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Abstract
In omnidirectional images or videos, the viewer receives an interactive and immersive expe-
rience from the viewport by changing the viewing angle. Due to the wide application of
omnidirectional videos, the visual quality assessment for omnidirectional videos is becom-
ing an urgent issue. Due to the large resolution of an omnidirectional video, regions with
object motions usually catch the viewers’ attention, so the motion regions have great influ-
ences on the visual quality perception. Since the number of potential viewports is huge and the
viewer spends varying amounts of time for different viewports, viewport selection is a critical
yet not resolved problem for omnidirectional video quality assessment (VQA). In this paper,
we propose a two-stream network with viewport selection for blind omnidirectional VQA
to incorporate the influences of motion regions and viewport selection. Firstly, we propose
a two-stream multi-task convolutional neural network (TSMT) for VQA at any viewport,
which uses video frame sequences and motion sequences as inputs. The motion sequences
are represented as horizontal and vertical optical flows. Based on the observation that the
low latitude regions, the front view, and the moving objects have higher possibilities that
appearing in the viewport, we propose a viewport selection method based on a fusion-based
saliencymap that considers those regions. Experimental results on two datasets demonstrated
that the proposed model outperforms state-of-the-art omnidirectional VQA methods.

Keywords Omnidirectional video · Video quality assessment · Viewport selection ·
Two-stream convolutional neural network

1 Introduction

Omnidirectional/360◦ images or videos provide an omnidirectional interactive experience.
The viewer changes the viewing angles to get a viewport through a headset, mobile device,
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or standard computer screen, thus achieving the experience of being in a virtual reality (VR)
space. Omnidirectional data is widely used in interactive applications such as tourism, edu-
cation, and sports. Since the omnidirectional image or video reproduces the entire visual
world in the projection plane, the resolution of the omnidirectional video and image requires
a resolution of 4K or higher to meet the viewer experience. And the bandwidth consumption
of the omnidirectional video is 80 times that of the 2D video [21], bringing huge challenges
to omnidirectional video compression and transmission [7]. To evaluate the visual qual-
ity affected by processes such as compression, the need for omnidirectional video quality
assessment (VQA) methods has become increasingly urgent.

In recent years, with the introduction of the omnidirectional VQA dataset [18, 33], omni-
directional VQA attracts a lot of attention from both research and industry communities.
The VQA methods of omnidirectional video are proposed along with the video datasets.
Some works analyze various essential omnidirectional video viewing characteristics, such
as the low latitude regions [38], and the front view angles [33] are more attractive to users.
These viewing characteristics can guide the design of omnidirectional VQA. Compared with
subjective VQAmethods of omnidirectional video, which require large labor and time costs,
the demand for objective VQA methods becomes urgent. However, the existing objective
omnidirectional VQA methods have the following two problems.

Firstly, temporal cues of videos have not been well utilized for omnidirectional VQA.
Common temporal artifacts [24], including ghosting, jitter, etc., can greatly affect the view-
ers’ viewing experience. In addition, exceptional motion [12] and judder effect [20], can also
affect the immersive experience in omnidirectional video. However, the above-mentioned
temporal cues have not been well considered in existing omnidirectional VQA methods. In
recent years, somemethods consider both temporal cues and spatial cues using the two-stream
networks [6, 26, 32, 41] or pseudo-3d residual (P3D) networks [23] for video classification,
action recognition, and feature representation tasks. These methods validate the effective-
ness of temporal cues for these computer vision tasks. In Fig. 1, we show two examples of
omnidirectional video frames and the corresponding moving object maps. We can see that
the temporally changing moving objects have high probability values that catch viewers’
attention.

Secondly, for data-driven deep learning methods, the sampling method for view angles or
crop positions is a critical and notwell-addressed problem.Existing samplingmethodsmainly

Fig. 1 Examples of omnidirectional video frames. (a) Video frames from omnidirectional videos in ERP. (b)
The moving object maps correspond to the videos. (c) The top figure shows the mask of the front view; the
bottom figure shows the mask of the low latitude region
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include viewport predication and image patch selection in Equirectangular Projection (ERP).
The viewport-based methods need to predict the viewer’s head movement [19] or specify
the viewing point [29]. For patch-based-ERP methods, the patch crop strategy with a certain
space and time interval that is commonly used for 2D video quality assessment is not a good
option for omnidirectional VQA, because the omnidirectional video owns different viewing
characteristics. Specifically, the viewer can only see part of the omnidirectional video from
the viewing angle, while the viewer can obtain the entire viewing plane in the 2D video,
therefore omnidirectional video sampling method should consider this significant difference.
For example, subjective omnidirectional VQA found that viewers tend to watch the front
view [33], and the front view is more correlated to the subjective score than the back view.
And in statistics, the viewers’ visual attention is more frequently located in the low latitude
regions [38]. As shown in Fig. 1, image regions within the front view or low latitude (as
indicated by Fig. 1(c)) also have high probability values that catch viewers’ attention.

