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Abstract
Shape reconstruction from 3D point clouds is one of the most important topic in the field of
computer graphics. In this paper, we propose a subdivision-based framework for this topic.
The framework includes two parts: distance field optimization and mesh generation. The
first part optimizes a point cloud into an approximately isotropic one based on a subdivision
structure. The second part is to generate a triangular mesh from the optimized point cloud.
The mesh is regarded as the result of shape reconstruction. The advantages of our method
includes accurate geometric consistency, improved mesh quality, controllable point number,
and fast speed. Experiments indicate that our method has good performance for shape recon-
struction (compare to the state-of-the-art, our method achieves five and six times improve-
ment in Hausdorff distance-based measurement and density estimation). The executable file
is available: (https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction.)

Keywords Shape reconstruction · Mesh reconstruction · Distance field optimisation

1 Introduction

Following the development of 3D scanning technology, 3D point clouds have been widely
used in different fields such as 3D object modeling and virtual reality, etc. Compared to 2D
image or video-based analysis framework [29, 30], Using 3D point clouds with complete
geometric features can support more accurate analysis tasks [6]. However, point clouds
cannot be used directly in such tasks since some geometric features should be extracted
from continuous surface, but not discrete points. Some applications require accurate surface
to represent real objects such as face recognition [19], skull reconstruction [31, 32], terrain
modeling [18, 28]. Therefore, point cloud-based shape reconstruction is proposed to solve
the problem.
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The target of the shape reconstruction is to rebuild a representation of simplicial complex
for the point cloud. It can be regarded as a continuous 3D surface, which is represented by a
3D triangular mesh in most cases. To achieve the mesh, connections of different points in a
point cloud should be determined. Based on the theory of moving least-squares (MLS) [1],
connections can be recovered by local regions defined by points with their neighbors. The
performance of the reconstruction depends on two issues: geometric consistency and accu-
racy of local regions. The geometric consistency means that the reconstructed mesh should
be consistent to the MLS surface of original point cloud. It guarantees the reconstructed
mesh can be used to represent the original point cloud. The accuracy of local regions deter-
mines the quality of the mesh structure. It is important for subsequent mesh-based feature
extraction and analysis.

For the first issue, some methods are proposed to implement the reconstruction from a
point cloud directly such as Delaunay triangulation [9], Ball pivoting [4], Scale space [13],
etc. These methods do not change point positions in reconstruction which keeps the consis-
tency between the reconstructed mesh and the original point cloud. However, the accuracy
of local regions can not be assured and promoted. In the view of mathematical model, the
quality of local regions can be represented by a distance field that is a collection constructed
by distances between all points and their neighbors. It reflects the uniform degree of a
point cloud. An optimized distance field means that distances between all points and their
neighbors are similar. The aforementioned methods do not optimize the distance field and
produces many low quality and error triangles which affect geometric feature extraction in
related applications.

A well-known solution is to resample a point cloud into an isotropic one based on Cen-
troidal Voronoi Tessellation (CVT) [8]. The positions of points are iteratively updated to
generate a global isotropic point cloud. When the update is completed, the global optimiza-
tion of distance field is achieved. Based on the optimized distance field, the accuracy of
local regions can be assured and the quality of the reconstructed mesh is improved. Consid-
ering the time cost of Voronoi cell estimation, some methods [22, 23] attempt to optimize
the distance field directly. However, the solution changes the original point cloud in local
tangent space excessively. Most of points are moved which break the geometric consistency
between the point cloud and the reconstructed mesh in a certain extent.

In this paper, we propose a subdivision-based framework for point cloud-based shape
reconstruction. As mentioned before, our framework is constructed by two parts: distance
field optimization and mesh generation. The distance field optimization is implemented by
a point cloud simplification scheme, which is simplify a point cloud into an approximate
isotropic one. It is formulated as a simple and efficient distance field optimization. The sim-
plification is processed in a subdivision structure which improves the efficient by parallel
computation. Most of points in the simplified point cloud are kept in their original positions.
Combining an up-sampling processing, the point number of simplification can be controlled
even without loss of number to the original one. For special geometric feature keeping such
as sharp edge, a flexible simplification is used as an optional function. In the part of mesh
generation, we reconstruct high quality meshes based on the proposed subdivision structure.
It provides the topological constraints by adjacent boxes. According to the constraints, a
mesh cropping is designed to remove error connections. Compared to the traditional meth-
ods, the accuracy of local regions is improved. In Fig. 1, we show some instances by our
method. In summary, our contributions are as follows.

