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Learning graph-based representations for scene flow
estimation

Mingliang Zhai1 ·Hao Gao1 ·Ye Liu1 · Jianhui Nie1 ·Kang Ni2

Abstract
Scene flow estimation is a fundamental task of autonomous driving. Compared with opti-
cal flow, scene flow can provide sufficient 3D motion information of the dynamic scene.
With the increasing popularity of 3D LiDAR sensors and deep learning technology, 3D
LiDAR-based scene flow estimation methods have achieved outstanding results on public
benchmarks. Current methods usually adopt Multiple Layer Perceptron (MLP) or tradi-
tional convolution-like operation for feature extraction. However, the characteristics of point
clouds are not exploited adequately in these methods, and thus some key semantic and
geometric structures are not well captured. To address this issue, we propose to intro-
duce graph convolution to exploit the structural features adaptively. In particular, multiple
graph-based feature generators and a graph-based flow refinement module are deployed to
encode geometric relations among points. Furthermore, residual connections are used in
the graph-based feature generator to enhance feature representation and deep supervision
of the graph-based network. In addition, to focus on short-term dependencies, we introduce
a single gate-based recurrent unit to refine scene flow predictions iteratively. The proposed
network is trained on the FlyingThings3D dataset and evaluated on the FlyingThings3D,
KITTI, and Argoverse datasets. Comprehensive experiments show that all proposed compo-
nents contribute to the performance of scene flow estimation, and our method can achieve
potential performance compared to the recent approaches.

Keywords Deep learning · Scene flow estimation · Graph convolutional networks ·
3D point cloud · Scene understanding

1 Introduction

Scene flow represents the 3D motion vector of every point in 3D space. It has been widely
applied in many real-world artificial intelligence tasks, such as autonomous driving [1],
robot [29], and action recognition [43]. Due to the increasing popularity of 3D LiDAR data
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and deep learning technique [33, 36], scene flow estimation from point cloud sequence has
shown impressive accuracy on public scene flow estimation benchmarks.

Based on the pioneering optical flow model FlowNet [5], FlowNet3D [21] and
HPLFlowNet [6] adopt U-Net architecture for learning 3D motion fields in an end-to-end
fashion. In contrast to [6, 21], PointPWC-Net [50] designs a spatial pyramid network for 3D
motion estimation, which can adaptively refine the flow fields in a coarse-to-fine strategy.
However, these approaches commonly rely on multi-scale feature extraction, which may
neglect local shapes and semantic information. To address this issue, FLOT [31] introduces
an optimal transport module into the scene flow estimation network, which can calculate
transport cost between two points by constructing the pairwise similarity among deep fea-
tures. Although FLOT achieves promising performance on public benchmarks due to the
accurate all-pairs matching results produced by the optimal transport module, it only consid-
ers local correlations and ignores long-range correlations. To solve this problem, PV-RAFT
[47] designs a point-voxel correlation module for feature matching, which can capture both
local and global correlations from two adjacent point clouds. Moreover, PV-RAFT adopts
Gated Recurrent Unit (GRU) as an iterative refinement module for updating flow fields.
Because of constructing the point-voxel correlation and adopting the RAFT framework
[39], PV-RAFT obtains competitive results on public benchmarks. Nevertheless, it still has
some challenging drawbacks. First, PV-RAFT relies on SetConv (PointNet-like operation
[32]) to extract local features, which may lose the structural information of the point cloud.
Second, the PointNet-like backbone for feature and context extraction is not so powerful,
which leads to the unstable performance of feature learning and representation. Third, the
performance of PV-RAFT is limited by redundant gate units in GRU-based iterator. Since
the inputs of PV-RAFT are only two adjacent point clouds, it is more important to focus on
short-term dependencies.

Recently, graph neural networks have shown promising performance on several 3D
visual tasks, such as 3D object detection [3, 37], point cloud generation [16], point cloud
classification and segmentation [17, 19, 45]. These works have proven the effectiveness of
learning graph-based representation for point clouds processing. In particular, Wang et al.
[45] apply graph convolutional networks to point clouds and propose dynamic graph con-
volutional networks for 3D semantic segmentation, effectively capturing the relationship
of points and local geometric structure. Based on [45], Lin et al. [19] propose deformable
3D graph convolutional networks for point cloud classification and semantic segmentation,
which can learn 3D deformable kernels with graph convolutional operation for extracting
geometric features from point cloud across different scales. Compared to PointNet-like or
traditional convolution-based backbones, graph convolutional networks can extract locally
structural and geometric information from point clouds. Moreover, graph convolutional
networks can build complex hierarchies of features by dynamically constructing neigh-
borhood graphs from similarity among the high-dimensional feature representations of the
points properly. However, few works have been proposed to investigate the effect of the
graph-based representation for scene flow estimation.

Motivated by the above analysis, this paper proposes a novel graph-based deep neural
network for scene flow estimation. The objective of our research work can be concluded
as two aspects. On the one hand, we aim to introduce graph convolution to explore the
geometric structures of point clouds. On the other hand, we aim to introduce an efficient
single gated-based flow refinement module to focus on short-term dependencies between
two adjacent point clouds. In comparison with previous work, our main contributions can
be summarized as follows:
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• To exploit graph-based representation and investigate the effect of graph convolutional
networks for scene flow estimation, we propose a graph-based feature extractor to learn
graph-based features, which can capture geometric structures by modeling the relative
dynamic positions of points. Furthermore, we introduce a graph-based flow refinement
module to refine scene flow fields in 3D space.

