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Plus disease classification in Retinopathy of
Prematurity using transform based features
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Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness affecting the
retina of low birth weight preterm infants. Plus disease in ROP characterised by abnor-
mal tortuosity and dilation of posterior retinal blood vessels, is a benchmark that identifies
treatment-requiring ROP cases. A Plus disease classifier with zero false negatives is a major
requirement of an ROP screening system. In this paper, an efficient Artificial Neural Net-
work (ANN) architecture with an optimal feature set is proposed which meets the above
requirement. A total of 178 images with 81(45%) Plus and 97 (55%) No Plus are used for
the analysis. A feature set derived from transform domain representation of retinal funds
images is used along with the existing vascular features in the proposed work. Wavelet and
Curvelet transforms are considered for deriving the additional feature set in the experimen-
tal analysis. The feature set containing Curvelet transform energy coefficient along with the
vascular features gave an Accuracy of 96% and Specificity of 93% with 100% Sensitivity.
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1 Introduction

Retinopathy of Prematurity (ROP) is a vasoproliferative disorder of developing retina,
which may start only in prematurely born infants within few weeks after their birth [15].
ROP is a potentially avoidable cause of infant blindness, which can be prevented by proper
screening and treatment. The World Health Organization (WHO) has estimated that out of
15 million preterm births (defined as before 37 weeks of gestation) every year around the
world, India has the largest number of premature infants, accounting for >3.5 million annu-
ally out of 27.2 million live births per year. Along with other middle income countries, India
suffers from “third” epidemic of blindness due to ROP [42, 43].

According to the Revised International Classification of Retinopathy of Prematurity
(ICROP) [11, 31], the disease can be categorized with respect to the location, extent, stages
and due to Posterior pole vascular abnormalities as aggressive posterior ROP, Plus and Pre
Plus disease.

Plus disease is defined as the presence of dilation, tortuosity and irregular branching of
the blood vessels in the posterior pole. Studies namely Cryotherapy for Retinopathy of Pre-
maturity (CRYO-ROP) [27] and Early Treatment for Retinopathy of Prematurity (ETROP)
[35] have indicated that the primary criterion for identifying treatment grade ROP is the
presence of Plus disease. Even though the stage and zone of the disease indicate the pro-
gression of the disease, the presence of Plus disease always requires immediate treatment.
Therefore, the examination of posterior retinal blood vessels, whose nature signifies the
presence of Plus disease, is a crucial step in diagnosing treatment requiring or threshold
ROP. A Pre Plus disease having abnormal vasculature that is insufficient for the diagno-
sis of Plus disease, but that gives more arterial tortuosity and venous dilation than normal
is another sign for the detection of ROP. Figure 1 shows the digital fundus images of the
normal infant retina and retina of infants with Plus disease. The difference between the
characteristics of blood vessels in the normal and diseased images are clearly shown in this
figure. We can notice that blood vessels of the images of the retina with Plus disease are
more twisted and broader than the blood vessels in the normal images [32].

We can reduce blindness due to ROP if the disease is identified in its early stage and
treated. But the accuracy and reliability of Plus disease diagnosis of ROP experts are imper-
fect. Therefore, it follows that accurate computer based analysis of the images of infant
retina will be very useful to augment and assist clinical diagnosis.

Fig. 1 (a)View of healthy infant retinal image (b)View of ROP with Plus disease
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Also the analysis of the retinal images in premature infants is considerably more chal-
lenging than in adult subjects due to clarity of the images. Another reason for the demand
for a computerized system for ROP diagnosis is the high level of inter-expert disagreement
over the diagnosis [16]. For instance,the presence or absence of the Plus disease is con-
cluded based on comparing the observed blood vessel to that of the photograph showing
the minimum standard of vascular tortuosity rather than by establishing standard cutoff val-
ues. Therefore, there may be significant variability in the accuracy and consistency of Plus
disease diagnosis from wide-angle images, even among recognized ROP experts [4]. There-
fore, a computer-based image analysis system, which extracts relevant information from the
fundus images, could lead to ensure timely diagnosis and treatment of ROP. This work aims
to develop suitable techniques to overcome these limitations while designing an accurate
system for Plus disease detection. The novelty of our research includes:

• Identification of better discriminating features for the analysis of Plus disease detec-
tion by combing the advantages of vascular and transform based features of the retinal
images.

• Design of a simple neural network classifier with the limited data set and performance
comparable to that of existing convolutional neural network classifiers.

• Development of a Plus disease classifier with zero false negatives to meet the
requirements of an ROP screening system.

The paper is structured as follows: Section 2 reviews the previous works on the detection
of Plus disease. The data set used is introduced in Section 3, and the overview of the pro-
posed technique is provided in Section 4. Section 5 and Section 6 describes the performance
metrics evaluated on the extracted features along with experimental setup and the results.
Finally, in Section 7 conclusions are drawn.

2 Literature survey

In recent years, there has been a growing interest in developing diagnostic tools that use
artificial intelligence (AI) techniques to diagnose various medical conditions like cancer
[38], heart problems, eye abnormalities [20], gastrointestinal diseases, brain tumors and
mental disorders [5] etc. One such area where AI-based diagnostic tools have shown poten-
tial is in the diagnosis of retinopathy of prematurity (ROP). With the latest advancements
in digital imaging of ROP such as Retcam, fundus retinal images can be effectively ana-
lyzed using AI methods. These AI methods include traditional machine learning (ML) and
modern deep learning approaches (DL). In traditional ML methods, conventional image
processing and feature extraction techniques are used to identify pathological patterns such
as fundus lesions and blood vessels. On the other hand, DL approaches use artificial neural
networks to learn and classify features from the input images without explicit feature extrac-
tion. Overall, the development of AI-based diagnostic tools has the potential to improve
the accuracy and efficiency of medical diagnoses, leading to better patient outcomes. How-
ever, further research is needed to validate the effectiveness of these methods in real-world
clinical settings.

Many researchers have built computer-aided systems for the analysis of Plus disease in
ROP. These systems may provide more objective for the diagnosis, and such studies have
demonstrated that methods are capable of discriminating between cases with and without
Plus disease as accurately as experts . The accuracy of the methods depends on the analysis
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of premature retinal infant images in terms of identifying the best features that classify the
disease. There are many methods to classify ROP by analysing the features from blood
vessel segments of retina [45]. Most of the works are deals with healthy/disease category of
classification and have limited works for Plus/No Plus classification category.

