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Feature diversity learning with sample dropout
for unsupervised domain adaptive person
re-identification
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Abstract
Clustering-based approach has proved effective in dealing with unsupervised domain adap-
tive person re-identification (ReID) tasks. However, existing works along this approach still
suffer from noisy pseudo labels and the unreliable representation ability during the whole
training process. In order to solve these problems, in this paper, we propose a new approach
to learn the feature representation with better generalization ability through limiting noisy
pseudo labels. At first, we propose a Sample Dropout (SD) method to prevent the train-
ing of the model from falling into the vicious circle caused by samples that are frequently
assigned with noisy pseudo labels, our method can correct the noisy labels and boost the
representation ability. In addition, we put forward a new method referred as to Feature
Diversity Learning (FDL) under the classic mutual-teaching architecture, which can signif-
icantly improve the generalization ability of the feature representation on the target domain
in an unsupervised fashion. Experimental results show that our proposed FDL-SD achieves
the state-of-the-art performance on multiple well-known benchmark datasets.

Keywords Unsupervised domain adaptation · Person re-identification · Cross domain ·
Feature learning

1 Introduction

Person re-identification (ReID) aims to match person images across multiple non-
overlapping cameras, which has achieved attention from both industry and academia. Based
on the development of deep learning technology, many complicated visual tasks can be
solved with the help of powerful representation ability through deep neural networks [1,
2, 6, 15, 46]. Fortunately, the person ReID tasks can also get better results using the deep
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convolution networks [7, 35, 36, 54, 55]. Most of the existing person ReID models along
the supervised approach [30, 31, 41–43] have achieved satisfactory performance. The mod-
els of these methods are optimized using the annotated labels, through which the models
can learn the knowledge from the data distribution under the accurate supervised signal.
The produced features from the well trained models can be utilized to recognize the target
pedestrian. However, these models generally perform less well in real applications because
they have never been trained to adapt to the application scenes. To address this issue, a new
problem referred as to unsupervised domain adaptation becomes a hot topic in ReID task
[33, 56, 66], which focuses on how to adapt a pretrained model from a labeled source
domain to an unlabeled target domain.

The main challenge of unsupervised domain adaptive person ReID lies in learning fea-
ture representation with unlabeled target domain data. To solve this challenge, one major
line attempts to assign pseudo labels for target samples based on the pretrained model
trained with labeled source samples [9, 17, 60, 66], and then fine-tunes the model using the
target samples with pseudo labels. Obviously, following this approach, the person ReID per-
formance highly depends on the quality of pseudo labels. Therefore some works focus on
obtaining highly dependable pseudo labels. Some of these works concentrate on the clus-
tering process [9, 17, 29], in which target samples are assigned with pseudo labels based on
different metrics. This process can improve the clustering result. Other works aim at how to
effectively utilize target samples based on the clustering results [60, 61]. During the train-
ing process of these methods, the pseudo labels with different reliability are assigned with
different weights.

However, due to the clustering results are unsatisfactory, all of the existing methods
suffer from noisy pseudo labels. To observe and analyze this phenomenon, we conducted
the experiments to track and tag the noisy labels that happened during the training phase.
Experimental results revealed that a small proportion of the samples are assigned with
wrong pseudo labels frequently. These samples can be regarded as hard samples for the
unsupervised domain adaptive person ReID task. As is well known, the performance of
a well-trained model relies more on hard samples than easy samples. For the same rea-
son, hard samples with stubborn wrong pseudo labels will limit the performance of the
ReID model heavily. Unfortunately, existing unsupervised domain adaptive ReID methods
can hardly solve this problem. Meanwhile, most of these models only apply supervised
loss functions such as the Cross Entropy and Triplet loss based on the pseudo labels to
train the model, but neglect unsupervised feature learning without ground-truth labels or
pseudo labels. Appropriate unsupervised guidelines can relieve the absence of ground-truth
labels, and it can provide robust optimization for model training, which can enhance the
generalization ability of the learned feature representation.

To address these two problems, we propose a novel solution FDL-SD to resist hard sam-
ples and learn features with better generalization ability in an united framework. In order
to limit the negative influence of these hard samples, we propose a simple but powerful
method which is called Sample Dropout (SD) to smooth the distribution of noisy pseudo
labels, it can make the model escape from the local minimum trap and enable the model to
explore better solutions. For most existing clustering-based unsupervised domain adaptive
ReID works, assigning pseudo labels for all target samples is employed before each fine-
tuning iterator, the model has no chance to get out of the local minimum solution in such a
way. But in this paper, we propose a novel clustering method, in which a proportion of tar-
get samples are randomly discarded before each training epoch, through which the vicious
circle of iterative training caused by hard samples can be broken. In addition to the pro-
posed SD, we also present a new architecture to realize Feature Diversity Learning (FDL)
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in an unsupervised way. The unsupervised fashion Feature Diversity Learning we proposed
can optimize the model training in a stable way without the presence of the labels, it can
increase the feature diversity. Therefore the representation ability of the model is improved,
and our method is believed to suppress the ill effect of wrong pseudo labels and enhance
the generalization ability of the feature representation. Due to the powerful feature repre-
sentation ability, our proposed Feature Diversity Learning can also be used in many other
fields [5, 13, 26, 38], in which the feature plays an import role to realize the specific tasks.
Overall, the main contributions of this paper can be summarized in three aspects:

