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vehicle detection
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Abstract
One of the difficult tasks in the field of computer vision is the classification and detection
of vehicles. Researchers from all over the world are working to create autonomous vehicle
detection (AVD) systems due to their numerous practical applications, including highway
management and surveillance systems. Deep learning techniques, which require a lot of data
for proper model training, are the current AVD trend. However, a number of vehicles are
discovered in India, the second-largest nation in terms of population, that are not included
in the vehicle detection datasets that are currently in use. Furthermore, India’s overcrowding
makes traffic management difficult and unusual. In this research, we present a dataset for
still-image-based vehicle detection that includes one class of pedestrians and 13 different
types of vehicles that are seen on Indian urban and rural roads. Initially, we provide baseline
results using some state-of-the-art deep learning models on this dataset. To improve the
accuracy further, we present an ensemble-based object detection and classification model.
The dataset consists of 4K images and 14.3K bounding boxes of various vehicles; that is,
researchers are provided with appropriately annotated rectangular boxes for use with these
vehicles in the future. A 16-megapixel Sony IMX519 high-resolution camera was used to
take all images while travelling throughout West Bengal, an Indian state on the eastern side.
Dataset can be found at: https://github.com/IRUVD/IRUVD.git.
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1 Introduction

Vehicles play a crucial role in our daily lives. The most important part of the transporta-
tion department is the traffic management system. The initial traffic control system was
created in the 1910s. Through the use of computer vision techniques, traffic management
systems have been evolved over time to become more intelligent and efficient. In addition
to the traffic management system, a lot of data is required for other systems as well includ-
ing surveillance, pollution control, autonomous vehicle detection (AVD), and vision-based
vehicle parking management. Most importantly, the system needs to be reliable and accu-
rate in order to be used in real-world AVD applications. Many datasets [16, 17] have been
created in recent years for a variety of object detection purposes including vehicle detection.
Autonomous vehicles locates obstacles using camera captures images from the vehicle. The
range of the sensor and the size of the target must be considered when detecting vehicles
[26]. It should be noted that the complexity of newer make and model vehicles’ shapes,
sizes, colors, and textures is making this research field more challenging [11].

The pose and viewing angle make it difficult for a model to identify the precise object
class. Additionally, it is challenging to create a generalized AVD dataset due to the numer-
ous country or region-specific issues. The most widely used datasets like Pascal VOC2007
[10] and KITTI [13], only include five and seven vehicle classes that are frequently seen on
urban roads, respectively. Only a few datasets are available that were created with Indian
traffic conditions in mind. The most popular Indian vehicle dataset, known as IDD [38], is
used for segmentation tasks. Images were taken in Bangalore and Hyderabad, two popular
Indian cities. There are a total of 34 classes in this dataset, including 8 classes for vehi-
cles. Other classes include the sky, roadside objects (such as walls, fences, billboards, etc.),
distant objects (such as buildings and bridges), living things (such as animals and people),
drivable and non-drivable objects (such as sidewalks and non-drivable fallbacks). Another
Indian vehicle detection dataset is NITCAD [28], which includes 7 different vehicle classes.
Images were collected throughout Kerala, a southern state of India, for this dataset. Despite
the fact that auto-rickshaws are widely used in both urban and rural areas of India, NITCAD
and IDD only included them in their datasets because they are frequently seen in urban
areas.

However, more vehicles, including totos, cycle-rickshaws, and motor-rickshaws, are
commonly found in rural areas, and those are not incorporated in any of the aforementioned
datasets. Due to inadequate traffic control systems, auto-rickshaws and motorcycles fre-
quently break traffic laws in rural areas. In congested urban areas, crosswalks are not always
used by pedestrians. These elements contribute to India’s extremely difficult traffic manage-
ment systems. The fact that the same kind of vehicle is used for multiple purposes in India
presents another challenge for vehicle detection, and it confuses the computer vision based
learning models. A motor-rickshaw, for instance, can carry both passengers and goods. This
study offers a new dataset for AVD to address those problems, and an ensemble of deep-
learning models is used to provide baseline results. Vehicle detection using still images is a
challenging task due to various factors, such as vehicle orientation, lighting conditions, and
scale variations. In the Indian context, there are several additional challenges to consider,
such as non-standard vehicles, crowded scenes, and diverse driving behaviors. This article
explores the challenges in vehicle detection in the Indian context and proposes solutions to
address them. The first step in developing an effective vehicle detection system is to col-
lect a standard dataset. The dataset should cover a range of scenarios, including different
lighting conditions, backgrounds, and vehicle types and orientations. In the Indian context,
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Fig. 1 Sample images taken from the dataset developed in the present work

the dataset should also include some uncommon vehicles (in other countries) such as auto-
rickshaws and cycle-rickshaws. Figure 1 shows an example of a dataset that considers these
factors.

One of the significant challenges in vehicle detection is the orientation of vehicles. Vehi-
cles can have different orientations, such as front-facing, side-facing, or rear-facing, which
can make it difficult to detect them using traditional methods. Additionally, variations in
lighting conditions can affect the accuracy of detection. Vehicles can appear at different
scales in images or videos, making it challenging to detect them using existing datasets.
Furthermore, vehicles may blend into complex backgrounds, such as trees, buildings, and
other vehicles, which can make it difficult to distinguish them from the surroundings. In the
Indian context, traffic congestion is another significant issue. The high volume of traffic,
particularly in urban areas, can make it problematic to detect vehicles accurately in crowded
scenes. Moreover, in rural areas, we can observe a wide range of sometimes erratic driv-
ing behaviours, which can further complicate the detection task. Additionally, India has a
diverse range of uncommon vehicles, such as auto-rickshaws and cycle-rickshaws, which
can be difficult to detect if a model is trained on existing datasets.

Contributions With the aforementioned information in mind, in this paper, we have devel-
oped the IRUVD: Indian Rural and Urban Vehicle Detection, a new still-image-based
dataset for AVD. Specific contrubutions of this paper are as follows:

– A new vehicle detection dataset that includes 13 vehicle classes and 1 pedestrian object
has been introduced. Toto, cycle-rickshaw, and motor-rickshaw classes of vehicles that
are frequently seen on Indian roads have been considered.