Jomier et al. [22] developed a method to assess Retinopathy of Prematurity by capturing
images of the retina to extract and quantify both tortuosity and dilation of blood vessels as
features on 20 infant images. This approach demonstrates 80% sensitivity and 92% speci-
ficity in the prediction of Retinopathy as Plus/No Plus category by using a neural network
classifier. In a study conducted by Ataer et al. [3], they introduced a diagnostic tool called
“i-ROP” which utilizes 77 images to classify healthy, Pre-Plus, and Plus ROP disease. To
achieve this classification, they implemented a support vector machine (SVM) classifier and
were able to attain a high accuracy of 95%. These methods relied on manual feature extrac-
tion and segmentation of vessels, which may introduce inaccuracies in the diagnosis due
to potential errors and professional bias in selecting target vessels. Additionally, the time
required for image processing, such as segmentation and feature extraction, can be lengthy.

The increase in the tortuosity of retinal vessels can indicate the presence of various dis-
eases, including Retinopathy of Prematurity (ROP). Precise detection and measurement of
such changes can aid in the computer-aided diagnosis of Plus disease, which requires ROP
treatment. Oloumi et al. [29] developed image processing methods for detecting and seg-
menting retinal vessels, measuring vessel tortuosity, and incorporating clinical definitions of
Plus diagnosis into diagnostic decision-making criteria. And for 110 retinal fundus images
of preterm infants (91 without Plus disease and 19 with Plus disease), demonstrate high
sensitivity of 0.89 (17/19)in the diagnosis of Plus disease. In Pour et al. [30] eighty-seven
well-focused fundal images taken with RetCam were classified to three groups of Plus, No
Plus, and Pre Plus. Automated algorithms in this study were designed based on the curva-
ture measure and distance transform, for assessment of tortuosity and vascular dilatation as
two major parameters of Plus disease detection. The performance is compared with three
different classifiers named k-nearest neighbor, support vector machine and multilayer per-
ceptron network and achieved an accuracy rate of 72.3%, 83.7%, and 84.4% respectively.
Samant et al. [36] shows the preprocessing of 30 affected and 30 normal images by using
histogram equalization and morphological operations to detect the blood vessels from retina,
and from this extracted blood vessels tortuosity is computed, and classified using conven-
tional methods like SVM, K-NN and Ensemble with 92.5%, 95%, and 87.5% accuracy
values respectively.

34 digital retinal images were interpreted by 22 ROP experts for presence of Plus disease
in Chiang et al. [10] . These images were segmented using Retinal Image Multi Scale Anal-
ysis (RISA), yielding 6 retinal vessel features called arterial integrated curvature (AIC),
arterial diameter (AD), arterial tortuosity index (ATI), venular integrated curvature (VIC),
venular diameter (VD), and venular tortuosity index (VTI) and classified using Recursive
partitioning and regression tree (RPART) classifier with a performance of 0.8077 AUC.
The preprocessing using structure adaptive filter, guided filter and coherence enhancing
diffusion filter along with segmentation using connectivity and proximity analysis and mor-
phological operations are explained in nisha et al. [28]. This paper proposes the usage of
additional retinal features namely leaf node count and vessel density to portray the abnormal
growth and branching of the blood vessels and to complement the commonly used features
namely tortuosity and width. The test results shows a better classification of Plus disease
in terms of sensitivity (95%) and specificity (93%) using an SVM classifier on 178 infant
retinal images.
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Recently, several diagnostic tools for Retinopathy Of Prematurity(ROP) that rely on
Deep Learning (DL) techniques have emerged. These systems use transfer learning (TL), a
method that involves reusing pre-trained Convolutional Neural Networks (CNNs) that were
trained with large datasets such as ImageNet to solve similar classification problems with a
smaller number of images [7]. By using a pre-trained CNN that has already learned image
features from a vast and diverse dataset, TL has been demonstrated to improve diagnostic
accuracy [9].

Brown et al. [8] introduced a software tool known as “i-ROP”. The tool utilizes two
convolutional neural networks (CNNs), with the first CNN being responsible for image seg-
mentation, while the second CNN classifies retinal images into healthy, Pre-Plus, and Plus
ROP disease categories. The authors trained and tested i-ROP using a dataset of 5511 retinal
images, achieving an average sensitivity of 96.5%. An automated system called “Deep-
ROP” was introduced by Wang et al. [46], which is based on deep learning. The system
used 11,707 images and began by categorizing images as either normal or showing signs of
ROP. Subsequently, ROP images were divided into severe or minor categories. The study
found that the system had a sensitivity of 96.64% for distinguishing normal versus ROP
images, 88.46% sensitivity and 92.31% specificity for categorizing severe versus minor
ROP images. In a recent development [40], a new automated tool known as “ROP.AI” has
been introduced for diagnosing both normal and Plus diseases. According to the researchers,
the classification model utilized by this tool was able to attain an impressive sensitivity of
96.6%. In their study Lei et al. [25] utilized ResNet-50 as the base model and integrated an
attention module and channel to facilitate the diagnosis of ROP. Likewise, Zhang et al [55]
employed multiple variations of ResNet to develop their model for ROP diagnosis.

