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Attention based convolutional networks for traffic flow
prediction
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Abstract
Real-time and accurate prediction of traffic flow plays an important role in intelligent trans-
portation systems. However, short-term traffic flow forecasting is extremely challenging
due to the highly nonlinear nature of the traffic system and the dynamic spatial and tempo-
ral correlation. Although various methods, including deep learning based ones, have been
proposed, most of them still suffer from problems such as spatial nonstationarity and thus
cannot achieve good prediction performance. Inspired by the recent superior performance of
attention mechanism, we introduce it into the model for traffic flow prediction with regular
grided input. To be specific, we propose a novel deep learning framework, Spatial-Temporal
Attention Based Convolutional Networks (STAtt-Net), for accurate forecasting of citywide
traffic flow. First, we model the traffic data as a two-dimensional matrix with two channels.
Each cell in the matrix represents the traffic in the corresponding region. Taking into account
the temporal correlation and dependence of traffic system, the periodic patterns contained
in traffic data are modeled by three major components for weekly trend, daily periodicity,
and hourly closeness respectively. Then, STAtt-Net employs a STBlock as the basis unit
to learn temporal dependence and spatial dependence of traffic flow, taking advantage of
attention mechanism. We conduct extensive experiments to evaluate the performance of our
model on three real-world datasets (TaxiBJ, BikeNYC, TaxiSZ), with the results revealing
better prediction accuracy and efficiency of the proposed model against existing ones.
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1 Introduction

Traffic forecasting is important for location-based applications such as intelligent trans-
portation systems and urban planning [11]. Real-time accurate traffic flow prediction can
help improve traffic efficiency and reducing traffic congestion in traffic control. Especially,
in road peak periods and traffic accident-prone areas, accurate short-term traffic flow pre-
diction can not only provide a judgment basis for travelers to choose the optimal path, but
also provide strong data support for managers to formulate effective control measures and
thus reduce traffic congestion.

In general, traffic states or events of a spatial unit (e.g., region and street) are not iso-
lated, but influenced by its neighbors. This is a typical phenomenon of spatial dependency
that has been extensively considered in current traffic prediction studies [4, 21, 22, 51]. The
spatial dependency can be expressed by the first law of geography: “Everything is related
to everything else, but near things are more related than distant things” [42]. For instance,
traffic congestion states may propagate from one road to another due to rush hour, unex-
pected accidents, or unreasonable traffic management etc. Therefore, it is vital to consider
spatial dependency among road segments. Besides, historical traffic flow data is also inter-
dependent in temporal. As illustrated by Fig. 1, we can observe apparent similarity between
two adjacent time periods (weeks) and even different days in a period. However, dynamic
changes in spatio-temporal characteristics are random, can occur at any time, and thus
difficult to capture. Thus, accurate traffic forecasting is challenging.

Numerous traffic prediction algorithms have been developed within the last few decades.
The auto regressive integrated moving average (ARIMA) [28, 45] methods took advan-
tage of repeating occurrences in temporal historical data. However the data is required to
be smooth and continuous. And the prediction accuracy is usually limited for the com-
plex spatial-temporal attributes of urban traffic. Machine learning models, such as k-nearest
neighbor [56], support vector regression [49], only need enough historical data to automat-
ically establish the nonlinear feature mapping relationships between input and output. But
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Fig. 1 Temporal distribution of Shenzhen taxi movements in two continuous weeks: from 02/18/2019(Mon-
day) to 02/24/2019(Sunday) and from 02/25/2019(Monday) to 03/03/2019(Sunday)
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the prediction accuracy of these methods is also not so satisfactory due to the difficulty in
fully capturing of the complex nonlinear relationship. With the rise of deep neural networks
(DNNs), many researchers also investigated the usage of DNNs in traffic prediction, either
using CNNs [15, 57] to capture spatial dependencies or using LSTMs [8] to learn temporal
depencence. However, the spatial topology of the traffic network may lose when the data is
represented by matrix or multidimensional tensors. Therefore, even if CNN can extract spa-
tial dependence, its effect on traffic flow prediction is still limited [23]. While LSTMs are
computationally slow as they can not be trained in parallel, even though some acceleration
methods [46] were proposed.

To tackle these challenges, we propose a new short-time traffic flow prediction frame-
work based on deep learning. Attention mechanism is introduced in the framework to handle
phenomenons that are hardly considered in previous methods such as spatial nonstationarity.
To be specific, STAtt-Net incorporates a spatial-tempral attention model with the purpose
to capture the global spatio-temporal by considering the interactions of region-to-region. In
addition, we fuse three components: i) trend for weekly trend, ii) period for daily periodicity,
and iii) closeness for recent time dependence together so as to capture temporal similarity
more effectively.

The main contributions of our work are summarized as follows:

• A novel model, Spatio-Temporal Attention mechanism Network (STAtt-Net) for short-
term traffic flow prediction, which can effectively exploits dynamic both temporal and
spatial dependency in traffic.

• An attention based module (STBlock) for traffic prediction, capable of dynamic
modeling the association between any two locations in a city.

