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Abstract
Currently, various deep learningmethods have been developed to address the image enhance-
ment tasks based on paired high-quality images as references. For the low-light endoscopic
image enhancement task, it is difficult to obtain paired high-quality images and to extract
features from dark areas. In addition, the enhanced images easily appear color distortions.
In this study, we propose an unsupervised deep learning scheme based on the Cycle Gen-
erative Adversarial Network to enhance the endoscopic image. Because extracting features
in the dark areas is important but challenging, we embedded an adaptive reverse attention
module in generators to help the network focus on low-light areas and enhance these areas.
We also introduce a color consistency constraint to maintain color constancy. To evaluate
the performance of the proposed enhancement method, a blind evaluation methodology is
proposed in view of no specific quality assessment metric specially designed on this field.
Extensive subjective and objective experiment results demonstrate that the proposed method
is competent for the colorectal endoscopic image enhancement task, and performs better than
both conventional methods and popular deep learning-based methods on 200 real-captured
colonoscopy images. In the objective experiment, the proposed method ranks first with a
PIQE score of 11.1525 and an NIQE score of 11.1525, outperforming five competing meth-
ods. It also receives the best results from an average score of 1.455 over 200 test images of
the subjective experiment.
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1 Introduction

Nowadays, colorectal cancer is one of the leading killers, which threatens human life with
the second-highest mortality rate and the third-highest incidence rate among all cancers [38].
Endoscopy is considered an effective way to screen colorectal diseases and to prevent early
colorectal cancer in clinical practice [52]. Meanwhile, endoscopic images play a crucial
role in effective diagnosis and treatment, which provide physicians with adequate visual
information related to biological tissues [3, 6, 7, 33, 34, 50].

Clinically, endoscopic imaging unavoidably suffers from low quality due to the intestinal
peristalsis when capturing images, and the poor clearing before endoscopy. Another factor
that affects the quality of endoscopy images is weak illuminance, which is caused by the
absence of extra light illumination inside the body except for the unidirectional light source
emitted from the moving endoscope. Such a dynamic lighting process easily creates dark
areas that affect the surgical environment (Fig. 1). Moreover, the low-light problem also
weakens the performance of many subsequent image analysis tasks, such as polyp detection,
polyp segmentation [11, 46, 47, 54, 56], and the computer-aided diagnosis [12, 44, 51].
Therefore, developing an image enhancement algorithm can enhance the visual effect and
improve surgical accuracy for surgeons.

In the past few years, numerous methods have been proposed to enhance low-light images
at the software end. Early works mainly designed conventional handcrafted feature-based
methods, such as histogram-based algorithms [1, 13] and Retinex-based algorithms [8, 10,
36]. The former increases the image contrast by redistributing the intensity based on the
histogram. The latter divides the image into two components, and processes them separately
to generate the final enhanced image. For instance, Hiroyuki Okuhata et al. [33] presents a
real-time image enhancement technique for gastric endoscopy based on the Retinex theory
by introducing a variational model to minimize the computational cost. To improve surgical
vision, Luo et al. [26] proposed a multi-scale bilateral-weighted retuned strategy which
is capable of removing non-uniform and highly directional illumination. These methods,
however, are difficult to reproduce high-quality images due to the complex image contents
and limited representation of handcrafted features.

Fig. 1 Low-light endoscopic images
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In recent years, deep learning (DL) based approaches had been widely adopted in com-
puter vision[17–20, 42, 45, 48], medical image processing and analysis [15, 43, 49, 53], and
have gradually evolved as an alternative of image enhancement [2, 9, 14, 27]. Contrary to
conventional methods that change the intensity distribution or that relies on potentially phys-
ical models, DL-based methods can enhance low-light images automatically. For instance,
the pioneering DL-based LLNet [25] employs a variant of stacked-sparse encoder to brighten
low-light images. Later, Ren et al. [35] designed a more complex end-to-end network, which
includes an encoder-decoder sub-network and a recurrent neural network. The encoder-
decoder sub-network is used for image content enhancement, and the recurrent neural network
is used for image edge enhancement. To improve the ability of integrating feature represen-
tations, pyramid network [22], residual network [41] and the Laplacian pyramid [23] are
applied to low-light image enhancement. Among these methods, deep Retinex-based meth-
ods exhibit better performance in most cases. The key points of such methods lie in dividing
low-light images into illuminance and reflectance components, and enhancing these two
components separately. For instance, Retinex-Net [5], the first deep retinex-based method,
includes a Decom-Net and an Enhance-Net. The Decom-Net is used for splitting the input
image into illuminance and reflectance, and the Enhance-Net is used for enhancing the illu-
mination map according to the reference image. To estimate the illumination map, Wang
et al. [42] propose a DeepUPE network which is capable of learning an image to illumi-
nation mapping by extracting local and global features. Zhang et al. [55] develop a KinD
network consisting of three sub-networks: layer decomposition, reflectance restoration and
illumination adjustment.

Due to the lack of paired training data, numerous unsupervised learning schemes have
been proposed to address the issue of image enhancement. For instance, Li et al.[16], propose
a robust Retinex model that predicts the noise map, estimates the structural and reflectance
maps, and segmentes the illumination map to better describe images captured in low-light
conditions. Zhu et al.[58] introduce a new underexposed image restoration method called
RRDNet, which uses a three-branch convolutional neural network framework to internally
optimize the input image’s lighting, reflection, and noise for better generalization under
various lighting conditions. In addition, Li et al.[21] propose a new method called Zero-
DCE, which describes image enhancement as a task of estimating image-specific curves
using a deep network.