– To make the dataset as realistic as possible, we have taken into account both urban and
rural areas of India during data collection. This aids in capturing a variety of traffic
scenarios, including both low-congested rural areas without a traffic system and highly
congested urban areas with a well-maintained traffic system.

– There are several challenges that are considered while preparing the current dataset,
such as vehicle orientation, variations in lighting conditions, scale variation of the
objects, complex backgrounds, occlusions, and different traffic diversities.
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– This dataset contains 14343 properly annotated bounding boxes for 4000 labeled
images. Figure 1 displays some examples. The images were captured from various loca-
tions in West Bengal, a state in eastern India. The images were taken during the day,
and the objects were in various poses. The resolution of each image is 1920 × 1080.

– Utilizing the most up-to-date deep learning-based object detection models, we have
benchmarked the IRUVD dataset using the You Only Look Once version 3 (YOLOv3),
YOLO version 4 (YOLOv4), Scaled YOLO version 4 (Scaled-YOLOv3), and YOLO
version 5 (YOLOv5) (YOLOv5). We have used a variety of object detection metrics,
including recall, precision, F1-score, mean average precision (mAP) at intersection over
union (IOU) threshold 0.5 (mAP@0.5), mAP score at IOU 0.75 (mAP@0.75), mAP
scores at IOU 0.95 in steps of 0.05 (mAP@0.5:0.05:0.95), and mAP scores at IOU 0.95
(mAP@0.75:0.05:0.95).

• On the IRUVD dataset, we have proposed both weighted and non-weighted ensemble
approaches to establish the baseline results. In this case, we have observed that the non-
weighted ensemble approach performs better than the weighted ensemble approach.

The rest of the paper is organized as follows. A literature review is given in Section 2.
The developed dataset is presented in Section 3. In Section 4, we describe the procedure for
benchmarking the dataset. To further improve detection results, we introduce an ensemble
technique in Section 5. In Section 6, we tested the proposed ensemble technique on some
additional datasets. Finally, in Section 7, we conclude our paper.

2 Literature survey

Researchers have created various datasets to address a variety of difficult problems in the
field of computer vision. The most popular datasets for image classification, localization,
and segmentation are ImageNet [6], Microsoft COCO [22], ADE20K [48], and Pascal VOC.
But only Pascal VOC2007 can be used for vehicle detection tasks. The two categories of
existing vehicle detection datasets are segmentation-based datasets and localization-based
datasets, which are briefly discussed below.

2.1 Segmentation-based detection dataset

Segmentation implies the finding an exact outline around the object in an image. The
most widely used dataset, Pascal VOC2007, has 20 main classes, but only 5 of them can
be applied for developing autonomous vehicle and traffic management systems. The most
well-known datasets for segmentation-based vehicle detection are Cityscapes [5], Mapillary
Vistas [29], and CBCL StreetScenes [2]. The 3.5k images in CBCL StreetScenes, which
have 9 classes including cars, pedestrians, bicycles, buildings, trees, sky, roads, sidewalks,
and stores, were collected from urban streets in Boston, Massachusetts, in the United States.
Another dataset for vehicle detection with 25k images is Vistas. With 11 different vehicle
types and a total of 37 classes, the images of this dataset were collected from urban streets
across 6 continents with the goal of diversifying the detection models. A segmentation-
based dataset that took into account both urban and rural areas of the USA is the Berkeley
Deep Drive Video dataset. The videos used to create this dataset totaled 10,000 hours. The
largest vehicle dataset, BDD100K [44], was collected from New York City. Each of the
100,000 video sequences in this dataset has a duration of 40 seconds and ten different object
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classes. The primary driving force behind the creation of this dataset was the desire to expe-
rience various time and weather conditions, such as sunny, cloudy, and rainy. The Cityscapes
segmentation-based vehicle detection dataset, which was created taking Indian traffic con-
ditions into consideration, is the one that most closely resembles IDD. Only 8 of the 45k
images’ 34 object classes are clearly identifiable as vehicle classes. However, some vehicles
that are frequently seen on Indian rural roads are not taken into account in this dataset.

2.2 Localization-based detection dataset

Localization is a method for determining an object’s precise location, which is typically
indicated by a rectangular box. For the sole purpose of detecting pedestrians, datasets like
INRIA [7], Daimler Pedestrian [27], TudBrussels [43], and Citypersons dataset [45] were
created. However, most objects encountered on the road must be able to be detected by
AVD systems. A 3D car classification dataset with 207 car categories was introduced by
Krause et al. [20]. The most well-known vehicle detection dataset, known as KITTI, was
developed using images from Karlsruhe, Germany, and eight different vehicle classes. The
KITTI dataset has 200k 3D bounding boxes and 15k images with 8 different object classes.
The most recent Iranian vehicle detection dataset, LRVD [19], contains 110k images and 5
classes. BIT dataset [8] is another vehicle classification dataset that consists of 6 classes -
bus, SUV, minivan, truck, microbus, and Sedan. It has more than 9.8k images which were
taken day and night times from a camera installed on the highway. The limitation of this
dataset is that it only contains a front view of every vehicle which is not preferable in a
real-life scenario. NITCAD is a stereo vision-based autonomous navigation dataset, which
was collected from Kerala, India. It has 7.5k distorted images. The main motive to develop
this dataset was to provide more information about Indian roads. However, it only men-
tions one new class than other datasets, i.e., auto-rickshaw. Other vehicles like the toto,
cycle-rickshaw, and motor-rickshaw seen on Indian roads were not taken into account when
these datasets were made. In most cases, the object detection model predicts the pres-
ence of multiple objects within a single bounding box. The most accurate bounding boxes
can be determined using either Non-maximum Suppression (NMS) or Soft Non-maximum
Suppression (Soft-NMS).