• Extensive experiments with the proposed framework on three real-world datasets Tax-
iBJ, BikeNYC and TaxiSZ, with the experimental results revealing better performance
of the proposed model over several state-of-the-art approaches.

2 Related work

2.1 Traffic flow prediction

Traffic flow prediction can be seen as a spatial-temporal forecast problem. Traditional
methods targeting on this problem usually establish a time series model and exploit the
relevant information hidden in the historical data for prediction. These methods can be cat-
egorized into parametric and nonparametric. Parametric approaches include autoregressive
integrated moving average (ARIMA) model [7, 44], Kalman filtering (KF) [32], Struc-
tural time-series model(STM) [10] and latent space model [6] etc. However, these models
rely on the stationary assumptions of traffic time series data and ignore the temporal and
spatial dynamics. In order to deal with the stochastic and nonlinear nature of traffic data,
researchers have paid much attention to the non-parametric approaches such as K-nearest
neighbor(KNN) [3], Support Vector Regression(SVR) [36], Random Forest(RF) [2], etc.
Unfortnuately, most non-parametric approaches are limited to model the complex dynamic
spatial-temporal dependency. With the great success of deep learning in various applications
such as computer vision [1, 17, 18, 29, 31, 37, 37, 40, 41], nature language process-
ing [16], public health [30, 38, 47] and economy [19] etc, recent researches have leveraged
deep learned features to further improve the performance of prediction by adopting vari-
ous deep learning neural networks. An early attemp by Huang et al. [13] used a deep belief
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networks (DBN) with multitask learning for traffic prediction. Although capble of mining
high-dimensional features from traffic data, it is difficult to extract specific spatio-temporal
features. Since RNNs are adept at extracting the correlation of temporal feature, it is unsur-
prisingly that many works in the area [8, 25] are built on RNN and it variants like Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). For spatial dependency,
CNN were introduced in ST-ResNet [57] to capture spatial correlation, combining with the
residual unit for citywide traffic forecasting. Traffic flows were treated as a raster image
to model the temporal closeness, period, trend, and external factors. And how to model
nonlinear and complex spatial-temporal data simultaneously becomes a challenge. Shikhar
et al. [34] employe 3D CNNs to recognize the patterns in volumetric data like videos,
which proves the superior characteristics of 3D CNNs. Based on this characteristic, [9]
apply 3D CNNs to automatically model saptio-temporal information and thus improve the
accuracy of prediction. However, the improvement is limited due to the inefficient min-
ing of spatio-temporal information. ConvLSTM [35] was proposed to settle spatio-temporal
sequence forecasting problem, with a rather complex network structure. With the deepen-
ing of the network, training becomes more difficult. A major problem with current CNN
based methods is that CNNs are suitable for Euclidean data (such as images, regular grids,
etc.) but can not handle road networks with complex topology well. The recent work of
Zeng et al. [53] revealed that when revisiting the modifiable area unit problem in deep traf-
fic prediction, and tried to address the problem with deformable convolutions in the follow
up [53].

This paper follows the work of Zeng et al. [53] to improve the performance of CNNs
based model on complex road networks, but with a different strategy by introducing the
attention mechanism.

2.2 Attentionmechanism

Attention mechanisms is a recent popular topic, being widely used in different types of deep
learning tasks such as natural language processing [24], image classification [27], machine
translation [5] etc. Attention mechanism mimics the human brain’s tendency to focus on
something of interest and automatically ignore low-value information. Essentially, it is a
combinatorial function that computes the probability distribution of attention to highlight
the impact of a key input on the output, thereby achieving an efficient allocation of infor-
mation processing resources. Mnih et al. [27] pioneered the use of attention mechanisms
in image classification tasks and combined them with recurrent neural network models.
Non-local Networks [43] utilizes self-attention as a non-local operation to capture long
range dependencies. Yan et al. [48] proposed LVSNet for liver vessel segmentation, which
employing an attention-guided concatenation module to enhances segmentation details. Hu
et al. [12] proposed squeeze-and-excitation (SE) block to explicitly models the interdepen-
dencies between feature maps and adaptively obtains the importance of each feature map by
learning. For traffic flow prediction, [50] designed a spatial-temporal dynamic network with
a periodic transfer attention mechanism deal with capture long-term periodic temporal sim-
ilarity. Zheng et al. [58] proposed a graph multi-attention network with spatial and temporal
attentions. However the graph attention mechanism is only applicable to non-Euclidean
structured data.

We design and integrate a spatio-temporal attention mechanism block to capture the
dynamic relevance of the traffic network in the spatial and temporal dimensions respec-
tively. Different from Zheng et al. [58], our mechanism works on regular grided map to
handle Euclidean structured data.
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3 Problem definition

We would like to firstly introduce some definitions and formulate the problem in this section
before going into details of the method. The used notations are listed in Table 1.

Definition 1 (Movement) A movement m is a continuously measured trajectory of a mov-
ing object during a time period T , which is defined by a set of spatio-temporal records⋃

t∈T < t, lt >, where lt represents the position of m at time t . We denote all movements
of multiple moving objects as M.

