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Abstract
In this paper, we propose a progressive encoding-decoding network (PEDN) for image dehaz-
ing. First, we built a basic dehaze unit to progressively process the image to achieve image
dehazing in stages. The basic dehaze unit is composed of a feature memory module and
an encoding-decoding network. The feature memory module is used to transfer features
at different progressive stages. The encoding-decoding network is responsible for feature
extraction, encodes and decodes images by fusing different levels of pyramid features. The
basic dehaze unit shares parameters during the progressive process, which effectively reduces
the difficulty of network training and improves the fitting speed. The proposed model is an
end-to-end image dehazing network, which does not depend on the atmospheric scattering
model. In addition, we extracted the depth information of the hazy image and obtained its
pyramid features, and incorporated the depth information into the feature extraction to guide
the network to restore clear images more accurately. Experiments show that the our method
not only performs well on synthetic datasets, but also has excellent performance on real-
world hazy images. It is superior to current image dehaze methods in quantitative indexes
and visual perception. Code has been made available at https://github.com/LWQDU/PEDN.

Keywords Image dehazing · Deep convolutional network · Scene depth · Real scene

1 Introduction

Atmospheric light will be absorbed or scattered by particles in the air, resulting in reduced
visibility. Therefore, the contrast and color saturation of the image decrease in the process
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of degradation. In particular, automatic systems such as surveillance, smart vehicles and
object recognition essentially rely on high-quality images, so image dehazing becomes a key
preprocessing step [38, 50]. Therefore, how to restore a hazy image to a clean image is an
important issue in the field of computer vision and image processing.

Nayar and Narasimhan [39, 40] made a detailed derivation and summary of the hazy
imagingmechanism, and proposed an atmospheric scattering model. The current main image
dehazing methods are mostly based on the atmospheric scattering model, which converts the
hazy image by directly or indirectly estimating the transmission map and atmospheric light.
The atmospheric scattering model can be expressed as:

I (x) = T (x)J (x) + A(1 − T (x)), (1)

T (x) = e−βd(x), (2)

where I (x) is a hazy image, J (x) is a clear image, T (x) is the transmission map, A is the
atmospheric light, and x represents the coordinates of the pixel in the hazy image,β represents
the atmospheric scattering coefficient, and d(x) represents the depth information.

It can be clearly obtained from formula (1) and (2) that transmission map and atmospheric
light must be accurately estimated if a hazy image is to be restored to a clear one. Because
image dehazing is an ill-posed problem and its solution space is gigantic, it is very difficult
to estimate the transmission map and atmospheric light accurately. Atmospheric light can be
easily estimated from the original hazy image, for example by dark channel prior algorithm
[20]. But the transmission map is not easy to estimate because it is highly dependent on the
scene depth.

Some previous studies aimed to estimate transmission map and atmospheric light by prior
methods. For example, He et al. [20] estimated transmission map by exploring dark channel
prior and believed that the local minimum value of dark channel in haze-free images was
close to zero. Zhu et al. [61] proposed color attenuation prior and pointed out that in hazy
images, the higher the fog concentration, the greater the scene depth, and the greater the
difference between brightness and saturation of the image. But the prior does not perform
well at close range. Therefore, it can be seen that the prior based approach is feasible in some
cases, but once the scene does not meet the prior, it will lead to inaccurate estimation of the
transmission image and poor dehazing effect.