2.2.1 Non-maximum suppression

Every detection model calculates the object’s location using a bounding box or anchor box,
the box’s class, and the prediction percentage’s level of confidence. A filtering technique
called the NMS is used to get rid of overlapping bounding boxes. IOU is a metric that is
typically calculated for each object class to determine the maximum amount of box overlap.
The highest IOU box is the only one left for the final prediction. However, this method
eliminates partially obscured objects of the same class, which is undesirable. Hence, this
type of technique is used in the training process of a detection model.

2.2.2 Soft non-maximum suppression

To predict the most ideal bounding box from multiple bounding boxes, Bodla et al. [4]
developed soft-NMS. In contrast to NMS, soft-NMS assigns the score based on the IOU
value. In this method, a very low confidence score is given if the IOU value is high, which
raises the detection model’s training accuracy. Soft-NMS techniques are not very good at
ensembling, though.

6759Multimedia Tools and Applications (2024) 83:6755–6781



To develop an intelligent traffic control system in the Indian context, the above dataset
may not be useful because of the lack of information about the vehicles like toto, cycle-
rickshaw, motor-rickshaw, and tempo which are frequently seen on Indian roads. To this
end, we have created a dataset with 14 classes that include a few special vehicle classes that,
to the best of our knowledge, are not included in any other datasets. Since both urban and
rural roads were taken into consideration, this dataset effectively captures both structured
and unstructured traffic scenarios. This is a crucial component of developing nations like
India’s traffic management system. Table 1 compares the widely used datasets with the one
we have created. YOLOv3, YOLOv4, Scaled-YOLOv4, and YOLOv5 are the four most
recent deep learning-based object detection models used to benchmark the results on this
dataset. Additionally, weighted and non-weighted ensembles of these deep learning models
are employed to boost the detection accuracy. The ensemble technique, which is primarily
used in the machine learning field, combines the decisions of multiple predictive models to
make the final prediction that is more accurate than those made by the base models. It has
the following main advantages,

– One of the main benefits of using the ensemble technique is that it improves the
performance of the average accuracy of any present member.

– It reduces the bias-variance trade-off of the contributing members.
– It improves the robustness of the models.

3 Developed object detection dataset

Data collection and annotation process, quality and statistics of the data, and comparison
with other vehicle detection datasets are presented in this section.

3.1 Data collection

Due to the lack of structure in the traffic management system, 11% of all fatalities world-
wide occur in India [15]. In order to create more reliable systems that can be applied in
the real world, we have created a still-image-based AVD dataset that takes into account the
unique characteristics of Indian roads and vehicles. We have gathered information from var-
ious locations and at various times of the day to adequately represent the variety of traffic
conditions. The traffic control system is more organized and effectively managed in urban
areas. However, in rural areas, some vehicles and pedestrians disobey traffic laws, which
leads to a high number of traffic accidents. When gathering the data, different perspectives,
including the front, side, and back views of the same object, were taken into account. As the
images were captured from different angles, the size of the objects varies a lot. We made
use of a 16MP Sony IMX519 high-resolution camera to take all of these pictures. To cre-
ate the database, we watched 1080p footage at 60 frames per second for more than 5 hours
(during various times). Some samples images are already shown in Fig. 1.

3.2 Annotation process

A non-iconic image is one that contains multiple objects, which makes it more difficult for
researchers to identify objects accurately in such images. To accurately assess the perfor-
mance of any existing or newly developed methods, the data annotations must be flawless.
The majority of the dataset’s images are not iconic in any way. Although the annotation
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Fig. 2 An example of a difficult annotation problem. The green box shows a straightforward annotation and
the red box indicates a difficult annotation

process may be prone to errors, we must make sure that they are kept to a minimum. We
struggled to obtain the correct bounding boxes for each object when it was obscured by
another. Objects may be regarded as noise because of their small size and light particle illu-
mination. Figure 2 displays a challenging annotation example. Because the object in this
example is too small, we have not considered it to be an object. Using the open-source
program LabelIMG [36], all of the images have annotations.

3.3 Statistics of the dataset

Because they are the most varied and common on Indian roadways, we selected 13 vehicle
categories and one class for pedestrians from the photographs we collected. They are toto,
bike, cyclist, auto-rickshaw, motor-rickshaw, van, tempo, car, bus, taxi, truck, jeep, cycle-
rickshaw, and pedestrian. A sample of each category found in the developed dataset is
shown in Fig. 3. We took into account every vehicle that was included in datasets like
KITTI and NITCAD. Additionally, six new vehicle classes have been added: tempo, taxi,
motor-rickshaw, jeep, toto, and cycle-rickshaw. We have annotated 4000 images using the
aforementioned process, and a total of 14343 bounding boxes have been labeled manually.
Each image in our dataset has an average of 3.58 boxes. Figure 4 shows the frequency of
each object. From this figure, it is clear that there are a maximum number of pedestrians
and a minimum number of cycle-rickshaws in the dataset.

3.4 Quality of annotation

Thanks to the open-source annotation software LabelImg [36], which made it easier to
prepare most accurate annotations. We have annotated the images using this software in
accordance with the YOLO format. As seen in Fig. 2, typical situations like occlusion and
the small size of the objects, among others, lead to errors in the annotation process. To
lessen the uncertainty of the bounding boxes and class labels, we have carefully examined
the results.

3.5 Comparison with other vehicle detection datasets

For AVD, a number of datasets have been made available, including CBCL StreetScenes,
KITTI, Dataset by Yu P. et al., BDD100k, Mapillary Vistas, IDD, NITCAD, and others.
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Fig. 3 Examples of different classes present in IRUVD dataset. (a) Toto (b) Cyclist (c) Bike (d) Truck (e)
Motor-rickshaw (f) Van (g) Tempo (h) Car (i) Bus (j) Taxi (k) Auto-rickshaw (l) Jeep (m) Cycle-rickshaw (n)
Pedestrian

There are mainly two types of datasets: segmentation based datasets and localization based
datasets. The dataset developed under the current work can be applied to localization. Our
dataset is more comparable to the NITCAD dataset because we have concentrated on Indian
vehicle detection and classification. As seen in Table 1, our dataset has 14 classes while
NITCAD has only 7 classes. The current dataset has less object classes than datasets like
IDD and Mapillary Vistas, but it has more vehicles because it adds new classes like tempo,
taxi, motor-rickshaw, jeep, toto, and cycle-rickshaw.

