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Abstract
Conventional video coding standards offer efficient compression of traditional 2D images. 
In particular, versatile video coding (VVC), which is the latest video coding standard, 
achieves very high compression efficiency, while maintaining high visual quality for 
humans. On the other hand, video coding for machines (VCM), which is developed as 
a new style of a video coding standard, mainly targets efficient compression of features 
extracted from deep neural networks. It generally employs VVC for feature coding. How‑
ever, since VVC was developed for traditional images, an influence of the VVC based fea‑
ture coding on VCM is not clear. Therefore, this paper proposes efficient tool combina‑
tion by analyzing performance of VVC coding tools for the VCM feature coding, and then 
applies it into video captioning, which automatically generates natural language descrip‑
tions from videos. Experimental results show that the proposed tool combination is very 
efficient, in terms of coding performance and encoding complexity.

Keywords  Versatile video coding (VVC) · Video coding for machines (VCM) · Video 
captioning

1  Introduction

Video data has been traditionally created for human entertainment and stored as a bitstream. 
It is generally broadcasted or transmitted to customers’ terminals through broadcasting net‑
works or Internet. Since video coding technologies give a strong influence on video quality 
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that customers can view, how well high-quality videos are compressed and delivered into 
consumers becomes a very important issue. Because of this tendency, video coding tech‑
nologies have doubled coding performance every ten years through a standardization work 
of many organizations. For example, ITU-T video coding experts group (VCEG) and ISO/
IEC moving picture experts group (MPEG) are two major organizations that have worked 
for a long time to develop video coding standards providing high coding performance with 
higher resolution, higher quality, and higher frame rate. Thanks to their efforts, a versatile 
video coding (VVC) standard [43], which is the latest standard, was finalized in 2020.

Recently, as rapid development of video industries, the focus of data consumption is 
gradually shifting from humans into machines. For example, as many machine learning 
applications have been increasing in popularity and video sensors have been becoming 
more widely available, data consumption by various intelligent platforms with high require‑
ments, such as connected vehicles, video surveillance, and smart city, becomes main data 
traffic in video data [23]. Connected vehicles include many devices to transmit and receive 
video data each other for in-car connectivity. Video surveillance has been monitored by 
humans, but various intelligent tasks, such as object detection and tracking, are currently 
machine-monitored. Smart city is also the important application that consumes massive 
volumes of data. Traffic monitoring and flow prediction would be the use cases in the smart 
city. Hence, a new video coding standard suited for machines are urgently needed.

To satisfy demands of efficient compression for the machine applications, MPEG has 
recently begun developing and standardizing video coding for machines (VCM), which is 
a new type of a standard. The VCM standard targets the standardization of bitstream for‑
mats and compression technologies for video data consumption by machines, rather than 
humans [23]. Unlike traditional 2D video coding standards, VCM deals with features, 
which represent interesting and meaningful parts in videos. They are generally extracted 
from deep neural networks, and then converted into feature maps to directly employ the 
VVC standard for the transmission between machines [24]. It is very difficult for humans 
to understand the features, whereas machines usually operate them for various vision tasks, 
such as object detection and tracking, segmentation, and video captioning. Figure 1 depicts 
examples of the feature maps achieved from three consecutive video frames through Incep‑
tion-v4 [40]. It can be observed that pixel characteristics of the feature maps are very dif‑
ferent from those of the traditional videos.

However, since VVC was developed for normal 2D images, an impact of VVC coding 
tools on VCM has never been fully evaluated. In this paper, we analyze performance of 
each VVC coding tool and propose the optimized tool combination for the efficient fea‑
ture coding. For experimental tests, we evaluate the VVC tools on a video captioning sce‑
nario, which has been actively studied in an intersection of natural language processing 

Fig. 1   Feature maps achieved from three consecutive video frames
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and computer vision fields. The video captioning generates natural language descriptions 
from comprehensive understanding of videos. It is very useful in various applications, such 
as video retrieval and surveillance. Thanks to recently rapid progresses of deep learning 
techniques, lots of video captioning networks have been developed. [1, 5, 9, 35, 47]. In 
general, a combination of a convolutional neural network (CNN) [27] and a long short term 
memory (LSTM) [21] is widely employed for high captioning performance. CNN extracts 
features from frames within a video and LSTM generates sentences through the extracted 
features. In our scenario, CNN is performed in a sender side, and the CNN features are 
compressed with VVC. A receiver directly feeds the decompressed features into LSTM. To 
our knowledge, this is the first studies that not only evaluate the VVC coding tools for the 
VCM feature coding but also apply the VCM standard into the video captioning.