Although aforementioned DL-based methods have shown impressive performance on
natural image enhancement, they are unsuitable for endoscopic image enhancement. First,
low-light natural images in existing public datasets are generally with globally dark appear-
ance, which is contrary to endoscopic images that contain both dark regions and bright
regions. Due to the scene difference between these two kinds of images, most of these exist-
ing enhancement methods designed for natural images are prone to over-enhance the bright
regions, resulting in poor visual experience. It is worth noting that, high-quality endoscopic
images should generally have uniform illumination. Second, most of these existing enhance-
ment methods usually require a large number of paired images to supervise the network
during training. Unfortunately, because of the particularity of endoscopic imaging environ-
ment, it is very difficult or even impractical to simultaneously obtain the paired endoscopic
images. Therefore, it is necessary to develop effective endoscopic image enhancement meth-
ods without paired images. Recently, the rapid development of unsupervised learning gives
us a new inspiration for addressing this problem. Among numbers of unsupervised learning
methods, CycleGAN [57] is a popular learning framework for mapping image in one domain
to another domain, and matches the requirement of unpaired image enhancement task to
some extent. However, most existing CycleGAN-based works are generally unrestricted and
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have limited ability in effectively capturing color and detail information because they mainly
learn the global appearance in the domain and the cycle consistency between domains.

Given these aspects above, we in this paper propose a novel unsupervised low-light endo-
scopic image enhancementmethod, namelyColor ConstrainedGAN (CCGAN). Specifically,
it bridges the mapping between low-light and normal-light endoscopic images without any
paired information. Considering that the low-light areas are usually with dark appearance, we
introduce an adaptive reverse attention module (ARAM) in generators to help the network
focus on local features in these areas. Moreover, a novel color consistency loss is proposed
to relieve the problem of color distortion. Since existing literature lacks quality evaluation
metrics specifically designed for endoscopic images, a blind evaluation method is developed.
Additionally, we collect a clinical real-world dataset with unpaired low/normal light endo-
scopic images to train the network. Experimental results on the collected dataset show that
the proposed CCGAN is competent to the endoscopic image enhancement task, and outper-
forms four mainstream competing methods in terms of objective and subjective evaluation.
The four main contributions of this paper are as follows:

• ACCGAN is proposed to address the low-light endoscopic image enhancement problem
without any pair information. The proposed method pays emphasis on the dark region
enhancement and color details preservation.

• Considering the intensity distribution of low-light images, we propose anARAM to focus
on dark areas. This attention module can adaptively determine the weight values of dark
regions and extract local features.

• A novel loss function, named color consistency loss, is proposed to preserve color infor-
mation and relieve the color distortion for enhanced images.

• A blind quality evaluation methodology is proposed to evaluate the endoscopic image
quality.

The remainder of the paper is organized as follows. The proposed image enhancement
network is introduced in Section 2. In Section 3, the proposed blind quality evaluationmethod
is described in detail. Experimental results are shown and analyzed in Section 4, followed
by the discussions in Section 5 and conclusions in Section 6.

2 Method

2.1 Network architecture

In this work, an unpaired learning framework, CCGAN, is introduced to enhance low-light
endoscopic images. The network is responsible for learning a suitable mapping from domain
A to domain B without the requirement of paired images in training phase, as shown in Fig. 2.
The proposed network mainly includes four essential parts: two generators (GA2B : A → B
and FB2A : B → A) and two discriminators (DB and DA). The generator is capable of
generating fake data to fool the discriminator. The discriminator tries to distinguish the fake
data from the total data, including the real data and fake data. The network stops the training
procedure until the discriminator can not distinguish the difference between the generated
fake data and the real data. To make the network focus more on low-light areas, an ARAM is
embedded in each generator. Furthermore, we also introduce a novel color consistency loss
function apart from the basic loss functions of the CycleGAN network to alleviate the color
distortion caused by luminance changes in generators.
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2.2 Generators

The task of endoscopic image enhancement is treated as a translation from one domain to
another domain. The generate can create new data under certain constraints. In the proposed
network, there are two generators: GA2B and FB2A. The former are used to translate the
image from domain A (low-light images) to B (normal-light images), and the latter is used to
translate the image from domain B to A. The generators adopt an encoder-decoder structure
based on U-Net [37]. Specifically, for each low-light image a from domain A, it is firstly
forwarded into the generatorGA2B , which generates a new normal-light image ã = GA2B(a)

based on the image style of domain B. Secondly, DB distinguishes whether the generated
image ã is real or fake. Thirdly, GA2B(a) is transmitted to the generator FB2A to generate
a low-light image FB2A(GA2B(a)). Finally, a forward cycle-consistency loss is applied for
constraining the input image a and the generated image FB2A(GA2B(a)). The above process
can be described as a forward cycle consistency: a → GA2B(a) → FB2A(GA2B(a)) ≈ a.
Similarly, a backward cycle consistency is formed as: b → FB2A(b) → GA2B(FB2A(b)) ≈
b, where b represents one normal-light image from the domain B, FB2A(b) is a image
generated by the image b through the generator FB2A, GA2B(FB2A(b)) is a image generated
by the image FB2A(b) through the generator FB2A. In the image generation process, the
ARAM is embedded to help the network extract local features and focus on low-light areas
of images.