Recently, deep learning has achieved great success in the field of image processing. There
aremany image dehazingmethods [31, 39, 40] based on convolutional neural network (CNN).
Some of these methods aim to estimate transmission map or atmospheric light by using
CNN, and then to obtain clean images by using atmospheric scattering model. For example,
DehazeNet [5] extracts the relevant features of hazy images through CNN to optimize the
estimation of transmission map, and restores clean images by using atmospheric scattering
model based on empirical assumptions of atmospheric light.Multi-scale convolutional neural
network (MSCNN) [46] predicts the transmission map of images by designing a group of
coarse-scale and fine-scale networks respectively. Finally, the transmission map after multi-
scale fusion is substituted into the atmospheric scattering model to complete image dehazing.
AOD-Net [33] fuses atmospheric light and transmission image into a variable K, and then
learns the relationship between K and hazy image through CNN. It can be seen that the
above methods depend on the atmospheric scattering model. However, the method based on
the atmospheric scattering model is deeply depend on the estimation of transmission map
and atmospheric light. Once the estimation of these two factors is inaccurate, the dehazing
effect will be affected.
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According to the review of previous work above, it can be found that both the earlier
prior based haze removal methods and the latest deep-learning based methods mostly rely on
atmospheric scattering model. The transmission map or atmospheric light is estimated first
and then substituted into the atmospheric scattering model to restore the haze-free image.
The disadvantage of this kind of method is that once the transmission map or atmospheric
light estimation is not accurate, it will greatly affect the quality of the dehazing image.

Some recentmethods directly learn themapping fromhazy images to clean imageswithout
relying on the atmospheric scattering model and are called end-to-end learning methods. For
example, EPDN [44] uses GAN embedded in the architecture and a well-designed enhancer
to remove haze. GridDehazeNet [36] improves network performance through three modules:
pre-processing, backbone and post-processing. MSBDN [10] achieves haze removal through
dense fusion of multi-scale features. Although these methods do not rely on the atmospheric
scattering model, they do not take into account the key factors affecting image dehazing in
the model design, so the output image has the problem of blurred details or missing colors.
It can be seen from formula (2) that scene depth is a key factor affecting the quality of haze
removal. Therefore, it is necessary to consider the influence of this key factor in the design of
haze removalmodel.With the continuous progress of depth camera technology, it is no longer
difficult to obtain depth information of images. Therefore, this encouraged us to integrate the
depth information of the scene into the dehazing model.

In this paper, we propose a progressive encoding-decoding network to improve dehazing
performance. Firstly, we propose the PEDN, which decouples image dehazing from atmo-
spheric scattering model. This network does not depend on atmospheric scattering model,
and enables the neural network to directly learn the mapping function from hazy image to
clean image. The basic dehaze unit (BDU) is the core of the model. Given a hazy image,
the image is progressively processed by constructing a BDU, and finally a clean image is
output. The BDU consists of a feature memory module (FMM) and an encoding-decoding
network. The function of FMM is to transfer the features of different progressive stages, and
the encoding-decoding network is used to extract the pyramid features of images and encode
and decode the features. According to the atmospheric scattering model, depth information
is crucial for image haze removal. Therefore, we obtain the scene depth information of the
image and extract pyramid features, which are integrated into feature learning.

Experimental results show that the proposed method is superior to other methods in both
PSNRandSSIMfor synthetic data sets andhazy images of real scenes. Themain contributions
of this paper can be summarized as follows:

(i) We propose the PEDN, which can produce clean images directly, independent of the
atmospheric scatteringmodel. Thismethod can produce higher quality dehazing images.

(ii) By using the progressive idea, the model can share parameters and avoid the difficulty
of training or slow fitting speed caused by too many parameters.

(iii) In order to enhance themodel performance, the depth information of images is extracted
and integrated into feature extraction to better assist network learning.

(iiii) Extensive experiments show that our method is superior to other methods in overall
perception and quantitative indicators, whether in synthetic data sets or real scenes.

2 Related work

Image dehazing is an ill-posed problem. Current image dehazing methods can be divided
into three categories: image-enhancement based dehazing methods, prior based dehazing
methods [20][14][4] and deep-learning based dehazing methods [11, 15, 32, 37, 45, 51, 59].
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2.1 Image-enhancement based dehazingmethod

The dehazing method based on image enhancement does not consider the reason for image
degradation and improves the visual effect of the image by enhancing the contrast. This kind
of algorithm is widely used, but it may cause certain loss or over-enhancement of the salient
information in the image. Among them, histogram equalization is to transform the histogram
of hazy image into the form of uniform distribution, and improve the image contrast by
expanding the range of pixel gray value. Stark [53] and Kim et al. [25] proposed adaptive
histogram equalization algorithm and partially overlapping sub-block histogram equalization
algorithm respectively. Homomorphic filtering [19] is a technique widely used in signal and
image processing, which combines gray transform with frequency filtering to improve image
quality. Retinex [28] is a color vision model that simulates what humans see under different
light conditions. Based on this model, Adrian et al. [18] proposed an effective hazy image
enhancement algorithm. However, none of the above methods consider the essential cause of
haze map degradation, so the enhancement effect is limited and the robustness is commonly
poor.