(1) We propose the Sample Dropout (SD) method to reduce the adverse effect of hard sam-
ples on domain adaptation, which can prevent some hard samples from being assigned
with wrong pseudo labels all the time, thus breaking the vicious circle caused by these
hard samples.

(2) We propose the Feature Diversity Learning (FDL) and embed it into a dual-branch
architecture to learn feature diversity representation in an unsupervised fashion, which
can learn stable feature representation and boost the generalization ability of model on
target domain.

(3) Extensive experiments on multiple benchmark datasets show that our proposed FDL-
SD achieves the state-of-the-art performance, which demonstrates the effectiveness of
our proposed approach.

2 Related work

2.1 Unsupervised domain adaptive person ReID

Unsupervised domain adaptive person ReID aims at transferring the knowledge learned
from a labeled source domain to an unlabeled target domain, which can make the model pro-
duce discriminate feature representation for target domain. Existing works can be roughly
divided into two categories. For the first category, it attempts to reduce the domain gap
between the labeled source domain and unlabeled target domain, the models of these meth-
ods have better generalization. Some methods reduce the discrepancy between two domains
by aligning the feature distribution[23, 34, 39], aligning the distribution in representation
space can reduce the shift between the source domain and target domain. Some other meth-
ods adopt Generative Adversarial Network (GAN) technology to transfer the person images
from source style to target style [10, 12, 50, 68], these methods alleviate the domain bias
in image level. However, the identify information of the target domain is ignored in these
methods, where the target samples are not fully utilized to train the model. For the sec-
ond category, it assigns pseudo labels for target samples based on the pretrained model
trained with labeled source domain data, and then fine-tunes the model in supervised fashion
[16, 17, 32, 57, 58, 60]. These methods are widely utilized because of their superior per-
formance. BUC [32], HCT [57] and SpCL [17] directly fine-tune the model relying on the
iteration of pseudo-label mining, the target domain samples with pseudo labels are used to
train the model in the following phase. Some other methods adopt mutual-training to clus-
ter target samples and train the model, such as MMT [16], MEB-Net [58] and NRMT [60],
these methods can achieve better clustering results and powerful feature representation. But
the wrong pseudo labels are inevitable in these approaches, and some hard samples may
even seriously damage the model.
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In this paper, we adopt the second line clustering-based methods to solve the unsuper-
vised domain adaptive person ReID task, but the difference compared with the existing
works is that our work is motivated to reduce the ill effect caused by hard samples and
explore feature diversity representation.

2.2 Learning with noisy labels

Some remarkable methods have been devoted to handling noisy labels, which can be catego-
rized into loss correction, sample reweighting and label correction. Loss correction methods
engage to design special loss functions against noisy labels [18, 48, 59], with the help of the
designed loss functions, the noise can be reduced and the optimization of the model can get
better solutions. Sample reweighting methods assign various weights to different samples
[11, 19, 40, 61], the samples with noisy labels can be suppressed in these methods, therefore
their ill influence for the model training is alleviated. For example, UNRN [61] proposed
to re-weight samples based on the uncertainty of their pseudo labels, the reliable samples
are used better and the samples with low certainty are assigned with small weights. Label
correction methods [9, 24, 27, 29, 45] focus on direct correction of noisy labels. DCML [9]
proposed to gradually increase the usage of pseudo labels as the training process goes on
and the pseudo label reliability of these samples is boosted, which helps the model learn
knowledge from easy to hard. ADTC [24] proposed to use a two-stage clustering strategy to
assign pseudo labels for target samples, it uses the kmeans method to generate the centroids
of clusters at first and then assign pseudo labels with the metric of k-reciprocal Jaccard dis-
tance, which can improve the clustering quality. However, all of these methods can’t solve
the problem that some hard samples with noisy labels hurt the training of the model seri-
ously and are difficult to detect or correct in the iterative optimization process. Therefore,
this paper adopts a novel Sample Dropout method to weaken the ill influence caused by
theses hard samples.

