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André R. de Brito1 ·Alexandre L. M. Levada1

Received: 4 August 2022 / Revised: 5 January 2023 / Accepted: 6 April 2023 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Image denoise has been explored with the development of various filters used to remove
or reduce random disruptions on observed data, but at the same time it preserves most of
the edges and the fine details of the scene. The issue caused by the combined deterioration
of the Gaussian noise succeeds the scattering through all the signal frequencies. Thus, the
most effective filters for this type of noise are implemented in spatial domain. In this article,
we proposed a Non-Local Means filter that combines the average of each fragment of a
browser window, by using four measures – of distinct similarities – among the Gaussian
densities that are estimated from the following fragments: the Kullback-Leibler divergence,
the Bhattacharyya distance, the Hellinger distance and the Cauchy-Schwarz divergence.
Computational experiments were done in a set of 7 images that were deteriorated by a
noise of Gaussian type, considering that the data obtained show that the proposed methods
are capable of producing, on average, a Peak Signal-to-Noise Ratio significantly greater
than the one the combination of Total Variation, Non-Local Means, BM3D, Anisotropic
Diffusion, Wiener, Wavelet e Bilateral filters does when they are applied independently.

Keywords Filtering · Denoising · Non-local means · Information theory

1 Introduction

Image denoise on digital images is a crucial process in the stage of image preprocessing on
applications that envolve the areas of image processing, computational vision and pattern
recognition. This stage is characterized by a simple math operation of softening or even the
localization and recognition of objects. Thereby, the process of restoration of noisy images
is a topic of scientific interest for great part of the research community in the areas of
signal processing and computational vision. In summary, the main goal of denoising is to
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minimize and/or to reduce random disruptions of a signal in an image, in order to preserve
the maximum amount of relevant information subsequent stages.

In the image processing area, the concept of quadratic noise is flagged as a random
variation of intensity information, which occurs during the process of acquisition, recording,
processing and transmition of images [1]. In this context, certain types of noise present some
characteristics about the intensity of the degraded pixels, a fact that randomly leads to black
and white spots, and image blurring, or they assume random variations in their parameters
both in the spatial domain and in the frequency domain, which causes and compromises the
ability of visual interpretation of an image.

As a result, the methods of image filtering exist in order to reduce the effects caused by
the noises and they are usually classified into two categories: (1) in the spatial domain; (2)
in the frequency domain [8]. The filtering methods that work in the spatial domain operate
directly over the matrix of the image intensity, through operations of convolution with a
mask [27]. n the other hand, the filtering methods that operate in the frequency domain are
based on the modification of the Fourier transform of the image [31].

In this research, only filtering methods that are on the spatial domain are used: Wiener
[13], Total Variation [25], Anisotropic Diffusion [21], Wavelets [18], Bilateral [29], Non-
Local Means (NLM) [3] and BM3D [4]. The main similarity between these image filtering
methods in the spatial domain is that they normally operate through the convolution process
with a mask over the matrix of pixel/image intensity or through calculations of the distance
between patches and pixels.

Among the many filtering methods that were mentioned above, the Wiener filter is con-
sidered one of the classical methods in the literature of image filtering, which is applied in
the process of reduction of different types of signal dependent noises [13]. This filter maps
the image and its noise on random variables, in order to find an estimate between the refer-
ence image and the filtered image, in such a way that the mean square error (MSE) between
them is minimized. Likewise, this filter is excellent in terms of estimating the minimum
linear mean square error in the process of filtering and in the softening of image noises.

Meanwhile, the Total Variation filter is an optimized algorithm that is applied for the
noise reduction in images [25]. To sum up, the approach adopted by this method solves
the problem of denoising in images through a mathematical modeling in an optimized way,
while aiming to reduce the signal-noise ration (SNR) of a reference image with a term
defined by the magnitude of the absolute gradient of the image.

Regarding the Anisotropic Difussion, it is an adaptative and non-linear method based on
partial differential equations (PDE) for an equation of heat diffusion, in which the diffusion
coefficient is a function of the image gradient [21]. In short, the conception of this method
is to apply the convolution of an original image with a Gaussian core in different scales
(variance). In this way, the result of this convolution allows to obtain blurred images in
multiple resolutions, an intra-region softening and the preservation of the picture edge.

The Bilateral filter is also an adaptative, non-line filtering method that uses a math-
ematical modeling to substitute the intensity of each pixel by a weighted average of its
neighboring pixels [29].The results of the wrights obtained by the weighted average are
defined in terms of two local differences: spatial differences calculated by the Euclidian
distance, and radiometric differences between the central pixels and their neighboring ones.
Consequently, this method allows to preserve the edges and to reduce the noise in uniform
regions of an image.

In addition, the Wavelet filter is a filtering method that is applied to decompose and rep-
resent an orthogonal multi-resolution sign [18].The Wavelet representation is between the
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spatial and the frequency domains. In the spatial domain, a transformed Wavelet is applied
in order to obtain the coefficients in the Wavelets sparse domain, using a Wavelet base. In
this domain, the noise slightly degrades all the coefficients, in a way that it changes zero
coefficients into nonzero coefficients. Like that, according to a threshold T, lower coef-
ficients must be defined for zero, while higher coefficients are attenuated or they remain
unchanged. To sum up, the key-point is to determine the value of T.