2.2 Prior based dehazingmethod

Dark channel dehazing algorithm is proposed byHe et al. [20], which is based on dark channel
prior theory (DCP). The transmission map is calculated by the principle of dark channel
dehazing, and the soft cut algorithm is used to further optimize the transmission map, and
finally the image dehazing is realized. According to the DCP, the minimum channel value of
the local map block of haze-free image tends to 0, which is called the dark channel, while the
dark channel of hazy image does not approach 0 due to the influence of atmospheric light.
Therefore, the thickness of haze can be judged by the dark channel value of hazy image, so
as to obtain the atmospheric light and transmission map. Dark channel dehazing algorithm
is pioneering and effective in certain scenes. However, if there are objects in the target scene
whose color is similar to atmospheric light, such as snow, white wall, sea, etc., it will not
achieve satisfactory results. At the same time, its computational complexity is high, which
affects the efficiency of dehazing. Zhu et al. [61] proposed a dehazing method based on color
attenuation prior, establishing a linear model according to the positive correlation between
haze concentration and the difference between image brightness and saturation, and learning
model parameters through supervised learning method to recover scene depth information,
so as to achieve a single image dehazing. However, this method is difficult to collect samples
and lacks theoretical basis. Berman et al. [4] proposed a global evaluation transmission image
method based on non-local prior, which could recover both the scene depth and haze-free
image. However, when atmospheric light was very intense, this method failed because it
could not detect haze lines correctly. Wng et al. [55] proposed a multi-scale deep fusion
dehazing algorithm by using Markov random field to mix details of multi-layer chromaticity
prior, which can obtain high-quality restored images with rich details, but this algorithm is
prone to contain noise. Tarel et al. [54] proposed a fast dehazing algorithm. The algorithm
estimates the dissipation function through the deformation of median filter, but with median
filter estimation method, improper parameter setting can easily bring Halo effect. Singh et al.
[52] proposed gradient profile prior (GPP) to evaluate the depth map of hazy image, which
can effectively suppress the visual artifacts of hazy image. Liu et al. [35] proposed a multi-
scale correlated wavelet dehazing method, which believes that the haze is usually distributed
in the low-frequency spectrum of its multi-scale wavelet decomposition. Based on the priori,
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an open dark channel model is designed to eliminate the haze effect in the low-frequency part,
and the soft threshold operation is used to reduce the noise. Although the dehazing method
based on prior has achieved good results to some extent, once the prior is inconsistent with
the actual situation, the image dehazing effect will be significantly reduced.

2.3 Deep-learning based dehazingmethod

In recent years, with the continuous development of deep learning [6, 7, 9, 16, 17, 23, 30, 42,
56, 57], many methods have applied CNN to image dehazing, and achieved excellent results.
Different from the prior based method, the deep-learning based method directly estimates the
transmission map and atmospheric light without relying on prior. Cai et al. [5] proposed an
end-to-end haze removal model called DehazeNet based on CNN, which directly learned the
mapping relationship between hazy images and transmission images through neural network,
and then calculated the transmittance. Furthermore, a novel nonlinear activation function
BReLU is proposed. The transmission map is obtained by nonlinear regression of CNN, and
the atmospheric light is obtained by assuming prior. Finally, the hazy-free image is recovered
from the atmospheric scattering model. Ren et al. [46] proposed MSCNN algorithm, which
constructed subnets of different granularity through multi-scale network structure to achieve
coarse and fine estimation of transmission image. This algorithm effectively suppressed the
halo phenomenon in the process of dehazing. Li et al. [33] proposed the network of AOD-
Net, believing that predicting the atmospheric light and transmittance independently and then
using the atmospheric scattering model to get a clean image would enhance the error. There-
fore, they appropriately deformed the formula of atmospheric scattering model, combined
transmittance and atmospheric light into a variable, and finally learned the variable through
neural network. Mei et al. [37] proposed the progressive feature fusion dehazing network
(PFFNet) similar to U-Net structure, which is composed of decoder, feature conversion and
decoder, and directly learns the nonlinear transformation function from hazy image to clear
image.

