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Abstract
In the field of high-resolution tomography, there is currently a notable increase in the vol-
ume of tomographic projections and data produced. Such a context has been demanding
new computational approaches to the process of reconstruction and processing of the result-
ing digital images. This paper presents a new approach to meet such a demand, such as
optimizing the set of tomographic projections for the reconstruction process, parallelizing
algorithm reconstruction, and processing the data in a distributed manner. In this context, a
customized method for the high-resolution tomographic reconstruction of agricultural sam-
ples has been validated. Hence, tomographic projections with greater amounts of information
based on measurements of the spectral density of the projections can be prioritized, and the
reconstructive process parallelization using the known filtered back-projection can be con-
sidered (i.e., distributed data flow and the use of the Apache Spark environment). For the
operation, such an approach based on the big data environment has been organized, that is
considering a cluster installed on the Amazon Web Services platform, whose configuration
has been defined after the evaluation of the speedup and efficiency metrics. The developed
method proved to be useful for carrying out high-resolution tomography analyses of large
quantities of agricultural samples, based on the paradigms of precision agriculture for gains
in sustainability and competitiveness of the production process.
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1 Introduction

The study of computed tomography (CT) applied to agriculture, which began in the early
1980s, focuses on soil science and included investigating the processes of water infiltration
and the properties of density, moisture, and porosity [24]. In Brazil, the first X-ray and γ -
ray minitomograph scanners for soil science applications were built in 1987. This makes
it is possible to measure samples in the laboratory and constitutes an important step in the
development and advancement of the tomography technique in the country. Subsequently,
other tomographs were developed on at millimeter scale, such as portable γ -ray tomography
and Compton scattering tomography [4, 7, 20, 27, 31].

Moreover, other types of agricultural research started using CT to develop their studies
and perform analyses [1, 2, 13, 23]. CT enables non-invasive analysis of the interior of a
body or object and, therefore, an alternative method for evaluating the internal morphology
of agricultural samples. The non-invasive analysis of the interior of the agricultural samples
is possible because CT produces an image of the interior of a body by reconstructing the
projections obtained from X-ray beams that go through a body without damaging it. There-
fore, reconstruction from projections is considered a fundamental step and demands high
computational capacity, in addition to managing a large amount of data [9, 11, 22].

In this context, the term big data can be applied to a large volume of tomographic data
because it represents a new method of handling available data nowadays, which is often
unstructured. Big data can be applied to the increased demand for analyses, as the number of
species and varieties of seeds continues to increase. In addition, it should be noted that big
data techniques have already been used in various agricultural applications, such as in the
process of tomographic reconstruction, in the treatment of information to be reconstructed
three-dimensionally and in the development of new algorithms [3, 6, 12, 17, 19, 26, 34–36].
Therefore, the opportunity to integrate these three areas (e.g., CT, agriculture, and big data)
is intended to allow the reconstruction of tomographic images in a big data environment to
enable a greater number of agricultural analyses. Thus, good quality image reconstruction
should be initially considered using smaller sets of tomographic projections to reduce the
time involved in the reconstruction and allow, a significant increase in the number of analyses
in the same frame. Consequently, new solutions are of interest in the parallelization of the
algorithms involved in reconstruction and in the use of architectures that allow hardware
processing [8, 28, 32]. However, it should be noted that the use of cloud computing clusters
for tomographic reconstruction has not yet been explored.

This study aims to develop a method for two-dimensional (2D) and three-dimensional
(3D) (volumetric) high-tomographic image reconstruction in a parallel and distributed big
data environment that will allow the selection of the most relevant projections to reconstruct
good quality images to allow a greater number of agricultural analyses to be completed in
the same time frame. The main contribution of this study is the distinguished reduction in
the time requested for a high resolution CT image reconstruction based on the projections
selection by its spectrum of energy. In addition, for both 2D and 3D image reconstruction
methods it has been considered the inclusion of parallelization and a framework operating in a
distributed environment. The remainder of this paper proceeds as follows. Section 2 presents
the fundamentals of CT and the power spectral density (PSD) used for the selection of the
projections. Section 3 presents the organization of themethod for tomographic reconstruction
of agricultural samples in a big data environment. Section 4 presents the results and discussion
of this work. Finally, the conclusions are presented in Section 5.
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2 Fundamentals of computed tomography and power spectral density

2.1 Computed tomography andmethods of reconstruction

The main problem of CT is obtaining an image of the object under study from the reconstruc-
tion of projections that were obtained based on transmission. The solution is to reconstruct
an image by obtaining line integrals along straight lines that pass through the object.

The physical model of X-ray attenuation in transmission CT is illustrated in Fig. 1. A
narrow beam represented by a straight L with intensity I (x) comes from the source and
passes through the object, which has a certain attenuation coefficientμ. The detector registers
the remaining intensity of the beam, and this information is used to reconstruct the 2D image
of the object [14, 16, 25].

From the physical model, the following (1) can be obtained, known as the Lambert-Beer
equation, which expresses the amount of exponentially attenuated X-rays along straight L .

I = I0 exp

(
−

∫
L

μ(x)dx

)
(1)

For tomographic reconstruction purposes, the variation of this attenuation should be mea-
sured along the straight L , which can be obtained using the following (2).

p(L) =
∫
L

μ(x)dx = − ln

(
I

I0

)
(2)

From this equation, a reconstructionmethod is obtained by the radon transform, to discover
a function f : R

2 → R from all line integrals in a previously determined domain. In CT, it
is used to determine the distribution of attenuation μ(x) which corresponds to the density of
the object under study. Therefore, the problem is considered an inverse problem because it
seeks to find the attenuation coefficient from the available data, that is, from I and I0.

One approach to understanding the process of tomographic reconstruction is to consider an
X-ray beamas a straight line from the source to the detector. This set (i.e., source and detector)
is rotated by an angle θ ∈ [0, 2π) so that the entire object is scanned in the plane at one fixed
position z. Figure 2 presents a schematic diagram of a parallel projection, highlighting the
distance t . Evidently, a projection is a set of line integrals, represented by Pθ (t), considering
the same cross-section or position in the z-axis, as well as the same angle θ of the set (i.e.,
source and detector) in relation to the fixed coordinates (x, y).

In practice, it is ideal if the linear attenuation coefficient values are given as a result of
fixed coordinates (x, y), which is possible using the relation between the polar and Cartesian
coordinates. Therefore, the perpendicular distance from the origin to line L (X-ray beam)
can be determined using the following (3):

t = x cos(θ) + y sin(θ). (3)

Fig. 1 Physical model of X-ray attenuation
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Fig. 2 Schematic diagram of a parallel projection

Thus, Pθ (t) is based on ε inwhich angle θ determines the inclination of the ε-axis concern-
ing the horizontal line, and the integral of the function is made on a straight line perpendicular
to this axis. Further, scanning the entire interval θ ∈ [0, 2π) is unnecessary, but only the inter-
val θ ∈ [0, π) to avoid data redundancy.

