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Abstract
In this paper, we propose a method for abnormal event detection in videos based on Multi-
scale Pyramid Grid Templates (MPGT). Unlike traditional methods that usually finish
anomaly detection based on a single scale feature, we propose to detect anomalies with
a designed multi-scale normalized motion feature in the framework of MPGT. In our work,
two scene models are proposed, including a global model and an online model, because the
anomalies often occur in regions with moving objects. In addition, we propose a fast method
for computing high-scale motion features using a convolution operation based on the first
scale feature, and design a scheme for combining the detection results at different scales
using vote and pyramid strategies. Experiments on public datasets show that our method has
a balanced performance on all the testing datasets.

Keywords Anomaly detection · Multi-scale · Pyramid grid template

1 Introduction

With the increase of video in the real world, especially at airports, railway stations, and urban
traffic systems, video analysis is becoming increasingly important for video surveillance.
For security applications, video anomaly detection algorithms are becoming more and more
important [9].

Many approaches have been proposed to improve video anomaly detection. Thesemethods
always detect anomalies in video frames using a regular grid, such as 4 × 4 [14], 4 × 5 [4],
5× 5 [52], 10× 10 [10, 28], 13× 13 [7], 15× 15 [4, 5], 16× 12 [46], 16× 16 [12], 20× 20
[47], 30 × 30 [20], 48 × 48 [30], 80 × 80 [53], etc. This single-scale grid strategy may
speed up anomaly detection while decreasing anomaly detection accuracy. Therefore, the
multi-scale strategy has received much attention in many works [23, 24, 28]. Although the
multi-scale strategy is widely used for anomaly detection, repeated computations at the same
location for multi-scale features directly lead to a large increase in computations. To reduce
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the computations, we first compute the low-scale features and then use the result to compute
the high-scale features. This can greatly improve the efficiency of feature extraction.

In our work, scale is defined by the various combinations of adjacent basic grids. For
example, suppose the basic grid is 3 × 3, then the second scale is considered to be the
2 × 2 adjacent basic grid combination with size 6 × 6, the third scale is the 3 × 3 basic grid
combination with size 9 × 9, the fourth scale is the 4 × 4 basic grid combination with size
12 × 12, and so on. These different combinations are called multiscale pyramids. We also
develop a fast algorithm to compute the motion features at other scales based on the features
of the base scale using a convolution operation, which is much more efficient than computing
the motion feature of different scales directly. In addition, the vote strategy is introduced into
the pyramid combination and two types of scene models are proposed for robust anomaly
detection.

In summary, the contributions of our work are summarized as follows:

• We design a normalized histogram motion feature based on optical flow and extend
it to multi-scales to capture each region’s motion characteristics at a different scale.
Furthermore, a fast algorithm for computing the other scale motion representation based
on the basic histogram is proposed.

• Since the scene model can feedback the prior knowledge into anomaly detection, we
propose to use the global and online scene models to guide anomaly detection.

• We develop a new method which integrates the vote and pyramid strategies [21] to
combine the different scale anomaly detection results.

The rest of this paper is organized as follows. Section 2 provides a brief overview of
previous works on anomaly detection. The detailed explanation of our method is provided in
Section 3. Section 4 demonstrates the effectiveness of the proposed algorithm in the published
datasets, followed by the conclusion in Section 5.

2 Related works

Many methods have been proposed for abnormal event detection. The trajectory-based
method is usually used in the first days to detect abnormal events [2, 13, 18, 32, 34]. For
example, Johnson and Hogg [18] use Active Shape Models (ASM) to track the trajectories
and learn a model from the trajectories to detect events. Basharat et al. [2] propose to model
the pixel-level probability density functions of object velocity and size from the traces by
using a multivariate Gaussian Mixture Model (GMM) for anomaly detection. In [39], clus-
tering with a support vector machine (SVM) is used to detect anomalous trajectories. Mo
et al. [34] use joint sparse reconstruction for video anomaly detection. The main problem
of the trajectory method is the detection accuracy of the trajectories. If the trajectories are
detected accurately, the abnormal events can be detected easily. To ensure the accuracy of
the trajectories, Hu et al. [13] propose a robust multiple object tracking algorithm based on a
fast, accurate fuzzy K-means algorithm, and use the detected trajectories to detect anomalies
using statistical theory. However, due to the complex scenes, it is impossible to estimate
the trajectories based on the unreliable detection of moving objects, leading to the anomaly
detection failures.