• We construct a skip connection in the graph-based feature extractor, which can enhance
the graph-based network’s feature representation and deep supervision. Moreover,
instead of using a GRU-based iterator, we introduce a single gate-based flow iterator to
focus on short-term dependencies between two adjacent point clouds.

• Comprehensive experiments on public scene flow benchmarks demonstrate that the
proposed method performs substantially better than most existing approaches and
achieves potential performance on FlyingThings3D, KITTI, and Argoverse datasets
compared to the recent non-learning method [18] and deep learning-based methods [6,
21, 31, 38, 40, 46, 47, 50].

The rest of this paper is organized as follows: Section 2 reviews the related work of
scene flow estimation and graph neural networks. Section 3 mainly describes the proposed
method, including the network architecture and the training strategy. Section 4 reports the
experimental results on public scene flow datasets. Section 5 concludes this paper.

2 Related work

In this section, we first review the references on scene flow estimation from binocular
images. Then, we describe the references on scene flow estimation from monocular images.
Finally, we mainly review the literature on scene flow estimation from point clouds.

2.1 Scene flow from binocular images

Binocular stereo matching is an effective technique to recover three-dimensional informa-
tion, which can calculate the disparity in the binocular image of the same object at different
positions. The core idea of the scene flow estimation method based on binocular image data
is to estimate the 3D motion vector by combining the optical flow and disparity information.

Traditional methods usually use multiple prior assumptions to model an energy function
for optimization. Huguet et al. [9] propose the binocular scene flow estimation framework,
which models an energy function by constructing the spatial and temporal correlation in
binocular image sequences. Based on [9], a series of methods [25, 27, 35, 42] are pro-
posed to overcome challenging problems, such as large displacement estimation and motion
edge preservation. However, optimizing an energy function is usually time-consuming and
unsuitable for real-world applications.

To address these problems, some recent works adopt deep learning technology for scene
flow estimation. Ilg et al. [12] propose a supervised multi-branch learning framework for
scene flow estimation. However, the supervised learning framework relies on a large number
of labeled synthetic images as training data, resulting in unstable performance in real scenes.
To solve this problem, many works [14, 15, 20, 23] adopt the unsupervised framework to
learn scene flow from unlabeled data. Compared with traditional methods, deep learning-
based methods can effectively use deep neural networks to learn the scene flow from a
large amount of training data, which improves the efficiency and accuracy of scene flow
estimation. However, these methods cannot estimate scene flow in 3D space directly.

7319Multimedia Tools and Applications (2024) 83:7317–7334



2.2 Scene flow frommonocular images

With the popularity of depth sensor Kinect, many works attempt to estimate scene flow from
monocular image sequences. Traditional methods [7, 8, 34] often formulate optical flow
estimation as an energy minimization problem. However, due to the complex optimization
process, these methods are unsuitable for real-world applications.

Recent deep learning-based methods usually build a multi-task learning framework for
scene flow estimation. Zhou et al. [53] propose a multiple branch architecture for joint
learning of depth and camera motion, which can recover the rigid motion from a monocular
image sequence. However, real-world scenes often include both rigid and non-rigid scenes.
To solve this problem, Yin et al. [52] propose a cascade architecture composed of two stages
to adaptively estimate the rigid and non-rigid motion in the dynamic scene. Inspired by [52],
many methods [10, 11, 22, 51, 54] are proposed to improve the performance of scene flow
estimation by designing a more robust network architecture and loss function. Compared
with traditional methods, deep learning-based methods can perform efficiently on graphic
computing units. However, these methods rely on 2D representation, which cannot handle
the point cloud data.

2.3 Scene flow from point clouds

With the wide availability of commodity LiDAR sensors, scene flow estimation from point
cloud has become an active field of research. Traditional methods [4, 41] usually formu-
late the problem of scene flow estimation for LiDAR sensors as an energy minimization
problem. However, optimizing a complex objective function is time-consuming in practical
application.

Recently, many researchers have attempted to estimate scene flow from point clouds.
Based on FlowNet [5], FlowNet3D [21] introduces an end-to-end supervised network for
scene flow estimation from point clouds, which adopts the PointNet-like architecture [32] as
a backbone to learn the hierarchical feature. FlowNet3D++ [44] designs point-to-plane and
cosine distance losses for constructing geometric constraints, improving the convergence
speed and stability of training. HASF [46] introduces hierarchical attention learning archi-
tecture into scene flow estimation, which aggregates the feature of adjacent points using a
dual attention mechanism. SPLATNet [38] presents a Sparse Lattice Networks (SLN) for
point cloud processing. Motivated by [38], HPLFlowNet [6] adopts multiple Bilateral Con-
volutional Layers (BCL) [13] as a feature extractor, which can process general unstructured
point cloud efficiently. PointPWC-Net [50] adopts multiple point convolutional layers [49]
as a feature extractor and designs a spatial pyramid architecture for scene flow refinement in
a coarse-to-fine strategy. However, the feature extractors of [6, 21, 44, 46, 50] rely on point
cloud down-sampling to reduce the size of inputs, which may lose some important details
in a scene. To address this issue, instead of using a down-sampling operation, FLOT [31]
keeps the size of features as input size and introduces an optimal transport module into a net-
work, which can find all-pairs correspondences between two adjacent point clouds. NSFP
[18] uses a sample MLP to infer scene flow priors, which can optimize neural networks at
execution time. EgoFlow [40] presents a cascade architecture for decoupling non-rigid flow
and ego-motion flow in dynamic 3D scenes. To enlarge the search range of feature match-
ing, PV-RAFT [47] uses a point-voxel correlation module to extract long-range correlations.
However, exiting methods ignore to exploit the effectiveness of graph-based representations
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and lack enough geometric and structural information for constructing rich graph-based
information.