• A subdivision-based framework is proposed for point cloud-based mesh reconstruction.
The framework balances the geometric consistency and accuracy of local regions while
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Fig. 1 Four instances of reconstruct meshes based on our method. The vertex numbers of all meshes are
equal (10,000)

keeping more geometric features in reconstructed mesh. It improves the practicality of
the reconstruction.

• An efficient distance optimization method is proposed, which is constructed by pre-
processing, simplification, and up-sampling. The method can be used to efficiently
optimize the distance field of a point cloud with a certain point number. It is robust to
the input point cloud with non-uniform density.

• Based on the topological constraints provided by the subdivision structure, a mesh crop-
ping process is provided to avoid error connections. It improves the accuracy of local
regions.

The rest of the paper is organized as follows. In Section 2, we introduce relevant classical
and state of the art works for point cloud-based shape reconstruction. In Section 3, we dis-
cuss the fundamental of our framework. In Section 4, we show the details of distance field
optimization based on the subdivision structure. In Section 5, we introduce the mesh gener-
ation with cropping. The experiments in Section 6 show the effectiveness and efficiency of
our method.

2 Related works

There have tremendous works for point cloud-based shape reconstruction during the past
two decades. In this paper, we focus on single 3D object shape reconstruction without data
driven support. Considering the relationship between the exits works and our method, we
select the most relevant parts of them to discuss, which are classified into three categories:
Approximation-based, Delaunay-based, and Point resampling-based.

Approximation-based methods attempt to rebuild a 2-manifold to fit point cloud. The
methods achieve the reconstruction by establishing an objective function, such as Poisson
Function [15, 24], Scale Space [11], Subdivision-based fitting [2, 12, 20], and spline-based
modeling [26]. Poisson function was a classical method for point cloud based meshing task.
The core idea was solving a Poisson equation to achieve an indicator function, which was
a piece-wise constant function and signed the different sides of the surface. Scale space
meshing provided a smoothing operator for the raw point clouds. According to estimate the
mean curvature and solve a mean curvature motion in point clouds, a smooth surface was
constructed [11]. In summary, such methods reconstruct smooth surface from a point cloud
and are robust to noise. However, the local shape features are broken in a certain degree and
the stability are not good (wrong estimation for normal vectors and incorrect approximate
region).

Delaunay-based framework is regarded as the mainstream technology in 3D triangular
meshing. It provides a simple and efficient point connect scheme for a point cloud without
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local surface approximation. There has a lot of works based on Delaunay triangulation and
its improved version. Ameta et al. [3] utilized the dual characteristics between Voronoi
Diagram and Delaunay triangulation to rebuild the surface. Cohen et al. [9] proposed a
greedy Delaunay triangulation to fix the local errors in the reconstruct mesh. Such methods
are restricted by the points’ positions in general. The quality of the reconstruct mesh is poor
when the points’ distribution of input point cloud is nonuniform.

Considering the drawback of the Delaunay-based methods, some works attempt to
resample the point cloud into an isotropic one. The distance field is optimized by the
resampling process. The quality of the reconstruct mesh is improved naturally based on
resampling point clouds. The representative method is Centroidal Voronoi Tessellation
(CVT) [8] based resampling. Based on the Lloyd’s relaxation, the Voronoi Diagram was
optimized in local tangent space. The advantages of such works include high quality of
the triangulation result and robust to different local points’ density. Based on the isotropic
remeshing, Lv et al. proposed a point cloud-based reconstruction method [22] to gener-
ate isotropic mesh. After that, he extended the framework to output curvature adaptive
result [23]. However, some local geometric features are lost during the optimization and
the geometric consistency is broken by the point movements. Our reconstruction method is
classified into this part and attempt to keep the geometric consistency and more features in
the reconstructed mesh.

3 Fundamental

The point cloud-based shape reconstruction task is to construct a representation of sim-
plicial complex to fit the discrete points. According to the two issues for reconstruction,
we propose the related mathematical models. For geometric consistency, the mathematical
representation of the consistent can be represented by

Econ = H(M, P ), (1)

where Econ is the quantified energy of geometric consistency between reconstructed mesh
M and original point cloud P . It is computed by the measurementH which can be computed
by the Hausdorff distance [5]. In the reconstruction, the Econ should be reduced as much as
possible.