The remainder of this paper is organized as follows. Section 2 shows an overview of the 
VVC standard in detail. Section 3 analyzes the performance of each VVC coding tool and 
proposes the optimized tool combination for the efficient feature coding in the VCM stand‑
ard. In Sect. 4, both the coding performance and the encoding complexity are evaluated, 
when the VCM standard is employed for the video captioning. Finally, Sect. 5 concludes 
this paper.

2 � Overview of the VVC standard

VVC is the latest video coding standard, which was released in October 2020. According to 
its verification evaluations [3], VVC reduces bitrates by half, while keeping the same visual 
quality as a high efficiency video coding (HEVC) standard [20], which is one of the success‑
ful standards. HEVC is very useful for not only a standard dynamic range (SDR) content but 
also a high dynamic range (HDR) content [23, 48]. To outperform the superior predecessor, 
VVC uses many advanced tools with a flexible block partitioning structure that accurately 
represents diverse video properties to improve its coding efficiency. The partition candidates 
are exhaustively checked and compared to efficiently divide a coding unit (CU). Intra and 
inter prediction tools are used within the basic CU, followed by transform, quantization, in-
loop filtering, and entropy coding with additional information for transmission [22].

Intra prediction is enhanced with 93 directional angles to provide the accurate predic‑
tion with non-square block sizes. Advanced intra tools, such as position-dependent predic‑
tion combination (PDPC) [41], a multiple reference line (MRL) [6], matrix based intra pre‑
diction (MIP) [19], a cross-component linear model (CCLM) [31], and intra sub-partition 
(ISP) [15], are performed to get closer to original pixel values in the prediction. Overall, 
by extending existing tools and using new tools, the intra coding performance has been 
significantly improved.

Many inter prediction tools were adopted to improve coding performance by reducing 
temporal duplication between sequential frames. In general, inter tools are classified into 
two groups, based on whether motion information is shared across an entire block or not. 
For example, history based motion vector prediction (HMVP) [51], merge with motion 
vector difference (MMVD) [25], symmetric motion vector difference (SMVD) [8], adap‑
tive motion vector resolution (AMVR) [10], geometric partitioning mode (GPM) [17], 
bi-prediction with CU-level weights (BCW) [39], and combined intra and inter prediction 
(CIIP) [12] are whole block based inter prediction tools. On the other hand, affine motion 
(Affine) [32], sub-block based temporal motion vector prediction (SbTMVP) [9], decoder-
side motion vector refinement (DMVR) [38], bi-directional optical flow (BDOF) [2], and 
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prediction refinement with optical flow (PROF) [18] are sub-block based tools. These tools 
improve motion vectors or refine predicted values to improve the prediction accuracy. 
Based on their comparison, VVC finds the best inter prediction.

For efficient transform and quantization of block residuals, multiple transform selection 
(MTS) [14], sub-block transform (SBT) [52], non-separable secondary transform (LFNST) 
[28], and dependent quantization (DQ) [37] were introduced in VVC. As new filters for 
in-loop filtering [26], an adaptive loop filter (ALF) and luma mapping with chroma scaling 
(LMCS) are used with conventional filters, such as a deblocking filter (DBK) and a sample 
adaptive offset (SAO).

All of these coding tools in the inter and intra prediction, transform, quantization, and 
in-loop filtering contribute the high coding performance through extensive encoding pro‑
cesses using an optimal rate-distortion (RD) based tool evaluation. It was reported that 
VVC improves the coding performance by about 25% and 36% in all intra (AI) and random 
access (RA) configurations on average, respectively, compared to HEVC [11]. However, 
the coding performance was evaluated with traditional images. It is possible that some 
tools are not efficient in the feature coding. Even though MPEG plans to use VVC for the 
feature coding [24], an impact of each VVC tool on VCM has never been thoroughly inves‑
tigated. Hence, in this paper, the VVC tools are mainly analyzed for the VCM feature cod‑
ing, in terms of the coding performance and encoding complexity.