Because, computationally, infinite line integrals cannot be obtained, the cross-section,
can be represented at a certain angle, making use of the Dirac delta function, which has the
sampling property. Equation (3) in the 2D case, can be rewritten as

Pθ (t) =
∫ ∞

−∞

∫ ∞

−∞
μ(x, y)δ(x cos θ + y sin θ − t)dxdy. (4)

Equation (4) is known as theRadon transform,Rθμ(t) = Pθ (t). Therefore, the problemof
reconstructing an image consists of determiningμ(x, y) fromRθμ(t). The Radon transform
maps the space domain (x , y) in the domain (t , θ ), where each point in space (t , θ ) corresponds
to a line in space (x , y).

The Radon inverse transform,R−1, is used to reconstruct μ and can be obtained through
the Fourier slice theorem, or the central slice theorem, which relates the projections of the
Radon transformation to the Fourier transform.

2.2 Power spectral density

The PSD of a signal is often solved by estimating the autocorrelation function with the
available data, which is applied after the Fourier transform to obtain the desired spectral
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description. However, different approaches are available to perform spectral estimation that
can be classified as parametric or non-parametric methods.

The first type is generally simpler to calculate, but it requires a priori knowledge signal,
whereas the second type assumes no particular structure behind the available data [10, 21].

Given a random signal in the time domain, X (t), it is assumed that it is sampled over
a finite time interval (−T /2, T /2) and is denoted by XT (t). When applying the Fourier
transform, we obtain:

X̃T ( f ) = F{XT (t)} =
∫ ∞

−∞
XT (t)e−2π j f t dt =

∫ T /2

−T /2
X (t)e−2π j f t dt (5)

From (5), we obtain the module and argument of X̃T the amplitude spectrum and phase
spectrum, respectively. The spectral energy density, is calculated from X̃T using the expected
value of the square of the amplitude spectrum, as indicated in the (6):

E( f ) = E{|X̃T ( f )|2} (6)

It is observed that E( f ) tends to infinity when T tends to infinity. Therefore, dividing
(6) by the interval of T limits the growth and provides the density of the power spectrum
expressed by (7), which is real and not negative. This definition is valid and exists for all
stationary processes with zero mean and finite variance. For agricultural tomography, the
samples to be tested are moved to the tomographic table. They remain stationary during the
projection acquisition process so that this theory can be used [5]. Additionally, as the Poisson
noise is a priority in the tomographic process, it is also considered that stationary behavior
will be exhibited throughout the tomographic process.

S( f ) = lim
T→∞ E

{
1

T

∣∣∣∣
∫ T /2

−T /2
X (t)e−2π j f t dt

∣∣∣∣
2
}

(7)

In the discrete case, considering the sequence x[n], we obtain (8), where Ŝ is the estimator
per periodogram. This is equivalent to applying a rectangular window over to interval 0 ≤
n ≤ (T − 1) of sequence x[n] to square the Fourier transform module of the truncated
sequence and normalizes the result by a factor T to obtain a measure of PSDs.

Ŝ(e j f ) = 1

T

∣∣∣∣
T−1∑
n=0

x[n]e− j f n
∣∣∣∣
2

(8)

Based on the spectral density of each tomographic projection present in a considered
sinogram, the energy of each projection was evaluated to try to identify those that have a
more relevant set of information to obtain the tomographic reconstruction in two dimensions.
In this context, information on the spectral density of each tomographic projection can be
obtained by considering the power spectrum related to it.

When considering signal s = s(t), continuous in time, as a function that represents a
random signal and S = S(ω), a function representing the periodogram of this signal, it is
possible to decompose S as follows:

S = Sr + j Si , (9)

where Sr and Si are the real and imaginary parts, respectively, and j = √−1. This equation
can still be written in polar form as follows:

S = |S|e jθ(p). (10)
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Therefore, the amplitudes in the spectrum translated by (10) can be given by:

|S| =
√
S2r + S2i . (11)

Hence, (8) can be considered when working with an X-ray tomographic projection, which
is represented as a sequence s[n], as the signal is discrete; that is,

Ŝ(e j f ) = 1

M

∣∣∣∣
M−1∑
n=0

s[n]e− j f n
∣∣∣∣
2

, (12)

where n is in the interval 0 ≤ n ≤ (M − 1) and represents the number of samples in the
sequence s[n].

3 Materials andmethods

Figure 3 presents the block diagram that illustrates the overview of the method developed for
the 2D and 3D (volumetric) reconstruction of tomographic images of agricultural samples in
big data environment.

The samples obtained using agricultural tomographs were projections that were inserted
and stored in a big data environment, which is represented by the dashed line. The process
consisted of selecting the projections that used spectral density to evaluate the associated
energy in each tomographic projection to select those that had more relevant information.
Subsequently, 2Dand3Dparallel reconstruction stepswere performed, andfinally, the images
were made available for viewing.

3.1 Big data environment

The organization of the big data environment was considered from two perspectives: infras-
tructure and application. These two perspectives are built using a technology stack. Figure 4

Agricultural
tomographs

Label and
store

Projec�on
dataset

projec�on matrices
( samplei )

Energy based
selec�on

Selected
projec�ons
( samplei )

Parallel 2D 
reconstruc�on

Parallel volumetric
3D reconstruc�on

Reconstructed
tomographic

images

2D 
visualiza�on

3D 
visualiza�on

Method for reconstruc�ng tomographic images
in a Big Data environment

Heterogeneous and
Homogeneous

Phantoms

Fig. 3 Block diagram of the method of reconstruction of tomographic images in big data environment for the
analysis of agricultural samples
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Fig. 4 Technology stack used for the organization of the big data environment

illustrates the technology stack used in the organization of the big data environment for
this work and emphasizes, through the dashed lines, the cluster representing the infrastruc-
ture, and the method of reconstruction of the tomographic images, developed using Python
language.

Table 1 presents the technologies used for the organization of the big data environment
and the respective versions installed and configured to compose the environment.

When observing the technology stack, the first layer refers to data storage using Amazon’s
distributed file system technology,S3. The platformAmazonElasticMapReduce (EMR)made
it possible to structure the cluster where the computers, or cluster nodes, are instances of the
Amazon Elastic Compute Cloud (EC2). Table 2 presents the instance types that were used
to evaluate the prepared environment for the correct operation of the developed method.

The use of homogeneous clusters, which are organized using the same machine configu-
ration, should be highlighted. Thus, for evaluation purposes, the number of instances from
each developed model can be used.

Table 1 Versions of the
technologies used in the
organization of the big data
environment

Technology Version

PySpark 2.4.2

Numpy 1.16.4

MRJob 0.6.9

Apache Spark 2.4.2

AWS EMR emr-5.24.0

Apache Hadoop YARN 2.8.5

Java (OpenJDK) 1.8.0_201

Python 3.7.6
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Table 2 Types of the instances
used in the composition of the
cluster

Model vCPU Memory (GiB)

m5.xlarge 4 16

m5.2xlarge 8 32

m5.4xlarge 16 64

From the perspective of the application, the layer of the library MRJob1 was responsible
for integrating applications written in Python with various cloud computing services, such
as those offered by Amazon.

