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Abstract
Haze-free images are the prerequisites formany high-level visual tasks, and thus image dehaz-
ing has become an active topic in computer vision. However, the existing image dehazing
algorithms are limited in face of unevenly distributed haze and dense haze in some scenes. In
this paper, we propose a Pyramid Spatially Weighted Pixel Attention Network (PSPAN) for
single image dehazing by leveraging complementarity among different levels of features in
a pyramid manner with unique attention methods. The proposed PSPAN utilizes the feature
pyramid as the core network and consists of three modules: an efficient Multi-scale Feature
Extraction Attention module, a pyramid Spatially Weighted Pixel Attention module, and
an image reconstruction module. Specifically, PSPAN preprocesses hazy images first before
acquiring abundant shared features. After that, these features are sent to different branches. To
effectively fuse useful information from these different branches and obtain better-dehazed
results, we propose an efficient feature aggregation attention module. Finally, the image
reconstruction module is used to restore clear images. Meanwhile, a loss function that com-
bines a mean square error loss part, an edge loss part, and a perceptual loss part is employed
in PSPANwhich can better preserve image details. Experimental results demonstrate that the
proposed PSPAN achieves superior performance to other existing state-of-the-art algorithms
in terms of accuracy and visual effect.
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1 Introduction

Haze, fog or smoke usually affect visibility and obscure key information of the images. To
deal with this issue, image dehazing has been widely studied in recent years which aims to
recover clear images from their corresponding hazy images. The whole procedure can be
formulated as:

I (x) = J (x) t (x) + A (1 − t (x)) (1)

Where I (x) denotes the hazy image and J (x) denotes the clear image, x denotes a
pixel position in the image, A denotes the global atmospheric light, and t (x) denotes the
transmission map. In addition, the transmission map can be represented as t (x) = e−βd(x) ,
where β and d (x) represent individually the atmosphere scattering parameter and the scene
depth.

Previous image dehazing approaches have focusedmore on restoring the clear image using
priors such as dark-channel prior, contrast color lines, and haze-line prior. For example, He
et al. [13]proposed a dark channel prior (DCP) based method for estimating the transmission
map. Kansal et al. proposed a novel approach of image subsampling [17], which is used to
construct the dark channel to improve the computational efficiency. Although these prior-
based methods have achieved considerable success, their performances are limited because
not all the images of real scenes are compatible with the predefined priors. Recently, deep
learning has demonstrated effectiveness in various computer vision tasks. Various convolu-
tional neural network (CNN) based methods have been proposed to estimate the transmission
map and the atmospheric light. Once the transmission map and the atmospheric light are esti-
mated, the dehazed image is restored through the atmosphere scattering model. Generally
speaking, low-level features in a neural network refer partly to detailed information, and
high-level features contain more semantic information. Both of them are critical for recov-
ering a clear image, but most CNN-based methods usually use high-level features to achieve
image dehazing. Moreover, these methods are based on the atmosphere scattering model.
If the estimated transmission map and atmospheric light are not accurate, then the dehazed
result will be of low quality.

Although the existing end-to-end dehazing algorithm has a better defogging effect than
the one based on the physical model, it is easy to ignore the aggregation of multi-scale spatial
information, resulting in the loss of image details, so there is still a problem of unsatisfactory
dehazing effect. In addition, common attention mechanisms tend to adjust weights relying
on a single dimension of information. To solve the above problems, we propose a novel end-
to-end framework called the Pyramid Spatially Weighted Pixel Attention Network (PSPAN).

In this work, we propose a novel end-to-end framework called Pyramid SpatiallyWeighted
Pixel Attention Network (PSPAN) for single image dehazing, which leverages complemen-
tarity among different level features in a pyramidmanner with a unique attention mechanism.
Specifically, PSPANconsists of threemodules: a three-scale feature extraction attentionmod-
ule, a pyramid spatiallyweightedpixel attentionmodule, and an image reconstructionmodule.
To begin with, the three-scale feature extraction attention module extracts features at three
different scales. At the same time, it integrates the efficient channel attention mechanism,
which can expand the receptive field and extract different scale features through weighted
screening for fusion. After that, these features are fed into the SWPAB block. The module
extracts more significant attention features from the spatially weighted pixel attention blocks
and then fuses these attention features into different levels. Finally, the image reconstruction
module is used to restore a clear image based on the output of SWPAB. In addition, we
introduce a training loss function consisting of three terms: the MSE loss, the Edge loss and
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the perceptual loss. The MSE loss is utilized to measure the pixel-wise distance, while the
Edge loss promotes generating a clean image with more details and the perceptual loss uses
the pretrained model to extract the advanced perceptual features of the image in order to
further repair the details. As shown in Fig. 1, the proposed PSPAN produces a more realistic
image with more details.

