects detected with low confidence to be 
double-checked (labeled) by humans. Similarly to [139] in [18], unlabeled images are sup-
plied to an object detection algorithm, then the detections with the smallest confidences 
considering a threshold are used to retrain the model. The authors call this approach semi-
supervised active learning and it is also possible to receive feedback from an oracle.

In [105], an active learning strategy called human-in-the-loop is employed, where 
human feedback is required whenever an anomaly is detected. If the detection is identi-
fied as a false-positive, this information is then used to incrementally update the model, 
advising that this example should be treated as normal. In [4], although an active learning 
approach is proposed, there is no specific details of how it is handled.

The remaining studies employ an incremental approach, as seen in Table 2. The algo-
rithms used by each one of the studies are presented in Section 6. The machine learning 
models employed are capable of incrementally aggregating new unseen information to an 
existing model.

5 � Learning settings and computer vision tasks

Concerning the learning settings used by the studies analyzed in this review, 56% (26 stud-
ies) are supervised, 22% (10 studies) are unsupervised, and 22% (10 studies) are semi-
supervised (Table 2). The relation between computer vision tasks and learning settings is 
shown in Fig. 4, where a larger circle represents a greater number of studies using a learn-
ing setting to perform the corresponding computer vision task.

It is possible to see that the activity recognition task is employed exclusively in a super-
vised learning context. Although more commonly applied in a supervised setting, image 

Fig. 4   Computer vision tasks versus learning settings
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classification, object detection, and re-ID are also used in settings where not all labels are 
available. In re-ID tasks, the unsupervised setting can be achieved by measuring similari-
ties between one or more frames.

In object detection, even though some techniques are regarded by the authors as semi-
supervised or unsupervised approaches, labeled examples are still needed, so we classified 
them as supervised approaches. The difference lies in how these labels are acquired, which 
can be by using another pre-trained object detection model [139, 148] or by employing an 
algorithm to automatically extract these labels, such as regions that are moving between 
frames [108].

Among the studies of this review, anomaly detection was only performed in a super-
vised setup in [4] and was used in a semi-supervised setting roughly as much as it was 
used in an unsupervised one. Although this task can be performed in a supervised learning 
setting, it is unusual since knowing all possible anomalies beforehand is not feasible. Also, 
the definition of anomaly itself is ambiguous. In other words, it is impossible to know 
beforehand all events that comprehend abnormal and normal activities in every context 
[30], e.g., a person running in a public square is usually not an anomaly, whereas a person 
running inside a bank would commonly be.

6 � Features and models

Representing videos and images through features is a research topic on its own. Visual 
features like HOG, Haar Cascades, SIFT, Optical Flow, and 3D spatial gradients have 
been used extensively for the last few decades [140]. They are considered handcrafted 
features because they rely on previous knowledge and pre-assumptions about the input 
data. Recently, CNN models have been used with the reasoning that features can be 
learned rather than handcrafted, achieving, in this way, better representations than features 
designed in a manual fashion.

Considering studies that use CNN features as cases where the attributes are learned (or 
self-learned), analyzing the studies in this review (Table  2), before 2018, there were no 
papers that employed learned features. In [106], the authors extract bounding boxes using a 
CNN but do not use the CNN feature vectors. However, after 2018, 67% of the papers (22 
out of 33) used learned features.

In recent years, we have also seen approaches that combine handcrafted and learned 
features to achieve more robust feature representations. Some studies use features provided 
by other algorithms or systems. For instance, in [30], the authors use the output bounding 
boxes coordinates from YOLO ( [125] along with Optical Flow features.

From Table 2, 52% of the studies use handcrafted features, 37% use self-learned ones, 
and 11% employ both feature types simultaneously. From the studies using self-learned 
features, 59% also employ CNNs as the machine learning model, while the other 41% use 
CNNs as a feature extractor only.

Regarding machine learning models, many distinct algorithms and architectures have 
been used. Although each one presents its peculiarities, the models were divided into 
general categories. Figure 5 shows the number of times each category has been used and 
Fig. 6 shows the distribution of learned and handcrafted feature types among the model 
categories.
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Neural Networks  Neural Networks [99] are used in 33% of the papers in this review. 
This technique uses nodes that are interconnected by weight vectors to learn a prediction 
function based on the training data. Among papers that employed this machine learning 
algorithm, 90% used CNNs, a type of neural network primarily created to be used when the 
inputs are images.