The reconstructionmethod of 2D and 3D tomographic images (volumetric) represented by
the last layer in Fig. 4 was written using Python language, with a module called ctrecon,
and several libraries that are represented in the penultimate layer, such as PySpark2 and,
Numpy3, as well as several auxiliary libraries represented by the block utils.

3.2 Tomographic projection selectionmodel

The model for the selection of the tomographic projections, developed in this work, is based
on (12), where the energies of the tomographic projections contained in a sinogram can be
calculated from the PSD.

From the calculation of tomographic projections and the number of projections are con-
tained in the sinogram in question, (13) is used to determine the number of classes contained
in this set of energies.

k = �√N�, (13)

where N represents the number of tomographic projections contained in a sinogram. The
floor function, denoted by �x�, converts a real number x in the higher whole number less
than or equal to x , which in this case refers to the number of classes that will be defined for
the sinogram considered.

In this context, the set of tomographic projections that compose a sinogram is understood
to be a set of energies E = {Ŝ0, Ŝ1, Ŝ2, . . . , ŜN−1}, in which each energy Ŝi , where i =
0, 1, 2, . . . , N − 1, represents a projection.

From the set of energies, the classes are defined to make the set of classes CT =
{C0,C1,C2, . . . ,Ck−1}, where a particular C j , where j = 0, 1, . . . , k − 1, represents a
subset of the energies contained in the whole E .

The interval �, of energies associated with each class, is expressed using (14), which
considers the greater and lesser energy found in the set of energies E , as well as the number
of classes defined using (13).

� = max E − min E

k
(14)

1 https://github.com/Yelp/mrjob
2 https://spark.apache.org/docs/latest/api/python/index.html
3 https://numpy.org/
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Therefore, each class has an initial energy ei , and a final energy, e f , so thatC j = [ei, e f [.
The initial energy of a class is given by (15).

ei j =
{
min E se j = 0,

e f j−1 c.c.
(15)

The final energy of a class is given by (16)

e f j =
{
ei j + � se j < (k − 1),

max E c.c.
(16)

After defining the energy classes and intervals, the tomographic projections were clas-
sified according to their energy values. A Gaussian distribution was considered during the
development of the model. In this context, the classes are following this distribution model.
Therefore, after the classification of the projections, the averages (μ0, μ1, . . . , μk−1) and
standard deviation (σ ) of each class were calculated.

Figure 5 illustrates a conceptual representation of the energy classes, as well. Classes C j

and the initial and final energies and the Gaussian distribution associated with each class.
The hatched region indicates the region where the most significant projections of each class
were identified.

Therefore, the selection criterion consisted of choosing the most significant probabilities
within each energy class, which translated to the tomographic projections that presented
the largest amount of information. Shannon showed that information can be quantified and,
the amount of information is related to probability [29, 30, 33]. Therefore, projections that
contained energy within the range of a standard deviation ([−σ, σ ]) in each class were
considered significant, leading to the formation of the sets Csel

j , to j = 0, 1, . . . , k − 1,
which contained the selected projections for each energy range associated with the classes.

Energies

μ0-σ σ

μ1-σ σ

μ2-σ σ

min maxC0 C1 C2 Ck-1. . .
ei0 ef0 = ei1 ef1 = ei2 ef2 = ei3 efk-2 = eik-1 efk-1

. . .

μk-1-σ σ

C0

C1

C2

Ck-1

sel

sel

sel

sel

Fig. 5 Conceptual representation of energy classes considering the Gaussian distribution in each class. The
hatched region corresponds to the region of each class where the most significant projections are found
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Next, the tomographic projections identified as more significant in each class, based on
the energy information, were grouped to form a new sinogram composed of a smaller number
of projections in relation to the original sinogram.

The new sinogram refers to F = {Csel
0 ,Csel

1 , . . . ,Csel
k−1}. In addition, the tomographic

projections contained in the new sinogram were organized according to the angle at which
they were acquired to prepare for the reconstruction stage in two dimensions.

3.3 Reconstruction algorithm from the selected projections

Algorithm 1, implemented in Python language, was executed in the big data environment
prepared in this study, to perform tomographic reconstruction from the previously selected
projections.

The algorithmwas structured in three main steps: (i) selection of tomographic projections,
(ii) 2D reconstruction, and (iii) 3D reconstruction (volumetric). After reading the projection
matrices (set M), the distribution of the matrices to the nodes of the cluster was determined.
Subsequently, the projections are selected in a distributed manner, in which each node is
responsible for processing a subset of projection matrices. Figure 6 shows the tomographic
projection selection process.

The second stage of the algorithm consists of 2D tomographic reconstructions of the
matrices with the selected projections of the previous stage. The reconstruction was per-
formed using the FBP algorithm, which is based on the Fourier slice theorem. After filtering
the projections that compose the matrix si , the process of reconstruction was initiated, and
interpolation in the domain of space was conducted. Subsequently, the back-projection stage

Projec�on
matrix S

(sinogram)

List of
energies

Organiza�on of
projec�ons by
energy classes

PN

p2
p1

Projec�on
selec�on

New projec�on
matrix S’

Selec�on of tomografic projec�ons based on spectral density

Reconstructed image
from selected projec�ons

En
er

gy
 cl

as
se

s

Energy

p2

Fig. 6 Selection of tomographic projections applied to a phantom sinogram
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Algorithm 1: Tomographic Reconstruction Method in a Big Data environment
Input : Set of projection matrices M = {m1,m2, . . . ,mN }
Output : Reconstructed volume V

1
2 distribute M to cluster nodes

3
4 selects projections in the matrices of the M set and produces the S set
5 S ← ∅

6 foreach mi ∈ M that is in a cluster node, do
7 liste ← evaluteEnergy(mi)
8 Fi ← ∅

9 k ← �√N�
10 � ← �(max(liste) − min(liste)) ÷ k�
11 CT ← generateClasses(liste, �, k)

12 for each C j ∈ CT do
13 μ j ← compute class average C j
14 σ ← compute class standard desviation C j

15 Csel
j ← class projections C j with σ ≤ 1

16 Fi ← add Csel
j

17 end
18 S ← Fi // adds the new sinogram to set S
19 end

20 performs 2D reconstruction
21 foreach Fi ∈ S that is in a cluster node, do
22 Ii ← ∅ // reconstructed image
23 for each Pθ ∈ Fi do
24 Pf iltrada ← filter(Pθ)
25 tmp ← interpolate(Pf iltered)
26 Ii ← Ii+ tmp
27 end
28 end
29 performs 3D reconstruction (volumetric)
30 foreach Ii that is in a cluster node, do
31 split in ( id-region, (section, tile) )
32 end

33 collect tiles por id-region forming blocks

34 foreach block that is in a cluster node, do
35 vi ← bspline(block)
36 V ← vi
37 end

was responsible for the sum of the filtered and interpolated projections to compute the con-
tribution of each projection in the pixel of the reconstructed image Ii , which can also be
referred to as a slice.