Fig. 4 Distribution of different object classes found in the IRUVD dataset. Y-axis denotes the number of
occurrences of each class
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4 Dataset benchmarking

Results of experimentation carried out under the current work are reported in this section.
For the performance evaluation, a total of 11 methods have been applied on the IRUVD
dataset.

4.1 Deep learningmodels used to benchmark

Several object detection models, including YOLOv3 [31], YOLOv4 [3], Scaled-YOLOv4
[40], YOLOv5 [18], YOLOX [12], YOLOR [41], YOLOv6 [21] and YOLOv7 [42] etc. have
been introduced in recent years. In the current work, we have considered four state-of-the-
art object detection models: YOLOv3, YOLOv4, Scaled-YOLOv4 and YOLOv5. The four
models are discussed below.

4.1.1 YOLOv3

Joseph Redmon and Ali Farhadi’s [31] YOLOv3 algorithm is the one of the most widely-
used object detection techniques in the field of computer vision. As shown in Fig. 5, the
detection process is divided into three steps: feature extraction, bounding box prediction,
and class prediction. The Darknet-53 method, used by YOLOv3, for feature extraction con-
sists of 53 convolutional layers. In three different levels, YOLOv3 anticipates the boxes to
determine the precise size of the object, or prior. K-means clustering is employed to estimate
the box prior. Softmax does not discard overlapping boxes, which is useful for detection in
more complicated domains like AVD, so it was used in YOLOv3. Figure 5 displays a typical
YOLOv3 architecture.

4.1.2 YOLOv4

Bochkovskiy et al. [3] introduced YOLOv4 as a successor of YOLOv3 to better speed
and accuracy in terms of mAP [@0.5:0.05:0.95] and mAP [@0.5]. YOLOv4 consists of
four sub-blocks, namely, Backbone, Neck, Dense Prediction block, and Sparse Prediction
block as shown in Fig. 6. A typical object detection model takes images as input and
finds the features through the convolution layer. For this purpose authors of YOLOv4 used
SpineNet [9], CSPResNext50 [39], CSPDarknet53 [39], EfficientNet-B3 [34], VGG16

Fig. 5 Schematic diagram of the YOLOv3 object detection model with Darknet-53 backbone
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Fig. 6 The architecture of YOLOv4. It has four parts—Backbone, Neck, Dense Prediction, and Sparse
Prediction

[33] Backbone for the feature extractor. In this paper, we have used pre-trained CSPDark-
net53 on ImageNet as the Backbone. Extracted feature maps are mixed in the Neck region
to find more generalized characteristics of the objects. YOLOv4 was examined in a few
Neck configurations like Feature Pyramid Network (FPN) [23], Path Aggregation Network
(PANet) [24], Neural Architecture Search Feature Pyramid Network (NAS-FPN) [14],
Bi-directional Feature Pyramid Network (BiFPN) [35], Adaptively Spatial Feature Fusion
(ASFF) [25], Scaled-wise Feature Aggregation Module (SFAM) [47]. PANet is the most
commonly used neck structure in YOLOv4. Generally, head sections refer to the Dense
Prediction block and the Sparse Prediction block. The Sparse Prediction block is used for
two-stage detection, while the Dense Prediction block is used for one-stage detection. The
location and class are both estimated during one stage of the detection process. Two-stage
detection separates each object’s locations and classes. The YOLO head has been used
in this essay. The terms “Bag of freebies” and “Bag of specials” are two new techniques
introduced in YOLOv4 that improve the model and boost performance. The authors noted
that Rectified Linear Unit (ReLU) activation functions did not effectively optimize the
features in YOLOv4. The Mish activation function was consequently used for improved
performance. The YOLOv4 architecture is demonstrated in Fig. 6.

4.1.3 Scaled-YOLOv4

Bochkovskiy et al. [40] suggested the Scaled-YOLOv4 to detect both small and large objects
using the same model. Scaled-YOLOv4 includes CSPDarknet53, CSPUp sampling block,
and CSPDown sampling block, as demonstrated in Fig. 7. In addition to the detection
bandwidth, both large and small models can use up and down-sampling without sacrific-
ing speed or accuracy. This approach led to the development of two models, tiny-YOLOv4
and large-YOLOv4, which offered cutting-edge outcomes for both small and large object
detection models in terms of mAP scores. Scaled-YOLOv4 has a backbone in the form of
CSPDarknet53. To lessen the computation at the model’s neck, the PAN architecture on
Scaled-YOLOv4 employs the CSP-ize technique. By using this technique, the computation
is slashed by about 40%. The neck also makes use of CSPSSP. It is clear that YOLOv4’s
training processes heavily rely on data augmentation. In the scaled YOLOv4, the model is
only fine-tuned by adding training data after the training is complete. Additionally, it aids
in accelerating the training process.

4.1.4 YOLOv5

Glenn Jocher et al. [18] came up with the idea for YOLOv5. It has three main sub-blocks,
including Backbone, PANet Head, and Output block, like other YOLO models, as shown
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Fig. 7 Schematic diagram of the Scaled-YOLOv4 object detection model. Red lines represent the CSPUP
block are replaced by the CSPSPP block for scaling

in Fig. 8. BottleNeckCSP is used to organize YOLOv5’s backbone into Darknet53, also
known as CSPDarknet53. For feature extraction and feature dimension reduction, a large-
scale backbone like CSPDarknet53 works best. This improves the model’s detection speed
and accuracy. A PANet is present in the model’s second component. The model’s informa-
tion flow from the backbone to the head is improved by PANet neck. A bottom-up method is
used to pass information through the feature pyramid, allowing the model to recognize more
low-level features. The model propagates the features to other layers with the aid of skip
connections. Last but not least, the YOLO head is used by the YOLOv5’s head or output
section. Similar to YOLOv3, YOLOv5 forecasts the output in three distinct scales, namely
(72 × 72, 36 × 36, and 18 × 18), enabling the model to recognize objects of various sizes.
Four distinct models based on trainable parameters are available in YOLOv5.