More concretely, generators GA2B and FB2A have three encoder layers and three decoder
layers, as shown in Fig. 2. The outputs of the second and third layer in the encoder are
multiplied by the outputs of the second and first layers in the decoder, respectively. The
residual blocks consist of two stacked 3× 3 Convolution-BatchNorm-ReLU units and use a
shortcut to connect the input and output. The ARAM consists of an adaptive reverse channel
attention module (ARCAM) and a reverse spatial attention module (RSAM). For convenient
understanding, the architecture details of generators are presented in Table 1.

Fig. 2 The overall structure diagram of CCGAN. It comprises two generators (GA2B ) and (FB2A), two
discriminators (DB ) and (DA), and two types of cycle consistency: 1© forward cycle consistency: a →
GA2B (a) → FB2A(GA2B (a)) ≈ a; 2© backward cycle consistency: b → FB2A(b) → GA2B (FB2A(b)) ≈
b. a and b represent low-light and normal-light endoscopic images, respectively. LGAN , Lcyc and Lc denote
the transfer loss, cycle consistency loss and color consistency loss, respectively.
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2.2.1 Adaptive Reverse Attention Module (ARAM)

In the proposed network,we introduce anARAMto enforce the network to paymore attention
on low-light areas and to help extract meaningful information from these areas. Specifically,
ARAM is composed of ARCAM and RSAM, as shown in Fig. 3.

Adaptive Reverse Channel AttentionModule (ARCAM): In general, the average pool-
ing operation can describe global information of features. However, it is insufficient to reflect
the significance of salient objects. In our proposed ARCAM, we use the max pooling oper-
ation to compensate the average pooling operation and combine the results of these two
operations together to express more high-level features, as shown in the upper part of the
Fig. 3. Specifically, when the feature IF ∈ R

C×H×W is forwarded into the ARCAM, two
features (IFc,A ∈ R

C×1×1 and IFc,M ∈ R
C×1×1) are obtained based on average pooling and

max pooling operations, where C , H , and W denote the channel number, height, and width
of the input feature IF , respectively. Subsequently, a shared multi-layer perception (MLP)
is used to refine the obtained features, and an adaptive parameter γ is introduced to change
weights of the refined features. The refined maximal result with an adaptive parameter γ and
the refined average result with an adaptive parameter 1−γ is added to generate one adaptive
weights map. Then, this map is activated by a Sigmoid function to produce the attention
weightWB(IFc ) Finally,WB(IFc ) is multiplied by the input feature map to obtain the feature
MB(IFc ). Finally, we use the reverse operation to change the obtained attention weights and
get the reverse channel attention map MD(IFc ). In short, the proposed ARCAM mechanism
can be described as follows:

MD(IFc ) = 1 − IFc × [σ(γ × M1(ReLU (M0 IFc,A))

+ (1 − γ ) × M1(ReLU (M0 IFc,M ))] (1)

where σ(·) is the Sigmoid function. M0 and M1 are the weights of MLP. ReLU is the
rectified linear unit activation function. γ is a learnable parameter to adapt the weight values
of the input feature.

Reverse Spatial Attention Module (RSAM) To restrain the interference of irrelevant
areas and focus on salient areas, we utilize the RSAM to enable the network to focus on
low-light areas in spatial space. As shown in Fig. 3, when the feature IF ∈ R

C×H×W is
fed into the RSAM, two features IFs ,A and IFs ,M are obtained based on global average

Fig. 3 The Adaptive Reverse Attention Module
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pooling and global max pooling, respectively. Subsequently, the features (IFs ,M ∈ R
1×H×W

and IFs ,A ∈ R
1×H×W ) are concatenated, followed by a 7 × 7 convolution operation and

a Sigmoid function to obtain the attention weights WB(IFs ). Then, the attention weights
WB(IFs ) is multiplied by the input feature map to obtain the spatial attention map MB(IFs ).
Finally, we use the reverse operation to change the obtained attention weights and get the
reverse spatial attention map MD(IFs ). In short, the proposed RSAM mechanism can be
described as follows:

MD(IFs ) = 1 − [σ(Conv7×7(IFs × [IFs ,A; IFs ,M ])], (2)

where Conv7×7 denotes a convolution operation with the kernel size of 7 × 7.
After obtaining the MD(IFc ) and MD(IFs ), the reverse attention map M(IF ) can be

computed as:
M(IF ) = MD(IFc ) × MD(IFs ). (3)

2.3 Discriminators

In discriminators DA and DB , the patchGAN [24] is used to classify the fake data and real data
based on image patches rather than the whole image. In patchGAN, there are five convolution
operations with the kernel size of 4× 4, a stride of 2 in the first three layers, and a stride of 1
in the last layers, and their channel numbers are 3, 64, 128, 256, and 512, respectively. The
middle three convolution layers adopt the Instance Normalization (IN) layers, followed by a
LeakyReLU with a scope of 0.2 [39]. Finally, the Sigmoid activation function is utilized to
produce a 1-dimensional output. The details of discriminators are shown in Table 2.