The volumetric reconstruction stage developed in this study used the reconstructed slices
(I ) and added virtual slices, generated using B-spline interpolation, to produce the final
volume. The sliceswere stacked, and for each position, a set of pointswas formed,whichwere
interpolated to generate a set of voxels that composed the final volume. The parallelization
strategy adopted in this study consisted of dividing the slices into small regions (tiles) and
applying the interpolation process to a subset of points. Figure 7 presents a block diagram of
parallel volumetric reconstruction.
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Fig. 7 Block diagram of parallel volumetric reconstruction considering an example of the processing of a
phantom

The first phase consisted of dividing each slice into regions or tiles. One region received
an identification necessary for the final volume reconstruction. Each slice was divided into
rows and columns, where identifiers were used to identify a certain region, as illustrated in
Fig. 8.

The identifier (id-region)was formed by eight characters,where the first four indicated
the row and the others indicated the column. In addition to the identifier, it was necessary
to include the section (position of z-axis) and the set of pixels associated with the region.
Therefore, a region was registered in the big data environment in the following format:
(<id-region>, (<section>, <tile>)). The format is a tuple, where the first value
is the region identifier and the second value is a new tuple containing the section and set of
pixels. The next phase of volumetric reconstruction consisted of an intermediate reduction
operation responsible for grouping the regions by an identifier so that each subset contained
all the slices of a given region. Subsequently, B-spline interpolation was performed for each

0 1 2 3

0

1

2

3

“00020001”

Fig. 8 Identification of a region (tile) in a slice. The region and its identifier are composed of eight characters
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Table 3 SkyScan 1172
tomograph parameter values were
adjusted for acquisition of
phantom projections and seed
samples

Parameter Value

Number of files 976 (.tif)

Number of sections 2096

Rotation step (degrees) 0.20

Time of exposure 790 ms

Rotation interval 0◦ a 180◦
Rotation step 0.500

Image pixel size 8.54μm

Source voltage 100kV

Source current 100μA

First section 68

Last section 1968

Reconstruction angular range (degrees) 195.20

subset. Finally, in the last phase, data were made available for 3D viewing. Considering that
in this study, visualization was planned to be performed outside of the big data environment,
the final data of the volumetric reconstruction were saved in files for later use.

3.4 Experimental evaluation

For the evaluation of the developed method, a heterogeneous plexiglass phantom sample was
prepared, each with nine holes4 and 100mm diameter and 150mm in height.

Additionally, in this study, samples of seven types of seeds were used: peanut (Arachis
hypogaea), cowpea (Vigna unguiculata), sunflower (Helianthus annuus), chickpea (Cicer
arietinum), wheat (Triticum), pumpkin (Cucurbita) and soybean (Glycine max).

The acquisition of the seed sample projection matrices and phantom projection matrices
was performed using the SkyScan 1172 tomograph. To achieve this, equipment should be
adjusted to use the same configuration for both the samples and phantom. Table 3 presents
the values of the parameters adjusted in the tomograph for the projection acquisition.

Five samples were prepared for each type of seed, except for cowpea and peanut, where
four samples were prepared, totaling 33 samples. The samples were scanned in the range
of 0◦ − 195.2◦ with an angular pitch of 0.2◦. Therefore, a matrix of projections of a slice
contained 976 projections and 2000 points per projection. Each projection point had 2 bytes,
so a sample corresponded to 1960 × 2000 × 976 × 2 ≈ 7.13 GB. In addition to the 33
samples, a phantom was prepared with the same settings as the seeds; therefore 34 samples
were used, totaling 66, 640 tomographic projections. Each sample was 7.13 GB, making a
total of approximately 242 GB of analyzed tomographic data.

The analysis of the selection of projections consisted of calculating the structural similarity
index measure (SSIM) and peak signal-to-noise ratio (PSNR). For each calculated metric,
the maximum, minimum, and median measurements were observed. The reference image
(ground truth) for each analyzed slice was prepared from 2D tomographic reconstruction
considering the 976 projections. In addition, a region of interest (ROI) was defined with
dimensions of 1200 × 1200 pixels, positioned at the center of the reconstructed images,
which provided the data for the analysis of the measurements.

4 The diameters of the holes were: 3.00, 4.00, 4.60, 7.40, 8.60, 11.13, 13.70, 24.00 and 34.55mm
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Each sample contained 1960 slices; for the calculation of the metrics, a subset of the total
slices was selected, considering a confidence interval of 99%, margin of error of 5%, and
proportion p = 0.50, as no a priori information on the slices was observed. Therefore, 498
projection matrices on each seed sample were used to analyze the selection of tomographic
projections.

The SSIM index, given by the (17), considers image degradation as a perceived change in
structural informationwhile incorporating phenomena such as luminance and contrast. Struc-
tural information consists of the idea that pixels have a strong interdependence, especially
when they are spatially close. These dependencies provide important information about the
structures of the objects in the scene.

SSI M(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
, (17)

where x and y are the original and resulting images, respectively; μx is the average of x ; μy

is the average of y; σ 2
x is the variance of x ; σ 2

y is the variance of y; σxy is the covariance of
x and y; c1 = (k1L)2 and c2 = (k2L)2 are variables that stabilize the division, with L being
the range of pixel values (often 2bits − 1), and k1 = 0.01 and k2 = 0.03, respectively.

The PSNR measure, given by (18), is based on the signal-to-noise ratio, which is an
estimate of the reconstructed image compared to the original image.

PSN R(x, y) = 10 log
s2

MSE(x, y)
, (18)

where s = 255 for images with 256 gray levels and the MSE measure (mean squared error),
given by the (19), is computed as the average of the squared intensity between the original
and resulting images, both of size MXN .

MSE(x, y) = 1

MN

N−1∑
n=0

M−1∑
m=0

e(n,m)2, (19)

where e(m, n) is the difference between the original and the resulting image.
To evaluate the parallel environment, the speedup metric was used, that is, calculated by

the (20), which determines the increase in speed by the execution of a program when using
p processors, in relation to its sequential execution using a single processor. In the equation,
Tseq and Tpar are the sequential and parallel times, respectively, to execute the same program.

Sp = Tseq
Tpar

(20)

Another measure was used to evaluate the big data environment namely efficiency, whose
value is obtained using (21).

Ep = Sp
p

(21)

The efficiency measure evaluates howmuch parallelism is explored in an algorithm, and it
quantifies the processor utilization. Generally, the measurement value is in the interval [0, 1)
and the closer to 1 the value of Ep the greater the efficiency. Generally, themeasurement value
is in the interval [0,1), because a superlinear speedup may occur during parallel processing
[15, 18].
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4 Results and discussions

This section presents the results obtained in the process of selecting projections based on
spectral density, as well as the 3D (volumetric) visualization of agricultural seed samples.