It has been discussed that the point-based distance field is used to represent local regions.
By optimizing the field, local regions of different points can be accurately detected. An
ideal distance field means different points share same distance to their neighbor points. It is
called isotropic property. In (2), the quantification of isotropic property is formulated as

Eiso =
∑

pi

∑

pj

∥∥b(pi, pj ) − b
∥∥, pi, pj ∈ P, (2)

where Eiso is the distance field energy for isotropic property measurement. P is the point
cloud, pi and pj are points in P . The point pj is the neighbor point for pi . The parameter
b is the distance of two neighbor points and b is the average border distance of all border
distance b in P . If we want to build the correct connections between different points in a
point cloud, the border distance b and the relationship between points and their neighbors
should be optimized. Then, the shape reconstruction task can be transferred into the distance
field optimization with geometric consistency.

Based on the aforementioned knowledge, we design a simple and efficient framework to
optimize the distance field for shape reconstruction while keeping geometric consistency.
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The pipeline of our method is shown in Fig. 2. The framework is based on a subdivision
structure which is similar to voxelization. Points are divided into different voxel boxes.
The distances between the points are optimized in the voxel boxes independently. The opti-
mized point cloud is the combination from the point sets in different voxel boxes. We also
provide the mesh generation method to reconstruct the triangular mesh from the optimized
point cloud. With a mesh cropping, the accuracy of the reconstructed mesh can be further
improved. In following parts, we discuss details of the implementation of our framework.

4 Distance field optimization

As the first part of our framework, the distance field optimization is to optimize Eiso of (2).
Considering the drawback of resampling [8], we do not want to change many point locations
in optimization. The core thought of our method is concise and efficient: we remove some
points to adjust the distribution of the point cloud, then the Eiso can be optimized and
most of reserved points are kept in their original locations. Therefore, our distance field
optimization can be regarded as a kind of simplification. Following the core thought, we
design the implementation of the distance field optimization.

Before the formal introduction of the implementation, we provide a pre-processing step
for input point clouds. In general, a point cloud scanned from laser scanner or other equip-
ment may take some noise and redundant points. Such influence factors affect the efficient
in simplification. Therefore, the pre-processing is necessary to reduce the influence of the
factors. In our method, the pre-processing includes two functions: denoising and initial
simplification. For denoising, we utilize PointCleanNet [27] in pre-processing. For initial
simplification, we apply Poisson-disk resampling [10] which can be used to reduce the den-
sity of point cloud and uniform the point distribution. The initial simplification also provide
a searching radius to control the edge connection in shape reconstruction. In the next section,
the radius is used in mesh cropping to improve the quality of reconstructed result.

After pre-processing, we introduce the implementation of our distance field optimization.
To adjust the distribution of the point cloud, we utilize the simplification in the subdivision
structure. A same implementation is explained in [21]. It divides points into different voxel
boxes according to certain rate. In (3), we provide the mathematical model as

Psim =
∑

v∈V

{p|p ∈ Pv, Pv ∈ P }, (3)

where P is the input point cloud after pre-processing, Pv is a point set of P in a voxel box v,
V represents the collection of all voxel boxes. The simplification result Psim is constructed
by simplified results in different voxel boxes while reducing the energy in (2). Once points

Specify point number

Input point cloud

Distance field op�miza�on Mesh genera�on

Output  mesh

Pre-processing Simplifica�on

Triangula�on
Upsampling

Cropping

Fig. 2 The pipeline of our method
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of P are divided into different voxel boxes, the simplification result can be achieved from
parallel simplification in boxes independently. The scale of voxel box in the structure has an
obviously influence for simplification. If the scale is too small, the candidate points in single
voxel box cannot support simplification. It produces false discontinuities in local region.
In contrast, the large scale of voxel box reduces the performance of parallel simplification
and the topological constraints are lost. In practise, we provide a default value based on
experience, which is shown as

Lscale = Lmax[
3
√|P |/8] , (4)

where Lscale is the scale, Lmax is the longest length of three axes of P , |P | is the point
number.