2.3 Unsupervised feature learning

There are no ground-truth labels in some classification tasks, because it is expensive and
time consuming to annotate the lables for the large amounts of data. Therefore, the unsu-
pervised methods are adopted in many works. MMCL [49] designed a memory-based
multi-label classification loss which integrates multi-label classification and single-label
classification in a unified framework. Similar to MMCL, Xiao et al. [53] introduced a
parameter-free Online Instance Matching loss with a memory dictionary scheme, which
trains feature encoder directly instead of needing to learn a big classifier matrix and it can
speed up the model convergence. In order to mitigate the effects of noisy pseudo labels,
MMT [16] introduced a novel soft softmax-triplet loss to support learning with soft pseudo
labels and it enhances the reliable feature learning. To solve the problem that previous con-
trastive losses [8, 20, 51] only focused on separating instances without considering any
ground-truth classes or pseudo-class labels, SpCL [17] proposed a unified contrastive loss
jointly distinguishes source domain classes, clusters and un-clustered instances of target
domain, the utilization of all the data enables the model to learn better knowledge expres-
sion. However, all of these methods need to adopt pseudo labels as supervised signals,
but the wrong pseudo labels are inevitable. In this paper, we propose the Feature Diver-
sity Learning (FDL), which does not need labels as supervision that avoids the noisy labels
affecting the model training. At the same time, it can boost the model’s representation
ability.
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3 Method

3.1 Overall framework

For the unsupervised domain adaptive person ReID task, we have a labeled training dataset
Ds = {

(xs
i , y

s
i )

}Ns
i=1 collected from the source domain, where xs

i and ys
i denote the i-th

source sample and its corresponding person identity label, Ns is the number of all the source
samples for training. The unlabeled target domain samples are denoted as Dt = {

xt
i

}Nt
i=1.

The general UDA person ReID task is “A to B”, where A is the source domain dataset
with annotated labels and the B is the target domain dataset without annotated labels. In the
UDA task, we need to learn discriminate feature representation for target domain using the
knowledge from source domain dataset. Before each iterative training epoch, the clustering
algorithm DBSCAN [3] will be used to assign pseudo labels for target samples. In order to
reduce the ill influence of hard samples in the target domain and boost the generalization
ability of the model, we propose a novel framework that contains Sample Dropout and
Feature Diversity Learning, as shown as Fig. 1.

Our model adopts the dual-branch structure which consists of feature encoders F1 and
F2. Correspondingly, we leverage momentum update mechanism to construct and update
two mean feature encoders F̃1 and F̃2 respectively. During the training process, two mini-
batches are randomly selected from source domain and target domain, and they are fed
into the two branches. As the Fig. 1 shown, the same input is passed through the mutual
teaching architecture F1, F2, F̃1 and F̃2 at the same time. The feature encoders F1 and
F2 are optimized by the backpropagation fashion through the gradients produced by our
designed loss functions in this paper, and the parameters of mean feature encoders F̃1 and
F̃2 are updated by the momentum update fashion according to the parameters of F1 and F2.
Therefore, the mean feature encoders can smooth the negative effect caused by noisy labels,
and the features produced by the mean feature encoders provide more reliable features to

Fig. 1 An overview of the proposed architecture. Our framework adopts a dual-branch structure which is
consisted of feature encoders F1, F2 and their corresponding mean feature encodes F̃1, F̃2. Classifiers C1
and C2 follow behind F1 and F2. The labeled source domain in the figure means that the labels of the source
domain are available during the training phase, and the unlabeled target domain represents that there are no
annotated labels for the target domain to guide the model learning
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guide the model learning of F1 and F2. A point to note is that the proposed SD step has
been applied in the target domain before each training epoch. Along each branch, the output
feature vector fi of the encoder Fi will be sent into the classifier Ci .

As shown in Fig. 1, the classic Cross Entropy loss is deployed based on the ID predictions
given by the classifier Ci , the Triplet loss is calculated based on the feature vector fi , and the
proposed FDL loss is embedded into the mutual teaching architecture based on the encoder’s
output fi and mean feature encoder’s output f̃ j , i �= j . At last, the feature vectors of two

mean encoders will be concatenated into a united vector f̃ = [f̃ 1; f̃ 2] to represent each
sample in the testing stage, which will be also used by the clustering algorithm to produce
pseudo labels.

In summary, there are three main steps during each epoch of the iterative training: 1)
Sample Dropout in the target domain, 2) assigning pseudo labels for target domain sam-
ples, 3) training the model with source samples and target samples. Through the iterative
optimization between feature representations and pseudo labels, the performance of the
proposed method will be effectively improved.

3.2 Sample dropout

Noisy pseudo labels are harmful to the model but inevitable for unsupervised domain adap-
tive ReID tasks. However, we found that a small part of samples often account for a large
proportion of noisy pseudo labels during the whole training process, which we define as
hard samples. Compared with the general samples which are assigned with wrong pseudo
labels only a few times during the whole training process, hard samples will continuously
mislead the training process to wrong directions and irreversibly damage the model. In
order to solve this problem, we propose Sample Dropout to smooth the distribution of noisy
pseudo labels, which can reduce the adverse effect caused by hard samples. Besides, the cor-
rection on noisy pseudo labels can also make the model learn better feature representation,
which can further improve the model’s performance.