Definition 2 (Region) There are many ways to partition a geographical area into a col-
lection of appropriate regions R = {rk}nk=1. For example, a city can be partitioned into
n = I × J equal-sized grids based on latitude and longitude, in which each grid is regarded
as an independent spatial unit. Besides, according to census block information or function
of different parts, the area can also be divided into non-overlaping and independent regions
called traffic analysis zones (TAZ) [26].

Definition 3 (Inflow & Outflow) From the movements M, we compute the inflow xin
ri,j ,t

and outflow xout
ri,j ,t per time slot t for each region ri,j ∈ R with the following formulas:

xin
ri,j ,t = | {m ∈ M | m · lt−1 /∈ ri,j ∧ m · lt ∈ ri,j } | (1)

xout
ri,j ,t = | {m ∈ M | m · lt /∈ ri,j ∧ m · lt+1 ∈ ri,j } | (2)

where | · | denotes the cardinality of the set. xin
ri,j ,t and xout

ri,j ,t indicates inflow and outflow at
per time slot t for region ri,j , respectively.

3.1 Problem formulation

Problem 1 (Short-term traffic flow prediction) Given a set of citywide historical traffic flow
data represented by a series of matrices

{
XR,t | t = 1, 2, . . . , n

}
in Region R, the problem

of traffic forecasting is to predict the traffic flow for all region cells in the next time interval
t + 1, denote as XR,t+1.

Table 1 Meanings of all
notations Notations Description

M;m A collection of movements; a movement.

T ; t A collection of time slots; a time slot.

R; r A collection of regions; a region.

XR,t ; Aggregated traffic in regions R at time slot t ;

xr,t Aggregated traffic in a region r at time slot t .

G; g Grid map; a grid.

XG,t ; Aggregated traffic in grid map G at time slot t ;

xg,t aggregated traffic in a grid g at time slot t .

YG,t+1; Predicted result of grid map G at time slot t + 1;

yg,t+1 Predicted result of a grid g at time slot t + 1.
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4 Methodology

4.1 Data processing

Prior work [54] has demonstrated that the modifiable areal unit problem [33] within
aggregation processes can lead to perturbations in the network inputs. As such, it eventu-
ally lead to inaccurate traffic flow forecasting results, affecting traffic planning decisions
and other applications. We intend to further explore the effects of partition scale and
manner on the prediction accuracy of of deep learning model in this work. We used
the same three datasets (TaxiBJ, BikeNYC, and TaxiSZ) for experiments. Maps of the
studying areas, (Beijing, New York and Shenzhen), need to be processed first for CNN
input.

The map of Beijing is divided into 32 × 32 grids based on longitude and latitude.
The data of the last four weeks in the dataset is kept as test set, and the rest is used
for training. For BikeNYC, the entire city is break up into 8 × 16 grid map. The data
of the last ten days in the data set is fetched for testing, and the rest data is used for
training.

To explore the impact of different partition shapes, we use two types of partitioning to
process the TaxiSZ dataset: TAZs and grids. TAZs are special zones usually designated by
the department of transportation for tabulating traffic-related census data. A TAZ, a geo-
graphic grouping of census units, occupies a contiguous region with a minimum population
of 600 in general. Besides, the border of a TAZ usually corresponds with recognizable
physical boundaries, such as main streets and water sources. The land use activities and
populations within each TAZ are relatively homogeneous. Thus TAZ partition can satisfy
the need of traditional transportation planning and demand analysis better. However, the
sizes of the regions are critical. Too small regions make the entry and departure between
neighboring regions more frequent at various predictive times, introducing a lot of compu-
tational complexity. Larger regions, while greatly reducing the computational burden, are
meaningless for traffic prediction purposes. We use the 491 TAZs provided by the Shen-
zhen Transportation Department. In order to better handle the traffic data in Shenzhen, we
chose an appropriate size to divide Shenzhen into {rk}nk=1 where n = 1250 for scale 25×50
and n = 5000 for scale 50 × 100 based on grid-based method. Same processing as before,
we break each day into 48 slots with each slot lasting 30 min. As for TAZ-based method,
we utilize official data from the city of Shenzhen to divide the city into n = 491 irregular
regions. In this step, rasterization of TAZ partitions is a necessary step to fit in the inputs of
our model.

Definition 4 (Rasterization) We divide TAZs into a grid map G of size i × j . Each grid
g ∈ G can intersect with arbitrary number of TAZs . We calculate the in/out traffic flow for
each grid g at time slot t as:

xg,t =
n∑

k=1

xrk,t × S(rk ∩ g)

S(rk)
, (3)

where S(·) stands for the area of a region, and rk ∩ g indicates the intersection between rk
and g.
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4.2 Spatial-temporal attention based convolutional networks

In order to model spatio-temporal dependency in traffic prediction, we design an end-to-end
deep learning based model STAtt-Net. Figure 2 illustrates the overall framework, which con-
sists of two major components: the temporal dependency module and the spatial attention
block.