Based on the subdivision structure, we use the farthest point sampling (FPS) [25] to sim-
plify point cloud directly. The FPS is processed in different voxel boxes independently. The
start point in each voxel box is selected from the point which has the closest distance to the
center of the box. The simplification point number is computed by the simplify ratio com-
puted by the original point number and simplification point number specified by user. The
points in each voxel box are simplified by equal ratio. Combining the reserved points from
different voxel boxes, the final simplification result is obtained. If the point number of sim-
plification is not equal to user specified one, we just add or reduce some points in different
boxes following the FPS order. Finally, the accurate simplification result is achieved and it
is an approximate isotropic one. In Fig. 3, we show an instance of simplification.

The FPS achieves the simplification points in different voxel boxes independently. In
each voxel box, the distance field of the point subset is optimized. However, the distances
between points in borders of adjacent voxel boxes are not adjusted. To solve the problem, we
divide the parallel computation for simplification into different rounds. The adjacent voxel
boxes are not simplified in same round. In addition, the simplification points of neighbor
boxes should be included by FPS for the processing voxel box. In Fig. 4, we show an
instance to explain the scheme. The parallel computation is divided into eight rounds which
guarantees the global uniform property of simplification. The order of eight rounds for
boxes selection is shown in Fig. 4.

As mentioned before, the implementation of the distance field optimization is based on the
simplification. A prerequisite is that the point number of reconstructed mesh should be sig-
nificantly less than the original point cloud, which ensures the simplification has enough
candidate points to simplify. Obviously, it reduces the practicality of the method. Once the
point number should be kept after reconstruction, the requirement cannot be satisfied by the
current implementation. To solve the problem, we add a up-resampling process to increase
density of point cloud before simplification. We search a local region represented by Voronoi

A B C D

Fig. 3 An instance of simplification for distance field optimization. A: input point cloud; B: subdivision
structure; C parallel simplification in adjacent voxel boxes (red points represent original points in point cloud,
gray points are redundant points removed by FPS); D: simplification result
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Round 1 Round 2 Round 3 Round 4

Round 5 Round 6 Round 7 Round 8

Fig. 4 Parallel simplification scheme. The yellow boxes are arraigned into a same round for parallel sim-
plification. The order of boxes selection in eight rounds. The adjacent boxes are not simplified in a same
round

cell for each point and insert new points proportionally. By default, we insert three points
into each border of Voronoi cell and one point into each related edge of a triangle. The inter-
polation add new points as a arithmetic sequence into each intersection area between the
triangle area and the Voronoi cell. The new points are mapped into the MLS surface of the
point cloud for geometric consistency keeping. Based on the interpolation, the density of
point cloud can be increased according to the Voronoi cells and the process can be imple-
mented parallel. Even there have some repeat points inserted into the adjacent area of cells,
the simplification can ignore them to obtain final result. An instance is shown in Fig. 5.

To keep some import geometric features, we use the flexible simplification [21] in the
implementation. The basic idea is to simplify points with different rates to enhance the cer-
tain feature. For instance, if we want to keep and reconstruct sharp edges from a point cloud,
we detect edge points at first. Then, we simplify edge points with a higher rate in simplifica-
tion and remove more normal points. The sharp features are enhanced in the simplification
which can be inherited into the mesh generation. However, such enhancement should be
controlled in a certain degree; otherwise, the Eiso is increased in the regions with sharp
edges. A suitable ratio for simplification (8:2) is recommended for balance. The formulation
of the flexible simplification is represented as

{ |Pn|Rn + |Pe|Re = |Ps |
Rn/Re = 2/8

(5)

where |Pn| and |Pe| are the point numbers of normal and edge point set, Rn and Re are
simplification rate for |Pn| and |Pe|. |Ps | is the simplification point number specified by user.
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Fig. 5 Two instances of up-sampling and mesh cropping. First row: the new points (green) are inserted into
the point cloud according to the Voronoi cell; second row: the gray area means there have no reserved points
in the voxel boxes. The triangle passing through the gray area should be deleted

According to the (5), we can obtain the simplification result with sharp feature keeping. An
instance is shown in Fig. 6.