4.1 Infrastructure analysis for the tomographic reconstructionmethod based on big
data

We sought to evaluate the most appropriate cluster configuration for the analysis of big data.
In fact, we have considered the evaluation not only for 2D but also for volumetric (3D)
tomographic reconstruction methods. In this sense, the following aspects were considered:

1. Number of cluster nodes: Four types of clusters were organized, each containing a
certain number of nodes. The aim was to evaluate the operation of the method in the
cluster as a function of the number of machines used. It is noteworthy that out of all
of the nodes, for all types, one node has been configured as a master and the others as
workers. In such an analysis, four types of clusters were considered (i.e., each of them
having 4, 6, 8, and 10 nodes, respectively).

2. Cluster nodes’ model: Three machine configurations were selected to compose the
cluster, as presented in Table 2. Table 4 presents the cluster capacities as a function
of the number of vCPUs and RAM memory capacity. In addition, to make it easier to
understand, the individual configurations of each node model are presented.

Table 4 shows the cluster configuration, where 12 different configurations were evaluated,
that is, from the smallest capacity containing 16 vCPU and 64 GB of RAM memory to the
largest capacity configuration, with 180 vCPU and 640 GB of RAM memory. In this study,
note that the strategy adopted for the parallelization of the two-dimensional reconstruction
considers the distribution of the tomographic projection matrices by the nodes of the cluster
so that the granularitywas considered in terms of average levels. This is because the algorithm
has only divided the total volume of the matrices related to the tomographic projections.

The results obtained from the measurements of both speedup and efficiency are presented
below. They have allowed the definition of the most appropriate cluster configuration for
high-resolution agricultural tomographic reconstruction based on the big data method.

4.2 Speedup assessment

As discussed previously, the Speedup calculation is based on the sequential operation time
to the parallel operation time ratio. Therefore, for the evaluation and analysis, a set of tomo-
graphic projection matrices, with dimensions equal to 976 × 2000 (2k), was submitted to

Table 4 Cluster’s capacity is a function of the number of nodes, and the individual configuration of each node
model

Node configuration Cluster capacity (vCPU/Memory)
Model vCPU Memory 4 nodes 6 nodes 8 nodes 10 nodes

m5.xlarge 4 16 GB 16/64 24/96 32/128 40/160

m5.2xlarge 8 32 GB 32/128 48/192 64/256 80/320

m5.4xlarge 16 64 GB 64/256 96/384 128/512 160/640
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Table 5 Sequential time evaluation for tomographic reconstruction - (2D) and volumetric (3D)

Model 2h Reconstruction Volumetric Reconstruction 3D Total

m5.xlarge 31h 41min 8h 52min 40h 33min

m5.2xlarge 31h 23min 8h 32min 39h 55min

m5.4xlarge 31h 05min 8h 29min 39h 34min

a single machine, considering each of the models indicated in Table 4. The results of the
sequential time obtained for both 2D and volumetric (3D) tomographic reconstruction are
shown in Table 5.

Figures 9 and 10 are shown respectively the evaluation of the speedup measurements for
a set of 2D and 3D reconstructions, both calculated from the results presented in Table 5.

The clusters that used m5.4xlarge machines delivered higher speedup values owing to the
larger number of processors (vCPU) and the amount of available RAM memory. Clearly,
the Speedup for clusters that used m5.xlarge and m5.2xlarge machines could produce better
results, mainly for volumetric reconstruction (3D). The reason for this is associated with the
fact that, after rebuilding the volume, the algorithm developed saves the data on disk directly
from the worker nodes, rather than sending it to the master node, therefore reducing the
communication time.

From the perspective of analyzing the big data infrastructure, it is noteworthy that results
have illustrated fast reconstruction from tomographic sinograms when considering a total of
1960 high-resolution tomographic projections and even when considering complete matrices
from tomographs. In fact, the described method has proved to be adequate, as it has become
possible to consider the assessment of a large number of analyses. This allows for the greatest
demand for tomographic evaluation based on less time consumption. Next, the efficiency
measurements are discussed to analyze the operation of the method as a function of the
cluster configuration.
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Fig. 9 Speedup evaluation for a set of 2D reconstructions
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Fig. 10 Speedup evaluation for a set of volumetric (3D) reconstructions

4.3 Efficiency assessment

As mentioned previously, the measurement of efficiency consists of the speedup to the num-
ber of processors ratio, as well as a result that allows the evaluation related to how much
parallelism can be explored in an algorithm, as well as for quantifying the use of each pro-
cessor.

Figure 11 shows the resulting evaluation of the efficiency related to the 2D tomographic
reconstruction. In such a plot, clusters with m5.4xlarge machines and 10 nodes showed a
better efficiency, as expected.

Figure 12 shows the resulting evaluation of the efficiency related to the volumetric (3D)
tomographic reconstruction. In such a plot, the cluster with six m5.4xlarge machines and six
nodes has the highest efficiency when compared to the other evaluated configurations. This
also includes the clusters with machines that operate based on the same model, but with a
larger number of nodes. Such a result may also affect the final processing cost.

Furthermore, by considering the processing cost of each machine in the cluster, it was
possible to observe the sequential processing of the parallel processing cost ratio. Table 6
presents the cost in US dollars per hour as a function of the machine model configuration
used for processing.

It can be observed in Table 7 that the cluster configuration with six nodes, that is, based
on the m5.4xlarge model, presented better sequential processing to parallel processing ratio
in terms of cost. In fact, in the 2D tomographic reconstruction, the parallel processing was

Table 6 Processing cost in US
dollars (USD)

Model Cost/hour (USD)

m5.xlarge 0.192

m5.2xlarge 0.384

m5.4xlarge 0.768
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Table 7 Cost ratio between sequential and parallel processing for both 2D and volumetric (3D) tomographic
reconstructions

4 nodes 6 nodes 8 nodes 10 nodes
Model 2D 3D 2D 3D 2D 3D 2D 3D

m5.xlarge 1.25 7.09 1.51 6.65 1.40 7.60 2.40 7.39

m5.2xlarge 2.27 11.37 4.33 11.37 4.56 12.19 3.87 9.48

m5.4xlarge 9.87 28.29 11.31 33.95 9.52 24.25 11.52 28.29

11 times more than in sequential processing. Similarly, for volumetric (3D) tomographic
reconstruction, parallel processing has been proven superior, that is, in this case, in the order
of 33 times, when compared to sequential processing. For this reason, it was decided the
cluster with six nodes based on the m5.4xlarge model (one master node and five workers
nodes), was to be used not only to process the experimental samples but also to evaluate the
selection process of their tomographic projections.