In this paper, we propose a blind two-stream multi-task convolutional neural network
(TSMT) for the omnidirectional VQA based on a viewport selection method that compre-
hensively considers the low latitude, front view, and motion regions. Inspired by works [6,
26, 32], we propose using the two-stream network to extract features from both the spatial
domain and the temporal domain, then combining those features for predicting the quality
score and distortion type of the omnidirectional video. Specifically, the RGB frame carries
visual information including scenes, objects, spatial artifacts, etc. The motion information
represented by the optical flow includes motion, temporal artifacts, etc. Both of these serve
as input to the two-stream network. Since omnidirectional video distortion types, including
projection type, compression type, etc., directly affect the visual experience, we regard the
classification of distortion type as one of the goals of the network.

Furthermore, we present a viewport selection method that comprehensively considers
the low latitude, front view, and motion regions. We first calculate a saliency map that
comprehensively considers the low latitude, front view, and motion regions, which usually
catch viewers’ attention. Then viewport positions are gradually selected according to the
saliency map. To avoid selecting redundant viewports, we update the saliency map after each
viewport selection. Experimental results show that the performance of our proposed TSMT
is superior to the state-of-the-art (SOTA) blind omnidirectional video quality assessment
methods, and our proposed TSMT even achieves comparable results with the full-reference
(FR) omnidirectional VQA methods.

The main contributions of the proposed method are in three folds:

1. We propose a two-stream multi-task blind omnidirectional video quality assessment
method that can extract and combine the features fromboth spatial and temporal domains.

2. We present a viewport selection method that comprehensively considers the low latitude,
front view, and motion regions, which usually catch viewers’ attention.

3. Experimental results demonstrate that our method outperforms the SOTA blind omnidi-
rectional VQA methods, and achieves comparable results with the FR VQA methods.

2 Related work

In this section, we describe some objective omnidirectional VQA methods that are most
related to our proposed method. For more methods, please refer to the review [34].

ObjectiveVQAmethods can be divided into FR, reduced-reference (RR), and no-reference
(NR, a.k.a, blind) according to the use of reference videos. FR-VQA, RR-VQA, and NR-

123



12142 Multimedia Tools and Applications (2024) 83:12139–12157

VQA methods predict the video quality score by regarding all, partial, and no reference
videos, respectively.

The classic FR-VQA methods, such as the method based on PSNR, were first introduced
into the omnidirectional VQA. S-PSNR-NN [38] calculates a certain number of sampling
points that are uniformly distributed on the sphere, then maps the sampling points from the
projection surface through the nearest neighbors, and calculates the PSNR of the sampling
points. CPP-PSNR [40] projects the reference video and the impaired video to the parabolic
projection, and the PSNR in parabolic projection is calculated. WS-PSNR [28] utilizes the
region stretching ratio of the projected surface to the sphere of some uniformly distributed
sampling points, and calculates the PSNR on the projection surface through the ratio without
projecting back to the sphere. Xu et al. [33] proposedNCP-PSNR, which weights the viewing
regions by the distribution of viewing directions and uses the content-based CP-PSNR to
predict the viewing direction by region of interest. SSIM has also been introduced into
the omnidirectional VQA method. S-SSIM [3] is an SSIM method that is calculated in the
sphere domain. WS-SSIM [5] extends the traditional SSIM method by combining the region
stretching ratio between various projection planes and spheres. S-PSNR-NN, CPP-PSNR,
and WS-PSNR are all recommended as omnidirectional VQA of JVET [42].

The deep learning technique further improves the performance of the omnidirectional
VQAmethods. According to the network input, omnidirectional VQAmethods follow either
of the two categories: patch-based and viewport-based methods. Patch-based methods gen-
erally sample the image patches directly from the projection plane like ERP. Chen et al. [18]
proposed a full reference method for improving quality prediction through head position and
viewport map (VQA-HMEM). Lim et al. [17] proposed a no-reference Generative adversar-
ial network (GAN) (VR-IQA) to predict the quality score, using human visual perception to
distinguish the actual quality score from the predicted quality score for adversarial learning.
Kim et al. [13] further proposed a GAN-based omnidirectional image quality assessment
method using the location and visual features of image patches.

The viewport-based methods need to project the omnidirectional videos to a 2D plane
according to the prediction of angles or specified angles. Chen et al. [19] proposed predicting
the position of the head/viewport by sphere convolution and predicting the saliency map for
the viewport as an auxiliary task of the VQA (V-CNN). Sun et al. [29] proposed to predict
the quality score of omnidirectional images by viewing planes from multiple angles (MC-
CNN). Xu et al. [36] proposed a multi-viewport omnidirectional image quality assessment
method based on angle sampling. Kim et al. [12] proposed a deep GAN to predict VR fatigue.
Xu et al. [35] proposed a graph convolutional network to simulate the viewing interaction
of omnidirectional image (VGCN), and then predict the score of the viewport. Chai et al.
[4] proposed to fuse the quality of single-frame and inter-frame information for blind VQA
(NR-OVQA).