The main contributions of the proposed image dehazing method are summarized as fol-
lows:

• We propose a novel end-to-end framework called Pyramid Spatially Weighted Pixel
Attention Network (PSPAN) for single image dehazing, which can extract more infor-
mative features by the special attention block, and fuse the complementary features at
different levels in a pyramid manner.

• The new proposed attention block (SWPAB) not only solves the problem that previous
dehazing networks are difficult to focus on multi-dimension of information but also pays
more attention to the feathers for dense hazy regions reconstruction.

• A loss function that combines a mean square error loss part, an edge loss part and a
perceptual loss part is employed in PSPAN, which can better preserve image details.

• Extensive experiments on standard benchmark datasets demonstrate that the proposed
PSPAN is better than the majority of existing methods.

2 Related work

2.1 Image dehazing

Previous image dehazing methods can be divided into prior-based methods and learning-
based methods.

Fig. 1 Examples of image dehazing results. Top left: input hazy image. Top right and bottom left: restored haze-
free images using DCP and AODNet respectively. Bottom right: dehazed image generated by the proposed
method
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Prior-based methods recover clear images by using prior statistics, such as the albedo of
the scene in [8]. In the past few years, researchers have explored different priors for image
dehazing [9, 13, 19, 35, 45]. Specifically, based on the observation that clear images have
higher contrast than hazy images, Tan et al. [35] enhanced the visibility of hazy images
by maximizing local contrast. He et al. [13] proposed dark channel prior (DCP) that the
intensity of pixels in haze-free patches is very low in at least one color channel to achieve
image dehazing. Furthermore, based on a general observation that small image patches typ-
ically exhibit a one-dimensional distribution in the RGB color space, Fattal [9] proposed an
approach to recover the scene transmission using color lines. Zhu et al. [45] proposed color
attenuation before obtaining the scene depth from the hazy image through supervised learn-
ing. To quickly and accurately estimate the transmission map, a sub-sampling based local
minimum operation and fast gradient domain guided image filtering (GDGF) is applied on
initial depth map [19].All the above methods heavily rely on hypothetical priors. However,
those priors tend to lose effectiveness in complex scenes, leading to a performance drop.

As opposed to the above methods, learning-based methods utilize convolutional neural
networks to recover clear images from hazy images directly. These methods can be further
divided into two sub-categories: physical-model-based methods and end-to-end methods.
Due to the fact that prior-based methods are sensitive to changes in the environment, some
physical-model-based methods utilize the feature extraction capabilities of CNNs to estimate
various components of atmospheric scatteringmodels.As an example, [25] usedCNNs to esti-
mate atmospheric light, [1] estimated transmission, and [22, 41] estimated both transmission
and atmospheric light to identify haze-affected regions. And recently, end-to-end methods
have shown a considerable improvement in performance for recovering areas affected by
the haze in comparison with the above traditional methods. [21] proposed a lightweight net-
work called AODNet, which can output images directly and is a real high-quality network.
It was suggested by [31] to utilize an encoder-decoder formulation (GFN) to encode features
from the hazy images, which are then extrapolated by a decoder to reconstruct the haze-
free images. Mei et al. [26] described a Progressive Feature Fusion Network (PFFNet) that
directly learns the nonlinear transformation function from observed hazy images to haze-
free ones. The Enhanced Pix2Pix Dehazing Network (EPDN) [29] attempts to improve the
dehazing performance by following the dehazing network with an enhancer. Dong et al. [6]
proposed the Multi-Scale Boosted Dehazing Network (MSBDN), which incorporates the
boosting strategy and the back-projection technique for image dehazing. In order to generate
more visually pleasing dehazed images, [7] proposed a fusion of frequency priors with the
image in an adversarial learning framework. And for the sake of better dehazing performance,
[39] constructed a contrastive learning-driven autoencoder-like framework called AECRNet)
based on the negative information.