2.4 Objective function

The proposed CCGAN framework has two kinds of loss functions, including a transfer loss
Lt and a color consistency loss Lc. Lt is responsible for constraining the generated image
and the original image. Lc is used to keep the color consistency further. The total objective
loss Ltotal can be described as:

Ltotal = Lt + Lc (4)

In the following sections, we will introduce the transfer loss and the color consistency
loss in detail.

Table 2 The detailed architecture of each discriminator for the proposed CCGAN

Block Layer Type1 Input Params2

Conv block1 conv1 conv+LeakyReLU image (4 × 4 × 64, 2, 1)

Conv block2 conv2 conv+IN+LeakyReLU conv1 (4 × 4 × 128, 2, 1)

Conv block3 conv3 conv+IN+LeakyReLU conv2 (4 × 4 × 256, 2, 1)

Conv block4 conv4 conv+IN+LeakyReLU conv3 (4 × 4 × 512, 1, 1)

Conv block5 conv5 conv+LeakyReLU conv4 (4 × 4 × 1, 1, 1)

1: ‘Type’ lists the type of layers, including, ‘conv’: down-sampling with padding and matching convolutional
layer; ‘IN’: instance normalization layer; ‘LeakyReLU’: LeakyReLU layer
2: ‘Params’ is formatted in kernel size, stride, and padding for convolution layers
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2.4.1 Transfer loss

Transfer loss is one kind of basis objective functions in CCGAN framework, including two
adversarial losses, two cycle consistency losses andone identitymapping loss. The adversarial
loss LGAN is applied to both the generator/ discriminator pairs (GA2B/DB , FB2A/DA).
Formally, it can be expressed as:

LGAN (GA2B , DB , A, B) = Eb∈B[log(DB(a))]
+ Ea∈A[log(1 − DB(GA2B(a)))] (5)

LGAN (FB2A, DA, B, A) = Ea∈A[log(DA(b))]
+ Eb∈B[log(1 − DA(FB2A(b)))] (6)

where a and b are samples from domains A and B, respectively. GA2B(a) converts the image
a from domain A to domain B based on the image style of domain B. In contrast, FA2B(b)
converts an image b from domain B to domain A based on the image style of domain A.
DB (or DA) identifies the difference between real samples from domain B (or A) and the
generated ones from domain A (or B).

The proposed CCGAN framework contains two consistencies: 1) forward cycle con-
sistency: a → GA2B(a) → FB2A(GA2B(a)) ≈ a; 2) backward cycle consistency:
b → FB2A(b) → GA2B(FB2A(b)) ≈ b. With such consistencies, the output image retains
the same content as the input image, but has different image styles. The total cycle consistency
loss is defined as:

Lcyc(GA2B , FB2A) = Ea∈A[‖FB2A(GA2B(a)) − a‖SmoothL1]
+ Eb∈B[‖GA2B(FB2A(b)) − b‖SmoothL1] (7)

where ‖·‖SmoothL1 denotes smooth L loss, which is used to help the network converge.
In addition, when the real sample from A (or B) are applied to GA2B (or FB2A), the

generated sample and the real sample should be similar. They follow identity mappings as
below: ã = FB2A(a) ≈ a and b̃ = GA2B(b) ≈ b, where ã and b̃ are the generated samples by
the generator GA2B and FB2A. The identity mapping loss Lidt is defined as:

Lidt (GA2B , FB2A) = Eb∈B [‖GA2B(b) − b‖1] + Ea∈A[‖FB2A(a) − a‖1] (8)

The transfer loss is finally defined as:

Lt = λ1(LGAN (GA2B , DB , A, B) + LGAN (FB2A, DA, B, A))

+ λ2Lcyc(GA2B , FB2A) + λ3Lidt (GA2B , FB2A)
(9)

where ‖·‖1 denotes L1 loss. λ1, λ2, and λ3 are weight parameters. In this study, we set λ1,
λ2, and λ3 to 0.5, 5.0, and 10.0, respectively.

2.4.2 Color consistency loss

Although the transfer loss can achieve inter-domain image translation, it is difficult to preserve
color consistency due to the under-constrains in the adversarial training process. For medical
image enhancement, the luminance change affects the color expression, which may lead to
misdiagnosis. To keep color consistency, we propose a color consistency loss function Lc.
In the proposed CCGAN, there are two generators (GA2B and FB2A). For generator GA2B ,
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the color consistency loss can be computed as:

Lc(A, B)A→B = (Hori A2B − HgenA2B)2 + (
Sori A2B
SgenA2B

− Vori A2B
VgenA2B

)2 (10)

For generator FB2A, the color consistency loss can be computed as:

Lc(B, A)B→A = (Hori B2A − HgenB2A)2 + (
Sori B2A
SgenB2A

− Vori B2A
VgenB2A

)2 (11)

where Lc(A, B) is the color consistency loss of GA2B . Notably, we transfer the image
fromRGB to HSV color space since it is convenient to process the color and luminance infor-
mation separately. Hori A2B(Hori B2A) and HgenA2B(Hori B2A) are the hue values of original
and output images of the generator GA2B(FB2A). Sori A2B(Sori B2A) and SgenA2B(SgenB2A)

are the saturation values of original and output images of the generator GA2B(FB2A).
Vori A2B(Vori B2A) and VgenA2B(VgenB2A) are the luminance values of original and output
images of the generator GA2B(FB2A). Lc(B, A) is the color consistency loss of FB2A. In
(11), (Hori A2B − HgenA2B)2 is capable of preserving the hue consistency between low-light
and enhanced images, and (

Sori A2B
SgenA2B

− Vori A2B
VgenA2B

)2 is used for keeping the color saturation change
with the luminance increasing.