Sample Dropout is adopted before the clustering step of each iterative training epoch.
In the beginning of k-th iterative epoch, a proportion of samples are randomly selected

from the target dataset and denoted as Dt
k =

{
xt
r(j,k)

}Mt

j=1
, where Mt = (1 − ρ)Nt, ρ

represents the Sample Dropout rate. Function r(j, k) indicates the j -th random sample from
the target dataset Dt in the k-th epoch. Then only the selected samples Dt

k will be assigned
with pseudo labels based on their clustering results, and the residual target samples will be
dropped out from the current training epoch.

Though the proposed SD seems extremely simple and naı̈ve, it proves very powerful
in dealing with noisy pseudo labels because it can prevent the model from accumulating
degradation caused by hard samples. As is shown in Fig. 2, in upper row, the sample h is a
hard sample which is always assigned with wrong pseudo labels. As mentioned above, such
a hard sample with wrong labels can easily lead to the vicious circle of iterative training
between wrong label and bad feature so that the feature space will be forced to gather
samples with different person IDs while scattering the samples with the same ID, just as
shown as the top row of Fig. 2. Considering that the query in a traditional ReID task is
always based on the feature distance between two samples, such a distorted feature space
will noticeably degrade the performance of the model. In contrast, as shown as Fig. 2(b),
the employment of SD can occasionally stop these hard samples from participating in the
clustering and training steps and consequently prevent the training process from falling into
the local minimum trap caused by these hard samples. Our proposed SD method can reduce
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Fig. 2 Illustration of the clustering results before each fine-tuning epoch. Circles with the same color rep-
resent samples with the same person ID. Samples in the same red dotted circle belong to the same cluster.
The upper row (a) represents a typical clustering process without SD, and the bottom row (b) represents the
process with SD, in which the black dotted boxes mark the discarded samples in SD step

the hard noisy labels significantly, and these hard samples have the chance to be corrected
in the next training epoch. Without the disturbance of hard samples, the feature space can
be pulled back from the wrong direction to a better direction in the next epoch. As a result,
there is larger probability to assign these hard samples with correct pseudo labels, as shown
as the second plot in the bottom row of Fig. 2. By repeatedly implementing SD, the negative
impact of hard samples on the whole training process can be effectively suppressed, and the
final performance of the model will be dramatically improved.

3.3 Feature diversity learning

Most unsupervised domain adaptive ReID methods employ only pseudo labels to guide the
training of the model. On one hand, noisy pseudo labels could hurt the model severely. On
the other hand, the generalization ability of the feature representation has not been suffi-
ciently boosted because only the pseudo-label-based losses are applied in the training stage.
Therefore, we present a new approach referred as to Feature Diversity Learning (FDL), in
which the model can learn better knowledge from the data distribution without the annotated
labels and pseudo labels, and the generalization ability can be effectively enhanced.

Our model adopts a dual-branch structure to produce two feature streams which will be
concatenated together at the final stage to form a united feature representation. The diver-
sity between the two streams can be regarded as a kind of regularization term. It is believed
to benefit the generalization ability of the feature representation. The main idea of FDL is
about how to make both the two streams serve to the same ReID task while keeping their
diversity to each other. The biggest challenge lies on the trade-off of the similarity and the
diversity between the two feature streams. Higher similarity helps to speed up the conver-
gence and reduce the empirical error but take higher risk of overfitting. In contrast, keeping
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appropriate feature diversity generally indicates better generalization ability but makes the
training difficult to converge. To get a stable and proper balance, as shown as Fig. 1, we
build a mutual teaching architecture between the two streams by constructing a mean fea-
ture encoder F̃i for each stream and updating it with the momentum of the corresponding
feature encoder, which can be demonstrated as Eq. 1:

θ̃ i (T ) = αθ̃ i (T − 1) + (1 − α)θi(T ) (1)

where θ i and θ̃ i are the parameters of Fi and F̃i respectively, T and (T − 1) represent
the current statement and previous iterative statement, and α is the momentum coefficient.
When the parameters of the feature encoder Fi, i = 1, 2 are updated through the backpropa-
gation fashion in a mini-batch training, the parameters of mean feature encoder F̃i , i = 1, 2
are updated at the same time. The error amplification can be avoided in such a way, that’s
because the temporally average model can produce more reliable feature representation. In
addition, the FDL loss function LFDL is put forward to guide the feature diversity learning
within the proposed architecture, as shown in Eq. 2:

LFDL = S(f T
1 f̃ 2) + S(f T

2 f̃ 1) (2)

where S(x) is a soft-plus function.