A common issue that arises when training neural networks continuously is a phenom-
enon known as catastrophic forgetting [98], which can be roughly described as the ten-
dency that a neural network has to lose old information learned previously as new exam-
ples are presented to the model. In [149], a CNN is used only to improve labeling effort, 
but not in classification itself. In [139], active learning is employed to reduce training time 
and improve the quality of object detection. In [105], the authors employ a spatio-temporal 
autoencoder using a Long Short-Term Memory (LSTM) [58] neural network with convo-
lutional layers. Similarly to [139], active learning is used in order to improve classification 
accuracy.

Fig. 5   Use of model categories among the papers

Fig. 6   Feature types used in each one of the model categories. Some models employ both types
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In [147], the authors evaluated incremental training in a CNN using four different 
approaches: (a) Fine-Tuning: retraining only a subset of layers of the network,(b) Knowl-
edge distillation: transferring knowledge from a large network to a smaller one; (c) Learn-
ing without Forgetting (LwF): extending from knowledge distillation, it combines cross-
entropy loss to learn new tasks and distillation loss function to keep old ones; and (d) 
Joint-Training: retraining the network from scratch as new examples are added to the exist-
ing training set. As discussed by the authors, Joint-Training produced the best accuracy on 
old data, avoiding the catastrophic forgetting issue. However, as pointed out by the authors, 
Joint-Training takes, in general, 1.3 times longer to train than the other strategies. There-
fore, LwF presents itself as a middle-ground between accuracy and training time, since 
performance in old tasks is preserved 11% more than Fine-Tuning and it does not require 
training from scratch like Join-Training.

In [72], the authors combine three networks with distinct purposes (pre-trained predic-
tion, continuous-updating prediction, and weight estimation) to predict future frames in 
video sequences. In [118], in the context of anomaly detection, a Recursive Neural Net-
work [46] architecture is employed. Then, the estimation is obtained based on autoregres-
sion and the moving average of regression errors. In [66], new classes of objects are incre-
mentally aggregated by a Fast R-CNN [45] model. An approach that addresses the concept 
drift problem indirectly.

In [4], a supervised approach to anomaly detection is presented. The authors perform 
the preprocessing step of removing the background and then extracting features using both 
an Optical Flow algorithm and a CNN, which are then input to the LSTM network. In [18], 
the authors suggest a face mask detection algorithm based on a CNN known as Single 
Shot Detector (SSD) [82]. The modification made in the original SSD algorithm aimed to 
improve the accuracy and involved changes including the loss function and the aspect ratio 
of the network layers.

In [107], the cross-domain adaptation topic (a technique to allow a model trained in 
one context to be successfully utilized in another context without the need for retraining) 
is addressed from an object detection perspective. To achieve this, they employ a Domain 
Transfer Module which consists of a two-layer CNN. Once the model is trained it is able 
to incrementally add new knowledge using data drawn from the joint representation of pre-
vious targets. In [76], the authors deploy a CNN-based object detector with two detection 
phases: then initial detection performed directly at the camera devices,and a post-process-
ing phase at a server. In order to update the models, the authors claim to have developed a 
domain adaptation mechanism that can either receive new information from a user feedback 
or automatically update the domain information related to the spacial and location features.

Among all the works that implemented neural networks, only 20% (3 papers) did not 
employ CNNs. In [32], the authors put forward a framework to adapt anomaly detection 
incrementally and continually. The approach involves extracting information from frames, 
such as bounding boxes, spatial information, and distances as input features to a Recursive 
Neural Network [152]. In this way, it is argued that the model can be trained continually, 
thus avoiding the catastrophic forgetting issue. Apparently, a continuation of the previous 
work, in [31], the authors propose a framework that, in addition to learning continually, 
is able to implement cross-domain adaptability and few-shot learning (ability to achieve 
generalization using a relatively small set of representative data). To achieve this, visual 
information from activities such as object bounding boxes, motion, and poses are trans-
formed into semantic features using the Word2Vec [103] algorithm, i.e., complex activities 
can be turned into phrases such as “person walking on the sidewalk”. Because this type of 
feature is more general and simpler than images, it makes cross-domain adaptability and 
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few-shot learning more feasible. Finally, in [112] an incremental learning neural network 
called Probabilistic Fuzzy ARTMAP (PFAM) [79] is employed. This network provides 
probabilistic prediction scores based on the categorization of the feature space.