3 � Performance analysis of VVC

In this section, the VVC coding tools are analyzed for the feature coding. Based on the 
analysis, we propose the optimized tool combination from the perspective of the VCM 
effectiveness. For the tests, we used Microsoft Research Video Description Corpus 
(MSVD) [7], which consists of 1,970 YouTube short video clips. Features of each video 
frame were extracted with Inception-v4 [40]. The 1D feature vectors were converted into 
the 2D feature maps, and then compressed with a reference software VTM12.0 [45]. All 
coding parameters follow common test conditions (CTC) [4], which were employed for the 
standardization of VVC. Quantization parameters (QPs) of 22, 27, 32, and 37 were used 
to measure the overall coding performance in a high bitrate condition, and QPs of 27, 32, 
37, and 42 were employed in a low bitrate condition. Coding performance and encoding 
complexity were measured with Bjøntegaard delta bitrates (BDBR) [5] and encoding time 
saving (ETS) in percentage, respectively. ETS is calculated as follow,

where ET(O) and ET(T) indicate the encoding times when using the original tools and 
the tested tools, respectively. Some tools, such as PDPC and HMVP, could not be tested, 
because they are not separately controlled in the tool configuration. In addition, CCLM that 
enhances the prediction of chroma components was not analyzed, because there are only 
luma components in the feature maps.

3.1 � Intra tools

Tables 1 and 2 show the intra coding performance in AI and RA, respectively. In the tables, 
on and off mean tool on and off on top of the reference setting, respectively, to evaluate 

(1)ETS =
ET(T) − ET(O)

ET(O)
× 100
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each coding tool [4]. In the CTC tool configuration [4], ISP, MRL, and MIP are only 
turned on. For example, ISP shows the meaningless performance, when it is turned off in 
both AI and RA. It divides CU vertically or horizontally into several sub-partitions, based 
on a block size. It works very well for traditional images, but sub-divisions on the feature 
map are inefficient, because of a low spatial correlation between neighboring feature val‑
ues. MRL shows the performance of 0.94% and 1.01% at the high and low bitrate condi‑
tions in AI and 0.34% and 0.44% in RA, respectively. MRL uses multiple reference lines 
in the prediction. Its extended lines offer the more accurate prediction in the feature cod‑
ing. MIP obtains the performance of 0.40% and 0.48% in AI and 0.06% and 0.13% in RA, 
respectively. Based on the linear interpolation method, it performs the prediction by using 
values interpolated between neighboring pixels. We also tested intra block copy (IBC) and 
block differential pulse code modulation (BDPCM) [46], which are screen content coding 
(SCC) tools of VVC, by turning on their corresponding options in the tool configuration. 
As illustrated in the tables, they give a small impact on the feature coding. Hence, the 
proposed tool combination only includes MRL and MIP providing the noteworthy coding 
performance, but the others are disabled to reduce the encoding complexity.

3.2 � Inter tools

Table  3 shows the coding performance of the inter tools in RA, when each tool is dis‑
abled. As observed in Table  3, the performance shows -0.46% and -0.84% for MMVD, 
0.05% and 0.06% for SMVD, 0.02% and 0.02% for AMVR, -0.01% and 0.00% for GPM, 
0.79% and 0.61% for BCW, 0.96% and 0.81% for CIIP, -0.42% and -0.83% for Affine, 
0.01% and 0.01% for SbTMVP, -0.41% and -0.85% for BDOF, -0.38% and -0.80% for 
PROF, and -0.38% and -0.79% for DMVR at the high and low bitrate conditions on aver‑
age, respectively. Unfortunately, the inter tools do not provide the attractive performance 

Table 1   Performance and 
complexity of intra tools in AI

Tools On/Off High Low

BDBR ETS BDBR ETS

ISP Off -0.02 -11.20 -0.03 -10.41
MRL Off 0.94 1.92 1.01 0.37
MIP Off 0.40 -14.74 0.48 -13.78
IBC On -0.01 9.85 -0.01 6.49
BDPCM On -0.09 2.92 -0.08 1.36