Chen et al. [8] proposed an end-to-end image dehazing algorithm based on GAN (gated
context aggregation network, GCANet). The key point of this algorithm is to use smooth
extended convolution instead of extended convolution to solve the problem of grid artifacts.
At the same time, a new fusion network is proposed to fuse the features of different levels
and enhance the image dehazing effect. Qin et al. [43] proposed an end-to-end feature fusion
attention network (FFA-Net), which can retain shallow information and transmit it to deep
layers through an attention-based feature fusion structure. Dong et al. [10] proposed a multi-
scale enhanced defogging network (MSBDN) with dense feature fusion based on U-Net
architecture. Fan et al. [12] proposed amulti-scale deep information fusionnetwork (MSDFN)
based on U-Net architecture. The model extracts the depth information of the hazy image,
codes and decodes it together with the hazy image, and generates the haze-free image in an
end-to-end manner.

3 Proposedmethod

In this section, we first introduce the design motivation of the proposed model, then intro-
duce the network architecture and the composition and function of each module, and finally
introduce the loss function adopted.
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3.1 Designmotivation

In recent years, in the field of deep learning, many methods aim to enhance the performance
of the network by increasing the depth of the network, but a large number of parameters are
introduced, which increases the training difficulty of the network and also increases the risk
of over-fitting. How to design an effective network without introducing too many parameters
becomes an important problem in the field of image processing. Kim et al. [26] proposed
DRCN for image super-resolution, which increased the depth of the network, increased
the size of the receptive field of the network and reduced the number of parameters through
recursion. Inspired by DRCN, we can use the progressive idea to design an effective dehazing
model. By repeatedly executing the BDU many times, the feature learning ability can be
continuously improved, and the problem of network capability degradation caused by too
many parameters can also be avoided. It can be seen from the atmospheric scattering model
that the transmission map is related to the scene depth. Experience has also shown that on
hazy days it is easier to distinguish objects close by than objects far away. Therefore, scene
depth is essential for image dehazing. Fan et al. [12] proposed MSDFN to introduce depth
information into the haze removal process and found that the depth information of the scene
can effectively upgrade the haze removal ability of the model in the real scene. Therefore, we
consider adding depth information of images into the model to enhance its ability to remove
haze.

3.2 Network design

The network structure of PEDN is shown in Fig. 1. The core of PEDN is the BDU, whose
structure is shown inFig. 2.After the hazy image is input to the network, theBDU is repeatedly
executed several times to finally output the haze-free image. Specifically, the output feature
map of each BDU, together with the original hazy image and the corresponding depth map,
will serve as the input of the next BDU. In order to better retain the original image information
and depth information, the original haze image and its depth map have been run through the
whole network learning process. The number of BDU is more critical. In order to balance
the relationship between performance and resources, 5 is selected as the number of BDU.
The functions of the BDU can be defined as follows:

Tt = D(E(FMM(Tt−1 ⊕ Ihazy) ⊕ Idepth)), (3)

where t represents the number of BDU, and Tt represents the output of the t-th BDU.
When t=0, T0 represents a hazy image. Ihazy and Idepth represent the hazy image and its

Depth 

Extraction

BDU BDU BDU BDU BDU

Input Output

Fig. 1 Architecture of the proposed PEDN. Given a hazy image, the image is progressively processed by
constructing a BDU, and finally a clean image is output. The depth information of hazy images is extracted
and integrated into network learning
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Encoder DecoderFMM

Input of BDU Output of BDU

Depth map of hazy image

Fig. 2 Internal structure of BDU. The BDU consists of FMM and encoding-decoding network

corresponding depth map respectively. FMM(·), E(·) and D(·) represent FMM, encoding
branch and decoding branch respectively.⊕ indicates the connection operation of the channel
dimension.