Furthermore, the BM3D filter presents the prefiltration and post-filtration stages [4].
In the prefiltration stage, non-local techniques and the transformed Wavelet are applied to
decompose the image into fragments, then they are grouped according to their similiar-
ity. The post-filtration stage is charachterized by the usage of the Wiener filter in order to
minimize the edge effects and the denoising on the image.

Great part of the theoretical background of this article is related to the Non-Local Means
(NLM) filtering method. The NLM filter is a technique applied to deal with the reduction
of additive noise of Gaussian type [3]. This method is based on the fact that digital images
have characteristics that are repeated in the image not only in regions, but also in a global
way. In this way, using the Euclidian distance as a measure of similarity, this method aims
to find the estimated value of the intensity of each pixel in a certain region in the image.

In the last decades, different methodologies and mathematical models have been reported
in the history of the filtering methods art to deal with issues regarding Gaussian denoising in
digital images [6, 19, 20, 24]. In this context, the conception of the classic filtering method
called NLM is based on the calculation of the Euclidian distance between patches, which
is appropriated for images that have additive white Gaussian noise (AWGN). Therefore, an
adaptative method is necessary to eliminate the different types of noise in digital images,
considering the various types of intensity distribution.

Hence, the method that is proposed in this article suggests the development of a new
adaptative filtering method of images that aims to reduce the Gaussian noise in a way that
it individually combines the NLM filter with four different divergences of the informa-
tion theory, in their variations. In order to measure the similarity between patches in the
same browser window and based on Levada’s work to spread the NLM filter to the Gaus-
sian noise [16], the following divergences are used: (1) the Kullback-Leibler divergence;
(2) the Bhatthacharyya distance; (3) the Hellinger distance; and (4) the Cauchy- Schwarz
divergence. Like that, the capacity of the proposed method can be relevant in the process-
ing of different image types, such as the tomographic and hyperspectral images. Besides
that, this method can be extended to other types of degradation, like the speckle noise and
non-Gaussian noises.

The main contributions of this research are: 1) it was proposed a new filtering method,
called Dual Non-Local Means, which acts as an extension to the traditional Non-Local
Means filter, and it is applied in images degraded by Gaussian noises; 2) the L1 norm of the
Dual Non-Local Means filter was used and the stochastic distances of the Kullback-Leibler
divergence, Bhatthacharyya distance, Hellinger distance and Cauchy-Schwarz divergence
were used as a measurement of similarity; and 3) the results obtained through the 7 differ-
ent images degraded by a Gaussian noise indicate that the proposed method can produce
superior outcomes comparing to the following filters: Wiener, Total Variation, Anisotropic
Diffusion, Wavelets, Bilateral, Non-Local Means (NLM) and BM3D. That comparison was
done in a quantitative way, by applying the Peak Signal-to-Noise Ratio (PSNR) metrics for
analysis of mean, minimum and maximum regarding the results that were obtained through
the other filters that were compared.
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This article is organized in the following way: Section 2 is meant to describe works
related to this research, by presenting the relation between this study and the various
important and relevant methods for the image filtering area, such as the Wiener, Bilat-
eral, Wavelet, Total Variation, Aniostropic filters and, specially, the Non-Local Means and
the BM3D filters. Section 3 describes the mathematical formulation of the stochastic dis-
tances of the Kullback-Leibler divergence, Bhatthacharyya distance, Hellinger distance
and Cauchy-Schwarz divergence, when applied to the Non- Local Means filtering model.
Section 4 detailes the proposed method: Non-Local Means using the KL divergence, Non-
Local Means using the Bhatthacharyya coefficient, Non-Local Means using the Hellinger
distance and Non- Local Means using the Cauchy-Schwarz divergence. Section 5 shows the
experiments done and the results obtained in terms of os the PSNR quantitative metrics and
the qualitative metrics. Finally, Section 6 shows the conclusions, final considerations and
some directions for future works.

2 Related work

The literature on the image filtering methods is really long, therefore an extensive literary
review assisted in the scope of this article. In this respect, this section determines the relation
between this work and other important and recent methods in the area of image filtering,
such as the Wiener, Bilateral, Wavelet, Anisotropic Diffusion, Total Variation, BM3D filters
and, in special, the Non- Local Means filter.

In 2020, Petkova and Draganov presented, in their article, a proposal of application of the
Wiener filtering method on digital images that denote an unknown level of Gaussian noise
[22]. In this context, the variance of Gaussian noise found on images was caused by the
distribution of intensities in homogenous areas contained in the image. Thus, the simplest
method of the Wiener filter for denoising was applied when obtaining the results of the
noisy images. In this way, the authors conducted an extensive analysis on the influence of
the size of the filter Wiener mask regarding the variance of the noise. Consequently, the
results of that influence led to the conclusion that the usage of the Wiener adaptative filter
is efficient, in terms of general (PSNR) and structural (SSIM) preservation.

In 2020, Jin and Luan revealed, in their study, a new approach for the denoising in digital
images, based on the Total Variation filtering method and on the weighting function [11].
The approach proposed by the authors initially analyzes the ladder effect caused by the
traditional Total Variation filter. Besides that, a second analysis was done, based on the
effects of the weighting function in edge regions, in flat regions and in gradient regions.
Through these analyses and the information provided by the traditional method, the authors
used the Total Variation filter to modify the process of image denoising in a problem of
minimization of the energy function. Thereby, after the filter application, they used the
weighting function to calculate the gradient magnitude and the value of the local variance
of each pixel. By the end of the filter application and after the mathematical calculus, it was
possible to analyze in detail the characteristics of different parts of an image. From this new
approach, the authors concluded that the Total Variation filter can effectively extinguish the
ladder effect of the traditional Total Variation filtering method.