Support vector machines  The SVM [15] algorithm is employed in 17% of the analyzed 
studies. SVM is a classification algorithm that aims to find the decision boundary that pre-
sents an optimal margin between classes. In [81], in addition to an incremental approach, the 
authors also implemented a decremental strategy using sliding windows, making the algorithm 
capable of removing patterns that are considered obsolete. In [155], an SVM-based algorithm 
is proposed to make pedestrian recognition adaptive to environmental changes. This method 
modified the regularization terms to incrementally construct and update its appearance model. 
In [143], for an action recognition task, the authors used a Structural SVM algorithm applied 
to short video segments, assuming that the prediction scores of interactions increase over time. 
In [70, 154], and [55], the SVM algorithms are capable of making incremental updates to the 
model to prevent them from concept drift. In [87] and [86] the authors propose a face rec-
ognition system that uses an ensemble of SVMs that can be self-trained (i.e., the predictions 
returned by the classifier are used as labels) and in an incremental fashion.

Probabilistic  Probabilistic models have been used as classification algorithms in 11% of 
the analyzed papers. This method builds probability distributions over the training data, 
so when an example is presented to the model, it can inform the probability one particular 
example has of belonging to a specific class.

In [11], the authors present a framework to obtain activity patterns from surveillance 
videos. In this framework, the trajectories classifications and anomaly detections are 
made using sequential Monte-Carlo techniques. In [94], a combination of handcrafted and 
learned features is employed to generate a Bayesian fusion model, where the last step is to 
use a learning-to-rank-based mutual promotion procedure to incrementally update the clas-
sifiers based on the newly acquired unlabeled data. In [3], the employed method generates 
Hidden Markov Models (HMM) [120]. To work incrementally, the likelihood is computed 
for each incoming video window. When matching a class, a distinct HMM is trained using 
this data to update an already trained HMM with a weighted average.

In [75], a Gaussian Mixture Model (GMM) is used to detect anomalies in video 
scenes, where the mixture represents the distribution of abnormal and normal events. The 
Mahalanobis distance is computed to compare new feature vectors with the mean of the 
distribution. In [16], features are extracted using variational autoencoder models, and a 
novelty/anomaly classification is performed using the Markov Jump Particle Filter. When-
ever new events are detected, new autoencoder models are deployed.

Clustering  Clustering techniques have been used by 11% of the papers. Clustering tech-
niques aim to divide the input data set into groups. Consequently, when a new example is 
presented, the algorithm is able to predict to which group that instance belongs. This type 
of algorithm is used in an unsupervised learning setup.

In [106] and [104], the authors use an algorithm named Incremental Knowledge 
Acquiring and Self-Learning (IKASL) [25], which is based on Growing Self-Organizing 
Map (GSOM) [1]. The algorithm divides the input set into pathways that can be used 
in video surveillance tasks. In [80], an algorithm named Online Weighted Clustering is 
employed in anomaly detection, aiming to model recent events and assign large weights 
to clusters representing normal events. [121] employ a clustering algorithm to update 
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pose patterns from video cameras dynamically. These extracted patterns seek to improve 
the labeling process by having more credible images selected for pseudo pose evaluation.

Distance based  Used in 11% of the papers in this review, distance-based algorithms 
use a measure of distance between instances to make inferences. Among these algorithms, 
k-Nearest Neighbors (kNN) [141] is used in 66% of the papers. KNN is a common choice 
for adaptive methods because no training is required. This makes the adaptation faster than 
algorithms such as SVM and neural networks. The inference time, however, is proportional 
to the number of instances that the model has. In [17], a measure learning algorithm based 
on statistical probability is employed to incrementally re-identify targets. In [61], in con-
junction with Null Folley-Sammon Transform, the Mahalanobis [97] distance is computed.

Addressing object detection, in [126], the authors propose the generation of candi-
date bounding boxes using a modified Haar Cascades algorithm, these candidate boxes 
are then used as features along with CNN visual characteristics. These feature vec-
tors serve as input to the posterior classification step using a nearest mean classifier. 
Through this algorithm, new classes can be added incrementally and there is no need to 
store all of the training examples.

Other models  Among other algorithms, decision tree [119], a tree-based algorithm that 
derivates decision rules from the training data, was used by 9% of the studies. In [83], the 
authors use data from sensors to build an incremental model for activity recognition using 
a swarm decision table. One disadvantage is that people must wear these sensors, which 
is not always feasible due to constraints such as cost and ease of use. In [108], to perform 
object detection in videos, the authors automatically label objects based on moving regions 
and then use these labels to train a decision tree-based model using a co-training strategy 
for classifier grids. [51] employ a random forest algorithm to incorporate human-assigned 
labels in an active learning setting. In [47], the authors employ a model called Nearest Class 
Mean Forest (NCMF) to recognize emotions in images. The NCMF model differs from a 
random forest, among other characteristics, because only a random subset of available 
classes is considered in each node.