2.2 Attention block

Usually, humans selectively pay attention to the targeted area with more useful information
to obtain more detailed intelligence while suppressing other useless information. The atten-
tion mechanism in deep learning is similar to the selective visual attention mechanism in
humans, and its purpose is to select and prioritize information more critical to the task goal.
In recent years, the attention mechanism has been introduced into deep learning algorithms
to handle a variety of computer vision tasks, including: [2, 15, 42, 44], and [24]. Mnih et al.
first proposed the concept of the attention mechanism [27] and believed that it highlights the
influence of a key input on the output by calculating the weight of the input data. According
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to the relationship between feature channels, Hu et al. [15] propose a novel architectural
element (SE) to establish inter-channel interdepend dencies, so as to adaptively reply to
channel-level feature responses. By utilizing the channel attention mechanism to enhance
the representational ability of a very deep residual network, [42] is able to adaptively extract
informative, high-frequency, channel-attention features in the image. [10] propose the Dual
Attention Network (DANet) based on the self-attention mechanism for the scene segmenta-
tion task. The proposed position attention module is designed to selectively learn the spatial
interdependencies of features, while the channel attention module is utilized to emphasize
channel interdependencies. Thus, precise segmentation results can be achieved with the two
attention modules. Liu et al. [24] propose GridDehazeNet by integrating multi-scale estima-
tion with the attention mechanism. As well as alleviating the bottleneck issue that occurs
in some multi-scale networks, channel-wise attention is utilized to reconstruct features of
diverse scales. Qin et al. [28] proposed the Attention-based Feature Fusion (FFA) structure
which consists of two attention modules for dealing with feature information from channel
and pixel spaces. Several of the above methods have demonstrated that attention mechanisms
play a significant and powerful role in the image processing.

3 Method

In this paper, we propose a novel PSPAN network that combines the benefits of the attention
mechanism and pyramid operations for image dehazing. Next we will first introduce the
specific details of the proposed multi feature extract block (MFEB) and spatially weighted
pixel attention block (SWPAB). Afterwards, we will describe the objective function used by
the proposed network.

3.1 Overall framework

Figure 2 shows the overall architecture of the proposed network. The overall network consists
of three modules, namely the multi-scale feature extraction attention module (denoted by the
dotted red line), the pyramid spatiallyweighted pixel attentionmodule (denoted by light green
square in the dotted yellow line), and the image reconstruction module. At the beginning,
we will pass the hazy image to be processed through a three-layer pyramid structure, and
each pyramid block (MFEB) will transmit information of different scales to the next layer:
the feature attention processing block (SWPAB). At this stage, the proposed attention block
will process information according to different weights and then conduct upsampling to
complete further fusion. This makes it possible to capture more crucial and informative
features to predict better-dehazed results. At last, the feature information processed by the
multi-layer attention block is then processed by the convolution recovery module and finally
added to the original image to obtain the final output.

3.2 Multi feature extraction block

In order to get the features of different scales better, this paper designs a three-scale
feature extraction attention module. In this module, three different scale convolutions are
utilized to extract different information about the receptive field from the feature map to
obtain feature maps of different scales. The extraction module of each scale is composed of a
3×3 convolution layer and an RREB (two Resblocks with ECA) layer. And the RREB layer
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Fig. 2 Overall architecture of PSPAN: (1) Extract multi-scale features using the proposed three-scale feature
extraction module. Every feature extraction stage of the module consists of two components, namely a 3 × 3
convolution layer and an RREB layer; (2) The three-scale features generated by the feature extraction module
are then fed into the proposed pyramid feature attention module. Three attention blocks are used to process the
features at different scales in a top-down pyramid fashion; (3) The image reconstruction module, including a
convolution operation and a simple element-wise addition operation, is adopted to restore the dehazed single
image

contains two ResBlocks [12] and an ECAblock, its overall block is presented in Fig. 3 (in
the green line) and they collectively form a new residual network. In the first MFEB layer,
the depth (the number of channels) of feature maps is increased to 32 and the following two
layers increase the depth of the feature maps to 64 and 128 while reducing the resolution
of the feature maps by half, respectively. Unlike previous works that only used the output
features of the third stage, all the outputs of the three stages are fed into the pyramid feature
attention module.