In 2020, Zhang and Sun showed, in their research, a new adaptation of the BM3D algo-
rithm for the denoising in digital images, without affecting the the intra-region and edge
details [32]. In the first filtering stage, the algorithm proposed by the authors used the
Anisotropic Diffusion (DA) method, along the BM3D method, to search for similar blocks
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based on the vertical directions of the edge. Therefore, more concrete information could be
obtained about the edges and the details of the processing effects. During the second stage,
in order to calculate the function of the diffusion coefficient, a mathematic model based
on the hyperbolic tangent function was introduced. In that way, the values obtained by the
gradient of the neighboring of the eight directions in the image are used for the AD filter
application. Through this approach, the researchers concluded that the adaptation of the AD
filter, along the BM3D algorithm, could promote better results than the traditional BM3D
method, in terms of PSNR and SSIM evaluation. In addition, it provided superior results
regarding denoising, edge preservation and image detailing.

Similar to the methodology proposed by Zhang and Sun (2020), which seeks to adapt
the BM3D method of filtering noises through another type of filter, Yahya and collabora-
tores presented, in their work, a model of adaptation of the BM3D method, done through
an adaptative filtering technique [30]. In this context, the authors proposed to divide that
method into two stages, aiming at reducing the Gaussian noise and at preserving the edge.
The first part of this adaptation seeks to replace the traditional hard-thresholding technique
that is on BM3D by the Total Variation method of adaptative filtering. Like that, the Total
Variation filter is applied on image areas that contain slight noises, in contrast to the tra-
ditional hard-thresholding technique used in areas of high noises. This adaptation that was
proposed by the authors allows a high performance regarding denoising and edge preserva-
tion. Thus, the second part of this stage uses the calculus of the adaptive weight function
and the k-means clustering technique to calculate the spatial distance between a reference
patch and its candidates. Consequently, using the Total Variation adaptative filter, the adap-
tive weight function and the k-means clustering technique, as well as through the PSNR
and SSIM metrics, the authors noticed the superiority of this method in comparison to the
traditional BM3D method.

In 2021, Salehi and Vahidi demonstrated, in their study, a new method of hybrid filter-
ing, which is composed by three stages and three filters for image [26]. In this scenario, the
combination of the three filtering methods used by the authors was based on the Wiener,
Bilateral and Wavelet filters. In this way, the first stage of the process to denoise concerns
to obtain the coefficient of variation and to apply the fuzzy c-means technique to classify
the image regions. Then, the second stage consists of the combination and application of
denoising filters, being them the Bilateral filter for homgenous regions, and the Wiener
and Wavelet filters in regions that contain details and edges. In the third and last stage, the
resulting image is evaluated through the logic fuzzy approach. Through the approach of the
three named stages, the authors concluded that the combination of the three filtering meth-
ods was able to overcome other methods that exist in literature. Besides that, this method
could preserve important details and edges on the image.

In 2021, Gupta and Lamba made evident, in their research, two new guidelines to be
applied in the traditional Anisotropic Diffusion filtering model [23]. The proposals made
by the authors include the traditional Anisotropic Diffusion filter, which is based on a new
coefficient of diffusion and on a new threshold, depending on the image. The new model
of diffusion coefficiente relied on the function of the tangent sigmoid, so that there was a
greater speed in the rate of the function convergence. Regarding the new threshold, a math-
ematical calculation of weighted absolute mean deviation of the gradient of each processed
image was done. So, the researchers concluded that the proposed method demonstrated a
higher performance in denoising and edge preservation, besides effectively supplying the
ladder effects and blurred edges in relation to the traditional anisotropic diffusion filtering
method.
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Recently, Kundu and collaborators presented, in their article, a new way of evaluating
the value of intensity and retention of edges of NLM filter, using a genetic algorithm [15].
In this scenario, instead of applying the calculation of the weighted average to find the
neighboring pixels, the authors used some techniques of genetic algorithms to choose pixels
that were more relevant in the local neighborhood, through the introduction of new intensity
values. By doing that, the selection of these significant pixels aided in denoising and also
improved the process of filtering in terms of edge preservation and evaluation of an intensity
value that is considered deprived of noise. Through this new adaptation of the NLM filter
and doing an empirical analysis, the authors demonstrated that the proposed filter exceeds
the traditional NLM filter.

Therefore, the methodology that is proposed in this article aims to improve the quality
of the method of Gaussian noises reduction at a considerable level in comparison to the
other attempts done on previous works. Besides that, the previous efforts provided several
results for different variances of Gaussian, Salt and Pepper, and Poisson noises, while the
method proposed in this article was applied and analyzed for additive Gaussian noise. The
exhaustive experimental approach was used in order to show the efficiency of the metrics
of information theory when applied on the Dual NLM method that was proposed.

3 Information theoretic distances

In the literary context, the metrics of information theory have been applied on several works,
and it has obtained success in the areas of Mathematics and Statistics to quantify the similar-
ity level between random variables. Among the various metrics that exist in the information
theory, in the context of this article the Kullback-Leibler divergence, the Bhattacharyya
distance, the Hellinger distance and the Cauchy-Schwarz divergence are used and analyzed.