Ensemble techniques (the combination of predictions of multiple machine learning 
models) were employed by 4% of the papers. In [71], as new models are generated, 
old ones are progressively forgotten using a weighting strategy. In [151], an Adaboost 
algorithm [38] is used to make a global decision by joining a set of weak classifiers. As 
discussed in [93], ensembles are useful in the case of recurring drift because old models 
can be simply reused instead of re-trained, which results in a significant saving in com-
puting time.

Lastly, sparse-coding [96], a technique that aims to create sparse linear combinations 
of basis vectors, has been used in [20] (representing 2% of the papers), where incremen-
tal updates are made to existing dictionaries, and the sparse-coding method is used to 
classify video segments as normal or abnormal.

7 � Real‑time processing

To prevent damage to people or assets promptly, real-time detection and adaptation are 
desired capabilities of automated surveillance systems. From all the studies analyzed, 
19% (9 papers), reported achieving real-time capacity. To measure the speed of video 
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processing methods, the prevalent Frames per Second (FPS) measure is employed. In 
Table 3, we summarize the information regarding the studies that employed real-time 
techniques.

A rate higher than 23 FPS is considered real-time as it is the standard recording rate 
for cameras and video feeds. If a technique is not able to process frames as they arrive, 
the processing is delayed.

To make real-time detection possible, we witness a larger use of GPU architectures. 
In fact, 67% of the papers claiming to use real-time approaches rely on GPU processing 
[18, 30, 76, 105, 148, 154]. All of these works were published after 2018 and make use 
of neural networks to obtain the input features.

In [154], considering the steps of feature extraction, dimensionality reduction, and 
inference, the authors report the speed of 25 FPS for one surveillance video feed. In 
[30], using pre-trained deep learning models for feature extraction and a kNN model for 
the testing phase, a speed of 32 FPS is reported. However, it is important to note that 
kNN needs to compute distances between an incoming example and all of the examples 
at a specific partition of the training set at inference time. Over time, the number of 
training examples tends to increase, resulting in performance degradation. The authors 
also point out that the time for the feature extraction phase can be reduced if a GPU 
with more computing power is used or if a faster but less accurate version of the deep 
learning extractors is used.

In [148], whenever concept drift is identified, an object detection model is selected 
or generated. The baseline model achieves the rate of 24 FPS, while the lightest model 
architecture yields 144 FPS. Model selection depends on a clustering algorithm, and as 
stated by the authors, the speed tends to decrease over time as more clusters are created.

In [105], the employed CNN uses eight consecutive frames as input, with 224 × 224 
pixels each. The experiment yielded a processing rate of approximately 27 FPS. In [76], 
the infrastructure takes advantage of cloud computing servers with allocated GPUs. 
Each camera also has an embedded client that communicates with the server performing 
object detection. In [18] The neural network proposed, although less accurate than the 
state-of-the-art model, presents itself as a fast alternative.

We also see less computationally expensive approaches. The remaining 33% of 
papers rely on regular CPU processing [20, 80, 108]. In [80], a clustering algorithm is 
used to classify video clips as normal or abnormal, and the reported speed was 30 FPS. 
In the experiment, the video frames are resized from 158Ã—238 pixels to 120Ã—160, 

Table 3   Papers using real-time processing approaches

Author Feature extraction Model Processing FPS

Lin et al [80] Optical Flow Clustering CPU 30
Chen et al [20] Gradients, Optical Flow Sparse Coding CPU 25
Nguyen [108] Haar Cascades Decision tree CPU 24
Ullah et al [154] Neural Network SVM GPU 25
Doshi and Yilmaz [30] Neural Network, Optical Flow Distance based GPU 32
Suprem et al. [148] Neural Network Clustering GPU 24–144
Nawaratne et al [105] Neural Network Neural Network GPU 27
Cao et al [18] Neural Network Neural Network GPU 42
Kwon and Kim [76] Neural Network Neural Network GPU 55
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which requires less computational capacity. Similarly to [30] and [148], the clustering 
method suffers from speed degradation as new clusters are created. In [20], the spatio-
temporal features are generated for every five consecutive frames, and then the dimen-
sions are reduced using PCA. The authors report achieving a processing rate of 25 FPS. 
In [108], the author states that the implemented system runs at a rate of 24 FPS but does 
not give details about the type of hardware used.