2.4 Graph neural networks

Recently, graph neural networks have achieved potential performance on many tasks
[3, 16, 17, 19, 37, 45, 48]. Wu et al. [48] propose a semi-supervised multi-view graph
convolutional network for webpage classification, which can adaptively extract graph struc-
tures via graph convolution. DGCNN [45] introduces a graph-based convolutional layer
named EdgeConv for point cloud segmentation, which can construct graphs dynami-
cally and extract graph-based structural features. Chen et al. [3] propose a hierarchical
graph network for 3D object detection, effectively capturing and aggregating local shape
information, multi-level semantics, and global scene information. HSGAN [16] designs
a hierarchical graph learning network for the point cloud generation, which captures the
graph-based structural information in a hierarchical strategy. To overcome shift and scale
changes, 3DGCN [19] designs a deformable graph convolutional network for 3D point
cloud processing, which can extract structural features using deformable kernel size. Due
to the exploitation of graph-based information, the work [19] achieves promising results
on several public 3D classification and segmentation benchmarks. However, there are
few works to investigate the effectiveness of graph-based representations on scene flow
estimation.

3 Proposedmethod

In this section, we first describe the network architecture of our method. Then, we give the
details of the supervised learning strategy. Figure 1 shows the architecture of our proposed
network. Given two adjacent point clouds P1 ∈ R

3×N and P2 ∈ R
3×N , the proposed

network can estimate scene flow S ∈ R
3×N in an end-to-end fashion.

Fig. 1 The architecture of our proposed network. The entire architecture contains four main components:
graph-based feature generator, point-voxel correlation module, single gate-based flow iterator, and graph-
based flow refinement module
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3.1 Network architecture

3.1.1 Graph Convolutional Layer (GCL)

Graph convolution is a kind of general convolution. Compared to convolution used for
image processing (formatted in a 2D grid), graph convolution is more suitable for point
cloud data (formatted in 3D space). Motivated by graph convolutional networks [19], we
use the GCL to construct a graph-based feature generator, which can adaptively exploit the
structural information of the point cloud.

Given a point cloud (N points) P = {pi |i = 1, ..., N}, the receptive field of pi can be
defined as

O
Q
i = {pi, pj |∀pj ∈ κ(pi, Q)}, (1)

where pj denotes the neighboring point of pi in the receptive field O
Q
i , and κ(pi, Q)

denotes Q nearest neighbors of pi.
In the receptive field O

Q
i , the directional vector can be defined as

vj,i = pj − pi, (2)

where vj,i denotes the directional vector between pi and pj .
The 3D kernel of GCL can be defined as

EL = {e′, e1, e2, ..., eL}, (3)

where e′ = (0, 0, 0) denotes the center of the kernel, L denotes the number of supports in
EL, and e1 to eL denote the associated supports in EL.

In the 3D kernel EL, due to e′ = (0, 0, 0), the directional vector can be defined as
el = el − e′, l = 1, 2, ..., L. For el , we define the weight vector w(el) to achieve the
convolution operation on feature f (pi).

Based on the above definition, the receptive field O
Q
i and the 3D kernel EL can be seen

as standard graphs. Graph node is represented by point feature f (pi) or weight vectorw(el).
Graph edge is represented by the directional vector vj,i or el . Thus, the graph convolution
can be defined as

GConv(O
Q
i , EL) = 〈f (pi), w(e′)〉 +

L∑

l=1

max
j∈(1,Q)

{sim(pj , el)}, (4)

where 〈·〉 denotes the inner-product operation, and sim denotes the similarity function. The
sim function can be defined as

sim(pj , el) = 〈f (pj ), w(el)〉 + 〈vj,i , el〉
‖ vj,i ‖2‖ el ‖2 , (5)

where ‖ · ‖2 denotes the L2 norm.

3.1.2 Graph-based feature generator

To exploit structural information from point clouds, we use GCL to build P1, P2, and context
branches for graph-based feature extraction. The P1 and P2 are used to extract features for
finding point-voxel correspondences. The context branch is used to extract contextual infor-
mation. In Fig. 1, two SetConv layers [21] gradually transform the point cloud into a latent
feature space, and two GCLs are used to extract graph-based features. The channel dimen-
sions are set to 32, 64, 128, and 256, respectively. The weights of the P1 and P2 branches
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are shared mutually. However, the weights of the context branch are not shared with the P1
and P2 branches. Moreover, we conduct a residual connection in graph-based feature gener-
ator to enhance the network’s feature representation and deep supervision. Given P1 and P2,
the graph-based feature generator in P1, P2, and context branches can output graph-based
features F

g

1 , F
g

2 , and F
g
c , respectively.