Fig. 8 An illustration of YOLOv5s architecture, with CSP Backbone, PANet Neck, and YOLO head
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– YOLOv5s (small)
– YOLOv5m (medium)
– YOLOv5l (large)
– YOLOv5x (extra-large)

In this paper, we have used YOLOv5s to benchmark the results on the IRUVD dataset.

4.2 Object detection benchmarks

As mentioned earlier, we have reported object detection benchmarks using state-of-the-art
deep learning models. Class-wise mAP scores from various detection models at an IOU
threshold of 0.5 to 0.95 in steps of 0.05 are displayed in Table 2. For the evaluation of
each model, we have used a 3-fold cross-validation scheme in order to get more accurate
results. This table clearly shows that the detection models classify toto, truck, bus, and
motor-rickshaw with greater accuracy. However, we have found that the accuracy of object
detection is lower for cars, taxis, bicycles, and pedestrians. Since the shapes of a car and a
taxi are almost identical but their colors differ, the object detection models occasionally fail
to classify them properly. In Tables 3 and 4 we have shown the class-specific mAP at IOUs
of 0.5 and 0.75. The average precision, recall, F1-score, and mAP score at IOU thresholds
of 0.5, 0.75, and 0.5 to 0.95 in steps of 0.05 are displayed in Table 5. YOLOv5s yields the
highest score for precision. In contrast, Scaled-YOLOv4 yields the highest rating for recall.
The Scaled-YOLOv4 model yields the highest overall ratings.

4.3 Confusionmatrix andmiss rate

The confusion matrix for the YOLOv5s model on the current AVD dataset is shown in
Fig. 9. As can be seen, every object has been detected almost perfectly. However, because to

Table 2 Performance comparison on the IRUVD dataset, class-wise mAP scores at IOU threshold ranging
from 0.5 to 0.95 in steps of 0.05(mAP@[0.5:0.05:0.95])

Class

Model

YOLOv3 YOLOv4 Scaled-YOLOv4 YOLOv5s

Auto-rickshaw 0.618 0.686 0.752 0.74

Bike 0.672 0.733 0.794 0.774

Bus 0.720 0.787 0.887 0.82

Car 0.657 0.719 0.788 0.76

Cycle-rickshaw 0.714 0.827 0.894 0.78

Cyclist 0.584 0.658 0.705 0.69

Motor-rickshaw 0.750 0.860 0.912 0.83

Pedestrian 0.534 0.634 0.671 0.63

Taxi 0.589 0.664 0.744 0.71

Tempo 0.704 0.780 0.814 0.77

Toto 0.797 0.865 0.907 0.88

Truck 0.79 0.864 0.937 0.87

Van 0.760 0.858 0.8819 0.839

Jeep 0.719 0.779 0.850 0.80
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Table 3 Performance comparison on the IRUVD dataset, class-wise mAP scores at IOU threshold
0.5(mAP@0.5)

Class

Model

YOLOv3 YOLOv4 Scaled-YOLOv4 YOLOv5s

Auto-rickshaw 0.898 0.852 0.910 0.916

Bike 0.939 0.918 0.958 0.954

Bus 0.942 0.931 0.973 0.953

Car 0.894 0.863 0.913 0.917

Cycle-rickshaw 0.930 0.944 0.958 0.902

Cyclist 0.859 0.837 0.852 0.878

Motor-rickshaw 0.971 0.971 0.980 0.961

Pedestrian 0.852 0.859 0.893 0.887

Taxi 0.804 0.841 0.883 0.898

Tempo 0.90 0.919 0.918 0.895

Toto 0.991 0.959 0.975 0.974

Truck 0.992 0.977 0.988 0.975

Van 0.932 0.931 0.920 0.908

Jeep 0.930 0.891 0.923 0.907

their similar shapes, as already indicated, taxis are sometimes mistaken as cars. Following
are a few erroneous classifications between some classes:

– Car and Taxi
– Cyclist and Pedestrian

Table 4 Performance comparison on the IRUVD dataset, class-wise mAP scores at IOU threshold
0.75(mAP@0.75)

Class

Model

YOLOv3 YOLOv4 Scaled-YOLOv4 YOLOv5s

Auto-rickshaw 0.710 0.805 0.833 0.850

Bike 0.804 0.864 0.888 0.903

Bus 0.912 0.902 0.958 0.917

Car 0.789 0.820 0.869 0.841

Cycle-rickshaw 0.888 0.944 0.958 0.902

Cyclist 0.683 0.782 0.786 0.817

Motor-rickshaw 0.903 0.971 0.963 0.934

Pedestrian 0.603 0.766 0.793 0.769

Taxi 0.713 0.767 0.822 0.796

Tempo 0.859 0.881 0.884 0.870

Toto 0.935 0.951 0.967 0.974

Truck 0.981 0.972 0.983 0.934

Van 0.932 0.931 0.920 0.896

Jeep 0.931 0.882 0.907 0.889
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Table 5 Performance comparison on the IRUVD dataset using different state-of-the-art object detection
models

Method Precision Recall F1 mAP mAP mAP

score @0.5 @0.75 @0.5:0.05:0.95

YOLOv3 [31] 0.913 0.92 0.916 0.917 0.827 0.687

YOLOv4 [3] 0.90 0.937 0.917 0.944 0.874 0.765

Scaled-YOLOv4 [40] 0.786 0.962 0.812 0.932 0.895 0.814

YOLOv5s [18] 0.946 0.919 0.931 0.924 0.878 0.782

– Toto and Auto-rickshaw
– Cycle-rickshaw and Cyclist
– Cyclist and Motor-Bike

We have shown the total number of the true positive and false positive objects detected by
each model. We have presented class-wise log average miss rate for each model to see how
the model works. Figure 10(a) shows the total number of true positive and false positive
objects detected by the YOLOv3 model for each class, whereas (b) shows the log average
miss rate of the YOLOv3 model for each class. Figures 11, 12 and 13 show the similar
results produced by Scaled-YOLOv4, YOLOv5 and YOLOv4 models, respectively.