3.1 The Kullback-Leibler divergence

The first metrics used in this work is the Kullback- Leibler (KL) divergence. The KL diver-
gence, also known as Relative Entropy, was initially proposed on the On Information and
Sufficiency article, in 1951, by Kullback and Leibler [14]. In this context, the KL method
aims to calculate the divergence between two probability distributions (or relative frequen-
cies). In this way, it is possible to represent the math equation of the KL divergence by the
following expression:

DKL (p, q) =
∫

dμ1 (x) log
p (x)

q (x)
=

∫
p (x) log

p (x)

q (x)
dλ (x) (1)

In which the parameters p and q denote the discrete distribution of probabilities of a
random variance X with parameter λ that is determined from the sample x.

Given the univariate Gaussian context, it is possible to compute the KL divergence as:

D
sym
KL (p, q) = 1

2
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Likewise, (2) is summarized as:
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In which the parameters σ and μ show the variances and non-local means of the
distributions.

3.2 The Cauchy-Schwarz divergence

The second metrics used in this work is the Cauchy- Schwar divergence. Based on the prob-
ability theories and on the math theory, the metrics present on the information theory that
are applied more frequently on the literature are the Kullback-Leibler divergence and the
Rényi divergence [7, 9, 10, 17]. However, the Kullback-Leibler divergence and the Rényi
divergence make fast and efficient calculus impossible on applications involving the classi-
fication of objects in the static recognition. In this scenario, the Cauchy-Schwarz divergence
arises, which is an analytical expression, closed for a Gaussian mixture (MoG), that enables
fast and efficient calculations in applications of the computational vision and classifying
objects areas.

The Cauchy-Schwarz divergence for two densities of random vectors p (x) and q (x) is
defined as:

DCS (p, q) = −log

( ∫
p(x)q(x)dx√∫

p(x)2dx
∫

q(x)2dx

)

= 1
2 log

(∫
p (x)2 dx

) + (∫
q (x)2 dx

) − log
(∫

p (x) q (x) dx
) (4)

in which the parameters p and q represent two symmetric measures regarding the proba-
bilities distributions, such as 0 ≤ DCS < ∞,in which the result of the minimum value is
obtained if and only if p (x) = q (x).

It can been seen that, in the univariate Gaussian case, the Cauchy-Schwarz divergence
can be computed by [28]:

DCS (p, q) = 1

2
log

((
σ 2

1 + σ 2
2

)2

4σ 2
1 σ 2

2

)
+ (μ1 − μ2)

2

σ 2
1 + σ 2

1

(5)

where the parameters σ and μ represent the variances and non-local means of distributions,
respectively.

3.3 The Bhatthacharyya distance

The third metrics used in this work is the Bhat- tacharyya distance. Based on the process of
stochastic distances, the Bhattacharyya distance was originally proposed on The Divergence
and Bhattacharry Distace Measures in Signal Selection article, in 1967, by Thomas Kailath
[12]. In this context, this method defines a normalized distance between two coefficients:

DBC (p, q) = −ln

(
n∑

x=1

√
p (x) , q (x)

)
(6)

in which the parameters p and q represent the distributions of normalized probabilities and
N the number of distribution compartments. In addition, the Bhattacharyya distance must
be limited between 0 ≤ DBC (p, q) ≤ ∞.

Furhtermore, in the univariate Gaussian case, the Bhattacharyya distance can be com-
puted by:

BCBhat (p, q) = −lnBC (p, q) (7)
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in wich BC(p, q) is the Bhattacharyya coefficient, in the Gaussian case given by:

BC (p, q) =
√

2σ1σ2

σ 2
1 + σ 2

2

exp

{
−1

4

(μ1 − μ2)
2

σ 2
1 + σ 2

2

}
(8)

in wich parameters σ and μ denote the variances and non-local means of distributions,
respectively.

3.4 The Hellinger distance

The fourth and last metrics to be applied in this work concerns the Hellinger distance. Its
origin dates back to 1907, by the Germanpelo mathematician Ernst David Hellinger, and
it presentes a mathematical modeling different from the Riemann integral to measure the
distance between distributions of discrete probabilities. Besides its application for the dis-
tance calculation, the Hellinger method is classified for calculus that envolve metrics and
divergence [5]. Like that, the Hellinger distance is defined as:

DH (p, q) = 1√
2

[∑
x∈�

(√
p (x) − √

q (x)
)2

] 1
2

(9)

in which the parameters p and q q represent the probabilities distributions of a countable
� space. In this case, the Hellinger distance is restricted by 0 ≤ DH (p, q) ≤ 1. Conse-
quently, when the result of the Hellinger distance corresponds to 0, it means that there was
no divergence; on the other hand, if it corresponds to 1, the distributions of probability do
not share a common support..

In the univariate Gaussian case, the Hellinger distance can be computed by:

DHel (p, q) = 1 − BC (p, q) (10)

in which the function BC(p, q) denotes a Bhattacharyya distance coefficient, given by (8).

4 The proposedmethod

In this section, the standard filtering method is presented and compared to the method pro-
posed in this study, in order to describe in detail the functioning of each mathematical
variance. To sum up, the idea of the Non-Local Means method is to deal with Gaussian
noises by the calculation of the weighted median instead of the definition of a weighted
average.