To take full advantage of video features, low-level features are always used in anomaly
detection, such as Histogram of Gradient (HOG), Histogram of Optical Flow (HOF), and
image gradient. For example, Zhao et al. [53] use sparse coding and online reconstructability
for anomaly detection based on HOG and HOF. Cong et al. [4] also use a sparse coding
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strategy for abnormal event detection based on the Multi-scale Histogram of Optical Flow
(MHOF), an extension of HOF. The motion features HOG and HOF are also adopted by
[50] based on a statistical hypothesis test, and the abnormal events are identified as those
that contain abnormal event patterns and have a high abnormality detector value. In addition,
gradient information is also used for abnormality detection. In [20], the 3D gradients of
Spatial-temporalVolumes (STVs) are proposed to detect anomalous events based on aHidden
Markov Model (HMM). Lu et al. [28] propose a sparse combination learning algorithm for
detection using these 3D STVs. Yu et al. [49] also use the 3D STVs for anomaly detection
with a content-adaptive sparse reconstruction method. A similar gradient feature is also used
as an appearance feature in [10, 16, 52].

With the development of deep learning, the output feature map of the neural network is
generally used [11, 16, 17, 27, 36, 37, 43, 54]. Hasan et al. [11] build a fully convolutional
feed-forward autoencoder to learn the local features and classifiers in an end-to-end learning
system. Ionescu et al. [16] consider the activation maps of the last convolutional layer of
VGG-f [3] as appearance features and combine them with 3D gradient motion features to
detect abnormal events. Liu et al. [27] first use an encoder to encode the first t frames, and then
feed the output into a Convolutional LSTM (ConvLSTM) [42] to obtain the final features for
anomaly detection by margin learning. Motion and appearance features obtained from three
convolutional autoencoders are clustered and the one-versus-rest scheme is utilized to score
the anomalous events in [17].Nguyen andMeunier [36] use a convolutional autoencoder and a
U-net [41] to learn the joint appearance structures andmotion patterns for anomaly detection.
Most of the above methods focus on a new representation to support anomaly detection.
These methods separate anomaly detection and data representation learning, resulting in a
suboptimal representation for specific anomaly detection. Therefore, end-to-end methods are
proposed in [11, 37, 54]. Pang et al. [37] use a few labeled anomalies and a prior probability
to perform end-to-end learning of anomaly scores. Zhou et al. [54] combine feature learning,
sparse representation and dictionary learning in a new neural network. Although neural
networks have made a great progress in anomaly detection, some problems still need to be
solved, such as expensive computational power, long training time, design of cumbersome
network structure, and so on. Therefore, in this paper,we use the traditional anomaly detection
method based on normal video motion.

3 Our work

In this work, anomaly detection is considered as a template matching problem, where the
feature of the testing motion histogram in each grid is compared with the trained template to
evaluate the anomalous events at each scale. A scenemodel can incorporate the knowledge of
the scene into the anomaly detection. Therefore, we use a trained scene model as a reference
to limit the range of anomaly detection, and employ an online scenemodel to control anomaly
detection outside this range. The framework of our method is shown in Fig. 1. The top and
bottom subgraphs describe the training process and the middle one describes the testing
process.

3.1 Scenemodel

Inspired by the fact that the abnormal events usually occur on the moving objects and cannot
occur on the background, we use a scene model to describe this property. We have two kinds
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Fig. 1 Framework of our method

of scene models: a global reference scene model and an online model. The scene model is
modeled at the pixel level and is based on the optical flow obtained from [8]. Assume that
the optical flow at the point (x, y) is (vx , vy), where vx and vy are the horizontal and vertical
components of the optical flow. The magnitude M at pixel (x, y) is calculated as follows:

M(x,y) =
√

v2x + v2y . (1)

The magnitude of motion represents the intensity of object motion. If the magnitudes in
a certain region are smaller than a threshold, it means that this region could be more of a
background. So the region of moving objects can be determined as follows:

B(x,y) =
{
1, M(x,y) >= θ

0, M(x,y) < θ
. (2)

Where θ is a threshold, obtained by an adaptive method [35]. For the global scene model,
we first compute magnitudes of each frame in the training samples, and use (2) to binarize
each frame. Then, we calculate the average of the whole binarization frames in the training
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dataset to obtain the scene model. Finally, we estimate one threshold from the global scene
model (more details can refer to Section 4.1 Parameters Setting) and use it to obtain the
corresponding binarization of global scene model. In the testing phase, we consider the
magnitude obtained from (1) as the online scene model. Figure 2 shows the scene model on
the UCSD Ped1 dataset. With the global scene model, we can determine the area that the
object usually passes through. While with the online scene model, we can determine the area
that the object is currently passing through.

In general, the moving region (foreground) in the global scene model should contain the
region under the online scene model. If the objects appear in the background region of the
global scene model, it is more likely that anomalies will occur in that region. Figure 2(e)
shows an example. The regions of the online scene model (yellow regions in Fig. 2(d)) are
mostly in the foreground of the global scene model. The regions outside the global scene
model (red regions in Fig. 2(e)) indicate that few objects in the training set occur in that region.
Therefore, we process two different criteria inside and outside the global scene model.