In order to have a comparative analysis of the developed method in relation to a
commercially available algorithm for 2D tomographic reconstruction, it has been consid-
ered projection matrices containing 976 projections with 2,000 points per projection, i.e.,
from one heterogeneous phantom, as presented in Section 3.4. For such a comparison all
the tomographic projections have been considered and then tomographic reconstructions
based on both the SkyScan 1172’s software that uses the FDK algorithm (Feldkamp-
Davis-Kress) and the developed method were carried out. Figure 13 presents the result
for the comparative study in which the developed method took an average of 1.07s
to reconstruct a slice, while the SkyScan 1172’s software took an average of 4.00s to
reconstruct the same slice, i.e., having the same dimension and number of tomographic
projections.
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Fig. 11 Efficiency evaluation for 2D tomographic reconstruction
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Fig. 12 Efficiency evaluation for 3D tomographic reconstruction (volumetric)

After the analyses, it was observed that the processing time for tomographic reconstruction
in a big data environment was approximately 35 min, that is when considering the 1960
sinograms. This corresponds to a total of 1,912,960 projections or 7.13 GB of data. This
processing time includes the loading of the projections in the environment, the selection of
the projections in the sinograms, and 2D and volumetric (3D) reconstructions.

Fig. 13 Time comparison between the 2D tomographic reconstruction of the SkyScan 1172 software and the
method proposed in this study
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Table 8 Minimum, median, and
maximum SSIM values
calculated for the phantom

Value Slice SSIM Selection

Minimum 728 0.774 61.78%

Median 1276 0.813 62.50%

Maximum 988 0.931 63.83%

4.4 Structural similarity assessment

The SSIM was observed, which allowed the structural information of the reconstructed
images to be evaluated from a subset of projections. This allowed the quality of the 2D
reconstruction to be verified by reducing the amount of data. The closer one gets to 1 in the
value of the SSIM, the more identical the reconstructed image, and the fewer the projections
in relation to the reconstructed image with all available projections.

Initially, the analysis of the SSIM for the phantom was performed considering 498 slices,
chosen according to the above strategy. Table 8 presents theminimum,median, andmaximum
values of the SSIM and indicates the slice and selection rate of the projections.

The selection rate was 62.50% for an SSIM of 0.813. With a reduction of 37.50% from
the initial data set, it was still possible to obtain an SSIM value of approximately 0.800.

Figure 14 presents the reconstructed images of the slices mentioned in Table 8. It can be
observed that the main information of the slices was preserved even with the reduction of the
number of projections.

The first analyzed data set refers to cowpea seeds, whose SSIM values are reported in
Table 9.

Figure 15 shows reconstructed images of the slices of an analyzed sample of cowpeas.
In the cowpea samples, the highest selection rate (82.27%) resulted in the highest SSIM

value (0.947), whereas the lowest selection rate (49.59%) did not produce the lowest SSIM
value. In this case, it is observed that the slice that obtained the lowest SSIM value (0.687)
presented a selection rate of projections of 61.27%, which is identical to the selection rates
of the slices whose SSIM values correspond to the median of each set.

Table 10 presents the values obtained from the SSIM, as well as the selection rate of the
projections of the second set of sunflower seed samples.

In the sunflower seed samples, it was observed that the reconstructed image of slice 1368
obtained an SSIM value of 0.910, with a projection selection rate of 65.98%. It is interesting

Fig. 14 Slices of phantom that represent the minimum, median and maximum values of the SSIM measure.
All images are represented by the gray scale ranging from 0 to 255

123



Multimedia Tools and Applications (2024) 83:10115–10146 10135

Table 9 Evaluation of tomographic images of cowpea samples: minimum, median, maximum SSIM values,
and rate of projection selection (Sel.) of the analyzed samples

Minimum Median Maximum
Sample Slice SSIM Sel. Slice SSIM Sel. Slice SSIM Sel.

06 1696 0.687 61.27% 1152 0.854 69.47% 700 0.947 82.27%

07 1924 0.753 57.89% 1256 0.828 66.70% 484 0.922 71.31%

08 444 0.702 49.59% 1080 0.809 61.68% 832 0.893 68.24%

09 360 0.789 62.19% 876 0.846 69.26% 1580 0.928 72.23%

Fig. 15 Tomographic images of a sample of cowpeas corresponding to the reconstructed slices, where the
SSIM values observed were minimum, median, and maximum. All images are represented by a grayscale
ranging from 0 to 255

Table 10 Results for the evaluation of tomographic images of sunflower samples. Minimum, median, maxi-
mum SSIM values, and rate of projection selection (Sel.) of the analyzed samples

Minimum Median Maximum
Sample Slice SSIM Sel. Slice SSIM Sel. Slice SSIM Sel.

10 268 0.745 58.20% 620 0.854 71.62% 1236 0.928 77.05%

11 1656 0.773 71.72% 704 0.854 68.65% 1708 0.922 75.72%

12 1856 0.734 73.98% 500 0.840 58.71% 1020 0.933 83.20%

13 1284 0.746 59.12% 680 0.848 65.06% 1328 0.923 77.25%

14 520 0.735 53.38% 1156 0.822 66.60% 1368 0.910 65.98%

Fig. 16 Tomographic images of a sample of sunflower corresponding to the reconstructed slices, where the
SSIM values observed were minimum, median, and maximum. All images are represented by a grayscale
ranging from 0 to 255
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Table 11 Evaluation of tomographic images of chickpea samples: minimum,median, maximumSSIM values,
and rate of projection selection (Sel.) of the analyzed samples

Minimum Median Maximum
Sample Slice SSIM Sel. Slice SSIM Sel. Slice SSIM Sel.

15 1296 0.760 56.97% 968 0.832 65.27% 652 0.914 69.26%

16 1868 0.744 54.30% 700 0.809 61.58% 1324 0.902 71.31%

17 188 0.752 58.50% 140 0.817 59.12% 488 0.876 69.77%

18 1464 0.744 54.82% 112 0.831 64.45% 1056 0.922 70.90%

19 320 0.746 59.22% 176 0.828 64.86% 1836 0.897 69.47%

to note that slice 1020 obtained the highest SSIM value from the sample set, but selected 21%
of slice 1368 to obtain a higher SSIM value of 2.5%. In contrast, the reconstructed image
that obtained the lowest SSIM value (0.734) selected more projections (73.98%). It is also
worth noting that slice 500 selected less than 60% and obtained an SSIM value greater than
0.800.

Figure 16 presents the reconstructed images of the slices of an analyzed sample of sun-
flower.

Table 11 presents the SSIMand the rate of selection of the projections of the set of chickpea
seed samples.

In the chickpea sample group, the SSIM values were higher than 0.700 with selection
rates between 54.30% and 71.31%. In the case of the lowest selection rate (54.30%), 530
projections which produced an SSIM value of 0.744 were selected. In contrast, the highest
selection rate in the group (71.31%) obtained an SSIM of 0.902, that is, an SSIM value of
21.23% higher than the lowest selection rate using 31.32% more projections.