3.1.3 Point-voxel correlation module

Finding correspondences between two adjacent point clouds is an important operation to
estimate the scene flow. In this paper, we adopt the point-voxel correlation module proposed
in [47] to build all-pairs correlation fields. Given F

g

1 and F
g

2 , we can obtain the correla-
tion feature J by matrix dot product operation. Yz denotes the translated point cloud, and z

denotes the zth iteration of flow iterator. Thus, the point-voxel correlation module can con-
struct point correlation feature J

Yz,P2
p via point branch and voxel correlation feature J

Yz,P2
v

via voxel branch. Furthermore, the point correlation feature and voxel correlation feature
are fused by adding. Thus, we can obtain the point-voxel correlation feature Jz.

3.1.4 Single gate-based flow iterator

The recent work [47] adopts GRU for iterative flow estimation. Unlike [47], we use a single
gate-based flow iterator to focus on short-term dependencies. The input of flow iterator
includes correlation features Jz, current flow fields Sz (direction vectors between Yz and
P1), hidden state from the previous iteration hz−1 and context feature F

g
c . Given hidden

state from the previous iteration hz−1 and current iteration feature xz, the current hidden
state can be defined as

hz = tanh(Conv([hz−1, xz], Wh)) (6)

where Conv() denotes 1-d convolution, Wh denotes learnable weight parameters, tanh()

denotes tanh activation function, [., .] is a concatenation, and xz is a concatenation of Jz, Sz,
and F

g
c . The current hidden state hz is then fed into a fully connection layer to obtain coarse

scene flow S′.

3.1.5 Graph-based flow refinement module

To make the coarse scene flow S′ smoother in the 3D space, we introduce a graph-based
flow refinement module to refine scene flow fields. As shown in Fig. 1, the graph-based
refinement module is composed of three GCLs and a fully connected layer. The channel
numbers of GCLs and fully connected layer are set to 256, 128, 64, and 3. The input and
output of the graph-based refinement module include the coarse flow S′ and the refined flow
S, respectively.

3.2 The supervised learning strategy

To optimize the network, we follow the supervised learning strategy as in the [47] frame-
work. The total loss is divided into iteration flow supervised loss and refinement flow
supervised loss. The iteration flow supervised loss function L1 measures the difference
between the coarse flow S′ and ground truth Sgt at the end of the single gate-based flow
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iterator. L1 can be defined as

L1 =
Z∑

z=1

η(Z − z − 1)‖(S ′
z − Sgt )‖1, (7)

where S′
z denotes the estimated flow at zth iteration of the single gate-based flow iterator,

Z denotes the total number of flow iteration, ‖ · ‖1 denotes the L1 norm, and η denotes a
hyper-parameter that controls the weight of each iteration. In our experiments, η was set
to 0.8.

The refinement flow supervised loss function L2 measures the difference between the
refined flow S and ground truth Sgt at the end of the entire network. L2 can be defined as

L2 = ‖S − Sgt‖1, (8)

where ‖ · ‖1 denotes the L1 norm.
The final loss function can be defined as

L = λ1L1 + λ2L2, (9)

where λ1 and λ2 denote respective loss weights. In our experiments, λ1 and λ2 were set to
0.8 and 1, respectively.

4 Experiments

In this section, we first introduce the implementation details, datasets, and metrics. Then, we
report the experimental results on FlyingThings3D [24], KITTI [25, 26], and Argoverse [2]
datasets. Moreover, we conducted a series of ablation studies to evaluate the effectiveness
of our proposed components. Finally, we report the comparison of running time.

4.1 Implementation details

Experiments were conducted on a single NVIDIA RTX 3090 GPU with PyTorch [28]. We
used Adam optimizer to train our network. The initial learning rate was set to 0.001, and
the batch size was set to 2. The entire training process can be divided into two stages. In the
first stage, we trained the network (without the graph-based flow refinement module) on the
FlyingThings3D dataset [24] with 30 epochs. In the second stage, we froze the pre-trained
weights and trained the graph-based flow refinement module on the FlyingThings3D dataset
with 20 epochs. Following [47], we randomly sampled the input point cloud to 8192 points.
The updating numbers of the flow iterator were set to 8 and 32 in the training and testing
process.

4.2 Datasets

Table 1 summarizes various datasets for scene flow training and testing. Due to the difficulty
of acquiring the ground truth of scene flow, we used the FlyingThings3D dataset [24] for
training and testing. It contains a large number of synthetic scenarios. To verify that the
model can work effectively in real-world scenes, we used KITTI [25, 26] and Argoverse [2]
datasets for evaluating our model. In contrast to FlyingThings3D, both KITTI and Argoverse
are real-world and self-driving datasets. In particular, Argoverse is a large-scale dataset for
self-driving with challenging scenes.
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Table 1 An overview of datasets for scene flow training and testing

Dataset Training Test samples Real-world Scenario

samples samples or synthetic

FlyingThings3D (converted by [6]) 4910 3824 Synthetic Flying things

KITTI (converted by [6]) 142 142 Real-world self-driving

Argoverse (converted by [30]) 2691 212 Real-world self-driving

FlyingThings3D [24] FlyingThings3D is a synthetic dataset for optical flow, disparity, and
scene flow training and evaluation. It contains 19640 image pairs of samples for training
and 3824 image pairs for testing totally. Following [6, 31, 40, 47, 50], we used one-quarter
of the training set (4910 samples) for training and used total samples in the test set (3824
samples) for evaluation. Note that we kept aside 2000 examples from the original training
set as a validation set.