Finally, the color consistency loss Lc of the proposed CCGAN can be expressed as:

Lc = Lc(A, B)A→B + Lc(B, A)B→A (12)

3 Proposed blind quality evaluationmethod

In general, the distance between the reference and distorted image is a direct measurement to
reveal the quality of the distorted image [40]. However, it is not suitable for distorted images
without paired images. For the enhancement task in this study, there are no perfect-quality
images as reference images. Consequently, one no-reference quality evaluation method

Fig. 4 Framework of the proposed blind endoscopic image quality evaluation method
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should be considered. However, existing literature lacks of methods designed for endoscopic
image evaluation. To solve this problem, a Blind Endoscopic Image Quality Evaluation
(BEIQE) method is proposed, as shown in Fig. 4. First, the endoscopic image is converted
to LAB color space from RGB color space. Second, Kullback-Leibler (K-L) divergence dis-
tance f1 between the test image histogram and the prior one is calculated. Specifically, f1
is extracted by analyzing the b-chromaticity channel of normal-light and low-light endo-
scopic images. Third, the entropy and spatial feature are extracted separately. The entropy
value f2 of each image reflects the information amount. Spatial features ( f3, f4, f5, f6, f7)
are extracted from the generalized Gaussian distribution (GGD) and asymmetric generalized
Gaussian distribution (AGGD) fittings of the mean subtracted contrast normalized (MSCN)
[29]. Then, seven features mentioned above are combined into a feature vector. Finally, a
quality assessment model is built through support vector regression (SVR) to connect the
relationship between features and subjective ratings. The quality score of a test image can be
estimated by feeding its feature vector into the quality assessment model.

3.1 Chroma feature extraction

Generally, endoscopic images usually suffer from color distortions during image enhance-
ment. To illustrate this, we convert 200 normal-light and 200 low-light endoscopic images
fromRGB color space to LAB color space (some examples are shown in Figs. 5 (a) and 5 (b)),
and analyze the statistical properties of each corresponding channel between them. As shown
in Fig. 5 (c), the b-chromaticity histogram distribution of normal-light is more concentrated
than that of low-light images. Thus, quantifying this statistical regularity can provide us one
way to measure the color difference between normal-light and low-light endoscopic images.

In the experiment, the dataset consists of 1,000 normal-light and 1,000 low-light endo-
scopic images. Normal-light endoscopic images include diverse categories of normal-light
endoscopic scenes (such as polyps, bubbles, reflective. etc.), it is assumed that the mean
b-chromaticity histogram on this dataset can approximately characterize the b-chromaticity
distribution of normal-light endoscopic scenes. For a query image, we can measure the chro-

Fig. 5 (a) Examples of normal light endoscopic images (b) Examples of low-light endoscopic images (c)
Mean histograms of b-chromaticity of normal-light endoscopic images and low-light endoscopic images

123



Multimedia Tools and Applications

Fig. 6 Comparisons between the extracted features and MOSs (mean opinion score)

maticity distribution change via the K-L divergence DLKL which can be expressed as:

DLKL(p‖q) =
N∑

i=1

p(xi ) · (log p(xi )) − log q(xi )) (13)

where p and q represent b-chromaticity histograms of the prior image and query image,
respectively. xi is the probability of the i th bin value of the b-chromaticity histogram. N
denotes the total bin number of the b-chromaticity histogram. In this proposed method, the
average b-chromaticity histogram is used as prior knowledge for normal light endoscopic
images, serving as the reference distribution. The b-chromaticity histogram of the query
image is used as the comparison distribution to calculate the K-L divergence, in order to
evaluate the level of distortion.

3.2 Entropy

For a high-quality endoscopic image, it contains plenty of details in textures, structures
and colors, information change, and so on. Here, we use image entropy to characterize
the aggregation properties of the b-chromaticity distribution and to reflect the information
amount. The entropy E as the image quality feature f2, which can be computed as:

E = −
255∑

i=1

φi · logφi (14)

where φi is the probability of the i th b-chromaticity value.

3.3 Spatial features

Spatial features, extracted form the empirical distribution under a spatial scene statisticmodel,
can exhibit distortions, e.g., blur or noise and so on [29]. Based on this fact, we first compute
locally normalized luminances via local MSCN for the distorted image [37]. Then, the first
spatial feature f3, one shape parameter, is obtained by fitting the MSCN using the GGD.
We also explore the statistical relationships between neighboring pixels and extract other
four shape spatial features f4, f5, f6 and f7 from four orientations - horizontal, vertical,
main-diagonal and secondary-diagonal by fitting the MSCN using the AGGD.
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To better understand these extracted features, we present three images processed by
Retinex, RRDNet, and CCGAN in Fig. 6. It is clear that, the MOS value and feature values
( f1 and f2) have monotonic relationships. Figure 7 shows the histogram of MSCN coeffi-
cients and the histogram of MSCN coefficients of four orientations, respectively. As seen,
the image, processed by CCGAN, shows a narrowest shape followed by images processed
by RRDNet and Retinex. These figures indicate that the extracted features are quality-aware.