Table 2   Performance and 
complexity of intra tools in RA

Tools On/Off High Low

BDBR ETS BDBR ETS

ISP Off 0.01 -5.96 0.02 -6.19
MRL Off 0.34 -0.89 0.44 -0.87
MIP Off 0.06 -7.91 0.13 -7.30
IBC On 0.03 1.65 0.07 -0.24
BDPCM On -0.04 -1.98 -0.05 -2.95
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for the feature coding, except for BCW and CCIP. Most of the tools were developed to 
find an accurate motion vector between frames. MMVD, AMVR, and GPM improve the 
accuracy of the motion vector at the entire CU level. Affine, SbTMVP, BDOF, PROF, and 
DMVR improve at the sub-block level. However, as illustrated in Fig. 1, since a temporal 
correlation between feature maps is very low, the tools improving the accuracy become 
inefficient. Interestingly, BCW and CIIP perform well. BCW uses weighted averaging with 
preset weighted values for the bi-prediction, and CIIP combines the inter and intra pre‑
diction. It means that the tools refining the predicted values is relatively efficient for the 
feature coding, rather than those improving the motion vector. Therefore, the proposed tool 
combination only includes BCW and CIIP, but the others are disabled to reduce the encod‑
ing complexity.

3.3 � Other tools

Tables 4 and 5 show the coding performance of the transform, quantization and in-loop 
filtering tools in AI and RA, respectively. In the tables, MTS, SBT, and LFNST show the 
negligible loss, but TS gives a very high impact on the feature coding. For example, it 

Table 3   Performance and 
complexity of inter tools in RA

Tools On/Off High Low

BDBR ETS BDBR ETS

MMVD Off -0.46 -5.88 -0.84 -4.68
SMVD Off 0.05 -2.70 0.06 -2.54
AMVR Off 0.02 -1.68 0.02 -1.66
GPM Off -0.01 -6.09 0.00 -5.47
BCW Off 0.79 0.54 0.61 0.74
CIIP Off 0.96 0.96 0.81 1.12
Affine Off -0.42 -1.92 -0.83 -0.94
SbTMVP Off 0.01 2.75 0.01 1.86
BDOF Off -0.41 -1.63 -0.85 -1.29
PROF Off -0.38 -0.74 -0.80 -1.72
DMVR Off -0.38 0.05 -0.79 -0.47

Table 4   Performance and 
complexity of other tools in AI

Tools On/Off High Low

BDBR ETS BDBR ETS

MTS Off 0.00 -14.17 -0.04 -9.62
LFNST Off -0.01 2.19 0.09 0.36
TS Off 5.69 -5.52 10.45 -0.63
DQ Off 1.44 -16.85 0.96 -15.72
DBK Off 0.02 -3.04 -0.16 -6.53
SAO Off 0.21 -0.08 0.16 -0.92
ALF Off 0.00 -31.62 0.00 -44.83
LMCS Off -2.98 -2.42 -5.06 -2.85
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shows the performance of 0.00% and -0.04% at the high and low bitrate conditions in AI 
and -0.01% and -0.01% in RA for MTS, -0.09% and -0.06% in RA for SBT, -0.01% and 
0.09% in AI and 0.00% and 0.01% in RA for LFNST, and 5.69% and 10.45% in AI and 
4.01% and 4.03% in RA for TS on average, respectively. The transform coding normally 
redistributes energy by converting block values into a frequency domain. However, since 
feature values are randomly distributed, energy compaction is ineffective, even when dif‑
ferent conversion kernels are applied. Hence, the tools that skip the transform are much 
more efficient than the advanced transform tools. Based on this observation, the proposed 
tool combination only includes TS.

DQ is the tool allowing the adaptive quantization by switching between two scalar 
quantizers with a pre-determined state machine. It provides the high performance of 1.44% 
and 0.96% at the high and low bitrate conditions in AI and 1.29% and 0.88% at the high 
and low bitrate conditions in RA on average, respectively. Hence, DQ is included in the 
proposed tool combination.