3 Proposed TSMTmethod

The proposed viewport selection method and the framework of the proposed two-stream
multi-task network are shown in Figs. 2 and 3, respectively. The proposed model takes the
omnidirectional video frames and the two directions’ optical flows corresponding to the
frames as input. In this way, the temporal motion cues carried by the optical flows are used
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Fig. 2 Proposed viewport selection for our TSMT method. The input is some impaired video frames and the
corresponding optical flows of horizontal and vertical directions. The proposed viewport selection method
fuses three cues from moving objects, front view, and low latitude to locate the viewports. Then the proposed
two-stream multi-task network predicts a quality score and a distortion type via the RGB image patch and
optical flows of each selected viewport

as a supplement to the RGB patches, as shown in the left part of Fig. 2. The saliency value
of each pixel in the saliency map is calculated by fusing the moving object, the front view,
the low latitude, and the smoothing constraints, as shown in the middle part of Fig. 2. The
saliency value of each pixel represents the probability that the pixel is sampled or selected
as the center of the viewport. Moving object regions, low latitudes regions, and front view
regions aremore frequently to be sampled because they usually affect the viewing experience,
while regions in stationary backgrounds, high latitudes, and other views are less viewed and
therefore are less sampled, as shown in the right part of Fig. 2. The sampled RGB patches
and the corresponding optical flow patches are fed to the two-stream multi-task network, as
shown in Fig. 3. The goals of this multi-task network include quality-score prediction and
distortion-type classification.

Fig. 3 Our proposed two-stream multi-task network predicts quality score and distortion type via the RGB
and optical flows of viewports
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3.1 Two-stream framework of omnidirectional VQA

3.1.1 Architecture

The architecture of the proposed two-stream multi-task network is shown in Fig. 3. Com-
pared to the two-stream classification models [6, 26, 32] using VGG [27] or Resnet [9] as the
backbone, we use Efficient-Net [30] as the backbone, because Efficient-Net has fewer param-
eters and runs faster on many existing tasks. We take the first 4 layers of EfficientNet-B0 to
extract features.

In Fig. 4, we show the stream taking RGB image patch as input, and the other stream
uses a same structure. After RGB image patches and optical flow patches are fed into the
two-stream efficient model, they go through the first 4 layers of the EfficientNet-B0 baseline
network. Specifically, one streamnetwork includes a convolutional layer, fourmobile inverted
bottleneck convolution (MBConv) layers [30], namely an MBConv1 and three MBConv6,
and finally a convolutional layer. After these layers, the output feature maps of the image
patches and the optical flows are concatenated and fed into an Efficient Channel Attention
(ECA), including a convolution layer, batch normalization, dropout, and average pooling.
Finally, the output of ECA is used to predict the quality score and distortion type through
two fully connected layers.

It is worth noting that, different from RGB image patch that have three channels, the
optical flow has only two channels, so the channel of the corresponding convolution kernel
is set to 2, and the weights are initialized using the average of the RGB convolutional kernel.

3.1.2 Loss function

According to the uncertainty among multiple tasks [11], we use task-dependent uncertainty
to determine the weights of our multi-task loss, specifically through the Gaussian distribution
likelihood estimation of the predicted quality score and the softmax likelihood estimation of
the predicted distortion type. For the video quality score prediction task, the predicted score

Fig. 4 Single-stream of two-stream network
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ŷ1 for the video sample x is obtained through the fully connected layer FCsc. The l2 norm
loss between ŷ1 and the ground truth video quality score y1 is calculated as follows,

L1 (W ) =
∑

|ŷ1 − y1|2, (1)

where W corresponds to the model parameters related to the video quality score prediction
task.

For the distortion type classification task, we use the last fully connected layer FCcls and
a softmax function to predict the output probability ŷ2 that the video sample x is distorted
by the c distortion type. The cross-entropy loss is defined as follows,

L2 (W ) = −
∑

y2 log ŷ2, (2)

where y2 is the ground truth probability for the video sample, andW are themodel parameters
related to the distortion type classification task.

We follow the task-dependent uncertainty [11], and the likelihood is defined as follows:

p(y1, y2 = c| f W (x)) = N (y1; f W (x), σ 2
1 ) · Sof tmax(y2 = c; f W (x), σ2), (3)

where y1 is the target score, y2 is the target category, and f W (x) is the output of images x
under parameterW . For the score regression task we assume that the likelihood is a Gaussian
distribution with a mean of f W (x) and a variance of σ1. The classification task’s likelihood
is defined as a Boltzmann distribution with a scaling factor of σ2.

The derivation of (3) leads to the loss function, specifically we maximize the likelihood
function in (3) by minimizing the negative logarithm of it as follows:

− log(p(y1, y2 = c| f W (x)))
= − log(N (y1; f W (x), σ 2

1 ) · Sof tmax(y2 = c; f W (x), σ2))

∝ 1
2σ 2

1

∣∣y1 − f W (x)
∣∣2 + log σ1 − log p(y2 = c| f W (x), σ2).