S(x) = ln(1 + exp(x)) (3)

It is easy to understand that the more diverse the vectors fi and f̃ j , i �= j are, the smaller
the FDL loss LFDL is. When the model is trained under such an unsupervised fashion,
the model can not only learn robust feature representation but also boost the discriminate
ability. With the proposed mutual teaching structure embedded with the FDL loss, stable
and proper diversity between the two branches can be expected. Experimental results prove
that the proposed Feature Diversity Learning is effective. We believe this is because the two
branches will converge to different suboptimal solutions under the guidance of the FDL loss,
which helps lower the risk of overfitting to the outlier samples or unreliable pseudo labels
and therefore enhances the generalization ability of the feature representation and boost the
model’s recognition ability.

3.4 Overall loss

In addition to the FDL loss, we also adopt the widely used Cross Entropy (CE) loss and the
Triplet loss to train the model.

The CE loss is assigned based on the predictions given by both the classifiers C1 and
C2. For the source mini-batch Bs and target mini-batch B t, the CE loss LCE is defined as
follows:

LCE = −[ 1

|Bs|
∑

xi∈Bs

(log(ŷ
(1)
i,∗ ) + log(ŷ

(2)
i,∗ )) + 1

|B t|
∑

xj ∈B t

(log(ŷ
(1)
j,#) + log(ŷ

(2)
j,#))] (4)

where ŷ
(1)
i,∗ and ŷ

(2)
i,∗ denote the predicted probabilities of the source sample xs

i on its true

label, which are obtained by the classifiers C1 and C2 respectively. Similarly, ŷ
(1)
j,# and ŷ

(2)
j,#

are those of the target sample xt
j on the pseudo label.

The standard Triplet loss for a training sample xa (the anchor sample) and its feature
vector F(xa) can be calculated according to Eq.5:

Lt(xa; F) = [τ + ∥∥F(xa) − F(xp))
∥∥ − ‖F(xa) − F(xn))‖]+ (5)
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where xp and xn are the hardest positive and negative samples for the anchor xa in the
same mini-batch. By applying the Triplet loss Lt to both the source and target mini-batches
in two branches, the overall Triplet loss can be written as (6). It should be noted especially
that the hardest positive and negative samples of a target sample are selected according to
their pseudo labels.

LTRI = 1
|Bs|

∑

xi∈Bs
(Lt(xi; F1) + Lt(xi;F2)) +

1
|B t|

∑

xj ∈B t
(Lt(xj ; F1) + Lt(xj ; F2)) (6)

At last, the CE loss, Triplet loss and the proposed FDL loss are combined together to
train the model in an end-to-end fashion. The overall loss function can be written as:

L = βLCE + γLTRI + δLFDL (7)

where β, γ and δ are the coefficients of the three losses. A point to note is that none of
the target samples are involved in the pretraining on the source domain. In other words, the
mini-batch B t can be viewed as an empty set in the pretraining stage.

According to the relative research, the CE loss helps to cluster each ID class in the
global scale, and the Triplet loss does well in correcting the boundaries between neighboring
classes. Coupled with the proposed FDL loss, both the empirical error and the generalization
error of the model can be properly balanced through the iterative training based on the
overall loss given by (7). Above all, the training algorithm of the proposed approach can be
summarized as follows.

Algorithm 1 Training process.
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Fig. 3 The person images in Market-1501, DukeMTMC-reID and MSMT17

4 Experiments

4.1 Datasets

The proposed approach is evaluated on three popular datasets Market-1501[63],
DukeMTMC-reID[37] and MSMT17[50]. The Market-1501 dataset contains 32,668 labeled
images of 1501 identities from 6 disjoint cameras, in which the training set includes 751
identities and 12936 images, the gallery set contains 19732 images from 750 identities,
and the query set contains 3368 images from 750 identities. The DukeMTMC-reID dataset
includes 36411 images with 1402 identities, in which 16522 images of 702 identities are for
training. The gallery and query sets contain 17,661 and 2228 images of another 702 identi-
ties. MSMT17 contains 126441 images of 4101 identities, of which 1041 identities and 3060
identities are used for training and testing respectively. The person images in these datasets
are shown in Fig. 3. When the image is fed into the feature encoder, through the convolu-
tion layers, activation layers and the pooling layers, the feature vector will be produced as
the Fig. 4 shown.