Lastly, we did not consider the work presented in [149] as being a real-time surveil-
lance method but rather a framework to reduce human effort because the authors employ 
an already functional real-time application to reduce the annotation to mouse clicks.

8 � Datasets and evaluation metrics

8.1 � Datasets

In this section, we expose the challenges that handling video data brings, and the charac-
teristics of the datasets used in this review, including the number of frames, resolution, task 
type, scenes, and annotation type. We also explain why there is still a need for datasets that 
are proper for concept drift detection.

One of the main characteristics of video surveillance data is that the velocity of 
data generation is usually high (continuous surveillance video feeds). In addition to 
that, the number of features is also larger in comparison to other data sources (e.g., 
tabular data, text, audio). For instance, a video with a resolution as low as 416 × 416 
pixels, using the RGB color system, and having a rate of 30 FPS, has 519,168 features 
(number of pixels) per frame. One minute of that video has 1,800 frames. Further-
more, in [28], the authors mention the challenges faced when dealing with unstruc-
tured data in concept drift. In general, video data is multi-dimensional, multi-scale, 
has spatial relations between frames, and can have an undefined number of labels in 
each frame.

In [93], several datasets used in concept drift studies are presented. Most of these data-
sets contain structured data, such as weather and sensor data. There is also text data, which 
is unstructured, but as explained earlier, video data imposes different challenges, such as 
spatial relationships between frames and input size. The largest dataset in terms of the 
number of attributes has 287,034 features and only 10,983 instances.

The datasets used by the studies in this review are presented in Table 4. Given the fact 
that none of the datasets have concept drift labels or do not have significant changes in 
illumination, weather, or camera movements, they are not made specifically for detect-
ing concept drift in videos. Instead, they are intended to be used for particular computer 
vision tasks (activity recognition, anomaly detection, object detection, image classifica-
tion, or re-ID). Anomalies (or outliers) cannot be considered concept drifts but rather 
ephemeral changes. Therefore, the anomaly detection datasets analyzed in this review 
are not suitable for detecting concept drift. Besides the incidence of occasional varia-
tions, the characteristics of the input data do not change in a way that the output variable 
is affected, resulting in the degradation of the prediction capacity of the models. In [30], 
the authors use an eight-hour-long YouTube video where it begins to rain at some point, 
and that rain changes the characteristic of the input data. However, the dataset is not 
annotated, thus, although the authors present a comprehensive analysis regarding adapta-
tion, it is not clear when the concept drifts starts.
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8.2 � Metrics

Although computer vision tasks of different natures have been analyzed, the metrics 
used to evaluate the outcome of the algorithms can be summarized.

Considering the analyzed studies, 49% (22 papers) have used accuracy or accuracy-
based metrics. We considered accuracy-based, the recognition rate and detection rate 
metrics, which are simply accuracy multiplied by 100.

Precision and recall are informative when classes are imbalanced [133], i.e., anomaly 
detection, where anomalies represent only a small subset of the data. 15% of the studies 
use precision and recall, and 60% of these studies also use the F-measure, known as the 
harmonic mean of precision and recall: a single number that summarizes both metrics.

In addition, 32% of the papers (15 studies) use ROC AUC. The Equal Error Rate (EER) 
is a metric that can be used along with ROC AUC and that summarizes the trade-off 
between false positives and false negatives. A lower EER represents a more accurate sys-
tem. The combined use of ROC AUC and EER represents 10% of the articles reviewed.

Commonly used in object detection, Average Precision (AP) or mean Average Preci-
sion (mAP), is a metric that takes into account the precision at different recall inter-
vals. It summarises the shape of the Precision-Recall curve. In its respective equation at 
Table ??, the definition given by [34] is used. AP is defined as the mean precision at a 
set of eleven equally spaced recall levels [0, 0.1, 0.2, 0.3, ..., 1] . The precision at a recall 
level r is interpolated by taking the maximum precision corresponding to the next recall 
value greater than the current one:

where p(̃r) is the observed precision at the recall level r . We observe that 18% of all the 
studies, and 50% of the studies where the task is object detection, used AP.