4.2.1 Temporal dependency module

It can be easily observed from the exemplary data in Fig. 1 that daily activities follows
certain temporal periodicity in both day and week granularity, as pointed out by previous
works [39, 50]. In particular, a morning peak can be found at around 9:00 every weekday,
and however, the peaks delay about a half-hour every weekend. The traffic flow in a given
arbitrary region is usually continuously varying, which means that the traffic flow at the
current moment is strongly correlated with the traffic flow at the next moment. Therefore,
the closeness for recent time dependency should be considered in traffic data prediction.

In addition, a travel peak is usually reached on Friday night. Based on this phenomenon,
we consider the temporal dependency of hourly, daily and weekly. We set their length-
dependent sequence �h, �d, �w, among these three components, respectively. Thus our
input data can be designed as:

Xh = [
XG,t−�h, XG,t−(�h−1), . . . , XG,t−1

]
, (4)

Xd = [
XG,t−�d·ld , XG,t−(�d−1)·ld , . . . , XG,t−ld

]
, (5)

Xw = [
XG,t−�w·lw , XG,t−(�w−1·lw), . . . , XG,t−lw

]
, (6)

where ld , lw denote the time period of a day and a week respectively.

4.2.2 Spatial attention block

We notice that important features are often concentrated in a certain region, thus a spatial
attention mechanism can be introduced to focus on different regions of the feature map
in space, telling the network where the region of interest is located. Besides, traffic flows
are not only spatially correlated, but also have complex local spatial heterogeneity, so we
propose here to use a spatial attention mechanism for traffic prediction. Specifically, we
design a spatio-temporal unit module based on the attention mechanism, which captures the

(a) The architecture of STAtt-Nettime
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Fig. 2 Network architecture of our STAtt-Net, which mainly consists of three modules: (i) a temporal depen-
dency module including weekly trend, daily periodicity, and hourly closeness components to learn periodic
patterns; (ii) a STblock module taking advantage of Attention mechanism (b) to learn global spatio-temporal
dependence(iii) a fusion and activation module to fuse temporal components and activate the final prediction
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rich spatio-temporal relationships between regions over the whole city so as to obtain more
significant spatial dependence.

Let X
(l)
G ∈ R

c×i×j be the feature map extracted by the l-th ST-Block layer, where c is the
number of channels and i × j is the size of the feature map. Figure 2(b) gives an illustration
of the spatial attention model. CNNs are more suitable for processing data with Euclidean
structure, which can better model spatial correlation. First, we improve the nonlinear repre-
sentation capability of the model with a convolution operation , which can be regarded as
the weighted sum of samples:

X
(l+1)
G,conv = fc(W

(l)
G ∗ X

(l)
G ), (7)

where ∗ denotes the convolution operation between a filter and the input feature maps, while
W

(l)
G is a learnable filter in the l-th convolution layer, fc(·) refers to the rectified linear unit

(ReLU) ie. and fc(z) = max(0, z) is the activation function.
Besides, the global and local density distributions have certain regularities due to the

constant movement changes of the vehicle flows. To encode the two types of observations
described above, we design a spatial attention model that is capable of modelling a large
range of contextual information and capturing changes in the density distribution of crowd
flows. Figure 2 gives an illustration of the spatial attention mechanism structure. The feature
map X

(l+1)
G,conv ∈ R

c×i×j output from the previous convolution operation is fed into each of
the three 1 × 1 convolution operations to generate three feature maps F1, F2 and F3, and
reshape them into R

c×n, where n = i × j . For F1, a further transpose operation is required.
Next, we apply matrix multiplication and softmax operations to feature map F1 and F2 to
obtain spatial attention maps W ∈ R

n×n. W is defined as follow:

Wj,i =
exp

(
F i

1 · F j

2

)

∑n
i=1 exp

(
F i

1 · F j

2

) , (8)

here Wj,i represents the effect of position i on position j , a larger value means a higher
similarity between position i and position j .

After generating the spatial attention matrix, we once again use the multiplication oper-
ation between W and F3 and reshape the result to R

c×i×j . The final output of the spatial
attention block is defined as:

X
(l+1)
G,j = λ

n∑

i=1

(
Wj,i · F i

3

)
+ X

(l+1),j
G,conv , (9)

where λ is a learnable parameter. As can be seen from the detailed description of the entire
model, the final output is actually a weighted sum of the features at all locations and the orig-
inal features, which contain global features and selective features according to the spatial
attention map.

4.2.3 Fusion and activation module

In STAtt-Net, the last layer is a fusion layer that fuses the three components to modeling
spatial-temporal correlation, including closeness, daily, weekly:

XFusion
G = Wh ◦ X′

G,h + Wd ◦ X′
G,d + Ww ◦ X′

G,w, (10)

where Wh, Wd and Ww are learnable parameters matrices and X′
G,h, X′

G,d and X′
G,w

are predicted results by three components based on historical data respectively. The ◦ is
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hadamard product which is formed by the elementwise multiplication of their elements.
XFusion

G denotes the output of the merge layer. After merging the three components, we
employee the active function at this phase, and the predicted value at the t th time interval is
denoted by YR,tn+1 , the final output of STAtt-Net is then derived as:

YG,tn+1 = tanh
(
XFusion

G

)
, (11)

4.3 Training

In the end, we predict inflow and outflow simultaneously. Our model can be trained end-
to-end via back-propagation by minimizing the mean square error (MSE) between the
predicted traffic flow YR,tn+1 and the ground truth XG,tn+1 . The loss function is defined as:

L(θ) = ∥
∥YG,tn+1 − XG,tn+1

∥
∥2

2 , (12)

where θ is learnable parameters in our model.