Fig. 7 Histogram of MSCN coefficients for images processed by Retinex, RRDNet, and CCGAN
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3.4 Quality prediction

After feature extraction, we use SVR to train the extracted features as their corresponding
subjective quality scores by employing the LIBSVM package [4]. In the experiment, a qual-
ity prediction dataset, which includes 1,000 images with MOS scores, is used. In addition,
three commonly used evaluation criteria are adopted. Specially, Kendall’s rank orders cor-
relation coefficient (KRCC) [28] and Spearman’s rank-order correlation coefficient (SRCC)
[54] are two criteria for evaluating the prediction monotonicity, whereas the Pearson linear
correlation coefficient (PLCC) [38] is a criteria for evaluating the prediction accuracy. For an
excellent method, the values of PLCC, SRCC and KRCC are close to one. To ensure a fair
evaluation, we randomly divide the dataset into training and testing subsets 1000 times, with
80% of the data for training SVR and the rest for testing. The median of the 1,000 results
is reported as the overall performance, as shown in Table 3. As seen, the proposed method
obtains a performance of PLCC=0.8701, indicating a strong correlation between the percep-
tual quality assessment score and subjective results. Moreover, it also performs a relatively
strict prediction monotonicity with SRCC=0.8477 and KRCC=0.7013.

4 Results

In this section, we firstly introduce the dataset and implementation settings. Then, a series of
experiments are conducted for performance comparison, including quantitative comparison,
qualitative comparison, and subjective evaluation, for performance comparison between the
proposed CCGAN and state-of-the-art methods.

4.1 Dataset and implementation settings

Since the proposed CCGAN network is trained with unpaired low-light and normal-light
images, we collected several unpaired images and divided them into a training set and a
testing set without content duplication. This training set consisting of 1,000 low-light and
1,000 normal-light endoscopic images is collected from the department of Gastroenterology
and Hepatology, Shenzhen University General Hospital. The testing set comprises 200 endo-
scopic images with real-world distortions. Our collected endoscopic images have undergone
rigorous selection, primarily to ensure their quality and representativeness by screening out
unclean endoscopic images. Additionally, to enhance the representativeness of our dataset,
we specifically gathered some endoscopic images containing special cases such as colonic
polyps and colonic inflammation. In this experiment, we emphasize on the translation from
low-light endoscopic images to normal-light endoscopic images. Figure 8 provides some
image examples from the training set.

Table 3 The results of PLCC,
SRCC, and Kendall coefficient

Criteria Total

PLCC 0.8701

SRCC 0.8477

KRCC 0.7013
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Fig. 8 Image samples from the training set

The proposed CCGAN is implemented with the PyTorch library and is trained on a work-
station equipped with a single Nvidia GPU (GeForce RTX 3090, 24GB RAM). All images
are converted to JPG format and resized into 256 × 256 pixels. A random flipping operation
is applied for data augmentation. CCGAN is trained from scratch for 200 epochs with the
learning rate of 1e-4. Adam optimizer is employed for network optimization and the batch
size is set to 8.

4.2 Quantitative evaluation

For quantitative evaluation, we compare the proposed network with several image enhance-
ment methods, including two classical handcrafted feature-based methods: contrast limited
adaptive histogram equalization (CLAHE) [32] and Retinex [16], and two recently reported
deep learning-based methods: RRDNet [58] and Zero DCE [21]. The parameters in con-
ventional methods were set to the default values. For each deep learning method, we adopt
the same training datasets as the proposed method, and follow their default settings. All
experiments (training or test) are performed on the same workstation as the proposed method
used.

In the experiment, the proposed BEIQE was used. In addition, two no-reference image
quality assessment metrics were adopted: Natural Image Quality Evaluator (NIQE) [30] and
Perception-based Image Quality Evaluator (PIQE) [40]. These two metrics are widely used
for evaluating natural image distortions. The lower scores of these metrics indicate the better
image quality achieved. Table 4 shows the quality scores of endoscopic images enhanced
using different evaluation metrics. For convenient viewing, the best values of each evaluation
metric are highlighted in the boldface. It can be seen that the proposed CCGAN exhibits the
best performance in NIQE, PIQE and our evaluation method with average values of 3.2873,
11.1525 and 0.3725 across the 200 test images, respectively. CLAHE ranks second in PIQE

Table 4 Comparison among
competing methods in terms of
no-reference image quality
assessment metrics

Method NIQE PIQE BEIQE

CLAHE [32] 3.6106 18.8555 0.4566

Retinex [16] 4.2957 22.9727 0.5610

RRDNet [58] 3.4178 27.2028 0.4249

Zero DCE [21] 3.6055 25.6279 1.0127

CCGAN(ours) 3.2873 11.1525 0.3725
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Table 5 The metrics of FLOPs,
Params, and Running times
reveal the performance
comparison of our approach with
the deep learning-based methods
RRDNet and ZERO DCE

Method FLOPs(G) Params(M) Time(s)

RRDNet [58] 67.1964 0.1281 0.7162

Zero DCE [21] 41.6269 0.0794 0.5189

CCGAN(ours) 183.9775 2.0681 1.0040

with the average value of 18.8555, followed by Retinex, Zero DCE and RRDNet. RRDNet
performs better than other competing methods in NIQE and takes the second position with a
score of 3.4178, followed by Zero DCE, CLAHE, and Retinex.