3.2.1 Feature memory module

The FMM is the first part of the BDU, and its structure is shown in Fig. 3. With the increase
of executions times of BDU, the original image features will be weakened. Therefore, it
is necessary to introduce the FMM to retain the original features. LSTM [21, 24, 41, 49]
is commonly used in time series problem modeling. Its unique design can remember and
transfer information for a long time, and select features of different moments through a
gating mechanism. Therefore, we choose to introduce LSTM into the model as a FMM,
which is used to transmit features at different progressive stages. The original hazy image
was connected with the output of the last BDU as the input of this FMM, and 32 convolution
kernels with a size of 3×3 were used to extract features. Then, the extracted features are
merged with the output of FMM of the last BDU, and the merged feature graph needs to
perform convolution operation to obtain four gated states for controlling the selection and
output of features. FMM can be expressed as:

ct = f × ct−1 + i × z, (4)

ht = o × Tanh(ct ). (5)

3.2.2 Encoding-decoding network

The encoding-decoding network is the second part of the BDU and its structure is similar to
U-Net [48]. Its function is to receive the output of FMM and extract the deep features. As
shown in Fig. 4, the output of the FMM and the depth map of the original image serve as
input to the encoding-decoding network. The purpose of adding the depth map is to make
better use of the depth features of the image. In the encoding branch, the depth map and the
output of the FMM are coded separately, and feature fusion is performed after the pooling
operation. The encoding network uses 64, 128, 256 and 512 convolution kernels respec-
tively to conductconvolution operation on the feature map, and the max pooling operation is
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Fig. 3 Internal structure of Feature Momery Module (FMM)

performed after each convolution operation. The decoding network gradually restores the
scaled feature map, and introduces skip connections between the same layers to avoid gra-
dient disappearance. The network eventually outputs 3 channels of images.

Convolution Pooling Deconvolution Skip-connection Channel-wise concatenation

Depth image

FMM output

Fig. 4 Internal structure of Encoding-Decoding Network
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3.3 Loss function

In the field of image dehazing, L1 and L2 are commonly used loss functions. In addition,
there are also some mixed functions, such as L2 loss combined with structural loss [13], and
L2 loss combined with adversarial loss [60]. Although some methods improve the image
dehazing effect, the calculation is complicated, which affects the efficiency of the network.
In this paper, we use -SSIM [22, 58] as the loss function to optimize the network. The reason
why -SSIM was chosen was that the recovered image could be more consistent with human
visual experience by comprehensively considering brightness, contrast, structure and other
factors. The reason for using -SSIM as the loss function is that the closer the output is to the
true value, SSIM will be larger, and conversely, -SSIM will be smaller. The loss function can
be expressed as:

L = − 1

2M

M∑

m=1

(
2μYmμY ′

m
+ θ1

) (
2σYmY ′

m
+ θ2

)

(
μ2
Ym

+ μ2
Y ′
m

+ θ1

) (
σ 2
Ym

+ σ 2
Y ′
m

+ θ2

) , (6)

where M is the number of images, YM is the hazy image currently processed, Y t
m is the

ground truth. μ is the mean, σ is the variance, θ1 and θ2 are constants.
In order to verify the superiority of -SSIM as loss function, we useMSE, L1 and -SSIM as

loss function on four datasets, and get their fitting curves. As can be seen from Fig. 5, - SSIM
has obvious advantages over MSE and L1. Under the same number of iterations, -SSIM as
a loss function can achieve better results. This is because MSE and L1 only consider the
distance between pixels, while -SSIM comprehensively considers factors such as brightness,
contrast and structure, which can better fit people’s visual experience.

4 Experimental results

In this section,we use synthetic datasets and real haze datasets to evaluate the proposedmodel.
We conduct ablation experiments to verify that different numbers of BDU have different
effects on the model’s dehazing performance. To more clearly demonstrate the advantages of
the proposedmodel, our method was compared with other state-of-the-art dehazingmethods,
including DCP [20], NLD [4], MSCNN [46], AOD-Net [33], PFFNet [37], GCANet [47],
FFA-Net [43], MSBDN [10] and MSDFN [12].