3.2 Normalized histogram and fast computation

First, we propose a normalized histogram for representing objectmotion at one scale. Second,
we extend this normalized motion feature into multi-scales and design a fast algorithm for
high-scale histogram computation based on the base scale histogram. Third, we introduce
how to obtain the MPGT from calculated motion features. Last, we introduce the method to
score the testing frames using an anomaly detection score function, as well as the scheme to
combine multi-scale detections using vote and pyramid strategies.

3.2.1 Normalized histogram feature

Many works use histograms, such as HOG [6], HOF [53], and MHOF [4]. Our motion
feature is also based on histograms. We also extend the optical flow based histogram to
include normalization for each bin. Suppose each frame is divided into s × s grids, and the
grids at the same location with continuous t frames form a cube. A histogram is computed
for each cube with the size s × s × t . Each pixel (x, y) in a cube is quantified into one of d
directions based on its angle:

θ(x,y) = tan−1(vy/vx ). (3)

We calculate a histogram for each direction with magnitude as the weight. Let the
weighted histogram at the location (xcube, ycube) be H(xcube,ycube) = [h1, h2, · · · , hd ],

Fig. 2 Our scene model on the UCSD Ped1 dataset. (a) is the global scene model. (b) is the binarization of
the (a). (c) is an online scene model of one frame. (d) is the corresponding binarization of (c). (e) the trace
of moving object is in the background and is colored with red. The yellow region in (b) or (d) represents the
foreground and the black stands for the background
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Fig. 3 Multi-scale pyramid histogram architecture. The video is divided into different scale cubes which are
colored with orange, green and red, to extract the feature at different scales. The all scale motion features
compose the multi-scale pyramid motion features, which can be used to train MPGT

where hi represents the sum of weight in ith direction. Let the standard histogram be
B(xcube,ycube) = [b1, b2, · · · , bd ], where bi is the count of the pixels located in the ith direction.
The final histogram H f

(xcube,ycube)
is normalized with the B(xcube,ycube):

H f
(xcube,ycube)

= H(xcube,ycube)./B(xcube,ycube)

= [h1/b1, h2/b2, · · · , hd/bd ], (4)

where the operator ./ is the element-wise division, and here suppose that bi �= 0. If bi is
zero, the corresponding histogram is 0 too.

3.2.2 Fast algorithm for multi-scale histogram

We define the concept of scale differently from the previous works [21, 48], which defined
scale as the image resolution. We define the scale with reference to the receptive field. In
Fig. 3, for example, different grid sizes represent different scales. The histogram of each
scale can be calculated from (4) if the ith scale is si × si (we remove t from si × si × t for
simplicity). The computation is extremely large and wasteful if the histograms are computed
directly based on optical flow. Therefore, we propose a rapid algorithm to complete this task
using the convolution operation.

According to the histogram definition, the value of each bin for each scale is defined as
the summary of pixels in that direction. Figure 4 provides an example of this computation.
In the left subfigure, the circle and square stand for two different bins, and the yellow square
represents a base scale (level 0), whose corresponding histograms are shown in the red dotted
rectangle. The blue square represents a high scale (level 1) and its histogram is represented in
the dark dotted rectangle. As shown in this example, the high scale region of level 1 contains
four base scale regions of level 0. The histogram of each bin on the level 1 scale is the sum of
the four corresponding bins on the level 0. It is efficient to calculate the histogram of level 1
from level 0 using a simple addition operation. The level 1 histogram calculation is displayed
in the right subfigure. The histogram of the first bin on level 0 is [2, 2, 1, 3] (see the green
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Fig. 4 Toy example of our fast multi-scale histogram computation. The yellow square on the top subgraph
stands for the base scale (level 0) and the blue square represents the second scale (level 1)

square in the left subgraph). The histogram value on level 1 is 8 and is also the convolution
of level 0 with a 2 × 2 kernel of value 1.

For one video, let the base scale histogram without normalization at location (x, y) be
H(x,y) = [h1, h2, · · · , hd ], and the standard histogram be B(x,y) = [b1, b2, · · · , bd ]. Based
on the base scale histogram, we can calculate the histogram for any scale as long as the size
of the other scales is an integer multiple of the base scale. That is, suppose that the base scale
is represented as s1 × s1, we can obtain the histogram of other scale, whose spatial size is
s2 = I × s1, where I is one positive integer, using the convolution operation. The algorithm
is shown in Alg. 1, where w is a multiple of the base scale size. Suppose the size of the base
scale is 3 × 3. If we want to obtain the histogram of 6 × 6, the kernel size should be 2 × 2
with w = 2. Similarly, we can obtain the other scale motion histograms using Alg. 1, and
then calculate the normalized motion feature employing (4).