Furthermore, Table 5 presents the performance of each competing method in terms of
FLOPs (Floating point Operations Per second), Params (Parameters), and Running time.
Specifically, our CCGAN model is inferior to the other image enhancement methods in
these three aspects. This is because CCGAN model has a complex framework to ensure
effective feature representation for better image enhancement. In the future, we will update
our CCGAN model by replacing the current backbone with a light-weight one.

To check the quality scores distribution across the 200 tested images for all the methods,
we present the result using the violin plot, as shown in Fig. 9. In these figures, each violin plot
indicates the probability density distribution of all tested scenes for the different methods.
The white dots in these plots are average values of compared methods. As seen, the proposed
CCGAN ranks the first with the lowest values in terms of NIQE, PIQE and BEIQE. The
conclusion from the distribution performance is consistent with that of the average values
well.

Fig. 9 Comparison of the performance distributions among competing methods
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Fig. 10 Examples of endoscopy using different approaches (zoom in for a better view)

4.3 Qualitative comparison

Figure 10 shows the enhanced image results achieved by different enhancement methods.
The first column shows the original low-light endoscopic images, and the second to the
last columns are the images enhanced by: CLAHE, Retinex, RRDNet, Zero DCE, and the
proposed CCGAN.

To analyze the details of the enhanced images, we enlarge some details in the yellow
bounding boxes. As seen, CLAHE, Retinex, and Zero DCE all cause color distortion to
some extent. Specifically, CLAHE expands the blood vessels and amplifies noise in the
overall images. Retinex results in severe color distortions and misses the detail information.
Zero DCE brings the overall illumination improvement, but it also leads to severely baised
color. RRDNet easily leads to high saturated colors, leading to some information missing.
In conclusion, the deep learning methods, RRDNet and Zero DCE, generate unsatisfactory
visual result in terms of detailed information and color reproduction. In contrast, CCGAN
not only enhances the low-light areas but also shows the details and colors well.

4.3.1 Subjective evaluation

We conducted a subjective evaluation to compare the performance of the proposed method
with competing ones. In this experiment, a graphical user interface (GUI) is used for dis-
playing the 200 endoscopic scenes [31]. For each endoscopic scene, it is first enhanced by
five methods (CLAHE, Retinex, RRDNet, Zero DCE, and the proposed CCGAN). These
enhanced images are presented in the GUI randomly. Figure 11 briefly shows the subjec-
tive experiment setup. The display presents five thumbnails (labeled A-E) obtained from the
five low-light image enhancement methods on the left side of the screen. Each thumbnail
is displayed in full-screen when participants double-click on it. One professional gastroen-
terologist with over ten years of experience is invited to rank these images from the quality
evaluation perspective depending on his clinical experience.
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Fig. 11 Schematic diagram of the subjective experimental environment

The gastroenterologist can view each image displayed in full-screen mode and rank the
images on the right side by dragging his preferred choice to its corresponding position
(labelled 1-5), where 1 denotes the best one and 5 represents the worst one.

Figure 12 provides five histograms, each of which indicates the rank distribution of 200
endoscopic images generated by a method. For example, the proposed CCGAN ranks the
first for 110 images out of 200 images, the second for 89 images, and the third for 1 image
out of 200 images. By comparing the five histograms, it is clear that CCGAN receives the
best results from the gastroenterologist, with an average rank score of 1.455 across over 200
samples. CLAHE and Zero DCE are not well scored because of the severe color distortion
and noise.

4.4 Ablation studies

In this work, the proposed CCGAN benefits from two novel terms, i.e., color consistency loss
and theARAM.Weconducted the following ablation studies to investigate their contributions.
Here, our baseline is the regular CycleGAN method.

Fig. 12 The results of five methods in the subjective evaluation. In each histogram, the x-axis denotes the
ranking index (1-5, 1 represents the highest value), and the y-axis denotes the number of images in each
ranking index. As seen, CCGAN ranks the most top-ranking images and obtains the best performance with
the smallest average ranking value
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Table 6 Ablation studies. Here,
our baseline is the standard
CycleGan framework

Networks NIQE PIQE BEIQE

Baseline 3.9121 14.5358 0.6374

Baseline+CA 3.7967 12.1274 0.5587

Baseline+ARAM 3.5825 11.4071 0.4913

Baseline+Lcolor 3.5440 13.4600 0.3779

Baseline+Lcolor+ARAM 3.2873 11.1525 0.3725

• Color consistency loss: Firstly, we verify the impact of the proposed color consistency
loss. As shown in the second row of Table 6, the application of the color consistency
loss brings improvements in NIQE (3.9121 vs. 3.5440), PIQE (14.5358 vs. 13.4600) and
BEIQE(0.6374 vs. 0.3779) compared with the baseline method. This demonstrates that
this color consistency loss is effective in assisting the proposed CCGAN to improve the
image quality.