In a study conducted by Rani et al. [33], a tool based on Deep Learning (DL) and mul-
tiple instance learning (MIL) was introduced. The images were divided into equal patches,
and then a Convolutional Neural Network (CNN) was utilized to extract features from these
patches. The features from the same image were combined to differentiate between normal
and Retinopathy of Prematurity (ROP) cases. The system achieved an accuracy of diagno-
sis 83.33%. Subsequently, the authors of [52] proposed a pipeline named “I-ROP ASSIST”
to differentiate between healthy and Plus ROP diseases. The authors segmented the images
using U-Net CNN and extracted handcrafted features from these segmented images to train
multiple machine learning classifiers. The highest accuracy achieved in this study was 94%.
In [17] a new convolutional neural network (CNN) architecture is presented for the detection
and evaluation of retinopathy of prematurity (ROP). The proposed architecture comprises
of two main components: a feature extraction sub-network and a feature aggregation oper-
ator for combining features from different images in an examination. The study evaluates
the proposed architecture using several pre-trained ImageNet models, including VGG-16,
Inception-V2, and ResNet50. The proposed architecture is tested on a large dataset consist-
ing of 2668 examinations of fundus images in infants. The experimental results reveal that
Inception-V2 with the max aggregate operator in module 2 performs better than the other
networks for the recognition of the existence and severity of ROP with a sensitivity of 96%.
Worrall et al. [48] implemented Convolutional Neural Network architecture using a modi-
fied GoogLeNet as classifiers on 1459 images and classified as diseased/healthy with 93.6%
accuracy, 95.4% sensitivity and 94.6% specificity. An analysis on 2361 images were per-
formed by wang et al [47] using id-Net architecture for diseased/healthy classification with
96.64% sensitivity. Mao et al. [26] performed the classification as Plus/Pre Plus and No
Plus categories using a DenseNet architecture with 93.31% accuracy and 95.1% sensitivity
values on 3311 images.
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In Huang et al.[18] five different deep neural network architectures were utilized to
identify ROP in preterm infants using applied transfer learning techniques. The findings
indicated that among the tested models, the VGG19 architecture exhibited the highest level
of performance in detecting ROP in preterm infants, with an accuracy of 96% and sensitivity
of 96.6%. A deep convolutional neural network (DCNN) is developed for automated ROP
detection using wide-angle retinal images in [24] . It mainly uses ResNet50 as base archi-
tecture and improve the ResNet by adding a channel and a spatial attention module. The
classification was mainly as ROP/Normal cases on 3412 infant retinal images and obtains
an accuracy of 96% and sensitivity of 98 %. Zhang et al. [54] used an automated system
for diagnosing AP-ROP using two independent networks. The proposed system divides the
task into two parts: Network 1 identifies the presence of ROP in fundus images, while
Network 2 distinguishes between AP-ROP and Regular ROP in ROP fundus images. The
feature representation of the two networks is improved using a channel attention module,
and a bilinear pooling module is utilized to extract complementary information between
layers. The transfer learning mechanism is applied to transfer the parameters of Network
1 to Network 2, resulting in improved classification performance. The system is trained on
6867 fundus images, and its performance is evaluated using 3654 additional images. The
results show that the accuracy and sensitivity for diagnosing AP-ROP using Network 2 are
93.09% and 87.70%, respectively. In their recent study Yildiz et al. [51] introduce a novel
method called Structural Visual Guidance Attention Networks (SVGA-Net), which utilizes
structural domain knowledge to guide visual attention in Convolutional Neural Networks
(CNNs). Their experiments were conducted on a dataset of 5512 posterior retinal images
captured using a wide angle fundus camera. The results of the experiments demonstrate that
SVGA-Net achieves impressive performance with an AUC of 0.987 and 0.979 for predict-
ing plus and normal categories, respectively. This suggests that SVGA-Net has the potential
to be a valuable tool in the diagnosis and treatment of retinal diseases. Overall, the proposed
method represents a promising avenue for improving the accuracy and efficiency of CNNs
in medical image analysis.

From the literature, we can see that there are only a few works which uses simple
neural network architectures for the classification of Plus disease. The recent works in lit-
erature uses Convolutional Neural Network architecture based classification of ROP, but
all are focusing on Normal/Diseased classification rather than Plus/No Plus classification
and requires larger number of posterior retinal images for accurate classification. So in this
work, we are mainly focused on the identification and extraction of optimal features to
develop a neural network based classifiers for efficient classification of ROP as Plus/No
Plus categories on a limited data set of around 178 images with 81 Plus and 97 No Plus
images.

3 Materials

The data used in this research is obtained from Narayana Nethralaya Eye Hospital, Banga-
lore, India. The images are captured from premature infants with an average birth weight
of 1750 grams and/or gestational age fewer than 34 weeks using RetCam3, as part of the
KIDROP program, which is India’s largest telemedicine program to diagnose, treat and
monitor ROP. A total of 178 images are taken for analysis, of which 97 (55%) images are
healthy with the No-Plus disease, and 81 (45%) images show vessel abnormalities denoting
the presence of Plus disease.
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4 Methods

The accurate judgment of Plus disease is critical to identify the treatment requiring ROP, so
that the vision of the baby is saved at the right time. The crucial step for the identification
of Plus disease is the selection of optimal features that describe the nature of the retinal
vasculature and design of an accurate classifier. Hence, as a first step, a detailed analysis was
conducted to identify features that will improve the classification accuracy [34]. The idea
here is to extract features from the images which will represent the nature of blood vessels
using appropriate transforms along with the conventional vascular features. After the feature
extraction stage a detailed analysis is being conducted to identify the best classifier for the
given application using the extracted features. Simplified block diagram of the proposed
Plus disease detection process is shown in Fig. 2.

The preprocessing stage is to reduce the noise, blurring effect and enhance the contrast
for improving the efficiency of the segmentation and feature extraction stages. After the
segmentation of vascular structure, various types of features are extracted. Which is mainly
denoted as two classes, vascular features and transform domain features. The vascular fea-
tures are extracted from the segmented vasculature, where as transform domain features
are extracted from the entire image using various transforms. The detailed flow of work is
explained below.

4.1 Preprocessing

Image preprocessing is an essential and crucial step that decides the accuracy of segmen-
tation and feature extraction stages [39]. Preprocessing involves the removal of undesired
artifacts in the image and enhancement of objects of interest. The fundus image (I) is a
color image with three components: Red (IR), Blue (IB) and Green (IG) as shown in Fig. 3.
For blood vessel detection, the color planes are analyzed in terms of vessel-to-background
contrast. Green channel (IG) is selected for further processing because it provides better
contrast between the background and the vessels compared to red and blue channels [50].

Figure 4 shows the block schematic of preprocessing stages for segmentation. Extracted
green plane image is filtered using a median filter of size 3×3 and is named as IMF . A
Gaussian filter as given in (1) with standard deviation σ = 9 is used as the smoothing filter,
which reduces the noise in the flat region from being amplified and suppresses the high
frequency details for further processing.

G(x, y; σ) = 1√
2πσ

exp(−x2 + y2

2σ 2
) (1)

The Gaussian filtered image IG is subtracted from the median filtered image IMF to get
detailed image which contains all the edge information which needs to be preserved. This

Fig. 2 Overview of proposed Plus disease classification system
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Fig. 3 Different planes of input image:(a)Original image (b)Red plane (c)Green plane(d)Blue plane

detailed layer is amplified by multiplying with a constant K=5 to boost the details further
for analysis and is added with the Gaussian filtered image as in (2).

I enhanced = K ∗ (IMF − IG) + IG (2)

The preprocessed output is shown in Fig. 5. It can be seen that this enhanced image is
better in terms of contrast and noise reduction. We can see that it reduces the noise ampli-
fication in homogeneous regions, which is useful in reducing the number of false artifacts
appearing in the segmented output. This enhancement intends to ensure that the relevant
blood vessels are clearly extracted from the background rather than just visual quality
enhancement of the image.

4.2 Vascular segmentation

Segmentation is the process of extracting the objects from the background of an image.
In the problem under consideration, the object of interest is the vascular structure of the
retina. Thus segmentation involves the identification of blood vessels from the rest of the

Fig. 4 Block schematic of preprocessing for segmentation
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Fig. 5 (a) Original image (b) Preprocessed image

retinal fundus images and thus highlighting the region of interest for feature extraction. The
segmentation method adopted in this work is from [28] which is summarized below.

Figure 6 shows the block schematic for proposed vessel tree segmentation. This approach
extracts the thick and thin vessels separately and finally fuse them together to get the com-
plete vessel structure. For the extraction of thick vessels Top hat transform is used. It is
defined as difference between the input image and it’s opening by a structuring element, as
given in (3), where ◦ denotes morphological opening operation. A disc-shaped structuring
element b, with radius 5 is used in this work.