4.4 Precision vs. recall curve

Precision measures the percentage of true positives, whereas recall measures the percentage
of false negatives. Low false negative rates indicate a high recall value, and high true positive
rates indicate a high precision value. A perfect model needs to be highly accurate and highly
reliable. The precision-recall trade-off, on the other hand, states that as precision increases,
recall decreases, and vice versa. For each of the 14 classes, the precision vs. recall curve
is displayed in Fig. 14. This graph shows that we have achieved encouraging results for
the bus, cycle-rickshaw, toto, van, and motor-rickshaw. We have received subpar results for
some classes, including auto-rickshaw, pedestrian, taxi, cyclist and jeep, and this indicates
a precision-recall trade-off.

Fig. 9 Confusion matrix on the current AVD dataset using YOLOv5s
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Fig. 10 Vehicle detection results produced by YOLOv3: (a) Number of false positives and true positives for
each class, and (b) Log Average miss rate of each class

Fig. 11 Vehicle detection results produced by YOLOv4: (a) Number of false positives and true positives for
each class, and (b) Log Average miss rate of each class

Fig. 12 Vehicle detection results produced by Scaled-YOLOv4: (a) Number of false positives and true
positives for each class, and (b) Log Average miss rate of each class
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Fig. 13 Vehicle detection results produced by YOLOv5: (a) Number of false positives and true positives for
each class, and (b) Log Average miss rate of each class

5 Ensemble techniques

The proposed ensemble method, which is actually a box estimation technique used to pre-
dict the precise bounding box from the N number of bounding boxes provided by the same
number of detection algorithms, has been discussed in this section. Even though a single
object detection model locates objects fairly accurately, it occasionally classifies the back-
ground as an object or becomes confused with objects that have a similar shape. We have
suggested an ensemble technique, which is described below, to address this problem.

– Consider the use of N detection models to create the aforementioned ensemble. At
a specific IOU threshold T , each model provides a prediction score for the detected
object. In our situation, we have established the limit T >= 0.5. The box that the Nth

model returns is designated as BN .
– Each box includes the object’s height and width as well as the class prediction, predic-

tion confidence, and center coordinates (x, y). The algorithms count how many models
classified an object as belonging to the same class for a given object out of N predic-
tions for that class. The class that the majority of models select is the actual class of
the object. Now, the true class is estimated using the prediction confidence scores if the
same number of models correctly predict an object that belongs to multiple classes. The
model with the highest confidence score is considered to have provided the final class
for an object. For instance, if four models are used for assembly and three of them iden-
tify an object as a car and one as a taxi, our suggested method will label the object as a
car. The method considers an object to be a car if two models predict it to be a car and
the other two models predict it to be a taxi, but the first two models have the highest
confidence scores. False predictions can be decreased by using this method.

– Our method does not remove overlapping anchor boxes like NMS and Soft-NMS.
However, it estimates new anchor box from N number of boxes obtained from
different detection models. We propose a technique to estimate the box using a
weighted method or a non-weighted method. Let us consider that N number of detec-
tion models gives N number of predictions for a particular object as [C1, S1, x1, y1
, w1, h1], ............., [CN, SN, xN , yN ,wN, hN ], where CN = class predicted by Nth

model, SN = confidence score given by Nth model, xN = x coordinate given by Nth

model, yN = y coordinate given by Nth model, wN = width given by Nth model,
hN = height given by Nth model. Then parameters are estimated using (1)—(7). The
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Fig. 14 Precision vs. recall plots of 14 object classes using YOLOv3, YOLOv4, Scaled-YOLOv4 and
YOLOv5 object detection models. (a) Auto-rickshaw, (b) Bus, (c) Bike, (d) Car, (e) Cyclist, (f) Cycle-
rickshaw, (g) Motor-rickshaw, (h) Pedestrian, (i) Taxi, (j) Tempo, (k) Toto, (l) Truck, (m) Van, and (n)
Jeep

weighted method takes P1, P2, ......, PN as inputs, where P are the parameter which
we want to estimate, i.e., x coordinate, y coordinate, width, height, etc., and N is the
number of models used in the ensemble technique. On the other hand, P1, P2, ......, PN

, W1,W2, .......,WN are used as inputs for the non-weighted method, where P is x coor-
dinate, y coordinate, width, height, and WN is the confidence score of Nth model.
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We have considered the confidence score as the weight in weighted methods. To esti-
mate the parameters, we have used seven different popular functions that are described
below:

– Non-weighted methods:

1. Mean:

f (P1, P2, ......, PN) =
∑N

i=1 Pi

N
(1)

2. Harmonic Mean (HM):

f (P1, P2, ......, PN) = N
∑N

i=1
1
Pi

(2)

3. Contraharmonic Mean (CM):

f (P1, P2, ......, PN) =
∑N

i=1 PN
2

∑N
i=1 PN

(3)

4. Root Mean Square (RMS):

f (P1, P2, ......, PN) =
√
√
√
√ 1

N

N∑

i=1

PN
2 (4)

– Weighted methods:

1. Weighted Mean (WM):

f (P1, ., PN,W1, .,WN) =
∑N

i=1 WiPi
∑N

i=1 Wi

(5)

2. Weighted Harmonic Mean (WHM):

f (P1, .., PN, W1, ..,WN) =
∑N

i=1 Wi
∑N

i=1
Wi

Pi

(6)

3. Weighted Geometric Mean (WGM):

f (P1, .., PN,W1, ..,WN) =
∑N

i=1 PN
2

∑N
i=1 PN

(7)