5 Experinments

5.1 Experinmental setting

All experiments were conducted in Ubuntu16.04 (64bit) with AMD Ryzen 7 2700 8-Core
Processor ×16 @ 3.60GHz CPU and NVIDIA GeForce RTX 2080 Ti GPU. The STAtt-Net
model is implemented under an open-sources framework Keras with TensorFlow backend.
During the training phase, the model was optimized by the Adam optimizer with a learning
rate of 0.0002. The batch size was set as 64. The datasets were scaled into the range [-
1,1] using Mmn-max normalization. Notice that we denormalized the predicted values to
compare with the true values in the evaluation phase. In order to obtain optimal model
parameters and prevent overfitting, we performed the early-stopping strategy on training to
control the number of epochs. All kernels of the convolutions were set to 3 × 3 in size. The
parameters for the three temporal components were set as: �w = 1, �d = 1, and �c = 3.

5.2 DataSets

We used three datasets from the real-world to assess performance of our model as mentioned
before: TaxiBJ, BikeNYC, and TaxiSZ. The first two datasets are publicly available and
commonly used as benchmark in various CNN based traffic prediction works [57]. While
the last one, TaxiSZ, comes from our cooperation with local transportation agency. We
chose it to investigate the generalization ability of our model. The statistics of the datasets
are summarized in Table 2, The details are as follows:

• TaxiBJ. This traffic flow dataset contains 528 days GPS data of taxi in four different
time periods of Beijing. After discarding corrupted data, the whole dataset is divided
into 22,459 segments, with each segement to be 30-min.

• BikeNYC. The dataset of Bike track in New York, containing bicycle trajectory in
the New York bicycle system from April 1, 2014 to September 30, 2014. Each record
includes information of bicycle trip duration, trip Starting and ending time, and trip
date, starting and terminal station name, station number, station longitude and latitude,

7387Multimedia Tools and Applications (2024) 83:7379–7394



Table 2 Statistics of the datasets used in the experiments

Dataset TaxiBJ BikeNYC TaxiSZ

Data type TaxiGPS Bike rent TaxiGPS

Location Beijing NewYork Shenzhen

Time period 528 183 181

Time interval 30 min 1 h 30 min

Grid map size (32,32) (16,8) (50,25)&(100,50)

Available time interval 22,459 4,392 8,688

bicycle ID, etc. There are 183 days of records in total. The dataset is divided into 60-min
segments, resulting in a total of 4392 segments with records less than 60 s excluded.

• TaxiSZ. The data record of taxi transactions in Shenzhen carried out by more than 20k
taxis over the duration from 1st Jan. 2019 to 30th Jun. 2019. There are approximately
800k transactions record every day, leading to over 145million transactions. For each
taxi transaction record, the following attributes are recorded: taxi ID, price, operating
mileage, get-on position (denoted as mp0) and time (mt0), and get-off position (mp1)
and time (mt1). The raw data contains numerously corrupted or incomplete informa-
tion, such as positions outside of Shenzhen or missing get-on/get-off times. After data
wiping, 128 million accurate transaction records were reserved.

5.3 Baselines

To assess the performance of our model, we compared STAtt-Net with the following
baseline:

• HA: Historical average method predicts the trend of data using the average of historical
mobile traffic flow in data within relatively identical time intervals of a given range.

• ARIMA: Autoregressive Integrated Moving Average Model is one of the classic time
series forecasting models, and it was used in traffic flow prediction earlier. ARIMA
regards the time series of data as a random time series, transforms the non-stationary
data into a stationary series through several differences, and fits the time series into the
parameter model.

• ST-ResNet: The residual network based model, proposed by Zheng et al. [57], can fit
the traffic flow data by capturing the time correlation of traffic flow and combining
with external information (date attribute and weather data, etc.).

• ST-3DNet: ST-3DNet uses a specially designed 3D CNN structure to learn the temporal
and spatial features of traffic flow dataset together.

• T-GCN [55]: T-GCN combined graph convolutional network and gated recurrent units
to capture the complex spatial and temporal dependencies in traffic speed prediction

• DeFlow-Net [53]: DeFlow-Net, a deep deformable convolutional residual network
based on deformable convolutions. It is one of the most advanced convolution based
deep traffic flow prediction models.