4.2 Settings

Implementation details: The feature encoders F1, F2 and their mean encoders F̃1 and F̃2
adopt the ResNet-50 [21] as backbone. They are initialized with the parameters pretrained
on the ImageNet. Compared with the original ResNet-50, the fully connected layers of these
encoders are discarded. The corresponding classifiers C1 and C2 will be trained directly
with the given datasets. In the training process, each input image is uniformly resized to
256×128. Horizontal flipping, random cropping, and random erasing are performed to gen-
erate the augmented data [25, 44]. The mini-batch size is set as |Bs| = |B t| = 60, in which
each identity contains 4 different samples. Hyperparameters α, β, γ , δ and τ in (1), (7) and
(5) are set as 0.999, 1, 1, 0.5 and 0.3 respectively. The training is implemented by the Adam
optimizer with the learning rate schedule where η = 0.00035 at beginning and is divided by

Fig. 4 The illustration for the feature extraction
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10 after every 20 epochs. The whole training process is finished after 55 epochs, in which
the first epoch is used to pretrain the model with only the source domain dataset and the
other epochs are used to train the model with both the source and target datasets.

Evaluation metrics: In the testing process, cumulative matching characteristics at Rank-
1, Rank-5, Rank-10 and mAP are applied to evaluate the performance of our method.

4.3 Comparison with the state-of-the-art methods

We compare our proposed FDL-SD method with other SOTA unsupervised domain adap-
tive ReID works on the Market-1501, DukeMTMC-reID and MSMT17 datasets. The
comparison results are shown in Table 1.

At first, we compare the ReID performance on Market-1501 and DukeMTMC-reID.
Some typical works along the approach of domain bias reduction, including PTGAN [50],
SPGAN [12] and CR-GAN [10] which are GAN-based, DAAM [22], D-MMD [34] and
SADA [47] which are based on feature alignment are compared with our approach. The
results show that our model significantly outperforms the best of these models by about
15-23% (mAP: 71.3% vs 55.8% on the Market-to-Duke task, and 83.0% vs 59.8% on the
Duke-to-Market task). Comparing the traditional clustering-based methods like SSG [14]
and ECN[66], our model is still more superior in all the metrics on both the adaptation
tasks. There are also a lot of latest models tackling the noisy problem such as DRDL
[28], HDS [65], GLT [62] and ACMA [67] in the comparison. Even these methods have
achieved better performance in comparison with the above approaches, our method can still
beat them. Especially, our method outperforms ACMA [67] by 1.5%/1.0% on mAP/Rank-1
scores for the Market-to-Duke task, and also takes an advantage of 1.9% for the mAP
score on the Duke-to-Market task. For the most challenging tasks of Market-to-MSMT and
Duke-to-MSMT, our approach also has significant improvement, especially for the mAP
score on Duke-to-MSMT task, our work outperforms the existing works by a large mar-
gin. The result shows that the university of our approach is better than other methods and
we provide a solid and universal baseline for future research on UDA person ReID tasks.
All of these strongly support the superiority of our method over the SOTA competing
approaches.

4.4 Analysis for sample dropout rate ρ

It has been found from the experimental results that the Sample Dropout rate ρ has a signif-
icant impact on the representation ability of the model and affect the final performance of
the model. To clarify this influence, a group of tests are carried out to analyse the underlying
relationship between the parameter ρ, the ReID metrics and the clustering results.

The influence on performance metrics: We have uniformly sampled the values of ρ

from 0 to 0.8. The metric scores under different values of ρ are shown in Tables 2 and 3.
It can be observed that the performance on all the tasks has been boosted clearly as the
parameter ρ increases from 0. It reaches the peak when ρ = 0.4 and falls back when ρ

continues increasing. The results prove that the proposed SD method plays a notable role to
affect the training results, and a proper value of ρ can significantly improve the performance
of the model, which is consistent with our purpose.

The influence on clustering result: To deeply dig out the underlying mechanism of the
proposed SD method, we design a group of experiments to observe the distributions of noisy
pseudo labels for different values of ρ. According to the proposed clustering-based method,
a target sample xt

i in the k-th clustering and training process will be assigned with a noisy
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Table 1 Performance (%) comparison with some popular SOTA unsupervised domain adaptive ReID
methods on Market-1501, DukeMTMC-reID and MSMT17