Considering an additive Gaussian noise, uncorrelated and independent of the signal, the
mathematical model used to describe the process of filtering is given by the following
equation:

yi = xi + ni (11)

in which yi denotes the result of the noisy pixel, xi ,is associated with the noise-free pixel
and ni is an operator of the additive Gaussian noise. In the traditional approach ni N(0, σ 2)

and xi N(μ0, σ
2
0 ) are defined. It should be emphasized that the noise is not correlated, that

is, E[ninj ] = σ 2
0 δi,j , whereby, δi,j = 1 if i = j and δi,j = 0 if i �= j . In this way, the goal

is to recuperate xi since xi from yi , given pi the ith patch.
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4.1 Non-Local Means

The Non-Local Means traditional filtering method (NLM) was proposed in 2005, by
Buades, Coll and Morel, as a method applied to deal with the denoising of additive Gaussian
noises in images [3]]. In this scenario, this filter aims to scan the whole image searching for
similar pixels by using the concept of similiarity measurement between patches, as shown
in Fig. 1 [16].

Thereby, the Non-Local Means filtering method when applied to the noise is contextu-
alized in such a way that given the noisy y = yi | εI , the great value for the noise-free
pixel xi , denoted by NL[xj ] is computed as a weighted average of all the pixels in image
expressed by:

NLM [x] (i) =
∑
j∈f

w (i, j) xj (12)

in which w(i, j) represents the weights assigned to the similarity between pixels i and j,
meeting the condition 0 ≤ w(i, j) ≤ 1 and

∑
j w(i, j) = 1. In this way, the similarity

between the i and j pixels has as analogy the similarity of vectors of intensities in the levels
of gray x(Ni) and x(Nj ). Therefore, the Nk parameter represents a patch with a central k

pixel. Then (12) of the traditional NLM filter, that is expresses by the w (i, j) weights, is
defined as:

w (i, j) = 1

Z (i)
exp

{−dE(i,j)

h2

}
= 1

Z (i)
exp

⎧⎨
⎩

−‖x(Ni )−x(Nj )‖2
2,τ

h2

⎫⎬
⎭ (13)

Fig. 1 Process performed by the Non-Local Means filter employing the concept of measuring similarity
between image patches using weighted averaging
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in which the value τ > 1, h2 is a parameter that controls the level of softening, and the
constant Z (i) refers to a function of normalization that is given by:

Z(i) =
∑
j

e
−‖x(Ni )−x(Nj )‖2

2,τ

h2 (14)

Hence, the calculation of the sum expressed by (14) do not envolve all the image pix-
els, but only those that belong to a browser window of t × t size, as a way to reduce the
computational cost and to make the method viable.

4.2 Dual Non-Local Means

In na attempt to overcome the main limitations of the Non-Local Means traditional filtering
method, the Dual Non-Local Means method is proposed in this article. The Dual Non-Local
Means filter consists of a method for the reduction of Gaussian noise in two stages, which
incorporates measures of non-Euclidian similarity, based on the information theory, to mea-
sure the distance between the patches. Works from the literature that consider other types of
noise, such as the Poisson one, were successfully developed [2]. However, improvements for
the original NLM filter are not much explored in the literature, in the case of the Gaussian
noise.

In this context, the conception of the Dual Non-Local Means method considers for each
i = 1, 2, ..., n the e mean and the variance in each pixel for the definition of the parametric
vector �theta = (μi, σ

2
i ). While the variance on i is locally estimated by using all the pixels

insiude the ith patch, the means are estimated in a non-local way, directly applied to the
standard NLM filter. So, by using the Euclidian NLM exit, that is represented by the non-
local estimates of parameters μi to compute the parametric version of great weights, is
defined w(i, j) as:

w (i, j) = exp

{
−dE(Ni ,Nj )

h2

}
(15)

in which dp(Ni, Nj ) representes the parametric measure based on the information theory.
Therefore, the idea of the Dual Non-Local Means method is to substitute the L1 norm

by the function of Kullback-Leibler divergence, the Bhattacharyya distance, the Hellinger
distance and the Cauchy-Schwarz divergence. In this way, the Dual Non-Local Means actu-
ally defines a double filtering process, in which the first stage, based on Euclidian NLM, is
responsible for the estimation of the model parameters, while the second stage is responsible
for the computation of measures of parametric similarity. Because of that, this techinique is
called Dual Non-Local Means.

4.2.1 Dual Non-Local Means KL

In the context of applied mathematics for the control of similarity between random variances
and for the improvement of multivariate data analysis processes, the usage of measures
of information theory is proposed, which is called KL divergence or relative entropy, as
alternatives to benefit data grouping and filtering. To sum up, the Dual Non-Local Means
KL filter works in the following way:

• From a noisy image, the standard (Euclidian) NLM filter is applied to estimate the μi

in a non-local way, for i = 1, 2, ..., n;
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• For each pixel xi , two local variances σ 2
i are estimated inside patch Nk of f × f size,

defined as:

σ 2
i = 1

f 2

∑
jεpi

(xi − μi)
2 (16)

• KL divergence is calculated between the central N̂i ,by using (3);
• Calculate the weight w (i, j) as:

w (i, j) = 1

Z (i)
exp

{−dKL(p,q)

h2

}
(17)

• Noise-free pixel xi is evaluated as:

NLM [x] (i) =
∑
j∈f

w (i, j) mj (18)

4.2.2 Dual Non-Local Means Cauchy-Schwarz

Analogous to the Dual Non-Local Means KL method, the Dual Non-Local Means CS filter
is used in the following way:

• From a noisy image, the standard (Euclidian) NLM filter is applied to estimate theμi

means in a non-local way, for i = 1, 2, ..., n
• For each xi pixel, we estimate two local variance σ 2

i within the patch Nk of size f ×f ,
defined by:

σ 2
i = 1

f 2

∑
jεpi

(xi − μi)
2 (19)

• CS divergence is calculated between the central N̂i by using (5);
• Calculate the weight w (i, j) as:

w (i, j) = 1

Z (i)
exp

{−dCS (p,q)

h2

}
(20)

• Noise-free pixel xi is evaluated as:

NLM [x] (i) =
∑
j∈f

w (i, j) mj (21)

4.2.3 Dual Non-Local Means Bhattacharyya

Similar to the filtering process of the Dual Non-Local Means KL method, the Dual Non-
Local Means Bhattacharyya filter is applied in the following way:

• From a noisy image, the standard (Euclidian) NLM filter is applied to estimate the μi

means in a non-local way, for i = 1, 2, ..., n
• For each xi pixel, two local variance σ 2

i are estimated inside patch Nk of f × f size,
defined as:

σ 2
i = 1

f 2

∑
jεpi

(xi − μi)
2 (22)

• Bhattacharyya distance is calculated between the central patch N̂i and N̂j , using the (8);
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• Calculate the weight w (i, j) as:

w (i, j) = 1

Z (i)
exp

{−dBC(p,q)

h2

}
(23)

• Noise-free pixel xi is evaluated as:

NLM [x] (i) =
∑
j∈f

w (i, j) mj (24)

4.2.4 Dual Non-Local Means Hellinger

When compared to the Dual Non-Local Means KL method, the Dual Non-Local Means
Hellinger filter is used in the following way:

• From a noisy image, the standard (Euclidian) NLM filter is applied to estimate the μi

means in a non-local way, for i = 1, 2, ..., n;
• For each xi pixel, two local variance σ 2

i are estimate inside patch Nk of f × f size,
defined as:

σ 2
i = 1

f 2

∑
jεpi

(xi − μi)
2 (25)

• Hellinger distance is calculated between the central patch N̂i by using the (10);
• Calculate the weight w (i, j) as:

w (i, j) = 1

Z (i)
exp

{−dH (p,q)

h2

}
(26)

• Noise-free pixel xi is evaluated as:

NLM [x] (i) =
∑
j∈f

w (i, j) mj (27)

5 Experiments and results

In order to test and evaluate the performance of the Dual NLM filtering method when
applied to the process of denoising in digital images, a group of 7 types of images, with
sizes of 512 x 512 pixels, 8 bits and in shades of grey were used. The images that were used
refer to: Airplane, Barbara, Camera, Car, House, Lena and Peppers. The set of images used
were taken from the dataset: https://sipi.usc.edu/database/. All the images taken from USC
Image Database are intended for research purposes.

In this scenario, the performance of the Dual NLM filter was compared to other filters
that exist in the literature, such as: the usual Wiener filter, NLM, the Bilateral one, Total
Variation, Wavelet, Anisotropic Diffusion and BM3D.

In order to compare the different methods, quantitative metrics (PSNR) were selected to
evaluate the maximum peak in the signal-to-noise ratio between a reference image and its
filtered image. The higher the resultant value of this index, the better is the result of the
applied filter. All the images used in this article were degraded by additive Gaussian noise,
with a variance of σ 2

n = 10 of image pixels, which were randomly selected.
Table 1 presents the results of the evalutation done with the PSNR metrics for 7 types of

different images, considering a type of mathematical model of the information theory for
each column.
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When analyzing the results presented on Table 1, the Dual-NLM Cauchy-Schwarz filter-
ing method showed the greatest final average when compared to the other filtering methods.
However, there were also situation in which the Dual-NLM Kullback-Leibler filtering
method allowed the obtention of satisfactory results.

Table 2 presents the results of evaluation done with the PSNR metrics for 7 types of
different images and 3 different values of entrance as parameter, applied to the calculation
of KL divergence.

Through the analysis of the results show on Table 2,the Dual-NLM KL filtering method
presented, in great part of the images, the best result to reduce Graussian noises. However,
the standard NLM filtering method also made it possible to obtain satisfactory results.

Furthermore, Table 3 show the results of evaluation done with the PSNR metrics for
7 types of different images and 3 different entrance values as parameter, applied to the
calculation of the Bhattacharrya distance.

Table 2 PSNR obtained after filtering with the standard NLM filter and parametric NLM Kullback-Leibler
filter for images corrupted by Gaussian noise with σ = 10

Using KL distance calculation

Image List t f h Dual NLM KL NLM Pattern

Airplane 50 3 1 1,2 32,0844 32,1147

Airplane 60 3 1 1,1 31,8908 31,5071

Airplane 70 3 2 1,7 31,9330 31,7151

Barbara 50 3 1 1,3 32,9981 32,8209

Barbara 60 3 2 1,9 32,9058 31,7102

Barbara 70 3 2 1,8 32,9442 32,3621

Camera 50 3 1 1,1 32,8568 32,9608

Camera 60 3 2 1,6 32,6702 32,4009

Camera 70 3 2 1,6 32,6046 32,5907

Car 50 4 2 1,9 31,4145 30,4801

Car 60 3 2 1,8 31,5073 30,9908

Car 70 2 2 1,9 31,3631 30,9573

House 50 4 1 1,2 34,7831 34,5490

House 60 4 2 1,8 34,7418 33,9662

House 70 4 2 1,7 34,8378 34,4572

Lena 50 4 2 1,9 33,3640 31,7605

Lena 60 4 2 1,8 33,4148 32,7093

Lena 70 3 2 1,7 33,2812 32,9471

Peppers 50 3 1 1,3 33,3935 33,2182

Peppers 60 3 2 2 33,4561 32,1744

Peppers 70 3 2 1,8 33,4144 32,8588

Average 60,0000 3,2381 1,7143 1,6238 32,9457 32,4405

Median 60,0000 3,0000 2,0000 1,7000 32,9442 32,4009

Minimum 50 2 1 1,1 31,3631 30,4801

Maximum 70 4 2 2 34,8378 34,549

Std.Dev. 8,3666 0,538958 0,46291 0,294796 1,033761468 1,07493735
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Table 3 PSNR obtained after filtering with the standard NLM filter and parametric NLM Bhattacharrya filter
for images corrupted by Gaussian noise with σ = 10