Inspired by the RRB (Residual Block with SE) module [5], we designed the residual
network called RREB, which utilizes the efficient channel attention mechanism (ECA). Con-
sidering that skip connections can provide long-range information compensation and enable
residual learning, we combine the ECA operation with residual blocks in the dehaze resid-
ual network. Spatial contextual information has been shown to be effective in single image
dehazing. Nevertheless, the different feature channels in the same layer are independent of
one another, and had little correlation during the previous convolution operation. In light
of the fact that ECA can model a correlation between different feature channels, we can
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Fig. 3 Detailed structure of multi feature extraction block

intensify the feature channel that has more context information by giving it a larger weight.
Conversely, feature channels that have less spatial contextual information will just receive a
small weight. As shown in the blue square in Fig.3, ResBlock adopts the jump connection
method to improve the learning ability of the network.To further extract features of the current
scale, conventional convolution CBi is followed by two ResBlocks (RB1i and RB2i ) in the
RREB layer to ensure the integrity of current scale feature extraction. The overall MFEAB
module is expressed as:

MFEABi (x) = ECAi (RB2i (RB1i (CBi (Fi−1 (x))))) + CBi (Fi−1 (x)) (2)

Where CBi (·) denotes the convolution function, ECAi (x) denotes the ECAblock oper-
ation, and Fi−1 (x) represents the currently entered feature.

The efficient channel attention mechanism [38] is illustrated by the light pink square
in Fig.3. Firstly, we will carry out global average pooling without dimension reduction;
Secondly, the kernel size of the convolution layer will be determined adaptively to facilitate
cross-channel information interaction; Then we will use the sigmoid function to determine
the weight value of the feature map; Finally, the weight value of the feature map will be
used to adjust the input feature map and output the weighted feature map. In each feature
extraction module (MFEAB), an efficient channel attention mechanism is used to filter the
salient features of the current scale by weighting instead of the original features, which
improves the efficiency and performance of the network. The efficient channel attention
mechanism ECAi (x) is expressed as:

ECAi (x) = δ (Convki (gi (Fi−1 (x)))) ⊗ Fi−1 (x) (3)

Where gi (·) denotes global average pooling function; Convki (·) represents convolution
functions with kernel size k × k ; δ is the sigmoid function.
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Fig. 4 The architecture of SWPAB

3.3 Spatially weighted pixel attention block

Considering that the attention mechanism [36, 37, 40] has been widely incorporated into the
design of neural networks, it has played a significant role in the performance of networks.
Inspired by the work [28], we further design a novel feature attention (SWPAB) module. The
SWPABmodule combines spatially weighted residual channel attention (SWRCA) and pixel
attention (PA) into channel-wise and pixel-wise features, respectively. And then we use a new
structure to link the two features. As SWPAB treats different features and pixels unequally,
it can provide additional flexibility in dealing with different types of information. In other
words, to ensure that the network captures more informative features, the new attention block
called spatially weighted pixel attention block is employed to explore the interdependencies
among features in channels, spatial and pixel.

As is shown in Fig. 4, we adopt the idea of skip connection and the attention mechanism
and design a basic block consisting of multiple local residual learning skip connections and
feature attention. For one thing, the local residual learning allows the information of the thin
haze region and low-frequency information to be bypassed through multiple local residual
learning, making the main network learn more useful information. And spatially weighted
residual channel attention and pixel attention further improve the capability of SWPAB. In
this structure, shallow information can be retained and passed on to deeper layers. Most
importantly, the SWPAB gives different weights to different level features before feeding
all features to the feature fusion module, the weight is obtained by adaptive learning of this
module. The SWPAB module can be described as:

SW PABi (x) =PAi
(
SW RCABi

(
CBi

(
Fi−1 (x) + σ (CBi (Fi−1 (x)))

) ))

+ Fi−1 (x)
(4)

Where SW RCABi (x) and PAi (x) represent the SWRCAB operation and PA operation
respectively; σ denotes relu function.

Squeeze and excitation residual blocks (SEResBlock) [15] have been widely used as a
common residual network. However, SEResBlock employs a global average pool operation
to learn the weight of each channel that equally aggregates all input features, ignoring the
inconsistent concentration of haze. As a way to pay more attention to seriously degraded
regions and informative channels, the Spatially Weighted Residual Channel Attention Block
(SWRCAB) [14] was presented to focus more attention on content-aware channel level
contact. As is depicted in Fig. 5, SWRCAB first learns spatial weights of input features
through a convolutional layer followed by a sigmoid layer; then it obtains the spatial weights
via element-wise multiplication; and finally, it gets each channel’s attention by applying a
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Fig. 5 The structure of spatially weighted residual channel attention block

global average pooling layer which is followed by a linear transformer layer and a sigmoid
activation layer.