Methods Market to Duke Duke to market

mAP R1 R5 R10 mAP R1 R5 R10

PTGAN [50] − 27.4 − 50.7 − 38.6 − 66.1

SPGAN [12] 22.3 41.1 56.6 63.0 22.8 51.5 70.1 76.8

ECN [66] 40.4 63.3 75.8 80.4 43.0 75.1 87.6 91.6

CR-GAN [10] 48.6 68.9 80.2 84.7 54.0 77.7 89.7 92.7

SSG [14] 53.4 73.0 80.6 83.2 58.3 80.0 90.0 92.4

D-MMD [34] 46.0 63.5 78.8 83.9 48.8 70.6 87.0 91.5

DAAM [22] 48.8 71.3 82.4 86.3 53.1 77.8 89.9 93.7

SADA [47] 55.8 74.5 85.3 88.7 59.8 83.0 91.8 94.1

NRMT [60] 62.2 77.8 86.9 89.5 71.7 87.8 94.6 96.5

MMT [16] 65.1 78.0 88.8 92.5 71.2 87.7 94.9 96.9

SpCL [17] 68.8 82.9 90.1 92.5 76.7 90.3 96.2 97.7

RDSBN [4] 66.6 80.3 89.1 92.6 81.5 92.9 97.6 98.4

MSPGI [52] 65.8 79.2 90.1 93.4 74.4 90.1 96.4 97.8

CTFRN [64] 67.2 79.8 90.3 93.4 76.1 90.0 96.8 97.9

UNRN [61] 69.1 82.0 90.7 93.5 78.1 91.9 96.1 97.8

GLT [62] 69.2 82.0 90.2 92.8 79.5 92.2 96.5 97.8

DRDL [28] 68.6 82.6 91.5 93.6 82.2 92.7 97.2 98.2

HDS [65] 68.7 80.8 90.7 93.7 81.3 92.5 97.4 98.1

ACMA [67] 69.8 82.6 90.8 93.0 81.1 93.5 97.5 98.0

Ours 71.3 83.6 91.2 93.4 83.0 93.2 97.6 98.3

Methods Market to MSMT Duke to MSMT

mAP R1 R5 R10 mAP R1 R5 R10

ECN [66] 8.5 25.3 36.3 42.1 10.2 30.2 41.5 46.8

SSG [14] 13.2 31.6 − 49.6 13.3 32.2 − 51.2

DAAM [22] 20.8 44.5 − − 21.6 46.7 − −
NRMT [60] 19.8 43.7 56.5 62.2 20.6 45.2 57.8 63.3

RDSBN [4] 20.7 46.9 60.0 65.0 21.3 47.7 60.8 66.4

MMT [16] 22.9 49.2 63.1 68.8 23.3 50.1 63.9 69.8

UNRN [61] 25.3 52.4 64.7 69.7 26.2 54.9 67.3 70.6

ACMA [67] 25.9 53.4 66.4 72.1 26.8 54.6 70.9 73.0

CTFRN [64] 26.0 53.5 67.6 72.7 27.5 56.7 70.1 75.3

GLT [62] 26.5 56.6 67.5 72.0 27.7 59.5 70.1 74.2

HDS [65] 27.1 52.8 65.2 70.6 29.4 56.8 69.7 74.7

Ours 26.6 53.7 67.0 72.3 31.2 60.1 72.6 77.4

pseudo label when its true label is not equal to the dominant true label of the corresponding
cluster. The more times the noisy pseudo labels are assigned in the iterative epochs for a
sample, the harder the sample is. According to the results, the curves of four metrics against
the increasing values of ρ are plotted in Fig. 5.

5090 Multimedia Tools and Applications (2024) 83:5079–5097



Table 2 The performance (%) of the model on Market-to-Duke and Duke-to-Market tasks when different
values of ρ are applied

Value of ρ Market to Duke Duke to Market

mAP R1 R5 R10 mAP R1 R5 R10

0 65.3 79.5 89.5 92.5 74.1 89.8 95.5 97.1

0.1 67.4 80.7 90.0 92.8 77.4 90.5 96.1 97.6

0.2 69.4 83.3 91.2 93.2 81.1 92.7 96.8 98.0

0.3 70.8 83.4 91.7 94.1 80.4 92.1 96.9 97.7

0.4 71.3 83.6 91.2 93.4 83.0 93.2 97.6 98.3

0.5 71.0 83.1 91.2 93.9 81.1 92.3 97.3 98.4

0.6 70.0 83.0 90.8 92.8 79.7 91.7 97.2 98.1

0.7 65.9 79.7 88.9 91.7 75.1 88.8 95.3 97.1

0.8 52.8 70.4 81.2 84.6 47.3 71.3 82.8 86.4

The clustering error rate is the ratio of noisy labels to all the labels when we implement
the clustering algorithm on the fully converged model. The corresponding pink curves in
Fig. 5(a), (b), (c) and (d) illustrate that the clustering error rate increases with the growing
value of ρ. This result coincides with our intuition because higher SD rate indicates that
more samples are not fully utilized in the training. The blue and green curves in Fig. 5
record the relative error rates of the 10% and 20% hardest samples against the parameter
ρ, respectively. By 10% or 20% hardest, we mean the top 10% or 20% samples that are
most frequently assigned with noisy pseudo labels. The corresponding relative error rates
are defined as the ratio of the noisy labels ever assigned to these hardest samples to all the
noisy labels ever generated in the whole training process. It can be easily discovered that
the relative error rates of the 10% or 20% hardest samples fall steadily as the value of ρ

grows from 0 to 0.8. This result reveals a truth that the proposed SD method can effectively
prevent noisy pseudo labels from concentrating on a minority of target samples, namely the

Table 3 The performance (%) of the model on Market-to-MSMT and Duke-to-MSMT tasks when different
values of ρ are applied