I tophat = I enhanced − (I enhanced ◦ b) (3)

Thin vessel extraction is done using background subtraction with the best smoothing
filter suitable for the infant funds images. The commonly used filters for background sub-
traction are the mean and median filters. But these filters do not segment the thinner vessels
because severe blurring will eliminate the fragile vessels from the foreground. So a guided
filter is employed for thin vessel extraction. Guided filter is a structure adaptive filter that

Fig. 6 Block schematic for proposed vessel tree segmentation
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has the property of smoothing only the homogeneous regions without affecting the edges. It
enhances the image without increasing the noise present in the homogeneous regions. This
edge preserving and unique filtering property of Guided Filter is utilized in this study. It is
found that most of the small blood vessels can be extracted even from areas with low con-
trast, by varying the filter parameters. Thus the enhanced image is Guided filtered using a
small neighborhood of 5*5, and the filtered output from the Guided filter (I f ilted ) is taken
as the smoothed background image. This background is subtracted from the original image
to obtain the foreground image which contains the blood vessels.

Post-processing helps in further improving the result of segmentation by removing
falsely detected vessels [6]. The resultant image after top hat transformation and guided
filter, has both the required blood vessels and noise. Therefore the required foreground pix-
els are chosen based on a threshold T given by Otsu’s algorithm. Otsu’s thresholding is a
method of selecting T, which is defined as the global threshold varying from 0,1,2,...L-1
such that it minimizes the intraclass or within-class variance of the object and the back-
ground class. All the pixels with intensity values less than T will belong to class C0 or
background class and the rest of the pixels become the foreground class or class C1 as
denoted by,

C0 = 0, 1, ...T − 1&C1 = T , T + 1, ...L − 1 (4)

Thus applying Otsu’s thresholding on extracted blood vessels using top hat transform and
guided filter, we get thin and thick blood vessels of retinal infant images, then we combine
them to produce segmented vessel tree as shown in Fig. 7.

4.3 Feature extraction

Segmented output contains vascular tree with various structures, indicating abnormal
growth of blood vessels. The convention features used for classification of Plus and No Plus
in infant funds images are tortuosity and width. In this work two additional features leaf
node count and vessel density suggested by authors in [28] are also used. In order to study
the effect of transform domain features in the classification of the disease a detailed analy-
sis is being performed on the transform domain feature based on the wavelet and curvelet
transform.

4.3.1 Vascular feature extraction

Detection of blood vessels from the infant retinal images is a major task for the analysis of
Plus disease. The characteristics of blood vessels like length, width, tortuosity and branching

Fig. 7 Output for Segmentation of thick vessels using Top hat transform (left), thin vessels using guided
filter (middle) and combined (right)
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patterns have an important role in the disease diagnosis. The vascular features extracted in
this study are listed below.

(i) Tortuosity (T): Tortuosity have a major role in the indication of Plus disease, it
mainly indicates the twisting of blood vessels. The most simple and widely used measure
of tortuosity is defined as the ratio between the total length of a vessel segment(as shown
by continuous line in Fig. 8) and its chord (the line connecting the endpoints of the vessel
segment), often called the Distance Metric [23].

A modified definition of tortuosity by adding the number of peaks as given in (5) is cho-
sen as a measure of tortuosity. Parameter L is arc length using geodesic distance transform,
mod(x1x2) is the euclidean distance between endpoints x1 and x2 and P is the number of
peaks.

T ortuosity(T ) = L

mod(x1x2)
� P (5)

(ii) Width (W): Width is calculated using Distance Transform as in (6). For each pixel,
the distance transform assigns a number that is the distance between that pixel and the
nearest nonzero pixel [19]. The input to the width calculation algorithm is the segmented
image with white pixels in the place of vessels and black elsewhere. n is the sample size and
it depends on the number of vessel segments.

W = 1

n

n∑

i=1

Wi (6)

(iii) Leaf node Count (LNC): Leaf node is defined as the vessel segment between a
branch point and an end-point. Increased number of leaf nodes indicate excessive branching
which is an indication of abnormality in blood vessel structure.

(iv) Vessel Density (VD): It is the ratio of Area occupied by blood vessels (in pixels)
into Size of the image (in pixels).

Table 1 shows a comparison of the feature values average tortuosity, maximum width,
leaf node count and vessel density for a set of sample images taken from the Plus and No
Plus cases. From Table 1 we can see the feature values are higher for Plus images compared
to No Plus images [28].

Fig. 8 Tortuosity calculation
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Table 1 Different Vascular feature values for Plus and No Plus images

Images Average Tortuosity Maximum Width Leaf Node Count Vessel density

No Plus 1 2.797052547 6.639088154 8 3.936145053

No Plus 2 2.653849651 6.037988186 6 4.041377839

No Plus 3 2.488653302 6.1980896 8 3.730447789

Plus 1 4.275901937 6.708630562 26 7.628989142

Plus 2 4.301969062 9.939764977 22 9.486987964

Plus 3 3.348522566 8.274048805 23 7.268621879

4.3.2 Transform based feature extraction

For transform based feature extraction, the best transforms that represent the vascular struc-
ture, the main object of interest, are selected. From the literature [2] we know that wavelet
and curvelet transforms are efficient in representing edges and other singularities along the
curves in an image. Hence the behavior of these two transforms are analysed in this study
to get the best representative features for the vascular structure of the retina.

4.3.2.1 Wavelet transform The wavelet transform is a multi scale transform, which is
recognized as a useful feature extraction method to represent image features at different
scales. The wavelet transforms exhibit impressive performance in detecting point and line
like features from an image [49]. After one-level decomposition on an original image, an
approximate sub-image and three detail sub-images are obtained. Those detail sub-images
are at horizontal, vertical and diagonal orientation respectively. In this work the Daubechies
wavelet transform has been used. A wavelet transform can be defined as in (7), where ψ(a,b)

is the wavelet with scale a, location b by dilations and translations from mother wavelet ψ

centered on the origin.
Wf (a, b) =< ψ(a,b), f > (7)

Wavelet decomposition of an image is shown in Fig. 9. DWT algorithm decomposes
the image into 4 sub-band (sub-image) ie, LL, LH, HL and HH [53]. In this LL is the
approximation of the input image, which is used for further decomposition process. LH sub
band extract the horizontal features of original image. HL sub band gives vertical features
and HH sub band gives diagonal features.