(4)

According to the task-dependent uncertainty [11], the log likelihood of a softmax loss can
be written as follows:

log p(y2 = c| f W (x), σ2) = 1
σ2

f Wc (x) − log
∑

c′ exp( 1
σ2

f W
c′ (x))

= 1
σ2

f Wc (x) − log

∑
c
′ exp( 1

σ22
f W
c
′ (x))

(
∑

c
′ exp( f W

c
′ (x)))

1
σ22

≈ 1
σ2

f Wc (x) − log σ2,

(5)

substituting (1), (2) and (5) into (4), the loss function can be obtained as follows:

p(y1, y2 = c| f W (x)) = 1
2σ 2

1
L1(W ) + 1

σ 2
2
L2(W ) + log σ1 + log

∑
c
′ exp( 1

σ22
f W
c
′ (x))

(
∑

c
′ exp( f W

c
′ (x)))

1
σ22

≈ 1
2σ 2

1
L1 (W ) + 1

σ 2
2
L2 (W ) + log σ1 + log σ2.

(6)

By the derived loss function, these two learnable parameters σ1 and σ2 come to be able
to adjust the weights between multi-tasking. For example, a large σ1 reduces the distribution
of L1 (W ), while the log σ1 part penalizes an oversized σ1. According to work [11], in the
implementation, the learnable parameter is set as log σ 2 to avoid zeroeswhen the σ is divided.
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3.1.3 Network input

First of all, the optical flow of the video is obtained through a re-implemented optical flow
algorithm TVL1 [39] based on OpenCV and CUDA [32]. We calculated the full-resolution
horizontal and vertical optical flow maps on the GPU, and then normalized the optical flow
maps to discrete values from 0 to 255. After obtaining the position of the viewport, we
crop the viewport projected from the video frame to obtain RGB channels and optical flow
channels. The input of the network is the three-channel color image patch and the spliced
two-channel optical flow patch.

3.2 Fusion-based saliencymap

As shown in Fig. 5, we observe that heatmaps of all viewers’ head positions (Fig. 5(c)) have
a strong correlation with the front view, low latitude regions, and moving object regions (Fig.
5(b)). In this paper, we propose to calculate the saliency map for viewport selection based
on the correlation between the viewer’s behavior and these regions. In order to combine the
moving object regions, the front view, and the low latitude regions and get a smooth saliency
map, we propose calculating the saliency map using an energy function. Specifically, we
introduce a smoothness constraint to the energy function to get a smooth saliency map.

We formulate the problem of calculating pixel saliency values as optimizing pixel weights.
A saliency value is designed to be a continuous value within the range of [0, 1] in the energy
function. The saliency map of an omnidirectional video can be computed by minimizing an
energy function composed of moving region constraint, front view constraint, low latitude
constraint, and the smoothness constraint, as follows:

E =
∑

i=1

wm
i (si − 1)2 + λ f

∑

i=1

w
f
i (si − 1)2

Fig. 5 A demonstration of the relationship between viewer behavior and the regions of moving objects, low
latitude, and the front view. The moving object regions shown in (b) are obtained by accumulating the moving
object segmentation results [10] of the video frames
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+λl
∑

i=1

wl
i s

2
i + λn

∑

i, j∈Ni

wi j
(
si − s j

)2
, (7)

where si and s j are the saliency values of pixels pi and p j , λ f , λl ,and λn are balancing
weights for different constraints, wm , w f , wl are the motion map, front view map, and low

latitude map respectively, wm
i , w

f
i , and wl

i are the motion value, the front view value, and
the low-latitude value of pixel pi , respectively. The last term in the energy function is the
smoothness constraint, andwi j is the smooth-constraint value between pixels pi and p j , and
p j is a neighboring pixel of pi , which is indicated by pi ’s neighboring pixel set Ni .

For the moving region constraint, we first compute the object segmentation results from
the optical flows by [10], then accumulate the segmentation results and obtain the moving
object region mapwm . The motion valuewm

i is the value in motion mapwm for pixel pi . The
moving region constraint encourages a pixel pi with a larger wm

i to have a larger saliency
value si , which is close to 1.

Likewise, the front view constraint also increases the saliency values of the pixels in the
front view regions. Specifically, the front view map w f is computed by setting the center of
the viewport’s longitude and latitude as (0◦, 0◦) for the front viewing angle and the viewport’s
size as 90◦.

The low latitude constraint encourages pixels pi in low latitude regions to have a saliency
value that is not limited by the latitude, while encourages pixels pi in high latitude regions
to have a saliency value that is small and close to 0. The low latitude map wl is calculated as
the distance from the pixel to the two boundaries bd and bu of the low-latitude regions, and
is defined as follows:

wl
i = |li − bd | + |li − bu | − (bu − bd)

z
, (8)

where bd and bu correspond to latitudes of -30◦ and 30◦, following work [38], respectively,
z is a parameter used to normalize wl

i to the range of [0,1], and z = 2 × (90◦ − b u
)
. li is the

latitude of pixel pi , define as li = ri
W × 180◦, ri corresponds to the abscissa of pi , and W

corresponds to the width of the image. For the pixel pi belonging to the low-latitude regions
[bd , bu], the value of wl

i is 0, and the wl
i of the pixels in the remaining regions increases as

the distance between the latitude and the low-latitude regions increases.
With the smoothness term, neighboring pixels obtain saliency values that are similar each

another. The smooth-constraint value wi j between pixels pi and its neighbor p j is computed
using their motion values as follows:

wi j = exp

(
−

(
wm
i − wm

j

)2) + u, (9)

where wm
i and wm

j correspond to the motion values of pixels pi and p j , and u is a constant
which is set to 0.1.