Value of ρ Market to MSMT Duke to MSMT

mAP R1 R5 R10 mAP R1 R5 R10

0 22.4 49.0 61.7 67.5 26.7 55.5 68.4 73.8

0.1 23.7 50.9 63.6 69.3 27.8 56.7 69.3 74.6

0.2 25.2 52.2 65.3 79.8 29.2 57.8 70.7 75.7

0.3 24.1 50.9 64.1 69.5 29.6 58.6 71.4 76.2

0.4 26.6 53.7 67.0 72.3 31.2 60.1 72.6 77.4

0.5 25.3 51.6 65.0 70.3 29.2 57.7 70.4 74.9

0.6 19.7 42.7 55.1 60.8 28.1 55.7 68.4 73.8

0.7 16.1 36.3 47.8 53.4 22.6 46.9 60.3 65.7

0.8 5.5 13.6 21.5 25.4 12.5 30.0 40.8 45.9
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Fig. 5 Curves of clustering error rate, relative error rate of the 10% and 20% hardest samples and the mAP
plotted along with growing values of the parameter ρ. Similar to (a), the left vertical axes of (b), (c) and (d)
represent the clustering error rate and relative error rate, the right axes indicate the mAP scores

hardest samples we mentioned above. Our method can alleviate the damage for the model
caused by these hard samples.

Considering the synthetic influence of the hyperparameter ρ on both aspects of the clus-
tering error rate of noisy labels and the relative error rate of the hardest samples, a clear
conclusion can be drawn that there must be a most proper value of ρ that can keep the opti-
mal balance between the two factors. The mAP curve in Fig. 5 also provides solid evidence
to support this point, in which the mAP score reaches the peak at ρ = 0.4 for the four tasks.
All above experimental results and the corresponding analysis prove that the proposed SD
method can significantly suppress the ill influence caused by hard samples and consequently
improve the reliability of the model.

4.5 Ablation study on FDL

To validate the effectiveness of our proposed Feature Diversity Learning, a group of ablation
tests are designed to show the mAP and Rank-1 scores of the model when the FDL is or is
not applied. As shown as Fig. 6, against different values of ρ in the horizontal axes, the red
and green bars represent the mAP scores with or without the FDL, and the blue and pink bars
reflect the Rank-1 scores when the FDL is or is not applied, respectively. It can be clearly
seen that the FDL achieves 2.8% and 1.2% improvements on mAP and Rank-1 scores in
dealing with the Market-to-Duke task when ρ = 0.4, and it also shows 2.7% and 1.4%
superiority of mAP and Rank-1 scores on the Duke-to-Market task. This advantage can also
be validated on both of the Market-to-MSMT and Duke-to-MSMT tasks, the performance
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Fig. 6 The mAP and Rank-1 scores for ablation tests under different values of ρ on four tasks, where “w/”
means the FDL is applied to the model while “w/o” means the opposite

has significant improvement when the FDL loss is adopted. The results under different
values of ρ on all the tasks indicate the same conclusion that the proposed FDL certainly
improves the generalization ability of the model on the unsupervised domain adaptive ReID
task, which supports our viewpoint that the diversity between the two feature streams helps
to prevent the model from falling into the overfitting trap.

4.6 The application of our method

Person ReID task has important application value in real-world, it can maintain public order
and serve the society. We have implemented the intelligent video system, the system can
recognize and query the target person. During the training phase, due to the absence of the
annotated labels of the persons in the target scene, we have to use the UDA person ReID
technology to implement the specific functions. Just as we have mentioned above, there are
some problems that the existing works can not solve, but our proposed method can meet the
demands. Therefore, our method has important real-world application value.

5 Conclusion

Noisy pseudo label is one of the most challenging problem for clustering-based unsuper-
vised domain adaptive ReID models, which is the main problem we have addressed in this
paper. With our proposed Sample Dropout method, the hard samples can be effectively sup-
pressed and consequently the uneven distribution of noisy labels can be smoothed, which
is proved helpful for breaking the vicious circle between noisy label and bad feature and
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improving the training results. The proposed Feature Diversity Learning provides a new
approach for the well-known mutual teaching architecture, which provides an unsuper-
vised fashion to make the model learn knowledge from the data distribution and focuses
on enhancing the diversity of the two feature streams. Ablation study shows that FDL has
a stable positive impact on the generalization ability of the model. With the above two
improvements, it is proved by the comparison results that our proposed FDL-SD outper-
forms most state-of-the-art methods on the unsupervised domain adaptive ReID task. And
our method has been applied in the real-world scene, it has significant value in video system.

In spite of the advantages of performance, further room around the proposed SD and FDL
methods needs much more exploration, including the intrinsic mechanism about the dropout
rate ρ, and the underlying relationship between momentum-based mean feature vector and
the FDL scheme. We will remain focusing on these problems in our future work.
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