3.3 Multi-scale pyramid grid templates

Basedon the normalizedhistogram,wecan calculate theMPGTbycombining eachmaximum
grid template at every scale. Suppose there are nh normalized histograms at location (xi , yi )
in the whole training data, i.e. H1

(xi ,yi )
, H2

(xi ,yi )
, · · · , Hnh

(xi ,yi )
. We model the maximum grid

template at location (xi , yi ) as follows:

g(xi ,yi ) = max(H1
(xi ,yi ), H

2
(xi ,yi ), · · · , Hnh

(xi ,yi )
), (5)
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Algorithm 1 Histograms computation using convolution.
Input
H : the basic weighted histogram.
B: the basic standard histogram with the same shape as H .
w: the kernel width.

Ouput
Hc: the output weighted histogram,
Bc: the output standard histogram.
for each direction i do

step 1: Obtain the weighted and standard histogram at the i th direction.
hi = H [.., i], bi = B[..., i].
step 2: Produce a 2D convolution kernel k, with the kernel width as w and values as 1.
k = Conv2D(w, w)

step 3: Compute 2D convolution between k and hi .
hci = k � hi , where � is convolution operation.
step 4: Save the output weighted histogram.
Hc[..., i] = hci .
step 5: Compute 2D convolution between k and bi .
bci = k � bi .
step 6: Save the output standard histogram.
Bc[..., i] = bci .

end for

where the max operation selects the maximum histogram in every bin for d directions among
all training histograms. Therefore, our maximum grid template can capture the movement
distribution in various locations. For the ith scale, suppose one frame can be divided into non-
overlap m × n grids. With each local maximum grid template, we can obtain the maximum
grid template for the ith scale

G =

⎡
⎢⎢⎣
g(x1,y1) g(x1,y2) · · · g(x1,yn)

g(x2,y1) g(x2,y2) · · · g(x2,yn)

· · · · · · · · ·
g(xm ,y1) g(xm ,y2) · · · g(xm ,yn)

⎤
⎥⎥⎦ . (6)

We also extend the template into the multi-scale cases. Intuitively, the cube with small size
can detect the details of the motion. The cube with the large size can capture the high-level
object knowledge. Therefore, we describe the motion using different scales at the same time
to improve the detection. Suppose the first scale maximum template is G0, it can be obtained
from the basic histograms of s0 × s0 × t cubes. Then, we obtain the second scale histograms
using Alg. 1 with the basic histograms, as well as the second scale maximum template G1.
The third and other scale maximum templateGi can be also achieved using the same strategy.
All the different scale templates compose the MPGTs.

3.4 Anomaly detection

With our proposed MPGT, we can finish the anomaly detection task. In this section, we first
introduce how to score the testing frames, and then describe the combination of multi-scale
detection results.
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3.4.1 Anomaly detection score function

We use the logistic function to score the final anomaly detection score. Let the histogram
Hmax

(x,y) = (hmax
1 , hmax

2 , · · · , hmax
d ) be one scale maximum template at location (x, y), and

H(x,y) = (h1, h2, · · · , hd) be the corresponding testing histogram also located at (x, y). The
score function for the location (x, y) grid is expressed by:

s(x,y) = 1

1 + exp(−β ∗ ∑
k=1,···d

∧hk>hmax
k

(hk − hmax
k ))

, (7)

where β is the logistic function parameter, and ∧ is the AND operation. The bins whose
value are larger than the corresponding bins of maximum template in (7) are considered. The
template g(x,y) at location (x, y) stands for the maximum motion intensity. If one bin of a
new observation is larger than the corresponding bin of the template, it is abnormal for this
new observation at this location. The larger the new observation bin value exceeds the grid
template, the more likely the abnormal events will appear.

We can divide each frame into the foreground and background regions with the global and
online scene models. Then we detect anomaly in the foreground using (7) and background
with a weighted MPGT:

G =

⎡
⎢⎢⎣
g(x1,y1) g(x1,y2) · · · g(x1,yn)

g(x2,y1) g(x2,y2) · · · g(x2,yn)

· · · · · · · · ·
g(xm ,y1) g(xm ,y2) · · · g(xm ,yn)

⎤
⎥⎥⎦ ∗ c, (8)

where c is a softening factor, which can reduce the template effectiveness in the background
regions. If c = 1, thewhole framehas the same template for anomalydetection. In fact, if some
object moves in the background, the anomaly has more probability to occur. Therefore, we
set c < 1 to decrease the anomaly detection condition and improve the accuracy of detecting
abnormal events in the background. For all testings, we set c = 0.8 in all experiments.