Using the Bhattacharrya Distance Calculation

Image List t f h Dual NLM Bhattacharyya NLM Pattern

Airplane 50 2 2 0,8 31,2266 30,4348

Airplane 60 2 2 0,8 31,2485 31,0526

Airplane 70 4 3 0,8 31,6718 30,7826

Barbara 50 3 2 0,8 32,7934 30,7440

Barbara 60 3 2 0,8 32,7085 31,8039

Barbara 70 2 2 0,8 32,6674 32,1129

Camera 50 2 2 0,8 31,8689 31,0983

Camera 60 4 3 0,8 32,0136 31,1396

Camera 70 4 3 0,8 32,3543 31,6692

Car 50 3 2 0,8 31,1243 30,2227

Car 60 2 2 0,8 31,2452 30,6201

Car 70 4 3 0,9 31,1335 30,1947

House 50 4 2 0,8 34,2851 32,8635

House 60 3 2 0,8 34,2738 33,6994

House 70 4 3 0,8 34,1893 32,6717

Lena 50 3 2 0,8 33,1867 31,2676

Lena 60 3 2 0,8 32,9334 32,4004

Lena 70 4 3 0,9 33,1102 31,2587

Peppers 50 3 2 0,8 33,1270 31,2097

Peppers 60 2 2 0,8 33,1463 31,7917

Peppers 70 2 2 0,8 33,1963 32,5958

Average 60,0000 3,0000 2,2857 0,8095 32,5478 31,5064

Median 60,0000 3,0000 2,0000 0,8000 32,7085 31,2587

Minimum 50 2 2 0,8 31,1243 30,1947

Maximum 70 4 3 0,9 34,2851 33,6994

Std.Dev. 8,3666 0,83666 0,46291 0,030079 1,036529439 0,940214

By analyzing the results presented on Table 3,the Dual-NLM Bhattacharrya filtering
method showed the best result for the reduction of Gaussian noise.

Table 4 provides the results of evaluation done with the PSNR metrics for 7 types of
different images and 3 different entrance values as parameter, applied to the calculation of
Cauchy- Schwarz divergence.

Analyzing the results presented on Table 4, the Dual-NLM de Cauchy-Schwarz filtering
method had the greatest result to reduce Gaussian noises.

Table 5 shows the results of evaluation done with PSNR metrics for 7 types of differ-
ent images and 3 different entrance values as parameter, applied to the calculation of the
Hellinger distance.
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Table 4 PSNR obtained after filtering with the standard NLM filter and parametric Cauchy-Schwarz NLM
for images corrupted by Gaussian noise with σ = 10

Using Cauchy-Schwarz Distance Calculation

Image List t f h Dual NLM CS NLM Pattern

Airplane 50 4 1 0,9 32,1393 31,8127

Airplane 60 3 1 0,9 32,0395 31,5161

Airplane 70 3 2 1,6 31,9116 31,6685

Barbara 50 3 1 1,1 33,0523 32,7391

Barbara 60 3 2 1,8 32,9923 31,7702

Barbara 70 3 2 1,6 33,0133 32,4392

Camera 50 4 1 0,8 32,9464 32,8968

Camera 60 3 2 1,6 32,8642 32,4612

Camera 70 3 2 1,3 32,7421 32,5864

Car 50 4 2 1,8 31,3523 30,3956

Car 60 3 2 1,7 31,3067 30,7715

Car 70 2 2 1,7 31,2420 30,9400

House 50 4 1 1 34,7834 34,4527

House 60 4 1 0,9 34,8563 34,1595

House 70 4 2 1,6 34,6574 34,3192

Lena 50 4 1 0,9 33,2871 32,7381

Lena 60 3 2 1,7 33,4001 32,3561

Lena 70 3 2 1,6 33,5353 33,0187

Peppers 50 3 1 1,1 33,3970 33,1317

Peppers 60 3 2 1,8 33,4020 32,2288

Peppers 70 3 2 1,6 33,4276 32,8173

Average 60,0000 3,2857 1,6190 1,3810 32,9690 32,4390

Median 60,0000 3,0000 2,0000 1,6000 33,0133 32,4612

Minimum 50 2 1 0,8 31,242 30,3956

Maximum 70 4 2 1,8 34,8563 34,4527

Std.Dev. 8,3666 0,560612 0,497613 0,366905 1,048707266 1,083043

Analyzing the results presented on Table 5, the Dual-NLM Hellinger filtering method
showed the best result for the reduction of Gaussian noises when compared to the traditional
NLM method.

Table 6 shows the results of evaluation done with the PSNR metrics for the 7 images.
Besides that, the results presented were considered for each filter: BM3D, Bilateral, Wiener,
Wavelet, Anisotropic Diffusion and Total Variation.