• Adaptive reverse attention module: To explore the effectiveness of the ARAM, we
compared the performance of the CycleGAN baseline and that with ARAM over the
collected endoscopic images dataset. As illustrated in the last line of Table 6, the ARAM
brings significant improvements (11.1525) in PIQE compared with the CycleGAN base-
line (14.5358). In NIQE, the ARAM also exhibits a significant improvement from 3.9121
to 3.2873. The results show that the application of ARAM contributes to the overall per-
formance.

After incorporating ARCAM into the baseline, our experimental results show an obvious
improvement in the three evaluation metrics NIQE, PIQE, and BEIQE. This indicates that
ARCAM can help the model better focus on important channel information while reducing
unnecessary computation, thus improving the accuracy and efficiency of the model. Specif-
ically, the introduction of ARCAM allows the network to focus more on beneficial feature
channels and filter out some useless channels, making the model’s decisions more accurate.
In addition, our spatial attention module can also adaptively focus on more important spa-
tial position information on the image, helping the model learn useful features and improve
the enhancement effect. Finally, combining AR-CAM and RASM can further improve the
enhancement effect.

The above ablation studies show that the ARAM and color consistency loss play a positive
role in performance improvement. The former focuses on enhancing the low-light areas,while
the latter tends to preserve color consistency when the luminance increases in the scene. The
combination of the ARAM and color consistency loss can obtain an impressive performance
in endoscopic image enhancement.

5 Discussion

Low-light endoscopic images affect the observation of important tissues and even lead to
missed diagnoses. However, it is difficult to obtain high-quality images due to the diverse
illumination conditions and the low-quality imaging sensors. Low-light endoscopic image
enhancement is an effective way to improve image quality. High-quality images can assist
physicians in improving the accuracy of diagnosis. However, very few existing image
enhancement methods focus on low-light endoscopic images. Additionally, due to the local
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information loss and color distortion, most enhancement algorithms are not suitable for the
endoscopic image enhancement task.

In this paper, we present a novel method that can handle the low-light endoscopic image
enhancement. In the proposedmethod, we introduce the ARAM and color consistency loss to
deal with low-light area enhancement and color distortion problems. In addition, we propose
a blind quality evaluation method. Finally, we investigate the impact of the proposed method
in terms of quantitative evaluation, visual inspective and subjective evaluation.

For quantitative evaluation, two conventional and two deep-learning image enhancement
methods were selected. The proposed CCGAN exhibits overall best performance in NIQE,
PIQE and BEIQE compared with competing image enhancement methods. Specifically,
the other competing methods show a relatively inferior performance in the low-light area
enhancement and color information preservation. This may be attributed to that, these meth-
ods are developed for natural images, thereby being incapable of tackling the endoscopic
image enhancement task. In the proposed CCGAN, the ARAM and the color consistency
loss are applied, which are used for enforcing the network to focus on specific low-light
areas and extracting local features of original images, and alleviating color distortion. To
explore their contributions, we further conducted two ablation studies. By comparing the
results in Table 6, we can find that the performance of the baseline leaves considerable
room for improvement. The color consistency loss, as shown in the second line of Table 6,
brings approximately 0.4 increments of NIQE, 1.1 increments of PIQE, and 0.26 increments
of BEIQE compared with the baseline. The combination of the ARAM and the color con-
sistency, as shown in the last row, brings approximately 0.6 increments of NIQE and 3.4
increments of PIQE. By comparing all data in the table, we conclude that the proposed color
consistency loss and the ARAM are effective for improving image quality.

For visual inspection, we present the results of two representative low-light images gen-
erated by five image enhancement methods. As illustrated, our CCGAN exhibits obvious
superiority against competing methods in two aspects. First, CCGAN is more suitable for
preserving color information. For instance, CLAHE leads to excessive enhancement of blood
vessels, while Retinex and Zero DCE bring severe color distortion. Second, CCGAN can
focus on low-light areas thanks to the proposed attention module ARAM. RRDNet exhibits
good performance in color preservation and luminance improvement, but it can not enhance
the low-light areas well and cause low contrast in these areas. Retinex and Zero DCE brighten
the image as a whole but ignore local information CLAHE causes distortion in local areas.
By contrast, CCGAN not only provides high contrast and sufficient color information, but
also preserves details of local areas. Overall, the proposed CCGAN is more conducive to
dealing with the endoscopic image enhancement task.

In the last experiment, we invited one professional expert with more than ten years of
clinical experience to observe the enhanced endoscopic images obtained using different
methods. The results show that CCGAN produces the overall most favored results by the
expert subject, with an average ranking of 1.455 over 200 images. This also verifies the
effectiveness of the proposed method.

6 Conclusion

In this work, we proposed an unsupervised deep learning framework named CCGAN for
endoscopic image enhancement. To cope with the color distortion, we introduced a color
consistency loss to constrain the color change between the original images and the generated
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images. By carefully analyzing the characteristics of the low-light areas, we proposed an
adaptive reverse attention module named ARAM. Owing to the collaboration of the con-
sistency loss and ARAM, CCGAN can preserve local area information and relieve color
distortion. To validate the effectiveness of the proposed CCGAN, we propose a blind eval-
uation metric by extracting K-L divergence, entropy, and spatial features. Finally, extensive
experiments were conducted to compare the proposed CCGAN with four recently reported
methods. The results show that our CCGAN is competent for addressing the challenging
low-light endoscopic image enhancement task, and performs better than others.
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