3.4 Loss function

To optimize the proposed network, three loss functions are utilized, namely the MSE loss
Lmse, the Edge loss L edge, and the Perceptual loss L per .

MSE loss To measure the differences between the clear image and the output dehazed image
on a pixel-wise basis, Mean Square Error (MSE) is used. The MSE loss can be defined as
follows:

Lmse = 1

C W H

C
�
c=1

W
�
i=1

H
�
j=1

(
I clearc,i,j − Ĩ dehazedc,i,j

)2
(5)

Where C , W , and H represent the channel number, width, and height of an image,
respectively. I clearc.i, j is the value of ground truth at the location (i, j) of the channel c, and

Ĩ dehazedc,i, j corresponds to the value of the dehazed image generated by PSPAN.

Edge loss The Edge loss function is introduced to the network in order to recover a clear
image with more detail. First, the convolution operation Conv with Laplace operator [11] is
used to obtain the edge images of the clear and dehazed images. Then, the Tahn activation
function is used to map the values of edge images to [0, 1]. Finally, the pixel-wise distance
(L1 Norm) is used to measure the differences between clear and dehazed edge images. The
Edge loss function is given by:

Ledge =||Tahn
(
Conv

(
I clear , klaplace

))

− Tahn
(
Conv

(
Ĩ dehazed , klaplace

))
||1.

(6)

Perceptual loss The concept of perceptual loss has been widely applied to image recon-
struction since it was first proposed. By measuring the gap between the high-level feature
representations extracted from a pre-trained deep neural network, the perceptual loss can
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calculate the visual difference between the dehazed image and the ground truth quantifiably.
To fully extract the potential information from high-level feature space, we apply a perceptual
loss based on the VGG-16 network [34] to construct fine details in this work. In particular,
this VGG-16 network is pre-trained on ImageNet. Perceptual loss is described as:

Lper = 1

3
Σ
r

|φr (J ) − φr
(
J̃
)|

Nk
(7)

Where φr denotes the output of r − th layer in VGG-16. In this work, we set r ∈
{relu1−2, relu2−2, relu3−3}. Nr represents the output size of the r − th layer. Different
from the traditional perceptual loss [16], we replace L2 loss with L1 loss for better dehazing
effect.

Total loss For further exploring the performance of the proposed method, the total loss of
is a multi-faceted loss function in the training stage which can think about the pixel-level
similarity, the edge similarity and the perceptual similarity. And it is given by:

L = Lmse + α · Ledge + β · Lper (8)

Where α, β is a hyper-parameter that is used to yield the final loss . In this work, α is set
to 0.01 and β is set to 0.01.

4 Experiments

In this section, extensive experiments are conducted on both synthetic and real-world datasets
to demonstrate the effectiveness of the proposed network. We evaluate the performance
of the proposed approach (PSPAN) by comparing its dehazing results quantitatively and
subjectively with those of DCP [13], AODNet [21], DehazeNet [1], DCPDN [43], MSCNN
[30] , MSBDN [6], EPDN [29], GirdDehazeNet [24], GCANet [3], GFN [31], DRN [14],
FD-GAN [7] and [4, 18, 20], etc. The implementation codes provided by the respective
authors of the above state-of-the-art approaches are used and the best results in each of the
following quantitative comparisons are highlighted in bold. In addition, two ablation studies
are conducted to verify the effectiveness of the used loss and the new proposed module.

4.1 Experiments setup

Dataset Weadopt the RESIDE dataset to train and test the proposedmethod, which is a large-
scale synthetic hazy image dataset proposed in [23]. RESIDE is divided into five different
subsets: Indoor Training Set (ITS), Outdoor Training Set (OTS), Synthetic Objective Testing
Set (SOTS), Real-World Task-Driven Testing Set (RTTS), and Hybrid Subjective Testing Set
(HSTS). ITS,OTS, andSOTSare synthetic datasets, images inRTTSare from real scenes, and
HSTS contains both synthetic and real-world images. The training set of RESIDE contains
13,990 hazy images which are synthesized using 1,399 clear images from the NYU Depth
Dataset V2 [33] and the Middlebury stereo [32]. The testing set, named Synthetic Objective
Testing Set (SOTS), selects 500 indoor images and 500 outdoor ones from the NYU Depth
Dataset V2 to synthesize hazy images. Here we name them RESIDE-Indoor and RESIDE-
Outdoor, respectively. In this work, ITS and SOTS are used as training set and testing set,
respectively. At the same time, in order to test the dehazing effect on the real hazy images,
we use RTTS (Unannotated Real Hazy Images) as the test dataset.
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Aside from the RESIDE dataset, we also use the LIVE Image Defogging Database from
Choi’s databaset [4] as a supplement to verify the generality of the dehazing effect.