In Fig. 7, we present the relation between computer vision tasks and the metrics cho-
sen to evaluate them in this review. It is possible to notice that accuracy and AUC-ROC 
are the most commonly used metrics. Also, the task of object detection presents a strong 
relation with the AP metric. Some metrics were not used along with some tasks, e.g., 
AUC-ROC was not used as an evaluation metric in any object detection paper.

9 � Discussion

The compilation of the works evaluated in this review allowed us to delineate research 
potentials, limits, and challenges concerning concept drift adaptation in video-based 
surveillance regarding four dimensions: adaptation types; features and algorithms; data-
sets and metrics; and practical aspects. Therefore, our discussion has been structured to 
present the characteristics of each one of the four defined dimensions.

9.1 � Concept drift adaptation

Concerning the first dimension, concept drift adaptation, we explore the implications 
derived from the choice of adaptation type, adaptation velocity and weighting, and concept 
drift awareness.

(2)pinterp(r) = max
r̃∶r̃≥r

p(̃r)
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As observed in this systematic review, most concept drift adaptation methods used in 
surveillance contexts in recent years rely on continuous rather than informed adaptation, 
which is also pointed out in [41]. While continuous adaptation approaches can constantly 
aggregate new information into a machine learning model, one disadvantage is that the 
explicability is sacrificed. In other words, it is not possible to know when a drift occurs.

Furthermore, a strategy on how fast adaptation happens must be defined in incremental 
approaches, thus, introducing a trade-off between robustness in the presence of noise and 
adaptation pace. The more weight is given to new examples, the faster adaptation to new 
concepts happens. However, the model becomes more prone to be affected by noise. On the 
other hand, when less weight (or no weight) is given to new examples, adaptation occurs 
slower, but the model becomes more robust to noise. We name this behavior the robust-
ness-pace trade-off: a concept introduced in this work.

When all the examples are stored and used for training, besides memory concerns 
(storage is not unlimited), adaptation to new concepts tends to be slower. In incremental 
approaches where the data is not stored and single example instances are used to update 
the model, old concepts are completely forgotten over time, which can be an undesirable 
feature in contexts where recurring drifts occur.

There are also approaches where specific windows, i.e., sets of sequential training exam-
ples, are kept in memory. Larger windows are slower to adapt to new concepts, and smaller 
windows are faster. In all the incremental approaches, weighting strategies can be applied to 
make adaptation faster or slower, considering the robustness-pace trade-off explained earlier.

Informed adaptation provides information about when the concept drift happened, a 
knowledge that, in surveillance contexts, can also be used to trigger alerts to the security per-
sonnel, informing them that a context change has occurred. In addition to that, even though 
space is still a constraint, knowing when a concept drift happens eases the process of getting 

Fig. 7   Relation among tasks and metrics. For simplification purposes, we grouped all accuracy-based met-
rics (recognition rate, detection rate and matching rate) under the label “Accuracy”
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rid of information that is no longer required. The disadvantages of the informed approach 
are: a) it is highly dependent on the drift detection algorithm; b) when the model needs to be 
trained globally, the time spent in adaptation can be long (depending on the learning algo-
rithm and dataset size) and thus, affecting the timing needed in surveillance contexts.

The development of techniques that can circumvent the disadvantages of incremental 
and informed concept drift adaptation is a topic that deserves more attention. For instance, 
drift detection could be done at the same time as an incremental training pipeline is run-
ning. Thus, it would be possible to know at which moment the concept changed.

9.2 � Features and algorithms

In this section, we address the second dimension, features and algorithms, discussing 
aspects involving feature representation and extraction, handcrafted versus learned fea-
tures, incremental versus continuous learning, supervised versus unsupervised concept 
drift detection, and active versus passive learning.

Feature representation and extraction directly impact a model’s effectiveness [26],hence, 
it plays a decisive role in pattern recognition. As presented in this review, in recent years, 
we have been witnessing a shift from the use of handcrafted features to learned ones and 
also the combination of both (Section 6). The use of learned features demands, in general, 
higher computing costs. Consequently, it might not be feasible in cases where more power-
ful computing architectures (e.g., GPUs) are not available.

Although CNNs have been largely used for feature extraction, 50% of the studies used 
them exclusively for that purpose and did not employ CNNs as the classifier algorithm. 
The use of CNNs solely as feature extractors is potentially due to the fact that this type of 
neural network tends to take a longer time to train than other algorithms, such as SVM [55, 
154], clustering algorithms [121], and probabilistic algorithms [94]. Also, as discussed in 
[30], neural networks suffer from the catastrophic forgetting issue, which causes the perfor-
mance to degrade over time. To overcome this issue, [27] and [147] suggested approaches 
to, respectively, retrain only layers affected by drift and employ learning distillation. How-
ever, both techniques do not completely solve the forgetting and long training time issues.