In this group, by increasing the selection rate even higher than 30%, a gain in SSIM of
more than 20%was observed when the selection rate was increased to more than 30%, which
can be understood as an expressive result. Figure 17 presents reconstructed images of the
slices of an analyzed chickpea sample.

Table 12 presents the values obtained from the SSIM and, the selection rate of the projec-
tions from the set of wheat seed samples.

The wheat seed sample set showed higher selection rates than the chickpea samples, with
the highest selection rate being 74.90%. In contrast, an SSIM value of 0.912 was observed

Fig. 17 Tomographic images of a sample of chickpeas corresponding to the reconstructed slices, where the
SSIM values observed were minimum, median, and maximum. All images are represented by a grayscale
ranging from 0 to 255
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Table 12 Results of the evaluation of tomographic images of wheat samples: minimum, median, maximum
SSIM values, and rate of projection selection (Sel.) of the analyzed samples

Minimum Median Maximum
Sample Slice SSIM Sel. Slice SSIM Sel. Slice SSIM Sel.

20 340 0.757 63.63% 636 0.859 71.31% 856 0.926 74.08%

21 1356 0.754 51.84% 148 0.821 62.81% 468 0.897 74.90%

22 324 0.751 57.07% 664 0.818 63.63% 1492 0.912 63.11%

23 1336 0.743 51.84% 264 0.819 57.17% 1784 0.910 68.14%

24 328 0.775 58.09% 552 0.832 65.98% 1784 0.906 71.31%

with 63.11% of the selected projections. In the median column, it was possible to observe
that slice 264 obtained an SSIM value of 0.819 with a selection rate lower than 60%.

Figure 18 presents reconstructed images of the slices of an analyzed wheat sample.
The next set consisted of pumpkin seed samples. Table 13 presents the values obtained

from the SSIM, and the selection rate of the projections.
Figure 19 presents reconstructed images of the slices of an analyzed pumpkin sample.
Table 13 shows that all slices obtained an SSIM value higher than 0.750. Table 14 presents

the values obtained from the SSIMand the selection rate of projections from the set of samples
of soybeans.

Table 14 shows that slice 948 obtained a higher SSIM value than slice 268, although both
slices have similar selection rates. Figure 20 presents reconstructed images of the slices of
an analyzed soybean sample.

The last set refers to the peanut seed samples. Table 15 presents the values obtained from
the SSIM and, the selection rate of the projections.

Table 15 shows that slice 992 obtained a higher SSIM value (0.959) with selection rate
of 74.08%, whereas the projections that obtained SSIM values of approximately 0.80 had
selection rate around 63%.

Figure 21 presents reconstructed images of the slices of an analyzed peanut sample.
Figure 22, in the boxplot graphic, presents the calculation of the SSIM measurement for

the slices of the seed samples, which total the reconstruction and analysis of slices, and
provides a complete view of the SSIM for the image base used in this evaluation, after the
analysis of each set of seed samples.

Fig. 18 Tomographic images of a sample of wheat corresponding to the reconstructed slices, where the SSIM
values observed were minimum, median, and maximum. All images are represented by a grayscale ranging
from 0 to 255
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Table 13 Results of the evaluation of tomographic images of pumpkin samples: minimum, median, maximum
SSIM values and rate of projection selection (Sel.) of the analyzed samples

Minimum Median Maximum
Sample Slice SSIM Sel. Slice SSIM Sel. Slice SSIM Sel.

25 1104 0.751 59.43% 388 0.821 63.01% 988 0.935 71.52%

26 1768 0.758 59.73% 668 0.834 67.93% 1144 0.964 80.74%

27 368 0.760 67.62% 444 0.847 67.83% 196 0.935 76.84%

28 1356 0.758 53.69% 172 0.839 66.80% 992 0.926 71.21%

29 1084 0.739 55.23% 72 0.831 67.21% 920 0.925 83.40%

As mentioned in Section 3.4, for each considered sample having different agricultural
seeds, we considered the CT image reconstruction, i.e., resulting in 498 slices for each of
them. Such CT reconstructed slices were arranged in relation to the z-axis. In fact, the Fig. 23
presents the result of a statistical analysis to calculate the coefficient of linear regression (R2)
considering the results of SSIM as a function of the number of selected projections, i.e., for
instance, selected from the central slice of each different seed sample that was evaluated.
Further, the R2 obtained was equal to 0.87. In the chart, each point is related to the central
slice of each sample that has been considered for such analysis.

The next section presents the results obtained from the analysis of the PSNR measure for
the set of 33 samples and their respective tomographic projection matrices.

4.5 Peak signal to noise ratio assessment

The objective of the PSNR measurement analysis was to observe the signal-to-noise ratio of
the reconstructed image in comparison to the reference image to verify whether the selection
of projections implied an increase in noise, compromising the 2D slice reconstruction stage.

Therefore, such analysis was motivated by the fact that, when projections were selected,
the amount of data was less than expected, so the selection may have degraded the image by
generating artifacts during the tomographic reconstruction. Table 16 presents the calculated
PSNR values for the phantom, and the calculations for the samples are presented later.

Fig. 19 Tomographic images of a sample of pumpkin corresponding to the reconstructed slices, where the
SSIM values observed were minimum, median, and maximum. All images are represented by a grayscale
ranging from 0 to 255
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Table 14 Results of the evaluation of tomographic images of soybean samples: minimum, median, maximum
SSIM values, and rate of projection selection (Sel.) of the analyzed samples

Minimum Median Maximum
Sample Slice SSIM Sel. Slice SSIM Sel. Slice SSIM Sel.

30 1664 0.751 57.48% 324 0.827 68.85% 848 0.910 76.43%

31 100 0.718 55.33% 180 0.830 63.01% 1252 0.907 78.18%

32 1804 0.701 66.29% 356 0.821 69.98% 1992 0.905 72.03%

33 980 0.625 62.40% 268 0.855 69.67% 1108 0.922 72.85%

34 140 0.768 60.96% 228 0.837 67.11% 948 0.912 69.88%

Fig. 20 Tomographic images of a sample of soybean corresponding to the reconstructed slices, where the
SSIM values observed were minimum, median, and maximum. All images are represented by a grayscale
ranging from 0 to 255

Table 15 Evaluation of tomographic images of peanut samples: minimum, median, maximum SSIM values,
and rate of projection selection (Sel.) of the analyzed samples

Minimum Median Maximum
Sample Slice SSIM Sel. Slice SSIM Sel. Slice SSIM Sel.

35 1640 0.762 60.86% 116 0.829 64.55% 992 0.959 74.08%

36 244 0.760 59.22% 124 0.817 61.48% 492 0.911 73.57%

37 1560 0.781 58.81% 104 0.829 64.45% 988 0.916 67.83%

38 1988 0.745 56.97% 316 0.826 65.37% 1436 0.905 66.39%

Fig. 21 Tomographic images of a peanut sample corresponding to the reconstructed slices, where the SSIM
values observed were minimum, median, and maximum. All images are represented by a grayscale ranging
from 0 to 255
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Fig. 22 SSIM analysis of the reconstructed images of the seeds set containing 33 samples

Figure 24 shows slice 1066, which refers to aminimum value of PSNR; 1928, which refers
to the median value of PSNR; and 988, which refers to the maximum value of the PSNR.