5 Mesh generation

After the distance field optimization, an approximately isotropic point cloud is obtained
from the original one. Based on the point cloud, we provide mesh generation as a second
part in our framework. Benefited from the distance field optimization, the local regions can
be accurately detected. We utilize a greedy Delaunay triangulation [9] to detect accurate
local regions and generate mesh as the shape reconstruction result, which has been realized
in CGAL library. The mesh generation inherits the advantage of Delaunay triangulation for
geometric consistency. It achieves the balance between Econ and Eiso.

Even the generated mesh from the approximately isotropic point cloud has a higher qual-
ity, the incorrect connections between points are inevitable. The reason is that the greedy
Delaunay triangulation does not consider the topological constraints of the original point
cloud. The topological constraints in original point cloud are kept in the subdivision struc-
ture. The adjacent voxel boxes represent the constraints in the structure. Suppose that a
triangle in generated mesh is crossing the region without reserved points, which means that
the triangle has incorrect connections. In Fig. 5, an instance shows the situation. According
to the constraints in the subdivision structure, we provide a mesh cropping processing to
remove error connections.
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Fig. 6 An instance of flexible simplification for sharp edge keeping. The edges are enhanced in the
simplification

The cropping process is used to delete triangles with incorrect connections. A correct
triangle of the mesh should follow the adjacent limitation between voxel boxes in the subdi-
vision structure. If the voxel boxes or the local regions have no reserved points of simplifica-
tion, we call them “gray region” (Fig. 5). A triangle is passing the gray region means that the
edge is crossing the discontinuous area. The triangles should be deleted. The mesh cropping
is based on the rule to delete such triangles. As mentioned before, the initial simplification
in pre-processing computes a searching radius. It can be used to control the edge connec-
tion. Once an edge of a triangle is longer than the radius, the cropping is also triggered.
After cropping, error edges are deleted which improve the quality of reconstructed mesh.

6 Experiments

We show the performance of our method in this section. The experimental point clouds
are selected from Stanford [16] and SHREC [7] models. The experimental platform is con-
structed by Visual Studio 2019 in windows 10 system (X64). The hardware configuration
is constructed by a laptop machine, Intel i7 9750H 2.6GHz, 16G RAM, and GeForce GTX
1660Ti. The datasets are constructed from Stanford and SHREC models. Our program can
be downloaded from https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction.
Using the “.exe” file, users can construct triangular meshes from point clouds directly. The
program supports different kinds of data format, including .off, .obj, and .ply. The input
parameters include file path and specified point number. The section contains three parts:
firstly, we evaluate the accuracy of geometric consistency of different reconstruction meth-
ods; secondly, we measure the quality of reconstructed meshes by the methods; finally, we
provide a comprehensive analysis for the methods.

6.1 Evaluation of geometric consistency

The accuracy of geometric consistency can be represented by the Hausdorff distance men-
tioned in (1). In order to evaluate the influence of triangle with error edges, we sample
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some points from triangles in the reconstructed mesh and add them into the computation of
Hausdorff distance. Even the points are not moved in some methods, the Hausdorff distance
is increased by the sampled points from error triangles. We compare the distances of dif-
ferent reconstruction methods, including Ball pivoting [4], Scale Space reconstruction [11],
Screen Poisson [15], Advancing Delaunay reconstruction [9, 17], CVT-based reconstruc-
tion [8], Neural-Pull [24] and our method. Some methods cannot control the point in the
reconstruction, including Ball pivoting, Scale Space, and Advancing Delaunay. We use
resampling method [14] implemented by CGAL library to sample the original point cloud
with same point number for fair. In Fig. 7, the results are shown from Stanford models. We
also test the reconstruction without change of point number. In Fig. 8, reconstructed meshes
by different methods are shown from SHREC models. It can be used to explain the function
of up-sampling in our framework. In Table 1, we show the Hausdorff distances of different
methods. Our method achieves better geometric consistency in the reconstruction.