KITTI [25, 26] KITTI is a real-world dataset collected from a driving platform. It can be used
for several 2D and 3D visual tasks, such as optical flow estimation, scene flow estimation,
object detection, etc. Following [6, 31, 40, 47, 50], we used the KITTT scene flow 2015
[26] dataset (142 samples in the training set) to test our model. Note that we removed the
ground by height (< 0.3m).

Argoverse [2] Argoverse is a real-world autonomous driving dataset for 3D mapping,
stereo estimation, 3D tracking, and motion forecasting. Since the ground truth of scene
flow was not provided in the original Argoverse dataset, Pontes et al. [30] created a new
dataset for scene flow estimation, named Argoverse scene flow. It contains 2691 samples
for training and 212 samples for testing. Following [18], we only used 212 test samples of
the Argoverse scene flow dataset to evaluate our method.

4.3 Metrics

To make fair comparisons with [6, 18, 21, 31, 38, 40, 46, 47, 50], we adopted EPE (m),
Outliers (%), Acc Strict (%), Acc Relax (%), and θε (rad) as metrics.

• EPE (m): Mean of Euclidean distances between the predicted and ground truth pair of
3D vectors over all points. EPE can be defined as

EPE = 1

N

∑

y,y∗∈N
‖y − y∗‖2. (10)

• Outliers (%): Percentage of points whose EPE >0.3m or relative error >10%. Assum-
ing that the set of points with EPE >0.3m is H1 and the set of points satisfying the
following condition is H2, the condition can be defined as

‖y − y∗‖2
‖y∗‖2 > 10%. (11)

Thus, the error point set H can be defined as H1 ∪ H2. Assuming that D represents
the number of elements in set H , Outliers can be defined as

Outliers = D

N
× 100%. (12)
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• Acc Strict (%): Percentage of points whose EPE<0.05m or relative error<5%. Assum-
ing that the set of points with EPE <0.05m is A′

1 and the set of points satisfying the
following condition is A′

2, the condition can be defined as

‖y − y∗‖2
‖y∗‖2 < 5%. (13)

Thus, the accuracy point set A′ can be defined as A′
1 ∪ A′

2. Assuming that R′
represents the number of elements in set A′, Acc Strict can be defined as

Acc Strict = R′

N
× 100%. (14)

• Acc Relax (%): Percentage of points whose EPE <0.1m or relative error <10%.
Assuming that the set of points with EPE <0.1m is A′′

1 and the set of points satisfying
the following condition is A′′

2, the condition can be defined as

‖y − y∗‖2
‖y∗‖2 < 10%. (15)

Thus, the accuracy point set A′′ can be defined as A′′
1 ∪ A′′

2. Assuming that R′′
represents the number of elements in set A′′, Acc Relax can be defined as

Acc Relax = R′′

N
× 100%. (16)

• θε (rad): Mean angle error between the estimated flow and ground truth. θε can be
defined as

θε = 1

N

∑

y,y∗∈N
arccos

[ 1.0 + yτ1y
∗
τ1

+ yτ2y
∗
τ2

+ yτ3y
∗
τ3√

1.0 + y2
τ1

+ y2
τ2

+ y2
τ3

√
1.0 + (y∗

τ1
)2 + (y∗

τ2
)2 + (y∗

τ3
)2

]
. (17)

In (10), (11), (13), (15), and (17), y denotes the estimated scene flow, and y∗ denotes the
ground truth of scene flow. In (10), (11), (13), and (15) ‖ · ‖2 denotes the L2 norm. In (10),
(12), (14), (16), and (17), N denotes the total point number of the point cloud. In (10) and
(17), N denotes the set of points. In (17), yτ1 , yτ2 , and yτ3 denote the motion component
in the XYZ directions of y, respectively. Moreover, y∗

τ1
, y∗

τ2
, and y∗

τ3
denote the motion

component in the XYZ directions of y∗, respectively.

4.4 Results

Scene flow comparisons conducted on both FlyingThings3D and KITTI datasets were sum-
marized in Tables 2 and 3. Note that the best results on each dataset and metric are bold
in Tables 2 and 3. We compared our method with the recent deep learning-based meth-
ods, including SPLATFlowNet [38], FlowNet3D [21], HPLFlowNet [6], EgoFlow [40],
PointPWC-Net [50], FLOT [31], HASF [46], and PV-RAFT [47]. As shown in Table 2, the
EPE and Outliers values produced by our method outperform [6, 21, 31, 38, 40, 46, 47,
50] on both FlyingThings3D and KITTI datasets, demonstrating the effectiveness of our
method. In particular, on the KITTI dataset, the best EPE value of PV-RAFT [47] is 0.560,
but the EPE value of our method is 0.484. As shown in Table 3, we can find that our model’s
Acc Strict and Acc Relax values outperform [6, 21, 31, 38, 40, 46, 50] by a large margin.
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Table 2 Performance comparison on FlyingThings3D and KITTI datasets (Metrics: EPE and Outliers)