5.4 Evaluationmetrics

We use Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) to evaluate our
proposed network performance.They are defined as follows:
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Table 3 Comparison with baseline models

Model TaxiBJ NYCBike TaxiSZ

RMSE MAE MASE RMSE MAE MASE RMSE MAE MASE

HA 52.77 29.77 0.605 10.76 6.13 0.230 12.41 3.07 0.409

ARIMA 28.46 15.81 0.672 9.98 6.22 0.245 11.37 3.21 0.437

ST-ResNet 17.34 9.80 0.295 6.48 3.50 0.171 6.54 1.57 0.395

ST-3DNet 17.14 9.63 0.292 5.95 3.56 0.168 5.62 1.50 0.234

T-GCN 39.68 19.88 0.633 8.78 5.98 0.221 9.36 2.87 0.411

DeFlow-Net 15.90 9.27 0.278 5.85 3.01 0.165 5.35 1.50 0.236

STAtt-Net 16.64 9.39 0.281 5.95 2.93 0.163 5.41 1.48 0.236

RMSE =
√
√
√
√ 1

N

N∑

g=1

(
xg,tn+1 − yg,tn+1

)2
, (13)

MAE = 1

N

N∑

g=1

| xg,tn+1 − yg,tn+1 |, (14)

where xg,tn+1 and yg,tn+1 represent the real value and the predicted value at time frame t and
grid g respectively, N is the number of all all the samples for prediction. RMSE and MAE
are common indices used in traffic forecasting. However, as pointed out in literature [53],
RMSE measurements are unit dependent, making it unsuitable for comparison between
different datasets. To address the problem, we further incorporate Mean Absolute Scaled
Error (MASE), which can be express as :

I
(
xgi ,t

) = xgi ,t − X̄G,t

S2

n∑

j=1,j �=i

wij

(
xgj ,t − X̄G,t

)
(15)

where xg,tn+1 and yg,tn+1 in the numerator are from the testing data, while xg,t and xg,t−m

in the denominator are from the training data, respectively. T is the total number of time
slots in the training data, and m is the seasonality of the time series (i.e., 48 for TaxiBJ and
TaxiSZ, and 24 for BikeNYC). MASE is unit independent, allowing us to compare traffic
flow predictions in different cities and at different scales. Moreover, MASE can handle
actual values of zero and is not biased by very extreme values, which are problematic for
mean absolute percentage error (MAPE) [14]. In general, a MASE less than 1 indicates a
model is better than the naive model, and lower MASE indicates better model.

5.5 Performance comparison

The experimental results are shown in Table 3. It includes a comparison of the proposed
model with the five baselines mentioned above. The best performance of all methods is
marked in bold. We can observe that traditional time series methods, such as ARIMA,HA,
cannot obtain good traffic forecasting results because they rely only on historical records
to predict future values. Machine learning-based methods such as SVR can achieve better
performance results, is limited in modeling the complex temporal and spatial dependencies
in traffic forecasting. Deep learning-based methods such as ST-ResNet, ST3DNet aslo have
better performance, but they are still worse than our STAtt-Net, which introduces attention

7389Multimedia Tools and Applications (2024) 83:7379–7394



mechanism and multiple time components to modelling a large range of contextual informa-
tion and spatio-temporal dependencies. Recently, graph-based methods are effective for the
problem of traffic flow prediction. We also conducted additional comparison using a recent
GNN model for traffic prediction, namely T-GCN. The results became very bad However,
the spatial features learned in GCN are not optimal for the grid-based traffic network pre-
diction. The reasons for this result is that our works aims to predict traffic flows for regions,
in which CNNs are more suitable because convolutions can better model spatial correlation
by decomposing the traffic network as grids. In contrast, GNN models are more appropriate
for graph-structured traffic data. STAtt-Net consistently achieves the better accuracy among
all the compared models with the smallest RMSE value 16.64, 5.95,5.41, MAE value 9.39,
2.93, 1.48 and MASE value 0.281, 0.163, 0.236. In general, the prediction accuracy of our
method is better than all the other methods in either RMSE, MAE or MASE, except for the
latest DeFlow-Net which is slightly better than ours. However, the time cost of DeFlow-Net
is about four times of ours.

5.6 Comparison of different partitioning shapes and scales

Deep learning-based traffic flow prediction is affected by the plasticity area cell problem,
which causes perturbations in the prediction results [52]. To explore the prediction perfor-
mance of STAtt-Net on different partitioning shapes (grids vs. TAZs ) and scales (50 × 25
vs. 100 × 50). The results are listed in Table 4. We can conclude that the RMSE results
based on TAZ-partition are always better than grid-partition at the same scale. A potential
reason is that some grids at this scale are too large and contain multiple small TAZs, result-
ing in the information of smaller TAZs are lost, and may even interfere with the prediction
results. In addition, at scale (100 × 50) are records the improvements of at least 48.79% on
RMSE and 54.42% on MAE at grid-partition, and 56.54% on RMSE and 66.67% on MAE
at TAZ-partition compared to scale (50 × 25). The results infer that finer scale 100 × 50 is
better.