The above four terms are all quadratic errors, which can be solved by the least quadratic
calculation. In our implementation, λ f , λl , and λn are set to 0.7, 0.5 and 0.5, respectively. In
Fig. 6, we demonstrate some input video frames (a), the moving object region maps (b), and
the saliency maps that combine the four constraints using heatmaps (c).

3.3 Viewport selection

Wepropose a viewport method based on the greedy algorithm to locate the viewport positions
in accordance with the saliency map obtained by solving the energy function. We prefer the
viewport position at the current moment to be close to the previous viewport position to
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Fig. 6 Demonstration of video frames (a), the moving object region maps (b), and the saliency maps that
combine the four constraints using heatmaps and the selected viewports (c)

simulate the continuous viewport shifting when watching an omnidirectional video, so our
viewport selection algorithm prefers the current viewport to be near the previous viewport.
Meanwhile, if all the viewports close to the previous viewport have low saliency values,
we choose the viewport globally. In this way, our viewport selection method can simulate
viewers’ behavior.

At the very beginning, we select the first viewport position as the pixel that has the
maximum saliency value in saliency mapw by (7), denoted as viewport V1, which is centered
at the maximum value pixel and with width VW and height V H . The global saliencymapwg

for global search and the local saliency map wl for local search is initialize by the saliency
map w. Then we select the viewport iteratively until we select N viewports. For example,
at the kth iteration, to avoid selecting a viewport position within the previously selected
viewport, we set the pixel values in the saliency map of the viewport selected in the (k−1)th
iteration, denoted as viewport Vk−1. Then we select two viewport positions, including one
global viewport position candidate cg from the updated global saliency map wg and one
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Algorithm 1 Viewport selection
Input:The saliency map w from (7),

The number of viewports to be select N .
Output: The set of selected viewports C .
1: Initialize iteration number k as 1;
2: Initialize global saliency map wg and local saliency map wl by the saliency map w;
3: Initialize the set of selected viewports C as ∅;
4: while k ≤ N do
5: cl ← argmax{cl|wl (cl)∈wl }wl ; // viewport position candidate from local search

6: cg ← argmax{cg|wg(cg)∈wg}wg ; // viewport position candidate from global search

7: V k ← max(wl
cl + �w,w

g
cg); // Select viewport position V k from cl and cg

8: wl ← wg(Neighborhood(V k )); // Set wl as the neighborhood of V k in wg

9: wg(V iewport(V k ) ) ← −1; // Update the pixel values in the viewport centered
at wg as -1

10: C ← C ∪ V k ;
11: k ← k + 1;
12: end while

local viewport position candidate cl from the neighborhood of viewport Vk−1 in the updated
local saliency map wl . The width and height of the neighborhood are set to be larger than the
width and height of the viewport and smaller than the width and height of the video frame.
Then if the difference between cg and cl is less than a predefined threshold �w, we choose
the viewport centered at cl as viewport Vk , otherwise, we choose the viewport centered at
cg as viewport Vk according to Algorithm 1. The neighborhood that corresponds to the V H
and VW ranges of wg yields the new local saliency map. Set viewport corresponding to
Vk in the global saliency map to -1, so that the new viewport position will not return to
the original viewport position. Finally, the obtained image patches and optical flow patches
corresponding to the selected viewports are then fed into the two-stream network.

4 Experiments

In order to evaluate the performance of our proposed two-streamnetworks for omnidirectional
VQA, we conducted extensive experiments on two omnidirectional VQA datasets, including
VQA-ODV [18] and VR-VQA48 [33]. On VQA-ODV dataset, we compare and evaluate
our proposed model with some SOTA methods. The VR-VQA48 dataset is smaller than the
VQA-ODV dataset, and the distortion type of VR-VQA48 belongs to the distortion type
of VQA-ODV, so we only test on VR-VQA48 to verify the generalization ability of the
model trained on the trainset of VQA-ODV dataset. In order to verify the effectiveness of
the proposed fusion-based saliency map, comparison experiments are conducted, including
random dicing, using onlymoving objects, front view, and low latitude regions as the saliency
map. Additionally, comparisons between local and global greedy searches are carried out,
along with comparisons to SOTA methods.