Implementation details ThePSPAN-Net is implementedbyPyTorch1.5.0with oneNVIDIA
GTX1080TI GPU. The models are trained using Adam optimizer with a batch size of 1 is
adopted, where the exponential decay rates β1 and β2 equal to 0.5 and 0.999, respectively.
The initial learning rate is set to 0.0001 and drops to 60% of the original uniformly every
twenty epochs.

Evaluation metric In this paper, PSNR, SSIM and LPIPS are selected as indicators for eval-
uating synthetic image datasets. PSNR, also known as peak signal-to-noise ratio, is based on
the error between corresponding pixels, that is, based on error-sensitive image quality evalu-
ation. The larger the value, the smaller the image distortion. SSIM, also known as structural
similarity, is a measure of the similarity between two images. Its value range is [0, 1], and
the closer the value is to 1, the more similar the images are. Learned perceptual image patch
similarity (LPIPS) is also used to measure the difference between two images and is more in
line with human perception than above traditional methods. The lower the value of LPIPS,
the more similar the two images are.

In order to evaluate and compare the proposed model with previous methods from a
more comprehensive perspective, except for the above two most commonly used reference
subjective evaluation metrics, we also selected two additional evaluation metrics: natural
image quality evaluator (NIQE) and color naturalness index (CNI). The design idea of NIQE
is to construct a series of features to measure image quality and use these features to fit
a multivariate Gaussian model. These features are extracted from some simple and highly
regular natural landscapes. The smaller the value of NIQE, the more the characteristics of the
image conform to the natural image with high rules, which means that its quality is better.
The CNI is a measure of whether an image scene is real and natural based on human vision.
The value ranges from 0 to 1, and the closer the CNI is to 1, the more natural the image is.
In this paper, these two metrics are tested on realistic dataset.

4.2 Comparison with state of the art

4.2.1 Results on synthetic dataset

Synthetic datasets provide access to extremely diverse characteristics such as scene setting,
differing camera properties and illumination conditions, which are covered in large amounts
of paired datasets, making them indispensable. We compare the proposed method with pre-
vious state-of-the-art image dehazing methods both quantitatively and qualitatively. In this
process, we carry out these experiments on two datasets: RESIDE-Indoor and RESIDE-
Outdoor.

Quantitative evaluation Table 1 shows the quantitative comparisons of different methods
on the RESIDE-Indoor and RESIDE-Outdoor datasets, in which the digital values are the
results from the SOTS database in terms of average PSNR and SSIM. Higher values of
PSNR and SSIM represent better performance. As shown in Table 1, the proposed method
achieves the second best performance with 33.91 dB PSNR but the best performance with
0.99 SSIM meanwhile compared with the other methods on the Indoor dataset. Although
KDDN achieves the best performance in PSNR on RESIDE-Indoor, we perform better in
SSIM than it. Meanwhile, we achieve the best PSNR and SSIM on RESIDE-Outdoor. Lower
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Table 1 PSNR↑ and SSIM↑
comparisons for different
methods on the RESIDE dataset

Method Indoor Outdoor
PSNR SSIM PSNR SSIM

DCP 16.62 0.82 19.13 0.81

DehazeNet 21.14 0.85 22.46 0.85

MSCNN 19.84 0.83 22.06 0.90

AODNet 19.06 0.85 20.29 0.85

DCPDN 19.00 0.84 19.71 0.83

GFN 22.30 0.88 21.55 0.84

EPDN 25.06 0.92 16.22 0.76

GirdDehaze 32.16 0.98 22.57 0.86

FD-GAN 22.14 0.90 23.35 0.92

MSBDN 32.79 0.98 23.16 0.94

KDDN 34.72 0.98 – –

DRN 33.01 0.98 24.44 0.94

OKDNet 30.92 0.99 23.38 0.94

Proposed 33.91 0.99 25.41 0.95

values of LPIPS represent better performance. It can be seen that the proposed method
outperforms most the other dehazing methods in terms of LPIPS metric from Table 2. Only
on the RSEIDE-Outdoor, PSPAN is slightly inferior to GirdDehaze and MSBDN in terms
whose gaps are just 0.022 and 0.017, respectively. As mentioned above, the proposed method
outperforms most of the previous methods on the RESIDE dataset in terms of PSNR ,SSIM
and LPIPS metrics.