Some in-loop filtering tools affect the coding performance a lot, when the tool is disa‑
bled. For example, it shows the performance of 0.02% and -0.16% at the high and low 
bitrate conditions in AI and -0.13% and -0.29% in RA for DBK, 0.21% and 0.16% in AI 
and 0.03% and -0.64% in RA for SAO, 0.00% and 0.00% in AI and -0.39% and -0.82% in 
RA for ALF, and -2.98% and -5.06% in AI and -0.39% and -1.11% in RA for LMCS. DBK, 
SAO, and ALF, which were developed to reduce artifacts and minimize reconstruction 
error, are not suitable for the feature maps containing random textures. LMCS improves 
the coding performance by changing input pixel values, based on preset tables and linear 
mapping. However, since the linear mapping is optimized on traditional images, the signifi‑
cantly high coding loss is observed in the feature coding. Hence, all of the in-loop filtering 
tools are not recommended in the proposed tool combination, in terms of the coding per‑
formance and the encoding complexity.

4 � Evaluations

We applied the proposed VVC tool combination in VCM into the video captioning. In the 
tests, MSVD [7] was used. This dataset consists of 1,200 training clips, 100 validation 
clips, and 670 testing clips. Each video clip has about 40 English sentences for a single 

Table 5   Performance and 
complexity of other tools in RA

Tools On/Off High Low

BDBR ETS BDBR ETS

MTS Off -0.01 -11.48 -0.01 -8.81
SBT Off -0.09 -4.95 -0.06 -4.82
LFNST Off 0.00 -9.60 0.01 -7.47
TS Off 4.01 -13.37 4.03 -11.32
DQ Off 1.29 -10.10 0.88 -7.79
DBK Off -0.13 -1.01 -0.29 -1.71
SAO Off 0.03 -1.16 -0.64 -1.54
ALF Off -0.39 -27.05 -0.82 -45.10
LMCS Off -0.39 2.16 -1.11 2.12
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activity. First, features of all frames were extracted from Inception-v4 [40]. Second, each 
feature vectors were converted into the 2D feature maps. Third, they were compressed with 
the proposed VVC tool combination. Next, they were decompressed and inversely con‑
verted into the feature vectors. Finally, the video captioning was performed with the recon‑
structed features. Figure 2 shows an overall architecture. For the video captioning, we used 
S2VT [42], which was designed with the combination of one CNN and two LSTM layers, 
as shown in Fig. 3. In our tests, the CNN features were compressed with VVC, and then the 
decompressed features were used in the first LSTM.

Table 6 shows the coding performance of the proposed tool combination in AI and RA. 
Based on the exhaustive tests, the proposed tool combination only includes MRL, MIP, 
CIIP, BCW, TS, and DQ. The other tools are disabled. As illustrated in Table 6, although 
many tools are disabled, the coding improvement is obtained. For example, the proposed 
tool combination has the coding gain of 2.71% and 5.26% at the high and low bitrate con‑
ditions in AI and 0.82% and 2.09% at the high and low bitrate conditions in RA on aver‑
age, respectively. Because most of the VVC coding tools were mainly developed for tradi‑
tional images, they have not been optimized in the feature coding. However, if VVC can 
select the efficient tools without any normative change, the VCM standard can be easily 
and early realized. In addition, the encoding complexity can be reduced by 63.30% and 

Fig. 2   Overall architecture for the evaluation of the VCM feature coding

Fig. 3   S2VT video captioning network



42811Multimedia Tools and Applications (2023) 82:42803–42816	

1 3

69.70% at the high and low bitrate conditions in AI and 68.31% and 77.11% in RA on aver‑
age, respectively. Since machines are required to operate the video data with real time in 
intelligent platforms, the excessively high encoding complexity should be avoided. In this 
aspect, the proposed tool combination contributes to the complexity reduction for real-time 
processing.