As for the other categories of models, even though the training process can be done 
incrementally and usually faster, and effective storage management strategy needs to be 
defined to cope with the robustness-pace trade-off. In learning settings where no examples 
are discarded from memory, the training time increases incrementally as more examples 
are added. Similarly, for clustering algorithms such as kNN, the inference time grows as 
new instances are aggregated to the model.

Works that combine learned and handcrafted features do so as a means to explore differ-
ent characteristics of the input data, thus, improving generalization and accuracy. Besides, 
another justification for this hybrid approach is reducing computing time. This is the case 
in [31], where the authors use Optical Flow features along with CNN ones and then trans-
form them into semantic representations that have fewer dimensions than the original data.

Regarding machine learning algorithms used to cope with concept drift, in [28], a 
review on learning on non-stationary environments, the authors mention that among the 
continuous adaptation methods, decision trees were one of the most popular algorithms 
when considering non-ensemble approaches. This differs from the analysis made in recent 
years, as decision tree based models represent 9% of the total. This is potentially due to the 
increasing adoption of neural networks approached since the study was published.

Although methods to detect real concept drift rely on annotated instances being evalu-
ated in an existing model [41], the amount of generated data makes the labeling process 
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time-consuming and expensive in surveillance contexts. Thus, detecting drift from a super-
vised learning approach becomes a less attractive solution. Concept drift detection based on 
data distribution [93] has been explored as a viable solution [104, 148]. In this case, concept 
drift is detected by analyzing the dataset itself, which does not require labeled examples.

In [148], the video frames are represented in a lower-dimensional space using a combi-
nation of an adversarial autoencoder and a GAN [48]. Then, a clustering algorithm is used 
to detect concept drift. However, as mentioned earlier, the clustering method tends to get 
slower and take up more memory space as more instances are aggregated to the model. 
Similarly, in [104], the authors use a clustering method that brings the same disadvantages.

More research can be done towards approaches that, considering the high dimensional-
ity and high volume of video data, are able to explore the use of established concept drift 
detection techniques (Section 2.1.1) that can work with less memory and computation con-
straints. For instance, dimensionality reduction techniques such as PCA or autoencoders 
can be employed to summarize the data distribution, and then new data points can feed the 
reconstruction error to a drift detection algorithm such as EDDM or Page-Hinkley.

Active learning aims to enable the acquisition of labels by having an active oracle 
available while the training process occurs. Nevertheless, acquiring information in this 
way presents challenges, such as: a) trusting the oracle’s labels is not always possible 
since the quality of these labels can drop over time. An open research problem is to make 
machine learning models capable of evaluating the quality of these labels [138] b) how 
to interact with oracles in a way that reduces their effort and optimizes the quality of the 
labels. General protocols, frameworks, and tools could be developed for this end.

Obtaining labeled information automatically is preferable, but not always achievable. In 
[108], the authors use background subtraction to extract moving regions and automatically 
annotate them. Nevertheless, this approach is not extensible to tasks such as activity recog-
nition, where a label is still needed in order to inform which type of activity is taking place.

9.3 � Datasets and metrics

The use of datasets and metrics is the third dimension. Regarding this dimension, we dis-
cuss the issue of the lack of annotated datasets for concept drift detection, as well as the 
employment of more distinctive evaluation metrics.

Regarding the datasets used by studies in this review, it was possible to conclude that 
there is no dataset made specifically to detect drift in surveillance contexts. Beyond the 
lack of annotations of when drifts occur, the datasets do not present significant changes at 
the scenes. Illumination, weather, and structural scene changes are some of the phenom-
ena that frequently happen in surveillance contexts and are missing from such datasets. In 
[93], the authors present several datasets employed in concept drift detection. Although the 
datasets presented by them do not provide explicit concept drift annotations as well, they 
do contain drifts that are usual to their respective context (sensor, weather, spam, etc.), a 
factor not present in the datasets analyzed in this review. Hence, surveillance video datasets 
where concept drifts occur could be developed and published.