Visual evaluation Figure 6 shows the qualitative comparisons of the visual effect on the
Indoor and Outdoor datasets of SOTS. DCP tends to produce darker images compared with
the ground truth, as this method often fails to accurately estimate the haze thickness of
images. Additionally, DCP suffers from the problem of color distortion, which degrades the
quality of their recovered images. GCANet suffers from the same problems as DCP, where
the details of distant image fog are blurry and shiny, leading to color distortion problems.
It is observed that there remain lots of haze residuals and renders in the dehazed images

Table 2 LPIPS↓ comparisons for
different methods on the RESIDE
dataset

Methods Indoor Outdoor

DCP 0.099 0.105

DehazeNet 0.071 0.075

AODNet 0.303 0.074

DCPDN 0.129 0.073

GFN 0.065 0.105

EPDN 0.053 0.119

GirdDehaze 0.012 0.017

FD-GAN 0.082 0.075

MSBDN 0.014 0.022

Proposed 0.009 0.039
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Fig. 6 Visual comparison results on the SOTS dataset. The first column presents the hazy images. The results
of seven representative state-of-the-art single-image dehazing methods are illustrated separately. The dehazed
results of the proposed method and the ground truth images are shown in the last two columns. The upper five
rows show the results of the indoor subset, while the last three rows are dehazed images of the outdoor subset

of AODNet and MSCNN. Although EPDN achieves better results, there is a local gap with
ground truth because of its exposure, and it is also darker than the ground truth in some cases.
MSBDN and GridDehazeNet achieve the restored images with higher quality. However, they
still generate some gray-mottled artifacts as shown in Fig. 6 and cannot completely remove
the haze in some regions. Furthermore, the image in the third row is amagnified display of the
door position on the right of the image in the second row and only the proposed method and
GirdDehazeNet correctly handle the residual haze in this area. In conclusion, the proposed
method achieves the best performance in terms of haze removal and it can generate more

Fig. 7 Visual comparison with state-of-the-art dehazing methods on the RTTS dataset (Pictures are named
Img1-5 from top to bottom)
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Fig. 8 Some images from the choi’s dataset(Hazy ones represent the original pictures and clear ones represent
the images processed by the proposed method)

natural dehazed images with more realistic brightness and color fidelity. At the same time,
the dehazed images produced by the proposed method are free of major artifacts and are able
to preserve more detailed information.

4.2.2 Results on realistic dataset

Test on the RTTS dataset Recent learning-based dehazing methods tend to present insuffi-
cient generalization ability and poor dehazing effect on real-world images since they are
trained on synthetic datasets. Hence, several real-world hazy images from the RTTS dataset
are selected to verify the performance of the proposed method when applied in real scenes.
As shown in Fig. 8, it can be observed that DCP suffers from serious color distortions for real
hazy images. (e.g., the sky in Fig. 7). GCANet also produces the color distortion problem. For
GirdDehazeNet, AODNet, MSCNN, haze removal is incomplete in a dense haze situation,
we can find a lot of unremoved haze. The results of EPDN look more natural. This is because
we do not use the same training method as EPDN which is trained with a generative adver-
sarial scheme. With the help of adversarial learning, it recovers more realistic images from
the real-world dataset. However, EPDNmakes local areas dark in some cases. In general, the

Table 3 NIQE↓ comparisons for different methods on the RTTS dataset

Methods Img1 Img2 Img3 Img4 Img5 Average

DCP 2.6547 3.3088 3.0130 4.8625 3.2342 3.4092

AODNet 2.9939 2.8322 3.1806 2.8932 10.6827 4.5165

MSCNN 3.5433 3.1512 2.8928 3.1022 3.2857 3.1950

GCANet 2.1980 3.6747 2.9225 4.0718 3.5245 3.2783

EPDN 2.0840 3.4109 2.9504 3.5532 3.1946 3.0386

GirdDehazeNet 1.7465 3.1064 2.9249 3.2646 3.4985 2.9082

Proposed 1.8302 3.1418 2.9907 3.4709 3.0326 2.8932
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Table 5 The ablation
experiments by considering
different configurations of the
proposed network on RESIDE
Indoor (only retain MSE Loss)