3.4.2 Strategy for combination of multi-scale detection

Many applications use the pyramid approach, such as scene category recognition [21], image
classification [48], object detection [25] and event detection [51]. In this work, we first
calculate the probability of abnormalities on each grid location at each scale using (7). Then,
we use a pyramid strategy to combine multi-scale detection results and incorporate the voting
strategy in the pyramid scheme:

p(x, y) =
ns∑

i=0
∧

vote(x,y)>v

1/2ns−i s(x,y), (9)

where ns is the total scale levels, vote(x, y) stands for vote strategy at location (x, y), ∧ is
the AND operation. For example, vote(x, y) > 2 indicates that if there are more than two
abnormal events, this position (x, y)would be considered as abnormal candidates. Obviously,
if vote(x, y) > 0, Eq. (9) is similar to that in [28]. In our work, we put more emphasize on
the high scale for that the high level can capture more significant holistic feature.

123



9938 Multimedia Tools and Applications (2024) 83:9929–9947

4 Experiments

In this section,we demonstrate the experimental performance of the proposed algorithmusing
the published datasets UCSD [31] and Avenue [28]. The video frames are first downscaled
to a resolution of 120 × 160 and four scales of 3 × 3, 6 × 6, 9 × 9 and 12 × 12 are used for
the motion features in all experiments. The base scale is set to 3 × 3 and the motion feature
of the other scales is calculated based on the first scale using the fast algorithm proposed
in Section 3.2.2. Figure 5 shows some detection results of our method. As can be seen in
the figure, our approach can effectively detect various anomalies, such as bicyclists, runners,
skaters, and cars.

4.1 Parameters setting

There are three types of parameters in our method. The first is the threshold in the scene
model, the second is β in (7), and the last is the bin number d of the histogram in the
low-level feature.

Intuitively, the magnitudes in (1) represent motion intensity, so they should be low for the
background and high for the moving objects. To determine the threshold in the scene model,
we first flatten the scene model and plot it with the number of pixels as the y-axis and each
pixel position as the x-axis. Then we examine the threshold on the low point in the graph. In

Fig. 5 Detection samples on the published datasets, with the red mask for the anomaly region. (a) is original
images. (b) is the detection at the first scale. (c) is the detection at the second scale. (d) is the detection at the
third scale. (e) is the detection at last scale. (f) is the detection using our combined strategy
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Fig. 6 Threshold decision on our scene model. (a) is the scene model on UCSD Ped1 dataset. (b) is the plot
for the scene model with each pixel as x-axis and the average of pixel appearing times as y-axis

our experiments, we set the threshold value to 25, 20, and 35 for the UCSD Ped1, Ped2, and
Avenue dataset respectively. Figure 6 shows the procedure for estimating the threshold for
the UCSD Ped1 dataset.

For the other two parameters, we find that both parameters have limited effectiveness in
detecting abnormalities. To test the influence of the parameters, we first fix one parameter and
change the other within a certain range. We then compute Area Under the Curve (AUC) for
the evaluation on UCSD Ped1 dataset. The comparison with different bins using β = 0.01
is shown in Table 1. As shown in this table, when the number of bins increases, the AUC
decreases a little, which implies that the small bins can perform well, and when the bins are
2, the performance is the best. Intuitively, when the number of bins is small, there are more
pixels in a bin, and more data makes the histogram more robust against noise.

Table 2 shows the AUC comparison for different β = 0.0001, 0.001, 0.01, 0.05, 0.1, 1, 5
on the UCSD Ped1 dataset, where the movement histogram is fixed at 2 bins. As can be seen
from the comparison, when β < 0.001, the larger β, the lower the AUC. When β > 0.001,
the smaller β is, the smaller the AUC is. The average AUC hovers around 0.88, indicating
that our method is robust to the parameter changes. In the following experiments with the
UCSD dataset, we set β = 0.001 and d = 2.

4.2 Experiments on UCSD dataset

In theUCSDdataset, there are two pedestrian scenes on campus, Ped1 and Ped2. Each dataset
contains a training set and a testing set. For UCSD Ped1, the training set contains 34 short
clips for learning normal patterns and the testing set contains 36 short clips. Each clip in
Ped1 has 200 frames with a resolution of 158×238. The anomalies occur in multiple frames
in each clip in the testing set, and there is a subset of 10 clips with pixel-level binary masks
that can be used to identify regions that contain anomalies. The UCSD Ped2 dataset contains

Table 1 Comparison with
different histogram bins on
UCSD Ped1 dataset using
frame-level ground truth

bins 1 2 4 6 8

AUC 0.8719 0.8757 0.8621 0.8480 0.8380
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Table 2 Comparison with different β on UCSD Ped1 dataset using frame-level ground truth

β 0.000001 0.00001 0.0001 0.001 0.005 0.01 0.05 0.1

AUC 0.8726 0.8763 0.8797 0.8804 0.8781 0.8757 0.8652 0.8594

scenes of pedestrians moving parallel to the camera at a resolution of 240×360, with 16 clips
for training and 12 clips for testing. In the following experiments, we evaluate our approach
based on frame and pixel ground truth.