Fig. 5 Fitting curves of different loss functions on four datasets
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4.1 Experimental settings

4.1.1 Datasets

Wemainly use synthetic dataset and heterogeneous dataset to train our model. The synthetic
dataset adopts the RESIDE dataset [29] and D-Hazy dataset [2]. RESIDE dataset is a bench-
mark dataset for image dehazing proposed in 2018, which contains indoor training set (ITS),
outdoor training set (OTS) and test set (SOTS). We use ITS and OTS to train our model, and
use SOTS to evaluate our model. D-Hazy dataset contains more than 1400 pairs of images
with ground truth reference images and hazy images of the same scene. In order to make
our model have stronger generalization ability, we also use heterogeneous datasets to train
the model. Therefore, we use I-HAZE [1] and O-HAZE [3] as supplementary datasets. In
order to increase the number of images, we perform data enlargement. Because our model
requires the depth map of the hazy image, and the selected data set lacks the depth informa-
tion of the image, we use the DCNF [34] model to generate the depth map of all the datasets.
The reason of choosing DCNF as the depth prediction model is the RESIDE dataset adopts
the DCNF model to synthesize hazy images, and we keep it consistent with RESIDE. In
addition, compared to other depth prediction methods, the DCNF model produces the least
visible depth error and causes much less visual artifacts on natural outdoor images. Using
the DCNF model leads to more visually plausible results.

4.1.2 Training details

All experiments used the PyTorch framework and were trained using GeForce RTX 3090.
ADAM optimizer [27] was used to train the network, and the initial learning rate was set to
0.0001, batchsize to 4, and epoch to 50.

4.1.3 Quality measures

SSIM evaluates the similarity of two images in terms of brightness, contrast and structure.
Brightness is expressed as the mean value:

μx = 1

N

N∑

1

xi , (7)

the brightness difference between the two images is expressed as:

l(x, y) = 2μxμy + C1

μ2
x + μ2

y
, (8)

where μx and μy represent the mean of x and y respectively, C1 is constant. Contrast is
represented by variance normalized by the mean:

σx =
(

1

N − 1

N∑

i=1

(xi − μx )
2

) 1
2

, (9)

the contrast difference between the two images is expressed as follows:

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
, (10)
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where σx and σy represent the variance of x and y respectively, C2 is constant. Structural
differences are expressed by correlation coefficients:

s(x, y) = σxy + C3

σxσy + C3
, (11)

where σxy is the covariance of x and y, C3 is constant. The final SSIM can be expressed as:

SSI M(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
1 + μ2

2 + C1)(σ
2
1 + σ 2

12 + C2)
. (12)

In the experiment, PSNR and SSIM were used as objective evaluation indexes of the model.
In general, a higher PSNR represents a higher resolution image and is usually defined using
Mean Square Error (MSE):

MSE = 1

mn

m−1∑

i=0

n−1∑

j=0

[I (i, j) − K (i, j)]2. (13)

PSNR is defined as:

PSN R = 20 · lg( MAXI√
MSE

), (14)

where I and K represent two images of m×n size. The unit of PSNR is dB. The larger the
value is, the closer it is to the original image.

4.2 Performance evaluation

We use SOTS, I-HAZE, O-HAZE, D-Hazy and real scene images to test our method, and
compare our method with DCP [20], NLD [4], MSCNN [46], AOD-Net [33] , PFFNet [37],
GCA-Net [47], FFA-Net [43], MSBDN [10] andMSDFN [12]. For a fair comparison, we use
the same datasets to retrain these methods, and use PSNR and SSIM to evaluate all methods.
The Table 1 shows the test results of these methods on the SOTS, I-HAZE, O-HAZE and
D-Hazy datasets. It can be seen that our method has greater advantages than other methods
on both PSNR and SSIM. Figure 6 can also visually illustrate the superiority of our method.
Figure 7 shows the data distribution of different methods on all data sets. The more flat
the box is, the more concentrated the data distribution is and the more stable the model is.
Compared with other methods, our method has more centralized data distribution, so it has
greater advantages.