Using (1)–(7), all the said parameters are estimated for the newly obtained bounding
boxes. An illustration of our ensemble architecture is shown in Fig. 15. Tables 6 and 7
show results of an ensemble of different models using various methods in terms of mAP at
IOU threshold 0.5, mAP at IOU threshold 0.75, mAP at IOU threshold ranging from 0.5
to 0.95 in steps of 0.05. We have combined two and more models to form different ensem-
bles. From Table 6, it can be seen that the combination of YOLOv3 and YOLOv4 using
the Mean method achieves 1% improvement on mAP@[0.5:0.05:0.95] than YOLOv4 and
8.8% than YOLOv3. Popular techniques like NMS and soft-NMS achieve only 3.8% more
than YOLOv3, but 5% less than YOLOv4. Ensemble of YOLOv4 and Scaled-YOLOv4
using the Mean method gives an 83.6% mAP@[0.5:0.05:0.95] which is 7.1% more than
YOLOv4 and 2.2% more than Scaled-YOLOv5. Other methods give similar performance,
however, NMS and soft-NMS give less mAP than Scaled-YOLOv4 because of the unneces-
sary elimination of overlapping boxes. Fusion of YOLOv4 and YOLOv5 provides an 82.3%
of mAP@[0.5:0.05:0.95], which is 1.5% higher than Scaled-YOLOv4 and 4.7% higher than
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Fig. 15 An illustration of the ensemble method used in the present work which considers N number of base
models

YOLOv5s. When we have used an ensemble of YOLOv5 and Scaled-YOLOv4 models,
NMS and S-NMS display better results than other methods, which is a 5% improvement
than YOLOv5 and 1.9% improvement than the Scaled-YOLOv4. Not only two models, but
more than two models are also used to form the ensemble, as shown in Table 7. Combina-
tions of YOLOv3, YOLOv4, Scaled-YOLOv4 and YOLOv3, YOLOv4, YOLOv5 provide
better results than a single model but do not provide better results than the combination of
two models. However, an ensemble of YOLOv4, Scaled-YOLOv4, and YOLOv5 models
using the Mean method shows higher performance than all other models. An illustration
of a bar plot of mAP@[0.5:0.05:0.95] by the ensemble of different models using different
methods for each class is shown in Fig. 16. A number of false positives, true positives and
log average miss rate of each class given by the ensemble of YOLOv4, Scaled-YOLOv4,
and YOLOv5 using the Mean method are shown in Fig. 17. In Fig. 18, a comparison
of class-wise mAP at different thresholds from 0.5 to 0.95 is presented. We have used
YOLOv3, YOLOv4, Scaled-YOLOv4, and YOLOv5, an ensemble of YOLOv4, Scaled-
YOLOv4 using Mean method and ensemble of YOLOv4, Scaled-YOLOv4, YOLOv5 using
Mean method. From Fig. 18 it can be clearly seen that YOLOv3 has the worst performance,
whether as the ensemble of YOLOv4, Scaled-YOLOv4, YOLOv5 using the Mean method
outperforms other models.

6 Experimentation on other datasets

In this paper, we have presented a dataset for vehicle detection on Indian roads and bench-
marked the results using four state-of-the-art deep learning-based detection models. We
have also proposed an ensemble technique for the improvement of the benchmark results on
the developed IRUVD dataset. For better understanding of how a model trained on existing
datasets fails to detect a vehicle in the complex situation on Indian roads, we have tested the
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Table 6 Performance comparison of the ensemble of two models using different methods on the IRUVD
dataset

PAmPAmPAmdohteMledoM

@0.5 @0.75 @0.5:0.05:0.95

YOLOv3 + YOLOv4 Mean 0.940 0.89 0.775

WGM 0.940 0.891 0.770

WM 0.940 0.897 0.775

NMS 0.942 0.875 0.721

Soft-NMS 0.944 0.881 0.725

YOLOv4 + Scaled-YOLOv4 Mean 0.943 0.914 0.836

WGM 0.944 0.911 0.831

RMS 0.944 0.913 0.835

HM 0.938 0.904 0.822

WHM 0.941 0.908 0.828

WM 0.944 0.914 0.834

NMS 0.944 0.906 0.794

Soft-NMS 0.946 0.912 0.797

YOLOv4 + YOLOv5 Mean 0.947 0.916 0.823

WGM 0.945 0.912 0.821

RMS 0.947 0.915 0.822

HM 0.945 0.910 0.820

WHM 0.946 0.912 0.828

WM 0.947 0.915 0.824

CM 0.930 0.898 0.806

NMS 0.944 0.905 0.793

Soft-NMS 0.947 0.909 0.796

YOLOv5 + Scaled-YOLOv4 Mean 0.933 0.910 0.829

WGM 0.944 0.906 0.822

RMS 0.944 0.909 0.828

HM 0.943 0.905 0.818

WHM 0.944 0.908 0.824

WM 0.944 0.910 0.827

NMS 0.942 0.907 0.832

Soft-NMS 0.944 0.907 0.833

The 1st , 2nd , and 3rd score results are indicated in red, blue, and green fonts respectively

YOLOv5 model trained on two datasets, namely Udacity Self-Driving-Car [37] and Otono-
marc [32]. Comparative results on the IRUVD dataset are shown in Table 8. In terms of
precision, recall, F1-score, and mAP@0.5, the model trained on the proposed dataset out-
performs the models trained on the Udacity Self-Driving-Car and Otonomarc datasets. We
have analysed predictions of the YOLOv5 model trained on the Udacity Self-Driving-Car,
Otonomarc, and IRUVD datasets, as shown in Fig. 19. From Fig. 19, it is clear that the
model trained on IRUVD gives the best result, whereas the model trained on the Udacity
Self-Driving-Car model shows the worst performance.
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Table 7 Performance comparison of the ensemble of three models using different methods on the IRUVD
dataset