4.1 Datasets

VR-VQA48 contains 12 reference omnidirectional videos from YouTube and VRCun, and
collects subject scores from 40 subjects. H.265 with 3 different quantization parameters (QP)
27, 37, 42 are used to generate 36 impaired videos. The duration of the reference video and the
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impaired video is 12 seconds, the frame rate is 25 fps, and the resolution of all videos under
ERP projection is 4096×2048. The dataset provides the subjective score and the differential
mean opinion score (DMOS) of each viewer. We use reverse DMOS (rDmos) [19] as the
ground truth of the predicted score.

VQA-ODV is a large omnidirectional VQA dataset. VQA-ODV contains 60 reference
omnidirectional videos from the YouTube virtual reality channel. The impaired video of
VQA-ODV is generated through 3 compression levels and 3 types of projection, so each
reference video corresponds to 9 different impaired videos. Compared with VR-VQA48,
which only considers the compression level, VQA-ODV further considers projection formats,
including ERP, RCMP [22], and TSP [8]. For the compression level of VQA-ODV, the
impaired video is encoded as quantization parameters 27, 37, and 42. According to QP, the
bit rates are at high, medium, and low levels, respectively. Since the subject experiments of
the 540 impaired videos in VQA-ODV are divided into 10 groups, we follow [19] to use the
average value of the valid DMOS of each group as the DMOS. Same to VR-VQA48, rDMOS
is used as the ground truth of the predicted score.

4.2 Performance indicators

After the network predicts the score results of all selected viewports of the same video,
the average pooling is further adopted for computing the final video quality score. rDMOS
and objective VQA scores were evaluated using five metrics, including Spearman Rank
Order Correlation Coefficient (SROCC), Pearson Linear Correlation Coefficient (PLCC),
root mean square error (RMSE), and mean absolute error (MAE). SROCC, KROCC, and
SROCCmeasure rank correlation, while PLCC,MAE, andRMSE assess prediction accuracy.
For SROCC, KROCC, and PLCC, the higher the value is, the closer to the subjective score.
Whereas forRMSEandMAE, the lower the value is, the closer to the subjective score. SROCC
and KROCC can be directly calculated by objective VQA and rDMOS. Before calculating
PLCC, RMSE andMAE,we fit objective VQA to rDMOS according to a 4-parameter logistic
function [25] as follows:

f (x) = β2 + β1 − β2

1 + e
−(

x−β3|β4 | )
, (10)

where βi is the fitting parameter from the objective VQAmethod to rDMOS, βi is initialized
according to [1], x is score predicted by the objective VQA method, and f (x) is the fitted
score.

4.3 Implement details

All experiments are conducted on thePyTorchdeep learning framework [2], using the stochas-
tic gradient descent algorithm with Adam optimizer [16] to update the parameters. We set
the learning rate as 0.0001, the weight decay as 0.0005 for regularization, and the batch size
as 64.

In order to train the two-stream network at the same time, we use EfficientNet-B0, which
occupies less GPU memory, and use part of the convolutional layer of the model for feature
extraction. For the RGB branch, the complete EfficientNet-B0 parameters are adopted for
initialization. Since the optical flow is stored as a single-channel image in two directions,
the first convolutional layer parameters for the flow stream are initialized as the average of
the first convolutional layer parameters of EfficientNet-B0, and the subsequent convolutional
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layers are initialized using the EfficientNet-B0 parameters. In a single-channel experiment,
theRGBstreamusing the pre-trained parameters performsbetter than the randomly initialized
model. The flow stream using the pre-trained parameters is slightly better than the randomly
initialized model.

For the VQA-ODV dataset, we sample one frame from every few frames to obtain the
sampled video frames and sampled optical flows, following method [14], we sample every
eight frames for videos with 24 FPS, and every ten frames for videos with 30 FPS. For each
video frame and optical flow, we select 70 viewports and followV-CNN [19] to use the center
crop method to generate each viewport with size of 224×224. Following method [19], we
separate the dataset into a training set, validation set, and testing set. Specifically, a total of
387, 45, and 108 impaired omnidirectional videos were used as the training set, validation
set, and testing set. Because the VQA-ODV dataset has three compression parameters and
mapping types, and a total of 9 combinations of compression and mapping, we use the
classification of distortion types as one of the tasks of the model. The target score for the
regression task is set to rDMOS. For theRGBandoptical flow single-channel experiments,we
use the complete Efficient-B0 as the feature extraction part, because a deeper single-branch
network in the experiment performs better than a shallower network. For VR-VQA48, we
use the same sampling method and use 36 impaired videos as the test set. The network is
trained for a total of 36 epochs. For the VR-VQA48 dataset, we use the model trained on the
VQA-ODV dataset to test 36 impaired videos.