Fig. 9 Decomposition of wavelet transform
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Fig. 10 (a) one level decomposition, (b) two level decomposition

In one level decomposition, the sub-bands labeled LH1, HL1 and HH1 represent the
finest scale wavelet coefficients i.e., detail images while the sub-band LL1 corresponds to
coarse level coefficients i.e., approximation image as in Fig. 10(a). To obtain the next coarse
level of wavelet coefficients, the sub-band LL1 alone is further decomposed and critically
sampled. This results in two level wavelet decomposition as shown in Fig. 10(b). Similarly,
to obtain further decomposition, LL2 will be used. This process continues until some final
scale is reached.

4.3.2.2 Curvelet Transform Curvelet transform is a geometric transform used to overcome
the inherent limitations of wavelet like transforms. It is a multi-scale and multi-directional
transform. Curvelet transform basis functions are needle shaped and have high directional
sensitivity and anisotropy. Curvelet obey parabolic scaling. Because of these properties,
curvelet transform allows almost optimal sparse representation of curve singularities. The
curvelet transform at different scales and directions span the entire frequency space. So,
curvelet transform was designed to represent edges and other singularities along curves
much more efficiently than traditional transforms [1]. In this work wrapping based discrete
curvelet transform as in (8) is used to collect curvelet coefficients of the images.

CD(j, l, k) =
∑

0≤x<M
0≤y<N

f (x, y)φD(j, l, k)(x, y) (8)

Here, C implies curvelet coefficient functions of (j,l,k) with j as scale (level of decompo-
sition of image using curvelet), l as orientation(angle at which curvelets are arranged), k as
spacial location of curvelet, φ(x, y) as curvelet functions and f(x,y) as input image having
dimension M × N . The algorithmic flow for the calculation of curvelet coefficients using
curvelet transform with preprocessed infant retinal image as input is given in Fig. 11.

Figure 12 shows the curvelet digital tiling of an image for 5 level decomposition. The low
frequency (coarse scale) coefficients are stored at the center of the display. The cartesian
concentric coronae show the coefficients at different scales; the outer coronae correspond
to higher frequencies. There are four strips associated to each corona, corresponding to the
four cardinal points; these are further subdivided in angular panels. Each panel represent
coefficients at a specified orientation and along the scale suggested by the position of the
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Fig. 11 Algorithmic flow for Curvelet Transform

panel. In the retinal infant image decomposition using curvelets, input image is resized to
512×512 and then decomposed into a number of directional sub-bands as shown in Fig. 13.

In 5 level decomposition, we have 32 sub-band images at scale 2 and 64 sub-band images
at scales 3 and 4 respectively. Thus in the first scale we have one sub-band which is coded
by one feature value, in the second scale thirty two sub-bands which are coded by 32x1
feature values and in the third and fourth scale we get 64 sub-bands which are coded by
64x1 feature values, finally in the fifth scale we get one sub-band which is coded by a single

Fig. 12 5-level curvelet digital tiling of an image
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Fig. 13 (a) Original image (b) Curvelet coefficients at varied angles (scale=5)

features value. Thus, our feature vector have 1 row which contains 162 values of features
extracted from 162 sub-bands for 5 level decomposition [21]. Similarly for 3 level and 4
level decomposition it contains 66 and 130 feature values with 1, 64, 1 and 1, 64, 64, 1 sub
band features respectively.

4.4 Optimal feature set selection

In order to select the best transform based features in terms of curvelets and wavelets which
represents the vascular structure, a detailed analysis is done by reconstructing the images
with varying number of transform coefficients.

(i) Wavelet based feature selection:

In this wavelet decomposition is performed on the infant retinal images using various
families of Daubechies wavelets. Inorder to select the number of decomposition levels suited
for our application, we have analysed the wavelet decomposition in different levels like
level one, level two and level three using various Daubechies families. Figure 14 shows the
images reconstructed by taking only the detail bands of level 1, 2 and 3 decomposition using
various families. From these we can notice that detail bands of one level decomposition
are more predominant in visualizing blood vessel structure of infant images compared to
detail bands of two level and three level decomposition. This may be due to the presence
of unwanted details or noises that get introduced (while going for more finer details) at the
higher level decomposition bands. Also among this various Daubechies families the results
shows that level 1 decomposition of Db1 wavelet represents the vascular structure more
efficiently compared to other wavelets and hence level one decomposition of Db1 wavelets
is used for all further analysis.

To select the best band of Db1(Haar) wavelet transform which is useful for the analysis of
blood vessel extraction, images were reconstructed using different combinations of detailed
frequency bands. Among the various reconstructions HH band of one level decomposition
gives more accurate results for blood vessel structures as shown in Fig. 15. Thus our fur-
ther analysis takes only the HH band of one level decomposition of Db1(Haar) wavelet to
compute the feature vectors for Plus disease classification.

(ii) Curvelet based feature selection:

To select the best decomposition scales and levels of curvelet transform features suited
for Plus disease classification, we have performed the reconstruction of curvelet coefficients
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Fig. 14 Detail bands of level one, level two and level three decomposition of various families of Daubechies
wavelets

Fig. 15 Image reconstruction using various wavelet sub bands of Level 1 of Db1 wavelets
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Fig. 16 Image reconstruction by detail bands of curvelet coefficients at (a) scale 3 (b) scale 4 (c) scale 5

in different scales and reached into a conclusion that detail bands of scale 3 gives better
result for blood vessel extraction with segmented images as reference compared to other
scales as in Fig. 16. This may be due to the presence of unwanted details that get imposed
while going for more finer details.

The corresponding scale 3 coefficients are plotted in Fig. 17, these coefficients are
arranged in a multi-scale, multi-directional way to reflect the geometric feature of the image
and are organized in a hierarchical structure with the finest band capturing the highest fre-
quency information such as fine details and noise, the intermediate or detail band capturing
the medium-scale features such as edges and curves and the coarser band capturing the lower
frequency information such as large-scale features and smooth variations. At the detail band,
there are four strips in each band where the curvelet coefficients are further decomposed
into sub-bands that correspond to different orientations in horizontal, vertical, and diagonal
directions with the number of sub-bands depending on the choice of the directional filters
we used in the decomposition.

The reconstruction using different sub bands is performed to analyse which sub band
shows better results for extraction of vascular features. The analysis shows that sub band 2
represents blood vessels more accurately compared to other sub bands as shown in Fig. 18.

Because of the symmetry of the directional band pass images at each scale, only one half
of the directional band pass images are sufficient for feature extraction. The reason why only
first half of the total sub bands at a resolution level are considered for feature calculation is

Fig. 17 Curvelet coefficients at varied angles (scale=3)
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Fig. 18 Image reconstruction by different sub bands of scale 3 of curvelet: (a) sub band 1 (b) sub band 2 (c)
sub band 3

that, the curvelet at angle � produces the same coefficients as the curvelet at angle (�+π)

in the frequency domain. Therefore, considering half of the total number of sub bands at
each scale reduces the total computation time for the feature vector formation [37]. Thus we
have performed a dimensionality reduction technique by employing this symmetric property
using a thresholding method described in Fig. 19.