Dataset Method EPE (m) ↓ Outliers (%) ↓

SPLATFlowNet [38] 0.1205 61.87

FlowNet3D [21] 0.1136 60.16

HPLFlowNet [6] 0.0804 42.87

EgoFlow [40] 0.0688 40.36

FlyingThings3D PointPWC-Net [50] 0.0588 34.24

FLOT [31] 0.052 35.7

HASF [46] 0.0492 30.83

PV-RAFT [47] 0.0461 29.24

Ours 0.0442 26.37

SPLATFlowNet [38] 0.1988 65.75

FlowNet3D [21] 0.1767 52.71

HPLFlowNet [6] 0.1169 41.03

EgoFlow [40] 0.1034 39.39

KITTI PointPWC-Net [50] 0.0694 26.48

HASF [46] 0.0622 24.92

FLOT [31] 0.056 24.2

PV-RAFT [47] 0.0560 21.63

Ours 0.0484 18.67

Table 3 Performance comparison on FlyingThings3D and KITTI datasets (Metrics: Acc Strict and Acc
Relax)

Dataset Method Acc Strict (%) ↑ Acc Relax (%) ↑

SPLATFlowNet [38] 41.97 71.80

FlowNet3D [21] 41.25 77.06

HPLFlowNet [6] 61.44 85.55

EgoFlow [40] 67.03 87.92

FlyingThings3D PointPWC-Net [50] 73.79 92.76

FLOT [31] 73.2 92.7

HASF [46] 78.50 94.68

PV-RAFT [47] 81.69 95.74

Ours 83.80 95.98

SPLATFlowNet [38] 21.74 53.91

FlowNet3D [21] 37.88 66.77

HPLFlowNet [6] 47.83 77.76

EgoFlow [40] 48.84 82.24

KITTI PointPWC-Net [50] 72.81 88.84

FLOT [31] 75.5 90.8

HASF [46] 76.49 90.26

PV-RAFT [47] 82.26 93.72

Ours 86.59 95.15
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Table 4 Performance comparison on Argoverse dataset

Method EPE (m) ↓ Acc Strict (%) ↑ Acc Relax (%) ↑ θε (rad) ↓

(Non-learning) [18] 0.159±0.01 38.43±0.48 63.08±0.59 0.374±0.01

FlowNet3D [21] 0.455 1.34 6.12 0.736

PointPWC-Net [50] 0.405 8.25 25.47 0.674

PV-RAFT [47] 0.367 15.21 30.74 0.522

Ours 0.351 19.58 33.87 0.483

The main reason is that our method is based on the recent work PV-RAFT [47]. Thus, our
network is also based on the powerful RAFT architecture [39] and contains the point-voxel
correlation module. Moreover, compared to PV-RAFT [47], our model achieves competi-
tive results on FlyingThings3D and KITTI datasets. In particular, on the KITTI dataset, the
best Acc Strict value of [47] is 82.26%, but the Acc Strict value of our method is 86.59%.
The first reason is that we introduce graph convolution to exploit the structural features.
The second reason is our beneficial single gate-based flow iterator. Table 4 reports the per-
formance comparison on Argoverse dataset. We compared our proposed approach with the
non-learning method NSFP [18] and deep learning-based methods [21, 47, 50]. Note that
the best results among deep learning-based methods on each metric are bold in Table 4. Fol-
lowing [18], we used the experimental protocol as in [21] and trained PV-RAFT [47] and our
network on FlyingThings3D (converted by [21]). We can find that our method can achieve
better performance than other deep learning-based methods [21, 47, 50]. However, the non-
learning method NSFP [18] performs better than our method and other deep learning-based
methods [21, 47, 50]. The main reason is that our method and other deep learning-based
methods [21, 47, 50] are trained on the synthetic dataset. Thus, these deep learning meth-
ods encounter a large domain gap between training and test sets. However, since NSFP [18]
optimizes parameters at runtime, the running time of NSFP [18] is larger than deep learning-
based methods. We show the comparison of running time in Section 4.6. Furthermore, we
give some visual examples compared to PV-RAFT [47]. Figure 2 shows some promising
visualized examples on the KITTI dataset. As shown in Fig. 2, we can see that our model
can produce more accurate flow fields of moving vehicles than PV-RAFT [47] in dynamic
scenes.

4.5 Ablation study

To evaluate the effectiveness of our proposed components, we explore the variants of our
architecture with experiments conducted on FlyingThings3D and KITTI datasets. Tables 5
and 6 reported the results of the ablation study on both FlyingThings3D and KITTI datasets,
respectively. In Tables 5 and 6, “GCL”, “RC”, and “SGFI” denote the graph convolutional
layer, residual connection, and single gate-based flow iterator. In Table 5, comparing the first
and second rows, we find that using the GCL can improve the performance of scene flow
estimation on the FlyingThings3D dataset. Comparing the second and third rows, we find
that the improvement is achieved by adopting the RC component. Comparing the third and
fourth rows, our model (with SGFI) generates lower EPE and Outlier values than without
using SGFI. As shown in Table 6, we can find that using GCL, RC, and SGFI can improve
the performance of scene flow estimation on the KITTI dataset. In particular, the value of
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Fig. 2 Scene flow visual comparison between PV-RAFT [47] and our results on the KITTI dataset. Blue
points and red points indicate the first point cloud and the second point cloud, respectively. Green points
indicate the translated point cloud. In the first column “Ground truth”, the first point cloud is translated by
the ground truth scene flow
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Table 5 Ablation study on FlyingThings3D dataset