4.2.1 Evaluation on UCSD Ped1 dataset

For the frame-level comparison, we compare our approach with the state-of-the-art methods,
including Scan Statistic (SS13) [15], Sparse Combination (SC13) [28], Spatio-Temporal
Motion Context (STMC) [5], Convolutional Auto Encoder (Conv-AE) [11], Combining
Motion and Appearance (CMA16) [52], Winner-Take-All SVM (WTA-SVM) [44], our for-
mer work MAP [24], MultiLevel Anomaly Detector (MLAD) [45], Multivariate Gaussian
fully Convolution Adversarial Autoencoder (MGCAA) [22] and Self-trained Deep Ordinal
Regression (SDOR) [38]. These compared methods not only contain the traditional machine
learning methods, such as SS13 [15], SC13 [28], STMC [5], MAP [24] and CMA16 [52],
but also contain the deep learning methods, e.g. Conv-AE [11], WTA-SVM [44], MLAD
[45], MGCAA [22] and SDOR [38]. The comparison based on the frame-level ground truth
is shown in the second column in Table 31. On the UCSD Ped1 dataset, our method wins the
second place in the compared methods, is comparable to SC13 [28], and is better than the
other compared methods. Although our method is a little worse compared with SC13 [28],
the performance is better than SC13 on the Avenue dataset.

To evaluate our method at the pixel level, we use an adaptive threshold to obtain the
binarization of each frame. Following [5, 28, 31, 40], the corresponding frame is consid-
ered correctly detected if more than 40% of the truly anomalous pixels are detected. The
parameters used for pixel-level comparison are the same as those used for frame-level evalu-
ation.We compare our method with Adam [1],Mixture of Probabilistic Principal Component
Analyzers (MPPCA) [19], Social Force (SF) [33], MPPCA+SF [31], Mixture of Dynamic
Textures (MDT) [31], Spatio-Temporal Motion Context (STMC) [5], Sparse [4], Stacked
RNN (SRNN) [30], Future Frame Prediction (FFP) [26], and Anomaly Net (ANet) [54]. The
comparison is shown in the second column in Table 4. It is obvious that our method has the
best performance of all compared methods, which shows the effectiveness of our approach.

4.2.2 Evaluation on UCSD Ped2 dataset

In the UCSD Ped2 dataset, the parameter settings are the same as in the UCSD Ped1 dataset.
For frame-level comparison, in addition to the above methods, we also compare our method
with Temporally-coherent Sparse Coding (TSC) [30], Unmask [16], and ConvLSTM- AE
[29]. The comparison is reported in the third column in Table 3. The performance of our
proposed method is similar to SS13 [15], slightly worse than WTA-SVM [44] and MLAD
[45], but better than the other methods. In fact, the methods of WTA-SVM [44] and MLAD

1 The results have been retained with two significant digits, for that we obtain the performance from different
references, where some of the detection values only have two significant digits.

123



Multimedia Tools and Applications (2024) 83:9929–9947 9941

Table 3 Comparison with the state-of-the-art methods on UCSD and Avenue datasets at frame-level

Methods Ped1 Ped2 Avenue Ped12 Ped1A Ped2A AllD

SS13 [15] 0.87 0.94 - 0.905 - - -

SC13 [28] 0.91 - 0.84 - 0.875 0.88

STMC [5] 0.85 0.86 - 0.855 - - -

Conv-AE [11] 0.81 0.90 0.70 0.855 0.755 0.8 0.803

CMA16 [52] 0.85 0.90 - 0.875 - - -

WTA-SVM [44] 0.81 0.97 - 0.89 - - -

MLAD [45] 0.82 0.98 0.72 0.90 0.77 0.82 0.84

Unmask [16] - 0.82 0.81 - - 0.815

MAP [24] 0.86 0.92 0.87 0.89 0.865 0.895 0.883

ConvLSTM-AE [29] - 0.77 0.88 - - 0.825 -

TSC [30] - 0.81 0.91 - - 0.86 -

MGCAA [22] 0.85 0.916 0.842 0.883 0.846 0.879 0.869

SDOR [38] 0.717 0.832 - 0.775 - - -

Our method 0.88 0.93 0.88 0.905 0.88 0.905 0.897

[45] have better performance than our method in the Ped2 dataset, but their performance in
the UCSD Ped1 dataset is worse than our method.

The comparison with state-of-the-art methods based on pixel-level ground truth at UCSD
Ped2 dataset is shown in the third column in Table 4. The compared methods include [26],
SRNN [30], and ANet [54]. As can be seen from the comparison, our method wins the first
place among all the compared methods.