Reconstructed images at different thresholding levels of subband 2 of scale 3 decompo-
sition is shown in Fig. 20. From this, we can notice that blood vessel structers are more
predominant in the reconstruction of highest 50% of curvelet coefficients and thus follows
the symmetric property.

The most interesting fact about curvelets is that it has been developed specially to rep-
resent objects with ’curve punctuated smoothness’ .i.e. objects which display smoothness
except for discontinuity along a general curve; images with edges would be good example
of this kind of objects. Wavelet transform has been profusely employed to address different
problems of pattern recognition and computer vision because of their capability of detect-
ing singularities. But, though wavelets are good at representing point singularities in both
1D and 2D signals, they fail to detect curved singularities efficiently. Figure 21 shows the
edge representation capability of wavelet (left) and curvelet transform (right). For the square
shape of wavelets at each scale, more wavelets are required for an edge representation than
that compared to the number of required curvelets, which are of elongated needle shape.

Fig. 19 Algorithmic flow for thresholding
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Fig. 20 Image reconstruction by retaining different threshold of sub band 2 of scale 3

One more novelty of curvelet transform is that it is based on anisotropic scaling principal,
whereas wavelets rely on isotropic scaling.

In the case of curvelet and wavelet transform, extracting features from these sub-band
images and representing in a compact form is a major problem [44]. To overcome this we
encode each sub-band images using its energy and standard deviation. Since the number of
energy and standard deviation features of wavelet transform is less compared to curvelet
transform, because of their lack of representing orientation features, we also extract the
histogram features of wavelet tansform to make our analysis.

Fig. 21 Edge representation by Wavelet(left) Curvelet(right)
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(i) Energy: In signal processing, the energy of a signal X is defined as the area under the
squared magnitude of the considered signal i.e., mathematically

Energy =
∑

|X|2 (9)

(ii) Standard deviation: It is a measure of contrast in an image. Larger the standard
deviation, higher is the contrast.

StandardDeviation = σ =
√

(X − μ)2

N
(10)

Here, X is value in data points, μ is mean of data points and N is number of data points.

(iii) Histogram Feature: Compute by partitioning the values in wavelet transform in to
bins of uniform width by using an automatic binning algorithm.

4.4.1 Statistical analysis

Statistical analysis of features have an important role to validate their significance in Plus
disease classification. Analysis of vascular features using kruskal-wallis test is shown in
[28] and it can be concluded that vascular features namely average tortuosity, maximum
width, leaf node count and vessel density have significant discrimination in the case of Plus
and No Plus classes and hence significant for classification.

Here, we have evaluated the statistical significance of extracted transform based features
using one-way analysis of variance (ANOVA) test. This test uses the variation (variance)
within the classes and translates it into variation (i.e. differences) between the classes, taking
into account the number of subjects in the classes. In this analysis the null hypothesis is
that there is no statistically significant differences between the feature values of the two
classes called Plus and No Plus. If the observed differences are high then it indicates that the
difference between the features for the Plus and No Plus classes are statistically significant
(lower ’p’ value). To analyse the effect of transform based features like wavelet and curvelet
for Plus disease classification, we analysed them individually. If the p value is less than 0.05
then the feature calculated for each classes are statistically different and thus null hypothesis
is rejected [14].

The graphical plots of ANOVA test for transform based features of Plus and No Plus
images are shown in Fig. 22. The box plot function in Matlab, enables clear comparisons
to be made between the significance of features to each classes by displaying a box and
whisker plot. The box has lines at the lower quartile, median, and upper quartile values,
while whiskers are lines extending from each end of the box to show the extent of the rest
of the data and outliers are data with values beyond the ends of the whiskers. In a notched
box plot, the notches represent a robust estimate of the uncertainty about the medians for
box-to-box comparison. Boxes whose notches do not overlap indicate that the medians of
the two groups differ at the 5% significance level.

We can see that there is a slight overlapping between the notches of wavelet transform
features in terms of energy, standard deviation and histogram for the Plus and No Plus
classes, while there is a remarkable difference between the notches of curvelet transform
features in term of energy and standard deviation for the Plus and No Plus classes. Also
the spacing between the different part of the boxes shows degree of skewness in the data
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Fig. 22 Box plots (a) Wavelet energy feature, (b) Wavelet standard deviation feature, (c) Wavelet histogram
feature, (d) Curvelet energy feature and (e) Curvelet standard deviation feature

points. In the case of curvelet energy features we can see a large skewness in the case of
Plus disease than curvelet standard deviation features and wavelet features.

A small p-value of about 2.29863e-08 has been obtained for curvelet energy coefficient,
showing that it rejects the null hypothesis that all class means are identical, while in the
case of curvelet standard deviation features it is about 0.0045. Thus it implies that curvelet
energy features are highly capable for distinguishing between Plus and No Plus images than
curvelet standard deviation features, and have a major significance in the classification of
Plus disease. In the case of wavelet energy, standard deviation and histogram features the
p-value is not less than 0.05 indicating that it accepts the null hypothesis and thus shows its
lower discriminating power for Plus disease classification.

4.5 Classification

An algorithms for the classification of Plus and No Plus cases are chosen based on the
applications and the availability of data sets. Since we have limited data sets with 97 images
of No Plus category and 81 images of Plus category, the study mainly aims to find a suitable
set of features to aid better classification of Plus disease. The same set of features which
works for one classifier may not give optimal performance for another classifier. However,
since the task at hand is a binary classification problem with No Plus being the negative
class and Plus being a positive class, we have performed the analysis by using an Artificial
Neural Network (ANN) architecture.

Artificial Neural Networks (ANNs) classifier have been recognised as powerful and cost-
effective tool for solving a large variety of problems using supervised learning approach.
ANN uses the method of gradient descent and looks for the minimised error function in
weight space by back propagation [41]. ANN architecture have input layer with neurons
equal to the size of the feature vector. The output layer has only one neuron to distinguish
between Plus and No Plus. The number of hidden layers and neuron in the hidden layers
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are empirically determined. We have varied the number of the neurons from 5 to 150 and
chosen the one which gives the best accuracy. The Mean square error (MSE) to evaluate the
errors for each output in individual iteration is represented mathematically by (11). Where,
N is the number of iterations, Ei is actual output and E0 is out of the model.

MSE = 1

N

N∑

i=1

(Ei − E0)
2 (11)

In order to select the best architecture, we conducted the cross validation technique by
using k-fold method. We analysed the ANN classifier result by tuning the hyper parameters
like number of hidden layers, neurons in each layer, number of epoch, learning rate, training
algorithms and train, validation and test split ratio as per syntax in (12) and the best network
parameters are listed in Table 2.