GCL RC SGFI FlyingThings3D

EPE (m) ↓ Outliers (%) ↓ Acc Strict (%) ↑ Acc Relax (%) ↑

0.0461 29.24 81.69 95.74

� 0.0450 27.92 82.13 95.91

� � 0.0447 26.98 83.27 95.96

� � � 0.0442 26.37 83.80 95.98

Acc Strict can be improved from 82.26% to 84.78% by using GCL. Based on the above
observations, we can conclude that all proposed components benefit scene flow estimation.

4.6 Running time

We tested the running time on a single NVIDIA RTX 3090 GPU. Table 7 reported
the running time comparison between the non-learning method NSFP [18] and the deep
learning-based method PV-RAFT [47] and our method. Note that the running time
represents the average time on all point clouds of the KITTI dataset. The point number was
set to 8192. In Table 7, “Stage 1” and “Stage 2” denote the model trained in the first and sec-
ond stages, respectively. As reported in Table 7, our method is faster than the non-learning
method NSFP [18]. Compared to PV-RAFT [47], our method slightly increases the running
time in the first and second stages.

5 Conclusion

In this paper, a graph-based feature extractor is proposed to encode point information from
point neighborhoods better. Furthermore, multiple residual connections are used to effec-
tively enhance the network’s graph-based feature representation and deep supervision. In
addition, a single gate-based flow iterator is designed for updating flow fields iteratively
in 3D space, which can boost the performance of scene flow estimation. Experimental
results on widely used FlyingThings3D, KITTI, and Argoverse datasets demonstrate the
effectiveness of our proposed approach.

Table 6 Ablation study on KITTI dataset

GCL RC SGFI KITTI

EPE (m) ↓ Outliers (%) ↓ Acc Strict (%) ↑ Acc Relax (%) ↑

0.0560 21.63 82.26 93.72

� 0.0527 19.98 84.78 94.55

� � 0.0501 19.22 85.63 94.97

� � � 0.0484 18.67 86.59 95.15
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Table 7 Comparison of running time

Method Running time (in seconds)

NSFP (Non-learning) [18] 5.024

PV-RAFT (Stage 1) [47] 0.679

PV-RAFT (Stage 2) [47] 0.684

Ours (Stage 1) 0.709

Ours (Stage 2) 0.728
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24. Mayer N, Ilg E, Häusser P, Fischer P, Cremers D, Dosovitskiy A, Brox T (2016) A large dataset to train
convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE Conference on
computer vision and pattern recognition (CVPR), pp 4040–4048

25. Menze M, Geiger A (2015) Object scene flow for autonomous vehicles. In: IEEE Conference on
computer vision and pattern recognition (CVPR), pp 3061–3070

26. Menze M, Heipke C, Geiger A (2015) Joint 3d estimation of vehicles and scene flow. ISPRS Annals of
the Photogrammetry Remote Sensing and Spatial Information Sciences, pp 427–434

27. Pan L, Dai Y, Liu M, Porikli F, Pan Q (2020) Joint stereo video deblurring, scene flow estimation and
moving object segmentation. IEEE Trans Image Process 29:1748–1761

28. Paszke A, Gross S, Massa F et al (2019) Pytorch: An imperative style , high-performance deep learning
library. In: Advances in neural information processing systems (neurIPS)

29. Pillai S, Leonard JJ (2017) Towards visual ego-motion learning in robots. In: IEEE International
conference on intelligent robots and systems (IROS), pp 5533–5540

30. Pontes JK, Hays J, Lucey S (2020) Scene flow from point clouds with or without learning. In:
International conference on 3d vision (3DV), pp 261–270

31. Puy G, Boulch A, Marlet R (2020) Flot: Scene flow on point clouds guided by optimal transport. In:
European conference on computer vision (ECCV), pp 527–544

32. Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: Deep hierarchical feature learning on point sets in a
metric space. In: Advances in neural information processing systems (neurIPS), pp 5099–5108

7332 Multimedia Tools and Applications (2024) 83:7317–7334



33. Qi CR, Zhou Y, Najibi M, Sun P, Vo K, Deng B, Anguelov D (2021) Offboard 3d object detection from
point cloud sequences. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp
6134–6144

34. Quiroga J, Brox T, Devernay F, Crowley J (2014) Dense semi-rigid scene flow estimation from rgbd
images. In: European conference on computer vision (ECCV), pp 567–582

35. Schuster R, Wasenmuller O, Unger C, Kuschk G, Stricker D (2020) Sceneflowfields++: Multi-frame
matching, visibility prediction, and robust interpolation for scene flow estimation. In: International
journal of computer vision, vol 128, pp 527–546

36. Shen W, Wei Z, Huang S, Zhang B, Chen P, Zhao P, Zhang Q (2021) Verifiability and predictabil-
ity: Interpreting utilities of network architectures for point cloud processing. In: IEEE Conference on
computer vision and pattern recognition (CVPR), pp 10703–10712