6.2 Evaluation of mesh quality

To measure the quality of reconstructed meshes, the average value of minimum inner angles
which reflects the isotropic property is used. The minimum inner angle means the smallest
angle in a triangle. The average value of the angles represents the quality of the triangles in
the reconstructed mesh. We generate color maps for the visualization of angles. In Fig. 9, we
show the color maps. We also provide the density parameter Dr computed by the average
distances between all points and their k-neighbors to represent the quality of distance field

Ball Pi Scale Space Advancing 
Delaunay Screen Poisson Centroidal Voronoi OursNeural-PULL

Fig. 7 Comparisons of reconstructed meshes from Stanford models by different methods
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Ball Pivo�ng Scale Space Advancing 
Delaunay Screen Poisson Centroidal Voronoi 

Tessella�ons OursNeural-PULL

Fig. 8 Comparisons of reconstructed meshes from SHREC models by different methods. With the up-
sampling, our method does not reduce point number in final result

of reconstructed mesh. The computation is shown as:

Dr = Max{A(M)} − Min{A(M)}, (6)

where A represents the average distances set of the mesh M , and the average distance is
computed between a point and its adjacent points according to the mesh. We select the
maximum and minimum values from A(M) and compute the difference. Then, the Dr rep-
resents the degree of uniform density in the reconstructed meshes. In Table 2, we compare
the global average value of minimum inner angles and density parameters in reconstructed
meshed by different methods. Our method achieves similar performance with CVT-based
method according to the angle values. The uniform density of our reconstructed mesh is
better than others, which is benefited from the distance field optimization.

We have discussed that the flexible simplification is used to enhance sharp edges with
distance field optimization. With the enhanced simplification result, the sharp edges can be
kept in the reconstructed mesh. We compare the reconstructed results with sharp edges by
different methods in Fig. 10. The results show that our method retains the sharp edges with
fewer discontinuities and smoothness.

6.3 Comprehensive analysis

Combined with previous experiments, we provide a comprehensive analysis for facilitate
understanding of the advantages of our method. For geometric consistency, our method
achieves better result which is benefited from the distance field optimization in our frame-
work. The simplification for the optimization dose not change the positions of most point.
On the contrary, the Screen Poisson, Ball pivoting and CVT-based methods move points
in the reconstructed mesh which reduce the accuracy of geometric consistency. For mesh
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Table 1 Comparisons of Hausdorff distances by different methods. The models (Child to WoodMan) are
reconstructed without change of point number, the up-sampling is used in our method; other models are
resampled into 10,000 or 20,000 (Dragon) points in the reconstruction

Models Ball ScaleSpace Advancing Screen CVT Neural- Ours

methods pivoting Delaunay Poisson Pull

Child 0.02019 0.03034 0.03265 0.03639 0.20681 0.09721 0.01941

Deer 0.01836 0.02396 0.02656 0.03494 0.18631 0.08623 0.01625

Dog 0.02098 0.02804 0.02591 0.03245 0.13151 0.04782 0.01151

Elephant 0.02008 0.02504 0.02772 0.03715 0.23331 0.05762 0.02639

Girl 0.02863 0.03795 0.02461 0.02599 0.10562 0.07861 0.02653

Orangutan 0.02177 0.04112 0.03898 0.04472 0.07475 0.09533 0.02009

Weedle 0.02098 0.03921 0.03141 0.03572 0.03888 0.08719 0.03544

WoodMan 0.01721 0.02299 0.02156 0.02407 0.03366 0.04792 0.01505

Angle 0.00241 0.00314 0.00569 0.00631 0.00544 0.00407 0.00259

Armadillo 0.00287 0.00506 0.00433 0.00489 0.00564 0.00751 0.00236

Bunny 0.00313 0.00546 0.00939 0.00837 0.00822 0.00891 0.00253

Dragon 0.00278 0.00329 0.00418 0.00546 0.00769 0.00467 0.00281

Hourse 0.00285 0.00331 0.00458 0.00328 0.00486 0.00672 0.00269

The bold emphasis means that the quantitative results of our method are better than other solutions according
to the geometric consistency

quality estimation, the CVT-based method achieves better performance for inner angle opti-
mization. However, the time cost of the optimization in Voronoi diagram is huge and the
edges are crashed in the regions of sharp features in a high probability (instance shown in
Fig. 10). Without distance field optimization, the error connections between different points
can not be avoided in the reconstructed mesh, which influences the performance of methods,
including Ball pivoting, Scale space, and Advancing Delaunay.