4.3 Experiments on Avenue dataset

The videos in the Avenue dataset published by [28] are from an avenue on the CUHK campus
with a total of 30652 frames, including 16 videos in the training set and 21 videos in the
testing set, and the pixel-level ground truth is also provided by the authors. This dataset

Table 4 Comparison with the
state-of-the-art methods on
UCSD datasets at pixel-level
ground truth

Methods Ped1 Ped2

Sparse [4] 0.461 -

Adam [1] 0.197 -

MPPCA [19] 0.133 -

MPPCA+SF [31] 0.205 -

SF [33] 0.213 -

MDT [31] 0.441 -

STMC [5] 0.471 -

FFP [26] 0.334 0.406

SRNN [30] - 0.448

ANet [54] 0.452 0.528

Our method 0.493 0.535
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presents a greater challenge in three respects: (1) The camera vibrates in some videos. (2)
There are a few outliers in some testing videos. (3) Some normal patterns rarely occur in the
training data. Similar to the experiments on the UCSD dataset, we downscale the sequences
in this dataset to a resolution of 120 × 160, set the quantized histogram directions to 8, and
set β to 20.

In addition to themethods of SC13 [28], Conv-AE [11], andMLAD [45], we also compare
ourmethodwith TSC [30], Unmask [16], andConvLSTM-AE [29]. The comparison is shown
in the fourth column in Table 3. As shown in this comparison, the AUC of our method is
0.88, which is better than SC13, Conv-AE [11], Unmask [16], and MLAD [45], on par
with ConvLSTM-AE [29], and a little worse than TSC [30]. The TSC [30] method has the
best performance on the Avenue dataset among the comparedmethods, and our method ranks
second. But the performance of our method is better than that of TSC [30] on the UCSD Ped2
dataset. Also, the method ConvLSTM-AE [29] has the same performance as our method on
the Avenue dataset, but the performance of ConvLSTM-AE [29] on the UCSD Ped2 dataset
is worse than our method.

4.4 Balanced performance comparison

To further demonstrate the superiority of our method, we calculate the AUC average for
different combinations, e.g., the AUC average for the UCSD subsets Ped1 and Ped2 (we call
it Ped12), the AUC average for the Ped1 and Avenue datasets (Ped1A), the AUC average for
Ped2 and Avenue (Ped2A), and the AUC average for all testing datasets (AllD). The results
are shown in the last columns in Table 3, i.e., the fifth column represents the AUC average on
Ped12, the sixth column represents the AUC average on Ped1A, the seventh column Ped2A,
and the last column represents the AUC average on all datasets. We can see that our method
and SS13 have the same performance on Ped12 and rank first on Ped12. In addition, our
method has the best performance on all combined datasets, including Ped1A, Ped12, Ped2A,
and AllD, indicating that our method has balanced performance on all test datasets.

4.5 Validation of our method

In recent years, deep learning-based methods have been applied to anomaly detection with
great success [11, 29, 30, 38, 54]. However, the main weakness is the dependence on a
large amount of hardware resources. Unlike deep learning methods, our proposed method
requires little GPU hardware, and you can train the template model quickly. Moreover, our
method has low dataset size requirements and needs only one template in the testing phase,
which requires little memory. Moreover, the experiments on public datasets show that the
performance of our method is also comparable to deep learning-based methods.

4.5.1 Effectiveness of our scene model

The scene model proposed in this paper is simple but effective in detecting anomalies. To
further demonstrate that the scene model can improve the accuracy of anomaly detection,
we compare the performance between the methods with and without the scene model on
the UCSD and Avenue datasets using the AUC. We also use β = 0.001 and 2 bins for all
evaluations on the UCSD dataset and β = 20 and 8 bins on the Avenue dataset. As reported
in Table 5 (second and third columns), the performance with the scene model is similar to
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Table 5 Comparison between the
method with scene model (SM)
and the one without (the second
and third columns), and the
comparison between the method
with normalization and the one
without (the second and last
columns)

Dataset with SM No SM No normalization

UCSD Ped1 0.8804 0.8509 0.7823

UCSD Ped2 0.9303 0.9152 0.7926

Avenue 0.8790 0.8424 0.8092

that without the scene model in the UCSD Ped1 dataset, but better than the performance
in the UCSD Ped2 and Avenue datasets, indicating that the proposed scene model actually
increases the anomaly detection performance.