37. Shi W, Rajkumar R (2020) Point-gnn: Graph neural network for 3d object detection in a point cloud. In:
IEEE Conference on computer vision and pattern recognition (CVPR), pp 1708–1716

38. Su H, Jampani V, Sun D, Maji S, Kalogerakis E, Yang M-H, Kautz J (2018) Splatnet: Sparse lattice
networks for point cloud processing. In: IEEE Conference on computer vision and pattern recognition,
pp 2530–2539

39. Teed Z, Deng J (2020) Raft: Recurrent all-pairs field transforms for optical flow. In: European conference
on computer vision (ECCV), pp 402–419

40. Tishchenko I, Lombardi S, Oswald MR, Pollefeys M (2020) Self-supervised learning of non-rigid
residual flow and ego-motion. In: International conference on 3d vision (3DV), pp 150–159

41. Ushani AK, Wolcott RW, Walls JM, Eustice RM (2017) A learning approach for real-time temporal
scene flow estimation from lidar data. In: IEEE International conference on robotics and automation
(ICRA), pp 5666–5673

42. Vogel C, Schindler K, Roth S (2013) Piecewise rigid scene flow. In: IEEE International conference on
computer vision, pp 1377–1384

43. Wang P, Li W, Gao Z, Zhang Y, Tang C, Ogunbona P (2017) Scene flow to action map: a new represen-
tation for rgb-d based action recognition with convolutional neural networks. In: IEEE Conference on
computer vision and pattern recognition (CVPR), pp 416–425

44. Wang Z, Li S, Howard-Jenkins H, Prisacariu VA, Chen M (2020) Flownet3d++: Geometric losses for
deep scene flow estimation. In: IEEE Winter conference on applications of computer vision (WACV),
pp 91–98

45. Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019) Dynamic graph cnn for learning
on point clouds. ACM Trans Graphics 38(5):1–12

46. Wang G, Wu X, Liu Z, Wang H (2021) Hierarchical attention learning of scene flow in 3d point clouds.
IEEE Trans Image Process 30:5168–5181

47. Wei Y, Wang Z, Rao Y, Lu J, Zhou J (2021) Pv-raft: Point-voxel correlation fields for scene flow esti-
mation of point clouds. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp
6954–6963

48. Wu F, Jing X-Y, Wei P, Lan C, Ji Y, Jiang G-P, Huang Q (2022) Semi-supervised multi-view graph
convolutional networks with application to webpage classification. Inf Sci 591:142–154

49. Wu W, Qi Z, Fuxin L (2019) Pointconv: Deep convolutional networks on 3d point clouds. In: IEEE
Conference on computer vision and pattern recognition (CVPR), pp 9613–9622

50. Wu W, Wang ZY, Li Z, Liu W, Fuxin L (2020) Pointpwc-net: Cost volume on point clouds for (self-
)supervised scene flow estimation. In: European conference on computer vision (ECCV), pp 88–107

51. Yang G, Ramanan D (2020) Upgrading optical flow to 3d scene flow through optical expansion. In:
IEEE Conference on computer vision and pattern recognition (CVPR), pp 1331–1340

52. Yin Z, Shi J (2018) Geonet: Unsupervised learning of dense depth, optical flow and camera pose. In:
IEEE Conference on computer vision and pattern recognition, pp 1983–1992

53. Zhou T, Brown M, Snavely N, Lowe DG (2017) Unsupervised learning of depth and ego-motion from
video. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 6612–6619

54. Zou Y, Luo Z, Huang J-B (2018) Df-net: Unsupervised joint learning of depth and flow using cross-task
consistency. In: European conference on computer vision (ECCV), pp 38–55

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

7333Multimedia Tools and Applications (2024) 83:7317–7334



Affiliations

Mingliang Zhai1 ·Hao Gao1 ·Ye Liu1 · Jianhui Nie1 ·Kang Ni2

Hao Gao
tsgaohao@gmail.com

Ye Liu
yeliu@njupt.edu.cn

Jianhui Nie
njh19@njupt.edu.cn

Kang Ni
tznikang@163.com

1 School of Automation, Nanjing University of Posts and Telecommunications, Nanjing, 210023, Jiangsu
Province, China

2 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023,
Jiangsu Province, China

7334 Multimedia Tools and Applications (2024) 83:7317–7334

http://orcid.org/0000-0001-5475-9221
mailto: tsgaohao@gmail.com
mailto: yeliu@njupt.edu.cn
mailto: njh19@njupt.edu.cn
mailto: tznikang@163.com

	Learning graph-based representations for scene flow estimation
	Abstract
	Introduction
	Related work
	Scene flow from binocular images
	Scene flow from monocular images
	Scene flow from point clouds
	Graph neural networks

	Proposed method
	Network architecture
	Graph Convolutional Layer (GCL)
	Graph-based feature generator
	Point-voxel correlation module
	Single gate-based flow iterator
	Graph-based flow refinement module

	The supervised learning strategy

	Experiments
	Implementation details
	Datasets
	FlyingThings3D
	KITTI
	Argoverse


	Metrics
	Results
	Ablation study
	Running time

	Conclusion
	Declarations
	References
	Affiliations