5.7 Impact of the number of ST-Block layers

The number of ST-Block layers can affect the prediction result. To investigate how it can
affecting ST-ResNet efficiency, we change the number of layers of ST-Block from 1 to 5 and
the model to get different predictions. As shown in Fig. 3, the number of ST-Block layers
also great affects the experinment result. Taking Fig. 3(a) as an example, when the number
of ST-Block layers increases from 1 to 4, the RMSE and MAE declines continuously to 5.96
and 2.93. The same is true for the results on the TaxiSZ. The RMSE reduces to 5.41 and
MAE reduces to 1.48. This shows that an appropriate number can improve the prediction
accuracy of the network.

Table 4 Performance comparison of different partition shapes (grid vs. TAZ) and scales (50×25 vs. 100×50)
on TaxiSZ

Convolution Metric 50 × 25 100 × 50

Grid TAZ Grid TAZ

STAtt-Net RMSE 5.41 4.97 2.77 2.16

MAE 1.48 1.65 0.67 0.55
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Fig. 3 Performance comparison of different numbers of ST-Block,the numbers of ST-Block layers increases
from 1 to 5

6 Conclusion

In this paper, a spatial-temporal attention based convolutional networks, called STAtt-Net,
is proposed for short-term traffic prediction. We developed the ST-Block module to enhance
the feature extraction capabilities for learning the saptial heterogeneity. Besides, consider-
ing the temporal properties of traffic data, STAtt-Net models the temporal dependency as
i) trend for weekly trend, ii) period for daily periodicity, and iii) closeness for recent time
dependence. We evaluated our model on three large-scale datasets, respectively. The exper-
imental results demonstrate that STAtt-Net significatly outperforms state-of-art approaches.
Our method achieves a good balance between accuracy and efficiency. Since each region
in STBlock has to capture global contextual information, this leads to a large computational
complexity for the whole attention mechanism module. But it is still more efficient than
pure 3D convolution model, such as DeFlow-Net, as revealed in the experiments. Another
issue is that pure attention-based models are known to be quite ’data-hungry’ as they usually
require huge amounts of data to pre-train before being applicable. Finally, the interpretabil-
ity of deep model is still quite challenging and the introduction of attention mechanism
aggravates the issue. We note some novel work such as TFT [20], a multilayer pure deep
learning model for time series with an LSTM encoder-decoder and a new attention mecha-
nism that provides interpretable predictions. This provides us with some ideas for the next
step. Besides, we will consider introduce other mechanisms such as transformers to optimize
the predictive capabilities of the model in the future.
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20. Lim B, Arık SÖ, Loeff N, Pfister T (2021) Temporal fusion transformers for interpretable multi-horizon
time series forecasting. Int J Forecast 37(4):1748–1764

21. Liu K, Gao S, Qiu P, Liu X, Yan B, Lu F (2017) Road2vec: measuring traffic interactions in urban road
system from massive travel routes. ISPRS Int J Geo-Inf 6(11):321

22. Lu F, Liu K, Duan Y, Cheng S, Du F (2018) Modeling the heterogeneous traffic correlations in
urban road systems using traffic-enhanced community detection approach. Physica A: Stat Mech Appl
501:227–237

23. Luo Q, Zhou Y (2021) Spatial-temporal structures of deep learning models for traffic flow forecasting:
a survey. In: 2021 4th International conference on intelligent autonomous systems (ICoIAS). IEEE,
pp 187–193

24. Luong M-T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine
translation. arXiv:1508.04025

25. Ma X, Tao Z, Wang Y, Yu H, Wang Y (2015) Long short-term memory neural network for traffic speed
prediction using remote microwave sensor data. Transp Res Part C: Emerg Technol 54:187–197

26. Martı́nez LM, Viegas JM, Silva EA (2009) A traffic analysis zone definition: a new methodology and
algorithm. Transportation 36(5):581–599

27. Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: Advances in neural
information processing systems, pp 2204–2212

28. Moorthy C, Ratcliffe B (1988) Short term traffic forecasting using time series methods. Transp Plan
Technol 12(1):45–56

29. Negi A, Kumar K (2021) Face mask detection in real-time video stream using deep learning. In:
Computational intelligence and healthcare informatics, pp 255–268

30. Negi A, Kumar K (2022) Chapter 1—ai-based implementation of decisive technology for prevention and
fight with covid-19 1–14

7392 Multimedia Tools and Applications (2024) 83:7379–7394

http://arxiv.org/abs/1508.04025


31. Negi A, Kumar K, Chaudhari NS, Singh N, Chauhan P (2021) Predictive analytics for recognizing human
activities using residual network and fine-tuning. In: International conference on big data analytics.
Springer, pp 296–310

32. Okutani I, Stephanedes YJ (1984) Dynamic prediction of traffic volume through kalman filtering theory.
Transp Res Part B: Methodol 18(1):1–11