Fig. 23 Linear regression considering the results of SSIM as a function of the number of selected projections
for each central slice from the 33 tomographic assay carried out for the samples having different agricultural
seeds
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Table 16 Minimum, median, and
maximum PSNR values
calculated for the phantom

Value Slice PSNR (dB) Selection

Minimum 1066 16.953 64.14%

Median 1928 27.027 63.63%

Maximum 988 39.873 63.83%

Figure 25 presents the PSNR calculation for the analysis of the database used in this
evaluation, which totaled 16.434 slices, distributed among 33 samples of agricultural seeds.

As shown in Fig. 25, the median of the PSNR for all samples was above 25 dB, which
indicates that the process of projection selection did not compromise the quality of the 2D
tomographic reconstruction.

4.6 Volumetric visualization of tomographic images

In this section, the results of the 3Dvisualization (volumetric) for the samples reconstructed in
the big data environment are presented. As discussed, slices of the samples were divided into
regions and organized into blocks that were interpolated to generate a portion of the volume
or subvolume, of the sample. The subvolumes were then archived in Amazon’s environment
(AWS S3). Therefore, the process of viewing a sample consisted of two steps: (i) grouping
the subvolumes to generate the complete volume of the sample; and (ii) viewing the complete
volume using the itkwidgets5 tool.

Both steps occurred outside the big data environment that was structured in this study and
the following resources were used: Python language and the Jupyter notebook development
environment6 integrated with Kitware’s VTK visualization library, through the itkwidgets
plugin. The visualization was performed on a computer with 32 GB of RAM and Intel core
i9 processor.

In the first stage, a Python scriptwas prepared to recover the subvolumes stored inAWSS3.
Each subvolume featured the identification of its position, so it was possible to organize the
complete volume with this information. The second stage was to load the complete volume
into memory, using the itkwidgets plugin features, and view it. Figure 26 shows a volumetric
view of the phantom.

The phantom was reconstructed with 996 slices with size of 2000 × 2000 pixels. Of all
the slices, 498 were real and 498 were virtual, generated by the interpolation process. Thus,
entire volume produced 2000× 2000× 996 voxels, totaling 15 GB of data. Figure 27 shows
the volumetric view of a sample of cowpeas.

Similar to the phantom, the volume of a sample of cowpeas was reconstructed with a size
2000 × 2000 × 996, resulting in 15 GB of data.

5 Conclusion

This work presented amethod of 2D and 3D (volumetric) reconstruction of high tomographic
images of agricultural samples using big data techniques. An important aspect of the devel-
oped method was the parallelization strategy adopted for 2D reconstruction, which consisted

5 Disponível em: https://github.com/InsightSoftwareConsortium/itkwidgets
6 Available at: https://jupyter.org/
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Fig. 24 Slices of phantom that represent the minimum, median and maximum values of the PSNR measure.
All images are represented by the gray scale ranging from 0 to 255

of parallelizing the projection matrices, rather than the individual projections. This strategy
allowed the reconstruction of agricultural samples, such as seeds, in a distributed big data
environment.

For the execution of this customized developed method, it was necessary to structure
a cluster of computers. The infrastructure used for this purpose was provided through the
Amazon AWS service. In this context, 12 different cluster configurations are evaluated.
In addition, the configuration that allowed not only the use of the greatest amount of tomo-
graphic but also the greatest efficiencywas selected as the final arrangement for the developed
method.

The configuration that prevailed was the one that contained six nodes, as it presented
greater efficiency than the configuration that contained 10 nodes, despite the speedup value
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Fig. 25 PSNR analysis of the reconstructed images of the 33 agricultural seed samples
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Fig. 26 Cut performed on phantom volumetric visualization

being lower. Therefore, it was possible to verify that a higher speedup value does not nec-
essarily imply greater efficiency. Similarly, it should be noted that efficiency had values
greater than 1. Such a result occurred because of better communication between proces-
sors and memories, and the use of distributed processing methods. In contrast, to obtain the
processing time in parallel, Apache Spark loaded the projection matrices into memory, or
a large part of them, having them distributed among the worker nodes. Additionally, the
analysis of the cost of sequential/parallel processing corroborated the understanding that
the efficiency measure represents more accurate information about the architecture of the
environment.

Another relevant aspect presented in this paper is the selection of tomographic projections
in each sinogram, the smallest number of projections that best represented the object in the
reconstructed image. The energy information of each projection was considered to identify
those that were more relevant for obtaining a tomographic reconstruction in two dimensions.

Fig. 27 Volumetric visualization of a sample of cowpeas with cut
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Additionally, the organization in energy classes of the tomographic projections proved to
be an adequate alternative because it considered the entire spectrum of energies contained
in a sinogram. A set of 33 seed samples and a heterogeneous phantom of plexiglass were
considered, which totaled 66, 640 projectionmatrices or 242 GB of tomographic data. A total
of 16, 932 projection matrices were considered from this set, or 498 matrices per sample,
for the purpose of evaluating the selection of tomographic projections and the quality of
the 2D reconstruction. For 16, 932 matrices, the algorithm selected 61.47% to 71.72% of
the projections, which implies that there was a reduction of approximately 28% − 38% by
projection matrix analysis. The SSIM metric was calculated for each projection matrix, and
the median SSIM value for each sample was observed. Thus, the SSIM analysis showed that
tomographic reconstruction of the samples in two dimensions from the selected projections
led the SSIM value to be higher than 0.800 for all the samples analyzed. It is also worth noting
that the PSNR analysis corroborated the results obtained in the SSIM analysis. Therefore,
the results showed that the reduction in the number of projections for the seed samples (i.e.,
peanut, cowpea, sunflower, chickpea, wheat, pumpkin, and soybean) did not compromise
the structure of the information contained in the reconstructed images, as observed by the
SSIM and PSNR analyses. The 3D reconstruction (volumetric) established conditions for
evaluating seeds of different surfaces and shapes and did not restrict the analysis to flat
seeds.

Finally, when considering that the volume of data in the agricultural area has increased
considerably, such as in seed analysis, the integration of computer and electronic techniques
becomes urgent to seek new solutions that are able to handle this new scenario and meet the
needs of agricultural demands. Therefore, the method developed in this study has contributed
to the execution of tomographic reconstruction to improve analysis and decision-making in
agriculture. In addition, the main contribution of this study was to prepare a framework for
the tomographic reconstruction of high-resolution images for the analysis of agricultural
samples, which was prepared for execution in a big data environment.

The evaluation of additional strategies for parallelization of the projection matrices and
evaluation of other statistical distribution models are proposed for future work, such as Chi-
square distribution, which may be useful for the selection of tomographic projections.
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