Figure 8 shows the processing results of each method on indoor hazy images of SOTS
dataset [29], and the differences of each method can be felt subjectively. We can see that our
method basically eliminates haze in the image and produces an image without distortion.
DCP and NLD are considered as baseline methods due to their simplicity of implementation,
and when the parameters are more accurate, the haze removal effect is better. However, their
shortcomings are also more obvious, especially because color distortion is more serious.
MSCNN and AOD-Net cannot effectively remove the haze in the image. It can be seen that
the haze in the image generated by MSCNN and AOD-Net still remains to a certain extent.
Other methods can restore clear images better, but by comparing details, it can be found that
the method proposed by us is closer to the ground truth in detail.

Figure 9 shows the processing effects of each method on outdoor hazy image of
SOTS dataset [29]. DCP and NLD cannot effectively achieve image dehazing, and the
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Fig. 6 Average PSNR and SSIM of different methods on various datasets

generated image color cast is severe, particularly in the sky area. The image processed
by MSCNN still has a certain amount of haze. There is still some mist remaining in the
image generated by AOD-Net. PFFNet and GCANet reduce the image brightness, the pro-
cessed image contrast is too high, but also introduces a color shift. Several other methods
can restore the image better, but from detailed observation, our proposed method is better
than other methods.

Figure 10 shows the dehazing effect of each method on the O-HAZE outdoor dataset
[3]. DCP has a certain effect on dehazing the outdoor image, but it can be found that the
color intensity of the processed image is low and it is relatively blurry. The image after NLD
processing also has a certain color cast. The test results of MSCNN, AOD-Net and MSBDN
on the outdoor real data set are not satisfactory, and there are still a lot of haze residues in
the image. The color cast of the image processed by GCANet and FFA-Net is more severe
and the visual effect is poor. In contrast, the method we propose is closer to the real image
in terms of overall perception and details.

Figure 11 shows the dehazing effect of each method on the I-HAZE indoor dataset [1].
The shortcomings of DCP and NLD are apparent. The processed image has color shift and
abnormal artifacts. After MSCNN, AOD-Net, and MSBDN, the residual image haze is more
serious, and the effect is not ideal. GCANet reduces the color intensity, the image quality is
dark, and the visual effect is poor. The color distortion of the image processed by FFA-Net is
more severe, and the dehazing effect is not excellent. MSDFN can restore the image better,

Fig. 7 Numerical distribution of the results of different methods when tested on the dehazing dataset. (a)-(i)
represent DCP, NLD, MSCNN, AOD-Net, PFFNet, GCANet, FFA-Net, MSBDN and MSDFN respectively
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Hazy DCP NLD MSCNN AOD-Net PFFNet

GCANet FFA-Net MSBDN MSDFN OURS GT

Fig. 8 Visual comparison on the SOTS dataset(indoor)

but false artifacts also appear to a certain extent. Although our method is still inadequate for
partial color restoration, compared with other methods, the image restored by our method is
closer to the real image in terms of overall perception and clarity.

Figure 12 shows the dehazing effect of eachmethod on theD-Hazy indoor dataset [2]. DCP
and NLD can basically remove the haze in the image, but some artifacts will be introduced.
There are a lot of haze in the images restored byMSCNNandMSDFN. Several othermethods
have caused serious color distortion. For example, the style of the image restored by FFA-
Net has migrated, and MSBDN makes a large area of black shadow appear in the image.
Compared with other methods, the image restored by our method is closer to the real image
both in color and clarity.