4.5.2 Necessity of histogram normalization

Normalization of the histogram is necessary for robust anomaly detection. It can increase the
robustness to noise and improve the accuracy of anomaly detection. To test the effectiveness
of histogram normalization, we also calculate the AUC for the UCSD and Avenue datasets
using the same parameters as the previous experiments, i.e., we set β = 0.001 and 2 bins
for the UCSD dataset and use β = 20 and 8 bins for the Avenue dataset. Table 5 shows
the comparison between the histogram with and without normalization (the second and last
columns). As can be seen in this table, the AUC for all test datasets is much better than that
without normalization, which means that normalization to the motion feature is essential for
anomaly detection.

4.5.3 Validity of multi-scale pyramid histograms

Multi-scale histogram features can benefit the accuracy of anomaly detection. To show the
effectiveness of multi-scale strategy, we compare the method using four scales histogram
feature and the ones employing only one single scale. In this experiment, the parameter
settings are the same as in the above experiments with the UCSD and Avenue datasets.

Similar to the above experiments, we employ four scales for the multi-scale experiment
in testing, and use 3×3, 6×6, 9×9 and 12×12 for one scale respectively. The comparison
is shown in Table 6. As can be seen in this table, although the performance in the UCSD
Ped2 dataset with the 12× 12 scale is slightly better than the multi-scale method, the AUC in
the UCSD Ped1 and Avenue datasets with multi-scale features is significantly higher than all
detections with only one scale, indicating that themulti-scale strategy does improve detection
accuracy.

Figure 5 shows some results using different scales. From left to right, the first column is
the original image, the second column is the detection of anomalies at the base scale of 3×3,

Table 6 Comparison between the method with multi-scale scheme and the one with only one scale

Dataset multi-scale 3 × 3 6 × 6 9 × 9 12 × 12

UCSD Ped1 0.8804 0.8239 0.8315 0.8338 0.8335

UCSD Ped2 0.9303 0.8522 0.8935 0.9254 0.9382

Avenue 0.8790 0.8187 0.8239 0.8222 0.8159
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the third column is the detection at the scale of 6×6, the fourth column is the detection at the
scale of 9×9, the fifth column is the detection at the scale of 12×12, and the last column is the
combined detection of the four scales. As these examples show, false alarms may occur in the
small scale, and the detection result may be rough in the large scale. However, the combined
detection can effectively eliminate the false alarms to improve the detection accuracy.

4.6 Comparison for running time

In ourmethod,we use the basicmotion histogramof the grid to compute themotion histogram
of the high scale grid, which can greatly improve the speed of feature computation. In this
section, we compare the running time of the method with convolution and the method that
computes the histogram directly. The experiments are performed on a laptop with Intel(R)
Core i7-10750H CPU and 8G memory. The code was written using Python and is available
at https://github.com/limax2008/Anomaly-DetectionpyramidGridTemplates.

Similar to the above experiments, the basic grid is set to 3 × 3, and we compute 6 × 6,
9 × 9, and 12 × 12 directly or using convolution, respectively. The video is first resized to
120×160 and the motion histogram bins are set to 2. The experiment is finished by randomly
selecting a video from the UCSD Ped1 dataset and repeated 10 times. The final running time
is considered as the average of the 10 repetitions. The comparison is shown in Fig. 7. From
the comparison, we can see that: (1) For direct computation, the time increases as the grid
size increases. (2) Our fast algorithm for calculating all scale histograms is significantly
faster than the direct calculation (more than 4 times faster). Moreover, it is worth noting that
the running time of our fast algorithm is the total time including 3 × 3, 6 × 6, 9 × 9, and
12 × 12 (the first bar in Fig. 7). If we directly subtract the time for computing the 3×3 grid
histogram, the time for computing the 3 × 3, 6 × 6, 9 × 9, and 12 × 12 histograms is about
(11.053-10.941)/3 = 0.0373 seconds for 200 frames at one scale, indicating that our proposed
algorithm is fast enough for computing the motion histogram. Table 7 shows the comparison

Fig. 7 Comparison of running time between the method using convolution and the method computing his-
togram directly
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Table 7 Comparison of running
time standard deviation between
the method using convolution and
the method computing histogram
directly

Methods fastAlg allScales 3 × 3 6 × 6 9 × 9 12 × 12

Times(s) 0.138 0.506 0.229 0.089 0.148 0.172

of the time standard deviation. We can see that the time standard deviation of our proposed
method is small, which indicates that our method is stable for all videos.

5 Conclusion

In this work, we first improve the histogram by normalization to increase the robustness of the
motion feature. Then, we propose a simple but powerful scene model for anomaly detection,
where we combine the global scene model and the online scene model to detect anomalies
based on their intersection. Next, we propose a fast motion feature computation algorithm
based on the basic histogram feature using a convolution operation. Finally, we use our
proposed MPGT for anomaly detection based on vote and pyramid strategies. Experimental
results on public datasets show the effectiveness of the proposed method. Currently, anomaly
detection considers only one type of motion features. There is a possibility to further improve
the accuracy by considering appearance in our future work.
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