Syntax = patternnet (hiddensizes, trainFcn, perf ormanceFcn) (12)

5 Results

Plus/No Plus classification of ROP disease is performed using various supervised machine
learning techniques. The results are evaluated in terms of Accuracy, Sensitivity and Speci-
ficity. The data used in this research is obtained from Narayana Nethralaya Eye Hospital,
Bangalore, India. 178 Infant retinal images with 87 Plus and 99 No Plus cases have been
assigned as the output target in machine learning techniques. All the results have been simu-
lated in an i7 Processor with 64 GB RAM and using a 64-bit Windows-10 operating system
in the MATLAB R2019a (64-bit) environment.

We have analyzed the performance of Plus disease classification system using various
combinations of vascular features such as average tortuosity, leaf node count, vessel density,
maximum width [28], and transform based features taking the energy and standard deviation
of the curvelet coefficients and energy, standard deviation and histogram features of wavelet
coefficients.

The performance parameters are calculated from the confusion matrix, which gives a
summary of correct and incorrect predictions. Figure 23 shows the confusion matrix for a
two-class problem. Diagonal entries show the count of all the correctly classified samples
and the off-diagonal element represents misclassification, i.e., class i is predicted as class j.
The performance matrices are computed using (13) to (15).

Accuracy = T P + T N

(T P + T N + FP + FN)
(13)

Table 2 ANN classifier parameters

Network Parameters Better result value

Training Algorithm trainscg ( scaled conjugate gradient method)

Hidden layer two layers with 10 10 no of neurons in each

Train/validation/test split 70%,15%,15%(124,27,27 samples respectively)

Performance function cross entropy

Maximum number of epoch to train 1000

Learning rate 0.01

882 Multimedia Tools and Applications (2024) 83:861–891



Fig. 23 Confusion matrix

Sensitivity = T P

(T P + FN)
(14)

Specif icity = T N

(T N + FP)
(15)

Where True Positives (TP) represents the case where abnormal images (Plus disease) are
correctly detected as abnormal, True Negatives (TN) gives the case where normal images
(No Plus) are correctly detected as normal. Similarly False Positives (FP) denotes images
which are wrongly classified as abnormal (Plus disease) and in False Negatives (FN), the
images wrongly classified as normal (No Plus).

The analysis of wavelet transform features in the classification of Plus disease in terms
of energy, standard deviation and histogram features are shown in Tables 3, 4 and 5 respec-
tively. The third column indicates the performance of the classifier considering only the
wavelet features. The fourth column shows the results of adding the four vascular features
along with the wavelet features. We have extracted the histogram features for various bin
widths like 10, 20, 30 etc and noticed that bin width of 10 gives better result for Plus disease
classification as in Table 5. From these tables we can reach in to a conclusion that HH1 band
of energy of wavelet transform with four vascular features shows improvement in accuracy,
sensitivity and specificity compared to other sub bands, standard deviation and histogram
features.

Tables 6 and 7 shows the classification results for the proposed ANN architecture using
the curvelet energy and curvelet standard deviation features respectively. The results are

Table 3 ANN classifier Performance analysis using wavelet energy features

Number of Without vascular features With vascular features

Subbands wavelet features (%) (%)

Acc Sens Spec Acc Sens Spec

LH1 1 48.1 61 35 81 86 75

HL1 1 55 56 54 88 86 87

HH1 1 51 68 62 88.9 89 89

HH1+HL1 2 51.9 60 41 88 89 80

HH1+HL1+LH1 3 51 42 61 87 82 81
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Table 4 ANN classifier Performance analysis using wavelet standard deviation features

Number of Without vascular features With vascular features

Subbands wavelet features (%) (%)

Acc Sens Spec Acc Sens Spec

LH1 1 40 57 32 81 83 77

HL1 1 51 54 50 88 85 80

HH1 1 40 50 60 85.2 89 81

HH1+HL1 2 44 50 39 85 89 78

HH1+HL1+LH1 3 40.7 38 44 85 89 72

given for various thresholding levels of energy and standard deviation of subband 2 of scale
3 curvelet coefficients. The third column indicates the performance of the classifier con-
sidering only the curvelet features. The fourth column shows the results of adding the four
vascular features along with the curvelet features.

From Tables 6 and 7 it can conclude that top 50% of the curvelet energy features along
with four vascular features used have more significance in improving the accuracy, sensi-
tivity and specificity values compared to curvelet standard deviation features and wavelet
transform features because of their discriminating nature. Thus total number of features
which gives improved accuracy for the proposed ANN architecture is 32 transform based
features and 4 vascular features and totally 36 input features.

6 Discussions

The algorithm proposed for Plus disease classification has taken care of the various defor-
mations that affects the ROP images by incorporating appropriate preprocessing techniques
such as Gaussian filtering and high boost filtering. This eliminates the noise and illumina-
tion variations in the image. Also, this leads to improved contrast and enhanced vascular
structure.

The training performance plot of the proposed ANN classifier for the best result in
Table 6 is shown in Fig. 24. From this, we can see that both training loss and validation loss
end up being roughly the same, hence there is perfect fitting.

Table 5 ANN classifier Performance analysis using wavelet histogram features

Bin Number of Without vascular
features

With vascular fea-
tures

Width Subbands wavelet features (%) (%)

Acc Sens Spec Acc Sens Spec

LH1 10 55.6 60 52.9 77.8 75 80

HL1 10 59.3 75 58.3 81.5 86.6 75

10 HH1 10 59.3 66 58 88.9 89.9 87.5

HH1+HL1 20 51.9 50 52 81.5 88.9 75

HH1+HL1+LH1 30 61.9 66 54.1 81.5 87.5 78.5
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Table 6 ANN classifier Performance analysis using curvelet energy features

Retaining % of high-
est coefficient of sub
band 2 of level 3

Number of
curvelet

Without vas-
cular features
(%)

With vascular
features (%)

features Acc Sens Spec Acc Sens Spec

25% 16 70 80 42 88 93 83

30% 19 70 80 50 88 94 88

35% 22 70 82 48 88 81 90

40% 25 73 83 66 92 93 90

45% 28 70 82 64 92.6 93 90

50% 32 77 83 66 96 100 93

Table 7 ANN classifier Performance analysis using curvelet standard deviation features

Retaining % of high-
est coefficient of sub
band 2 of level 3

Number of
curvelet

Without vas-
cular features
(%)

With vascular
features (%)

features Acc Sens Spec Acc Sens Spec

25% 16 57 60.8 53 85.20 88 88.46

30% 19 66.29 69.07 62.96 89.32 89 89.74

35% 22 70.22 73.91 66.27 89.32 88.23 90.78

40% 25 69 70.10 65.47 88.76 88.8 88.60

45% 28 69 73.68 66 90.6 88.9 88

50% 32 70 74 66 90.18 89.10 91.09

Fig. 24 ANN classifier training performance
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Fig. 25 (a)Test confusion matrix (b) AUC

Figure 25(a) shows ANN classifier’s testing confusion matrix. All confusion matrices
with first two diagonal cells demonstrate the number and percentage of correct classifica-
tions by the network. This test confusion matrix plots 96.3% of classification are correct, and
3.7% are incorrect for the proposed system. Figure 25(b) shows the corresponding Receiver
operating characteristics (ROC) curve which indicates the correct positive rate and false
positive rate in different edge setting of the network, thus illustrates a premium percentage
result for the system. The perfect results are obtained when all the test points are concen-
trated on the upper left corner of the ROC curve [12]. The ROC curve shown has more
concentration of points towards upper left corner with the Area Under the Curve (AUC) as
0.9583.