In addition, the evaluation results on real scene images also illustrate the effectiveness of
our proposed method for dehazing real images. As shown in Fig. 13, the results generated
by DCP and NLD have serious color distortion. Several other deep-learning based methods
have limited generalization capabilities in real situations. The images generated by MSCNN
have color shifts and artifacts. AOD-Net cannot remove the haze in the image adequately.
The images generated by PFFNet and GCANet are severely distorted and have relatively
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Hazy DCP NLD MSCNN AOD-Net PFFNet

GCANet FFA-Net MSBDN MSDFN OURS GT

Fig. 9 Visual comparison on the SOTS dataset(outdoor)

severe artifacts. The image processed by FFA-Net still has a lot of haze, such as the second
image. MSBDN also has limited dehazing ability in some scenes, such as the mist above the
building in the second image is not well removed. Compared with other methods, MSDFN
has a better dehazing effect and can remove most of the haze, but our method uses depth map
fusion learning, the restored image is more natural and the scene is clearer.

4.3 Running efficiency analysis

To measure the running time efficiency of our model, we separately test the average running
time of related methods, as shown in Table 1. The average running time refers to the time
required to preprocess the image and forward the network. For ourmodel, the average runtime
includes the time to predict the depthmap using theDCNFmodel and the time for the network
to restore the image. Among them, it takes about 0.2s to predict the depth map of an image on
theGPUplatform, and about 0.23s for the network to restore the image, so the average running
time of our model is 0.43s. It is worth noting that for a fairer comparison, we uniformly resize
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Hazy DCP NLD MSCNN AOD-Net PFFNet

GCANet FFA-Net MSBDN MSDFN OURS GT

Fig. 10 Visual comparison on the O-HAZE dataset

the input images to 640×480 pixels during testing. From Table 1, it can be found that the
average running time of our model is comparable to other methods, and the time loss is
acceptable. However, how to continue to improve the running speed of our model and make
it lightweight is the focus of our future work.

4.4 Ablation study

The progressive idea is the core idea of this article. In order to find amore appropriate number
of BDU, we use ablation experiments to verify the impact of different numbers of BDU on
the model. According to our assumptions, the more BDU, the better the effect of the model.
We used 1-8 BDU to train our model. The results show that the more BDU, the larger PSNR
and SSIM.

Table 2 shows the performance of the proposed model under different configurations. It
can be seen that as the number of BDU increases, both SSIM and PSNR will improve to a
certain extent. But memory consumption and running time will also increase. It can be seen
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Hazy DCP NLD MSCNN AOD-Net PFFNet

GCANet FFA-Net MSBDN MSDFN OURS GT

Fig. 11 Visual comparison on the I-HAZE dataset

from Fig. 14 that in various image datasets, as the number of BDU increases, the clarity of
the image has been improved to a certain extent. We need to find an appropriate number of
BDU in order to balance the relationship between model performance andmodel complexity.
It can be found from the Table 2 that when the number of BDU is less than 5, PSNR and
SSIM have a significant improvement with the increase of the number of BDU, but when the
number of BDU is greater than 5, PSNR and SSIM tend to be stable. In addition, in order
to avoid excessive memory usage and high time consumption, we choose 5 as the execution
time of BDU of the model.

5 Conclusions

This paper proposes an end-to-end image dehazing method, which decouples the image
dehazing from the atmospheric scattering model. The core of the network is the BDU. The
image dehazing is achieved by progressively executing the BDUmultiple times. Experiments
show that as the number of BDU increases, the dehazing effect becomes more obvious. This
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Hazy DCP NLD MSCNN AOD-Net PFFNet

GCANet FFA-Net MSBDN MSDFN GTOURS

Fig. 12 Visual comparison on the D-Hazy dataset

Hazy DCP NLD MSCNN AOD-Net PFFNet

GCANet FFA-Net MSBDN MSDFN OURS

Fig. 13 Visual comparison on real scene images
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Fig. 14 Visual comparison of models with different numbers of BDU on various datasets

method increases the depth of the network and considerably saves the amount of parameters.
At the same time, in order to connect the features at different progressive stages, a FMM is
added to the BDU. In order to make better use of the depth information of the image, the
depth information of the original image is extracted to guide the network learning and avoid
the unclear image caused by inaccurate depth prediction. Extensive experiments show that
the proposed method has better dehazing effects on synthetic data sets, heterogeneous data
sets and real scenes than the current methods.
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