4.4 Performance comparison

In order to validate the performance of our proposed model, we compare it with S-PSNR,
WS-PSNR, CPP-PSNR, BP-QAVR [37], VR-IQA-NET, VQA-HMEM [18], DeepQA [15],
WaDOQaM-FR [2], V-CNN [19], VGCN [35] and NR-OVQA [4] on the VQA-ODV dataset.
S-PSNR, WS-PSNR, and CPP-PSNR are classic omnidirectional image/video visual quality
assessment methods. The remaining methods are based on deep neural networks. DeepQA

Table 1 Performance comparison between our proposed method and other SOTA methods in performance
indicators including PLCC, SROCC, KROCC (larger is better), RMSE and MAE (smaller is better) on VQA-
ODV dataset

PLCC SROCC KROCC RMSE MAE

S-PSNR 0.6929 0.6976 0.4981 8.5407 6.6810

WS-PSNR 0.6721 0.6839 0.4860 8.7707 6.9089

CPP-PSNR 0.6812 0.6896 0.4912 8.6718 6.7932

BP-QAVR 0.6588 0.6801 0.4780 8.9112 7.0823

VQA-HMEM 0.7821 0.7953 0.5902 7.3817 5.7793

VR-IQA-NET 0.3713 0.3379 0.2260 10.9984 9.1010

DeepQA 0.6936 0.7296 0.5213 8.5325 6.7720

WaDOQaM-FR 0.6207 0.6162 0.4206 9.2868 7.4574

V-CNN 0.8740 0.8962 0.7137 5.7551 4.4893

VGCN 0.8032 0.8122 0.6144 7.0562 5.4088

NR-OVQA 0.7598 0.7972 0.6286 7.7006 4.9496

TSMT 0.8946 0.9011 0.7214 5.2922 4.2443
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Table 2 Performance comparison
on VR-VQA48 dataset

PLCC SROCC RMSE MAE

S-PSNR 0.589 0.639 9.518 7.692

WS-PSNR 0.556 0.596 9.938 8.097

CPP-PSNR 0.575 0.632 9.592 7.782

BP-QAVR 0.659 0.680 8.911 7.082

TSMT 0.940 0.932 4.215 3.291

and WaDOQaM-FR are full-reference (FR) 2D IQA methods. BP-QAVR, VR-IQA-NET,
VQA-HMEM, and V-CNN are omnidirectional VQA methods. VR-IQA-NET, VGCN, and
NR-OVQA are NR methods, and the others are FR methods. For methods based on deep
neural networks, we do not retrain the VR-IQA-NET andWaDOQaM-FR on the VQA-ODV
dataset.

Table 1 shows the comparison between the proposed method and the existing objec-
tive VQA methods for omnidirectional VQA performance. In Table 1, our proposed TSMT
method, VGCN, NR-OVQA, and VR-IQA-NET are no-reference methods. VR-IQA-NET is
a method based on the generative adversarial network. We believe that the lack of retraining
is the reason for its lower performance. As shown in Table 1, among the five performance
indicators, our proposed TSMT method achieves the best performance.

Table 2 shows the omnidirectional VQA performance on VR-VQA48. We do not train the
model using the VR-VQA48 dataset, all the images in the VR-VQA48 dataset are used as
testing images. For the experiments on the VR-VQA48 dataset, we use the model trained on
the training set of the VQA-ODV dataset. Since the performance values of other methods are
not available, we only compare our method with four methods on the VR-VQA48 dataset.
As shown in Table 2, our proposed TSMT model achieves the best performance among the
comparison methods, indicating a good generalization capability of our proposed TSMT
model.

4.5 Ablation study

To investigate the effectiveness of our two-stream architecture, we compare the quantitative
performances between the two-steam model and two single-stream models. In Table 3, the
single-stream model B0-R uses the color channel only and the model B0-F only uses the
optical flow channel on the VQA-ODV dataset. As shown in Table 3, model B0-R achieves
better performance than model B0-F. And the two-stream model TSMT achieves the best
performance among these three models, indicating the effectiveness of combining color
information and temporal motion information.

In order to compare the performance of our proposed saliency map fusion method
described in subsection 3.3, in Table 4, we compare the random viewport positioning method

Table 3 Quantitative comparison
single-stream and two-stream
network

PLCC SROCC KROCC RMSE MAE

B0-R 0.8659 0.8446 0.6334 5.8497 4.7213

B0-F 0.8224 0.8083 0.6178 6.6529 5.0012

TSMT 0.8946 0.9011 0.7214 5.2922 4.2443
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Table 4 Quantitative comparison
among different constraints, the
viewpoints produced by different
constraints are used as the inputs
to our proposed TSMT model

PLCC SROCC KROCC RMSE MAE

Random 0.8851 0.8839 0.6819 5.5131 4.4535

Moving object 0.8688 0.8641 0.6674 5.8660 4.5321

Front view 0.8808 0.8874 0.6964 5.6094 4.4294

Low latitude 0.8655 0.8654 0.6594 5.9338 4.6874

TSMT 0.8946 0.9011 0.7214 5.2922 4.2443

(Random), viewport selected using a saliencymap only considering the moving object (Mov-
ing object), viewport selected using a saliency map only considering the front view (Front
view), and viewport selected using a saliency map only considering the low latitude (Low
Latitude). As shown in Table 4, all different viewports achieve reasonably good performance,
but are inferior to our proposed model. The viewports with the front view and the random
viewports achieve better results than the viewports with moving objects and low latitudes.
The viewports that are constrained by the front view achieve the second-best SROCC per-
formance. Our model that selects viewports using a fusion-based saliency map outperforms
all the other models significantly.