Concerning the metrics employed to assess the quality of the classifiers, accuracy has 
been the most used one. Despite being straightforward to compute and understand, using 
accuracy alone is problematic since it does not handle well problems of imbalanced class 
distribution, with the minority class being less favored than the majority one [60]. Metrics 
such as ROC AUC and F-measure, for general classification tasks, and average precision, 
for object detection, are more distinctive and robust measures than accuracy. Thus, more 
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works using metrics that are more distinctive than accuracy can be explored in the subject 
of video surveillance drift adaptation.

9.4 � Practical aspects

Finally, with regard to the fourth and last dimension, we explore practical aspects regarding 
machine learning and concept drift adaptation in surveillance contexts, including multi-
camera environments, real-time processing, data storage, handling sensitive and personal 
data, and machine learning frameworks for video-based surveillance data.

In large outdoor environments, or even in places with more than one room, a common 
scenario for video surveillance is to deploy multiple cameras in order to monitor different 
locations or viewpoints. In this context, considering real-time detection, inference has to 
be performed in parallel instead of sequentially for each camera. From this practical point 
of view, real-time approaches using less computational power are preferable. Most of the 
papers that claim real-time capacity rely on GPU processing, which can potentially use 
all the GPU units of the computer to perform a single inference. In addition to the cost of 
having multiple of these powerful machines, configuration, (e.g., deploying new machines) 
and smart allocation of resources to prevent idle cameras from wasting computational 
power are other concerns.

Data storage is another issue. Data from surveillance feeds and closed-circuit television 
(CCTV) are usually generated ceaselessly at a greater velocity than they can be analyzed. 
Hence, techniques and protocols to process data in distributed ways and also discard it 
when it is no longer needed could be explored and employed. Additionally, as surveillance 
video data usually contain sensitive and personal data, data security and privacy are other 
aspects to consider and are gaining more research attention over the last few years [163]

There is also a need for frameworks and tools not only to analyze surveillance video 
data but also to manage and cope with concept drift. This could be done by providing a 
set of concept drift techniques that can be used, compared, and extended along with tech-
niques to perform computer vision tasks (e.g., object detection, activity recognition, anom-
aly detection) using traditional and deep learning techniques that can be reused and shared.

10 � Conclusion

The main contributions of this work are the delineation, the limitations, and research 
opportunities involving methods, techniques, and strategies to deal with concept drift in 
surveillance, as well as practical aspects involving computing resources and real-time pro-
cessing; and the proposal of a new classification of concept drift adaptation method. This 
classification differs from previous ones as it establishes a relationship between adaptation 
types and knowledge acquisition strategies; and includes active learning, a relevant tech-
nique to acquire new concepts in the presence of drift.

The results show that much more attention has been given to methods that adapt to new 
concepts in a continuous way rather than in an informed one, and, although blind adap-
tation in non-stationary environments has advantages, the information on when the con-
cept drift occurred is not available. The continuous adaptation methods include approaches 
using incremental learning and active learning, while the informed adaptation settings 
include model selection, model creation, and retraining, which can be done locally or 
globally.



10030	 Multimedia Tools and Applications (2024) 83:9997–10037

1 3

The relation between computer vision learning tasks and learning settings (supervised, 
unsupervised, and semi-supervised) used in surveillance was explored, and while tasks 
such as activity recognition were only performed in a supervised setting, other tasks like 
anomaly detection were usually done in unsupervised or semi-supervised settings. In such 
settings, real concept drift cannot be verified because ground truth annotations are not 
available. Therefore, techniques that explore virtual concept drift must be employed.

Regarding features and machine learning algorithms, even though we witness an 
increase in the adoption of learned features over handcrafted ones. Traditional methods, 
such as SVMs and clustering algorithms, tend to be employed more than modern deep 
learning strategies due to the time taken for adaptation combined with the phenomenon of 
catastrophic forgetting, usually present in neural networks.

This literature review will help researchers of areas related to machine learning in sur-
veillance to have a comprehensive vision of how the phenomenon of concept drift, in the 
context of video surveillance, has been handled in recent years, serving as a foundation 
for other research works. As video surveillance is crucial to improve the security of public 
and private spaces, the real-world impact of this work is enabling the understanding of 
alternatives to deal with concept drift, consequently, improving the overall performance 
of learning methods in this specific scenario, which, as outlined before, presents inherent 
characteristics and additional complexities over other use cases.

Future research directions include more exploration of informed concept drift adapta-
tion approaches for surveillance, the creation of datasets crafted for non-stationary surveil-
lance environments, the investigation of strategies for data management for continuous sur-
veillance video streams, and the combination of CNNs and traditional approaches.
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