Model Method mAP mAP mAP

@0.5 @0.75 @0.5:0.05:0.95

YOLOv3 + YOLOv4 + Scaled-YOLOv4 Mean 0.942 0.907 0.815

WGM 0.943 0.903 0.809

RMS 0.942 0.906 0.810

HM 0.940 0.895 0.803

WHM 0.940 0.898 0.805

WM 0.942 0.907 0.812

NMS 0.946 0.877 0.724

Soft-NMS 0.948 0.885 0.728

YOLOv3 + YOLOv4 + YOLOv5 Mean 0.938 0.902 0.803

WGM 0.937 0.898 0.797

RMS 0.938 0.901 0.799

HM 0.936 0.893 0.793

WHM 0.936 0.897 0.796

WM 0.938 0.902 0.801

NMS 0.946 0.877 0.724

Soft-NMS 0.948 0.882 0.728

YOLOv4 + Scaled-YOLOv4 + YOLOv5 Mean 0.946 0.920 0.841

WGM 0.946 0.917 0.835

RMS 0.947 0.920 0.838

HM 0.946 0.915 0.829

WHM 0.946 0.918 0.835

WM 0.946 0.920 0.838

CM 0.932 0.902 0.823

NMS 0.947 0.908 0.796

Soft-NMS 0.950 0.913 0.799

The 1st , 2nd , and 3rd score results are indicated in red, blue, and green fonts respectively

Fig. 16 A comparison of class-wise mAP@[0.5:0.05:0.95] of detection results using YOLOv3, YOLOv4,
Scaled-YOLOv4, YOLOv5 and top seven the ensemble models in terms of mAP@[0.5:0.05:0.95] shown in
Tables 6 and 7 on the IRUVD dataset
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Fig. 17 Detection results produced by the ensemble of YOLOv4, Scaled-YOLOv4, and YOLOv5 using the
Mean method: (a) Number of false positives and true positives of each class, and (b) Log average miss rate
of each class

Fig. 18 mAP score plots given by YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOv5 and the ensemble of
YOLOv4 and Scaled-YOLOv4 using the Mean method, and the ensemble of YOLOv4, Scaled-YOLOv4 and
YOLOv5 using the Mean method for each class
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Table 8 Performance comparison of YOLOv5 model trained on IRUVD dataset (our) and separately tested
on Udacity Self-Driving-Car, Otonomarc and IRUVD (our) datasets

Dataset Precision Recall F1 mAP

score @0.5

Otonomarac 0.471 0.469 0.470 0.432

Udacity Self-Driving-Car 0.411 0.283 0.335 0.327

IRUVD (Our) 0.946 0.919 0.931 0.924

The best scores are indicated in bold fonts

We have also evaluated our proposed ensemble of YOLOv4 and YOLOv5 models on
Udacity Self-Driving-Car and Otonomarc datasets, and we have obtained 31.05% and
13.29% mAP@0.5 improvements, respectively. Results of this testing are shown in Table 9.
From the table, it is observed that in terms of mAP@0.5:0.05:0.95, the proposed ensemble
method outperforms the base models, thereby ensuring the effectiveness of the ensemble
method for the problem under consideration.

7 Conclusion and future scope

Autonomous vehicles, intelligent traffic management systems, and other technologies have
largely taken over our daily lives. Traffic management is becoming more and more chal-
lenging as vehicles proliferate, especially in crowded nations like India. Nowadays, deep
learning models are primarily used by researchers to build an effective AVD system, which
requires a large amount of data. Several datasets that are freely available for this purpose
have been found in the literature. However, the majority of them only take into account
the traffic patterns and vehicles that are frequently seen on urban roads, making them

Fig. 19 Qualitative results of YOLOv5 model trained on Udacity Self-Driving-Car, Otonomarc and IRUVD
(our) datasets
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Table 9 Performance comparison of the ensemble of two models using different methods on Otonomarc and
Udacity Self-Driving-Car datasets

raC-gnivirD-fleSyticadUcramonotOtesataD

Model Method mAP mAP mAP mAP

@0.5 @0.5:0.05:0.95 @0.5 @0.5:0.05:0.95

YOLOv4 – 0.395 0.268 0.602 0.532

YOLOv5 – 0.412 0.312 0.621 0.558

YOLOv4 + YOLOv5 Mean 0.443 0.332 0.629 0.561

WGM 0.415 0.332 0.638 0.567

RMS 0.419 0.324 0.627 0.553

HM 0.422 0.328 0.623 0.553

WHM 0.422 0.332 0.641 0.562

WM 0.441 0.327 0.633 0.573

CM 0.425 0.332 0.633 0.572

NMS 0.415 0.317 0.623 0.562

Soft-NMS 0.443 0.327 0.641 0.573

The 1st, 2nd, and 3rd score results are indicated in red, blue, and green fonts, respectively

less useful for creating a comprehensive traffic management system. To this end, in this
paper, we have developed a 14-class IRUVD dataset. Many vehicle classes that are fre-
quently seen in rural areas were not taken into account in past datasets. New vehicle classes
like the toto, motor-rickshaw, tempo, taxi, and cycle-rickshaw have been included in the
dataset. With 14343 popper annotations, we have 4000 high-quality images to offer. Four
state-of-the-art deep learning-based object detection models, namely YOLOv3, YOLOv4,
Scaled-YOLOv4, and YOLOv5, have been used to benchmark the results on the said
dataset. Additionally, we have suggested weighted and non-weighted ensemble techniques
that improve mAP@[0.5:0.05:0.95] by 1.9%. Despite our best efforts, some classes like
cycle-rickshaw, jeep, taxi, bus, etc. have a very small number of samples. This may result
in overfitting of deep learning models. Hence to address this, we may employ several types
of data augmentation techniques in future. However, in our research, we have observed
that current models operate efficiently without applying any data augmentation techniques
because the YOLO models use the focal loss for training, which can deal with imbalance
data. [46]. On the other hand ensemble approaches surpass existing models in terms of the
performance metrics under consideration. Another gap in our dataset is that we have not
consider varied weather conditions such as wet, hazy, or overcast days, as well as the time
of day such as evening or night. We would like to resolve these constraints in our future
attempts. Our dataset can be expanded by collecting data from new types such as animals,
signboards, and so on. It is necessary to conduct research on the development of unique
architectures capable of detecting and classifying in a wide range of settings, including
numerous edge cases. Our another future plan is to build a video dataset in Indian context
for AVD purposes.
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