Figures 4 and 5 show a rate-performance (RP) curve, when the feature coding is per‑
formed at QPs of 22, 27, 32, 37, and 42 in AI and RA, respectively. The x-axis and y-axis 
indicate coding bitrate and captioning accuracy, respectively. The accuracy was calculated 
with four different evaluation matrices, such as BLEU4 [36], METEOR [16], ROUGE-L 
[33], and CIDEr [44]. These matrices measure similarity between the original and pre‑
dicted sentences in percentage. Here, the original sentence means the ground truth and the 
predicted sentence represents a sentence generated from the S2VT network, respectively. 
As depicted in Figs. 4 and 5, the RP curves of the methods using the original tools and 

Table 6   Performance and 
complexity of the proposed tool 
combination in AI and RA

Setting Condition BDBR ETS

AI High -2.71 -63.30
Low -5.26 -69.70

RA High -0.82 -68.31
Low -2.09 -77.11

Fig. 4   RP curves of the proposed tool combination in AI, when the captioning matrices are (a) BLEU4, (b) 
METEOR, (c) ROUGE-L, and (d) CIDEr, respectively
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the proposed tools are very similar for all the matrices. For example, at the same bitrate, 
a difference between their captioning accuracies is less than 3%. It indicates that the pro‑
posed tools are well-selected. It should be noted that the captioning accuracy is signifi‑
cantly reduced at the low bitrate condition, compared with the high bitrate condition. Since 
the very low QP, such as 42, usually degrades the reconstruction quality a lot, it affects the 
quality of the CNN features. Figure 6 illustrates examples of the original sentence and the 
sentences predicted from the features compressed with the five different QPs in AI and 
RA, respectively. As QP increases, the accuracy of the predicted sentence becomes very 
low. In order to solve this problem without any normative change in VVC, post-filtering 
techniques that can improve the quality of reconstructed features should be further studied.

Finally, we compared an essential video coding standard (EVC) [13], which is one of 
the recent video coding standards, with VVC. Since many EVC coding tools are similar 
to the VVC coding tools, we tested the video captioning with the frames reconstructed by 
the combination sets of the original VVC tools, the original EVC tools, and the proposed 
VVC tools, respectively. Tables  7 shows the captioning scores, when the feature coding 
was compressed at a target bitrate of 8 kbps in RA. As shown in Table 7, the proposed 
VVC tool combination provides the very competitive performance, compared with the full 
combination sets of the original VVC and EVC tools. Since the performance of the vision 
tasks, such as object detection and tracking, segmentation, and video captioning, usually 
depends on the quality of input images or videos, the result demonstrates that the selected 

Fig. 5   RP curves of the proposed tool combination in RA, when the captioning matrices are (a) BLEU4, 
(b) METEOR, (c) ROUGE-L, and (d) CIDEr, respectively
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VVC tools offering the relatively high coding performance, such as MRL, MIP, CIIP, 
BCW, TS, and DQ, are sufficient to maintain the accuracy of the video captioning.

5 � Conclusion

In this paper, we thoroughly analyzed the VVC coding tools for the feature coding in the 
VCM standard. Since the VVC tools were mainly developed for traditional 2D images, 
the analysis was performed on the 2D feature maps, which are converted from the 1D fea‑
ture vectors. Based on the exhaustive tests, the efficient tool combination that considers 
not only the coding performance but also the encoding complexity were proposed and the 
reasons why some coding tools provide the coding gain or loss for the feature coding were 
discussed. In addition, the features compressed with VVC employing the proposed tools 
were applied into the video captioning. The experimental results demonstrate that the pro‑
posed VVC tool combination is very efficient in the VCM standard. In future work, we are 

Fig. 6   Examples of the original 
and predicted sentences, when 
QPs of 22, 27, 32, 37, and 42 
are used in (a) AI and (b) RA, 
respectively

Table 7   Captioning scores when 
the combination sets of the 
original VVC tools, the original 
EVC tools, and the proposed 
VVC tools are used for the 
feature coding, respectively

Combination BLEU4 METEOR ROUGE-L CIDEr

Original VVC 36.1% 28.6% 64.6% 55.1%
Original EVC 35.9% 28.6% 64.6% 54.2%
Proposed VVC 36.8% 28.7% 64.4% 56.3%
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planning to develop post-filtering techniques to improve the quality of the reconstructed 
features.
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