Name PSNR SSIM

Base 27.62 0.9225

Base+RRB 27.07 0.9250

Base+RREB 30.90 0.9575

Base+RREB+SWPAB1 30.72 0.9597

Base+RREB+SWPAB2 31.05 0.9624

Base+RREB+SWPAB3 32.44 0.9765

Base+RREB+SWPAB4 33.52 0.9838

Base+RREB+SWRCAB4 32.84 0.9778

proposed PSPAN is more effective than existing methods in removing haze and preserving
texture details on the RTTS dataset. Also from Table 3, we reach the best performance and
surpass the second place 0.015 in NIQE as the average. This shows that the dehazed images
processed by the proposed technology offer better image quality.

Test on the choi’s dataset Figure 8 shows some selected images from choi’s dataset. To fur-
ther show the generalization ability of the proposedmethod, we process these selected images
with different dehazingmethods. And thenwemeasure the CNI parameters to further conduct
comparative experiments. In Table 4, it is observed that the proposed method is superior to
the others, achieving the best performance with 0.8497 CNI. The comparison results further
validate that the proposed method can more effectively restore dehazed image with natural
color and good visual effect.

4.3 Ablation study

To further explore the effectiveness of the proposed PSPAN, two ablation studies (Tables 5
and 6 ) are conducted to verify whether specific module parts of the proposed PSPAN and
various losses are effective.

In the previous article, we introduced the two most important modules of the proposed
network framework, namely RREB and SWPAB. In Table 5, we will test these two proposed
points. Each pyramid block (MFEB)will transmit information of different scales to the feature
attention processing block (SWPAB), and considering that the sampled information of the
first two sizes has also been processed by the SWPAB, so there are actually four SWPAB
blocks involved. At the same time, in order to reduce the interference of other factors, we only
retain MSE loss. The following network variants are constructed: (1) Base: the traditional
convolution is closely followed by two ordinary ResBlock while removing four SWPAB
modules. (2) Base+RRB: use the RRB module to replace the common residual structure.

Table 6 Comparison of loss
functions used to train the
proposed model on Indoor dataset

MSE Loss ✓ ✓ ✓

Edge Loss ✓ ✓

Perceptual Loss ✓

PSNR 33.52 33.50 33.91

SSIM 0.9838 0.9846 0.9868
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(3) Base+RREB: use the RREB module composed of ECAblock and residual network to
replace the common residual structure. (4)(5)(6)(7) Base+RREB+SWPAB (number increases
in turn): add SWPAB modules to PSPAN network in turn. (8) Base+RREB+SWRCAB4:
replace four SWPAB modules with the same quantity SWRCAB modules.

The base network achieved the worst results in terms of PSNR and SSIM in the previous
table. The performances of the Base+RREB and the Base+RREB+SWPAB (number) are
improved by adding the RREB block and SWPAB blocks. By comparing the results of (1)
and (2), the proposed RREB module is superior to the original RRB. At the same time, the
experiment (7)(8) also proves that the result of SWPAB module is better than that of SWR-
CAB. In a word, the full scheme of Base+REEB+SWPAB4 outperforms other architectures
in the test dataset, which certifies that RREB and SWPAB are essential to detail-recovery
image dehazing. It can also be seen that both considering low-level and high-level features
is important for image dehazing.

And beyond that, we perform the ablation experiments to validate the necessity of the
loss functions. From the results given in Table 6, we can see that the edge loss contributes
to 0.0008 SSIM. The perceptual loss further boosts the performance by 0.41 dB PSNR and
0.0022 SSIM. We prove the effectiveness of the two added loss functions added and the
combination of loss functions ensures the effectiveness of haze removal.

5 Conclusion

In this work, we introduce a novel end-to-end dehazing network called Pyramid Spatially
Weighted Pixel Attention Network (PSPAN) to tackle the challenging single image dehazing
problem. PSPAN is composed of a three-scale extraction module, a pyramid feature attention
module, and an image reconstruction module. PSPAN is able to efficiently restore the haze-
free image directly. In addition, we propose a novel loss set that combines edge loss and
perceptual loss with mse loss to help the network learn more detailed information. Moreover,
qualitative and quantitative experiments indicate that the proposed method outperforms most
of the state-of-the-art learning-based and traditional approaches in terms of removing the
haze and recovering image details.
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