33. Openshaw S (1984) The modifiable areal unit problem. Geo Books, Norwick
34. Sharma S, Kumar K (2021) Asl-3dcnn: American sign language recognition technique using 3-d

convolutional neural networks. Multimed Tools Appl 80(17):26319–26331
35. Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: a

machine learning approach for precipitation nowcasting. arXiv:1506.04214
36. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222
37. Solanki A, Bamrara R, Kumar K, Singh N (2020) VEDL: a novel video event searching technique using

deep learning. In: Soft computing: theories and applications, pp 905–914
38. Srinivasu PN, Balas VE (2021) Self-learning network-based segmentation for real-time brain mr images

through haris. PeerJ Comput Sci 7:654
39. Stathopoulos A, Karlaftis M (2001) Temporal and spatial variations of real-time traffic data in urban

areas. Transp Res Rec 1768(1):135–140
40. Tang C, Zhu X, Liu X, Wang L, Zomaya A (2019) Defusionnet: defocus blur detection via recurrently

fusing and refining multi-scale deep features. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 2700–2709

41. Tang C, Liu X, An S, Wang P (2021) Br2net: defocus blur detection via a bidirec-
tional channel attention residual refining network. IEEE Trans Multimed 23:624–635.
https://doi.org/10.1109/TMM.2020.2985541

42. Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46(2)
43. Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE

conference on computer vision and pattern recognition, pp 7794–7803
44. Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal arima

process: theoretical basis and empirical results. J Transp Eng 129(6):664–672
45. Williams BM, Durvasula PK, Brown DE (1998) Urban freeway traffic flow prediction: application of

seasonal autoregressive integrated moving average and exponential smoothing models. Transp Res Rec
1644(1):132–141

46. Xingjian S, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: a
machine learning approach for precipitation nowcasting. In: Advances in neural information processing
systems, pp 802–810

47. Yan Q, Wang B, Zhang W, Luo C, Xu W, Xu Z, Zhang Y, Shi Q, Zhang L, You Z (2020) Attention-
guided deep neural network with multi-scale feature fusion for liver vessel segmentation. IEEE J Biomed
Health Inform 25(7):2629–2642

48. Yan Q, Wang B, Zhang W, Luo C, Xu W, Xu Z, Zhang Y, Shi Q, Zhang L, You Z (2021) Attention-
guided deep neural network with multi-scale feature fusion for liver vessel segmentation. IEEE J Biomed
Health Inform 25(7):2629–2642. https://doi.org/10.1109/JBHI.2020.3042069

49. Yao Z-S, Shao C-F, Gao Y-L (2006) Research on methods of short-term traffic forecasting based on
support vector regression [j]. J Beijing Jiaotong Univ 30(3):19–22

50. Yao H, Tang X, Wei H, Zheng G, Li Z (2019) Revisiting spatial-temporal similarity: a deep learning
framework for traffic prediction. In: Proceedings of the AAAI conference on artificial intelligence, vol
33, pp 5668–5675

51. Yue Y (2006) Spatial-temporal dependency of traffic flow and its implications for short-term traffic
forecasting. HKU Theses Online (HKUTO)

52. Zeng W, Lin C, Lin J, Jiang J, Xia J, Turkay C, Chen W (2020) Revisiting the modifiable areal unit
problem in deep traffic prediction with visual analytics. IEEE Trans Vis Comput Graph 27(2):839–848

53. Zeng W, Lin C, Liu K, Lin J, Tung AK (2021) Modeling spatial nonstationarity via deformable
convolutions for deep traffic flow prediction. IEEE Trans Knowl Data Eng

54. Zeng W, Lin C, Lin J, Jiang J, Xia J, Turkay C, Chen W (2021) Revisiting the modifiable areal unit
problem in deep traffic prediction with visual analytics. IEEE Trans Visual Comput Graph 27(2):839–
848. https://doi.org/10.1109/TVCG.2020.3030410

55. Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H (2019) T-gcn: a temporal graph
convolutional network for traffic prediction. IEEE Trans Intell Transp Syst 21(9):3848–3858

56. Zhang X-L, He G-G, Lu H-P (2009) Short-term traffic flow forecasting based on k-nearest neighbors
non-parametric regression. J Syst Eng 24(2):178–183

57. Zhang J, Zheng Y, Qi D (2017) Deep spatio-temporal residual networks for citywide crowd flows
prediction. In: Proceedings of the AAAI conference on artificial intelligence, vol 31

7393Multimedia Tools and Applications (2024) 83:7379–7394

http://arxiv.org/abs/1506.04214
https://doi.org/10.1109/TMM.2020.2985541
https://doi.org/10.1109/JBHI.2020.3042069
https://doi.org/10.1109/TVCG.2020.3030410


58. Zheng C, Fan X, Wang C, Qi J (2020) Gman: a graph multi-attention network for traffic prediction. In:
Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 1234–1241

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

7394 Multimedia Tools and Applications (2024) 83:7379–7394


	Attention based convolutional networks for traffic flow prediction
	Abstract
	Introduction
	Related work
	Traffic flow prediction
	Attention mechanism

	Problem definition
	Problem formulation

	Methodology
	Data processing
	Spatial-temporal attention based convolutional networks
	Temporal dependency module
	Spatial attention block
	Fusion and activation module

	Training

	Experinments
	Experinmental setting
	DataSets
	Baselines
	Evaluation metrics
	Performance comparison
	Comparison of different partitioning shapes and scales
	Impact of the number of ST-Block layers

	Conclusion
	Declarations
	References