Comparison experiments with other viewport selection methods are also carried out, and
the experimental results are shown in Table 5. Specifically, we use the viewport selection
methods in MC360 [29] and VGCN [35] to select the viewports, which serve as input of
our two-stream network. As shown in Table 5, our proposed model outperforms MC360 and
VGCN by large margins.

We also validate the effectiveness of our viewport selectionmethod described in subsection
3.3. Specifically, we compared our viewport selection method with a local saliency search
method and a global saliency searchmethod, and show the experimental results inTable 6. The
local saliency search method always selects the viewport that is locally close to the previous
viewport. While the global saliency search method always selects the viewport globally. As
shown in Table 6, the performance of the proposed TSMT framework is significantly better
than the local method and the global method.

To investigate the long-range temporal information, amodelwith 3Dconvolutional kernels
(Cov3D), some models with mixtures of 2D and 3D convolutional kernels (MCx) are also
experimented and compared. The experimented model with 3D convolutional kernels use
the same architecture as our proposed TSMT, only substituting the 2D convolutional kernels
and pooling layers with 3D convolutional kernels and pooling layers. Since the architecture
needs to be the same for Cov3D, the sequence length after 3D convolution needs to be greater
than 32 so that the temporal dimensions can be continuously halved. We pad the sequence
to meet this requirement, with the sequence length set to 32, and the batch size set to 15.
Unlike EfficientNet, the 3D convolution does not have a trainedmodel, so the 2D convolution

Table 5 Quantitative verification
of the effectiveness of our
viewport selection method

PLCC SROCC KROCC RMSE MAE

MC360 0.7821 0.7953 0.5902 7.3817 5.7793

VGCN 0.8669 0.8547 0.6514 5.9056 4.6961

TSMT 0.8946 0.9011 0.7214 5.2922 4.2443

Compared viewport selection methods include MC360 [29] and VGCN
[35]
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Table 6 Quantitative verification
of the effectiveness of the
saliency map search method

PLCC SROCC KROCC RMSE MAE

Local 0.8583 0.8541 0.6504 6.0777 4.9457

Global 0.8815 0.8804 0.6905 5.5935 4.5147

TSMT 0.8946 0.9011 0.7214 5.2922 4.2443

weights are repeatedly and used as the initial parameters for 3D convolution. The comparison
results are shown Table 7. The score of the model with 3D convolution is lower than that of
2D convolution.

For the models with mixtures of 2D and 3D convolutional kernels, we adopt the MCx
given in the work [31], the 2D convolutional kernels in the first layers were replaced by 3D
convolutional kernels. We experimented with MC1 and MC2, which use 3D convolutional
kernals in the first layer and the first two layers, respecitively. For the input of the models
with MCx , we experimented with sequences with lengths of 5, 10, and 15 frames, which
are donoted as MCx /5, MCx /10, and MCx /15 in Table 7, respectively. As shown in Table 7,
MC2 performed better thanMC1, andMC2/5 achieved the second highest score. As the input
sequence length increased, the performance of the models with MCx decreased. The inferior
performance may be caused by the larger number of parameters and a smaller number of
training samples. On the contray, our proposed TSMT is able to obtain sufficient temporal
information through the optical flow on this dataset and achieves the best performance among
all experimented models.

In summary, our proposed TSMT model outperforms the SOTA omnidirectional VQA
methods. Also, the two-stream network, the saliency map fusion method, and the viewport
selection method are validated to be effective for omnidirectional VQA.

5 Conclusion

In this paper,we propose a two-streammulti-task (TSMT)model to assess the quality of omni-
directional video. In the proposed model, a viewport selection method that uses a saliency
map fuses the low latitude, front view, and moving object regions is proposed. The image
patches and optical flow patches corresponding to the selected viewports are used as the input
to our two-stream network. Optical flow is introduced into the video quality assessment to
explicitly represent the temporal motion information, which is an effective complement to the

Table 7 Quantitative comparison
with models with 3D
convolutional kernels and
mixtures of 2D and 3D
convolutional kernels (MCx)

PLCC SROCC KROCC RMSE MAE

Cov3D 0.5225 0.4984 0.3516 10.0991 8.0502

MC1/5 0.8367 0.8413 0.6317 6.4880 5.6700

MC1/10 0.7357 0.7106 0.5244 8.0227 4.7971

MC1/15 0.7187 0.7132 0.5199 8.2357 5.9622

MC2/5 0.8751 0.8873 0.6964 5.7322 4.4183

MC2/10 0.8468 0.8609 0.6577 6.3015 4.7885

MC2/15 0.8266 0.8464 0.6452 6.7002 4.8122

TSMT 0.8946 0.9011 0.7214 5.2922 4.2443
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color information. Experimental results show that the performance of our proposed TSMT
model outperforms the state-of-the-art omnidirectional VQA methods.
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