For time cost report, we compare the different methods in Tables 3 and 4. In SHREC
models, the up-sampling is used to keep the point number in our method which increases

Ball Pivo�ng Scale Space Advancing 
Delaunay

Screen 
Poisson

Centroidal Voronoi 
Tessella�ons Ours

30°

50°

Neural-PULL

Fig. 9 Color maps for average values of inner angles by different method
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Fig. 10 Comparisons of reconstructed meshes with sharp edges by different methods

the time cost. However, our method still achieves better performance than the CVT-based
method. For Stanford models, the point cloud with different point number are reported sep-
arately. The point number is specified to 10,000 in the reconstruction. It is clear that the
time cost of our method is reduced. Even the time cost of resampling and simplification
is not considered, our method is still fast than Advancing Delaunay with same triangula-
tion strategy. It means that the optimized point cloud improved the reconstruction process.
The Screen Poisson achieves fastest speed in the reconstruction. However, it requires the
computation of normal vectors. The point number is controlled in a rough range which lim-
its the scope in related applications. The Neural-PULL uses similar reconnection strategy
with Screen Poisson while considering prior data-based experience. It can reconstruct more
accurate geometric details. However, the processing requires more iterations that reduce
efficiency.

Although there have many advantages of our method, some limitations still exist. The
simplification in our framework achieves an approximate isotropic result from the input
point cloud. It is not a strict isotropic one. The quality of the reconstructed mesh from our
optimized point cloud is worse than CVT-based method (some results are shown in Table 2).
For geometric consistency, the up-sampling process adds some new points into the point
cloud which reduce the accuracy. In Table 1, the Hausdorff distances of our method in
some models are worse than the results of Ball pivoting. Nonetheless, our method still has
excellent utility in practice. It is a balance strategy for quality and speed, while keeping the
geometric feature as much as possible.

7 Conclusions

We have proposed a Subdivision-based framework for point cloud-based shape reconstruc-
tion. The method includes distance field optimization and mesh generation. For distance

Table 3 Comparisons of average time cost for SHREC models by different methods. For Screen Poisson,
the time cost of normal detection is added (green); for our method, the time cost of simplification with
up-sampling is added (red)

Methods Ball ScaleSpace Advancing Screen CVT Neural-Pull Ours

pivoting Delaunay Poisson

Time 11.54 s 23.48 s 9.19 s + 2.69 s 591.31 s 1103.21 s + 8.46 s

65786



Multimedia Tools and Applications (2024) 83:65773–65788

Table 4 Comparisons of average time cost for Stanford models by different methods. For Ball Pivoting,
ScaleSpace and Advancing Delaunay, the time cost of resampling is also reported (blue); for Screen Poisson,
the the time cost of normal detection is added (green); for our method, the time cost of simplification is added
(red)

Methods Ball ScaleSpace Advancing Screen CVT Neural- Ours

pivoting lluPnossioPyanualeD

50,000 62.35 s 15.89 s 62.35 s 24.27 s 62.35 s 8.78 s 1.11 s 1.26 s 623.56 s 1081.12 s 4.56 s 7.56 s

100,000 346.15 s 17.35 s 346.15 s 24.88 s 346.15 s 8.86 s 5.38 s 3.56 s 756.26 s 1089.22 s 5.12 s 7.81 s

200,000 455.72 s 19.22 s 455.72 s 24.52 s 455.72 s 8.96 s 7.19 s 3.98 s 636.15 s 1091.23 s 5.36 s 8.54 s

500,000 1382.35 s 78.28 s 1382.35 s 48.34 s 1382.35 s 20.28 s 12.78 s 4.26 s 865.36 s 1109.35 s 12.56 s 22.15 s

field optimization, the subdivision structure is established to divides a point cloud into dif-
ferent voxel boxes, while keeps the topological constraints by adjacent voxel boxes. Based
on the structure, the simplification scheme is implemented to optimize the point cloud. The
sparse and nonuniform point clouds can be processed by up-sampling before simplification.
The sharp features can be enhanced by the flexible simplification. The mesh generation
establishes the mesh based on the optimized point cloud. With the mesh cropping, the accu-
racy of the reconstruction is improved. The experimental data show that our method is better
than classical methods for the balance between geometric consistency and accuracy of local
regions. The point number is controlled and sharp edges can be rebuild in the final result.

In future works, we will improve the quality of isotropic density in distance field opti-
mization. The triangulation also should be enhanced to fit more strict manifold property
while keeping the sharp edges and regions with significant curvature changes.
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