Table 8 shows the performance analysis of Plus/No Plus classification with the other
popular machine learning classifiers by using the same feature values which gives the best
result for the proposed ANN architecture. From this table we can reach to a conclusion that
our proposed ANN classifier gives better result compared to the conventional classifiers that
are used for analysis. The parameter settings of used classifiers are given below,

• Logistic regression : Batch size = 100, Regularization = L2 Regularization, Ridge
parameter = 1.0E-8, Learning rate = 1.0E-5.

• Naive Bayes : Batch size = 100.
• Random Tree : Batch size = 100, Minimum total weight of the instances in a leaf = 1,

Minimum Variance Probability = 0.001.

Table 8 Performance comparison of different classifiers with extracted features of Plus and No Plus images

Classifier Accuracy Sensitivity Specificity AUC

Logistic regression 70 68 62 0.7430

Naive Bayes 77 71 76 0.7750

Random Tree 77 80 75 0.7216

Random Forest 81 85 76 0.8132

Support Vector Machines 92 94 92 0.9250

Neural network 96 100 93 0.9583
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• Random Forest : Batch size = 100, Bag Size Percent = 100, Number of iterations or
number of trees = 100.

• Support Vector Machines : Batch size = 100, Complexity parameter (C) = 0.1, Cali-
brator = Logistic, Epsilon for round-off error = 1.0E-12, Filter Type = Normalizing,
kernel= Polykernal, Tolerance Parameter = 0.001.

The proposed method is also compared with similar existing works for Plus/No Plus
classification. A direct comparison is not possible since there are wide variations with these
methods in terms of number of images, features extracted for analysis and type of classifier
employed as well the labelling of classes. However from the Table 9, it is clear that pro-
posed method offers good performance on 178 images (81 Plus and 97 No Plus)in terms
of accuracy, sensitivity and specificity by using vascular features like toruosity, width, leaf
node count, and vessel density along with transform based feature in terms of energy of
curvelet coefficients using a neural network classifier.

7 Conclusion

The major aim of this work is to develop a Neural Network classifier with optimal set of fea-
tures with zero false negative to aid in the screening of ROP. A total of 178 images are taken
for analysis, of which 97 images are healthy with the No Plus disease, and 81 images show
vessel abnormalities denoting the presence of Plus Disease. This work is mainly focused
on optimal feature extraction for the better classification of plus disease in ROP diagnosis.
Along with vascular features available in literature, transform based features of Wavelet and
Curvelet transforms are extracted for analysis. A neural network classifier with four vascu-
lar features representing the tortuosity, width and vessel abnormalities along with energy of
the Curvelet coefficients (with highest 50% coefficients of sub band2 of level 3 decomposi-
tion) gave better results compared to the existing methods in literature in terms of accuracy
(96%), sensitivity (100%) and specificity (92%). This shows the ability of Curvelet trans-
form in representing the vascular features for the efficient classification of Plus disease. For
the limited data set taken for experimentation, the proposed ANN architecture with 100%

Table 9 Performance comparison of the proposed method with existing techniques

Study Images Classifier Accuracy(%) Sensitivity(%) Specificity(%)

Jomier et al.[22] 20 Neural network – 80 92

Wallace et al.[45] 26 – – 80 91

Oloumi et al. [29] 110 89 – –

Ataer et al. [3] 77 SVM 95 – –

Pour et al. [30] 87 KNN 72.3 – –

Zamani et al. [30] 87 SVM 83.7 – –

Mahmoudi et al. [30] 87 Neural network 84.4 – –

Samant et al. [36] 60 SVM 92.5 – –

Kadge et al. [36] 60 KNN 85 – –

Nisha et al. [28] 178 SVM 93 95 93

Proposed 178 Neural network 96.3 100 93.8
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sensitivity gives promising results for a deployable ROP Screening system. The experimen-
tal analysis can be extended further by extracting new features using various descriptors
like LBP, MLBP, LTP, SIFT and SURF algorithms [13] for identifying an improved feature
set which can give better accuracy and specificity values. The improvement of performance
matrices by employing deep neural network based architectures on an extended dataset to
make a generalizable architecture which can be deployed in a hospital environment would
be an immediate future scope of the work.
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15. Gopal L, Sharma T, Ramachandran S, Shanmugasundaram R, Asha V (1995) Retinopathy of prematu-
rity: a study. Indian J Ophthalmol 43(2):59

16. Gschließer A, Stifter E, Neumayer T, Moser E, Papp A, Pircher N, Dorner G, Egger S, Vukojevic N,
Oberacher-Velten I, Schmidt-Erfurth U (2015) Inter-expert and intra-expert agreement on the diagnosis
and treatment of retinopathy of prematurity. Am J Ophthalmol 160(3):553–60

17. Hu J, Chen Y, Zhong J, Ju R, Yi Z (2018) Automated analysis for retinopathy of prematurity by deep
neural networks. IEEE Trans Med Imaging 6;38(1):269–79

18. Huang YP, Vadloori S, Chu HC, Kang EY, Wu WC, Kusaka S, Fukushima Y (2020) Deep learning
models for automated diagnosis of retinopathy of prematurity in preterm infants. Electronics 9(9):1444

19. Huang YP, Vadloori S, Kang EY, Wu WC (2022) Computer-Aided Detection of retinopathy of prema-
turity severity in preterm infants via measurement of temporal vessel width and angle. Front Pediatr
10:11

20. Jemshi KM, Gopi VP, Issac Niwas S (2018) Development of an efficient algorithm for the detection of
macular edema from optical coherence tomography images. Int J CARS 1369–77

21. Jero SE, Ramu P, Ramakrishnan S (2015) ECG Steganography using curvelet transform. Biomed Signal
Process Control 22:161–9

22. Jomier J, Wallace DK, Aylward SR (2003) Quantification of retinopathy of prematurity via vessel
segmentation. In: Medical Image Computing and Computer-Assisted intervention-MICCAI 2003: 6th
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