Analyzing the results presented on Table 6, the BM3D and Wiener filtering methods
shows the greatest results for reduction of Gaussian noises in comparison to the other
methods.

To illustrate the difference between those methods, Figs. 2, 3, 4, 5, 6, 7 and 8, show the
visual results for the Airplane, Barbara, Camera, Car, House, Lena and Peppers images.
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Table 5 PSNR obtained after filtering with the standard NLM filter and parametric Hellinger NLM filter for
images corrupted by Gaussian noise with σ = 10

Using the Hellinger Distance Calculation

Image List t f h Dual NLM Hellinger NLM Pattern

Airplane 50 4 1 0,9 32,1393 31,8127

Airplane 60 3 1 0,9 32,0395 31,5161

Airplane 70 3 2 1,6 31,9116 31,6685

Barbara 50 3 1 1,1 33,0523 32,7391

Barbara 60 3 2 1,8 32,9923 31,7702

Barbara 70 3 2 1,6 33,0133 32,4392

Camera 50 4 1 0,8 32,9464 32,8968

Camera 60 3 2 1,6 32,8642 32,4612

Camera 70 3 2 1,3 32,7421 32,5864

Car 50 4 2 1,8 31,3523 30,3956

Car 60 3 2 1,7 31,3067 30,7715

Car 70 2 2 1,7 31,2420 30,9400

House 50 4 1 1 34,7834 34,4527

House 60 4 1 0,9 34,8563 34,1595

House 70 4 2 1,6 34,6574 34,3192

Lena 50 4 1 0,9 33,2871 32,7381

Lena 60 3 2 1,7 33,4001 32,3561

Lena 70 3 2 1,6 33,5353 33,0187

Peppers 50 3 1 1,1 33,3970 33,1317

Peppers 60 3 2 1,8 33,4020 32,2288

Peppers 70 3 2 1,6 33,4276 32,8173

Average 60,0000 3,2857 1,6190 1,3810 32,9690 32,4390

Median 60,0000 3,0000 2,0000 1,6000 33,0133 32,4612

Minimum 50 2 1 0,8 31,242 30,3956

Maximum 70 4 2 1,8 34,8563 34,4527

Std.Dev. 8,3666 0,560612 0,497613 0,366905 1,048707266 1,083043

By doing that, it is possible to observe that there is a significant different regarding the
level of residual noise in the images that were filtered by the Dual NLM Cauchy-Schwar
method. Furthermore, the variances of the as Cauchy- Schwar and Kullback-Leibler non-
local divergences offer a greater relation between denoising and edge preservation.

From the results obtained on Tables 1 and 6,with the evaluation of the filtering methods,
it is possible to observe that both filters, Cauchy-Schwarz and KL, respectively, presented
a high value of percentage regarding the evaluation of PSNR. In this context, in great part
of the results, the usage of the Dual NLM of Cauchy-Schwarz filter proved to be satis-
factory for the application on images that were degraded by Gaussian noise. However,
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Table 6 BM3D, Bilateral, Wiener, Wavelet, Anisotropic Diffusion and Total Variation filters, for images
corrupted by Gaussian noise with σ = 10

Image BM3D Bilateral Wiener Wavelet Anis. Dif.1 T. Var.2

Airplane 31,5459 23,5558 31,1822 30,2621 30,5749 30,1123

Barbara 32,7356 22,3183 31,2905 29,9925 31,1407 30,5626

Camera 28,7898 22,7394 31,9659 29,1573 31,1109 30,7823

Car 30,8849 22,6322 30,4537 29,6981 30,0906 29,2298

House 34,0587 23,6012 32,2004 30,3949 32,0037 32,5141

Lena 33,0817 24,0036 31,2352 30,5116 31,5479 31,2257

Peppers 32,9906 23,9805 31,1313 30,6854 32,0584 32,1650

Average 32,0125 23,2616 31,3513 30,1003 31,2182 30,9417

Median 32,7356 23,5558 31,2352 30,2621 31,1407 30,7823

Minimum 28,7898 22,3183 30,4537 29,1573 30,0906 29,2298

Maximum 34,0587 24,0036 32,2004 30,6854 32,0584 32,5141

Std.Dev. 1,764685 0,686527 0,577142442 0,530269 0,722782189 1,14289

1Anisotropic Diffusion filter
2Total Variation filter

the variances found regarding the PSNR evaluation of the Dual NLM KL filter were
significant, what allowed the achieving results that also showed to be satisfactory regarding
the filtering methods of traditional NLM and the other filtering methods that were applied
in this work.

6 Conclusions and final remarks

The process of denoising in images degraded by Graussian noises is a challenge task in
the computational vision area, since the recent methods of image filtering are based on
functions of spatial domain and frequency domain are not efficient. The filtering methods
that are based on spatial domain are usually the best option to solve issues that deal with
the impulsive Gaussian noise. Given this, in this article, a Dual Non-Local Means filter was
presented, which combines the characteristics of classification order, non-local strategies
and mathematical models that are seen on information theory.

In this scenario, the Dual Non-Local Means filtering method can be considered a philos-
ophy of the NLM filter to solve problems of images that are degraded by impulsive noises.
The variances of the mathematical metrics based on the concept of the information the-
ory unify two types of distinct behaviors but essential to deal with the Gaussian noise. In
this case, the behaviors of the proposed method have the Non-Local Means and the Dual
Non-Local Means filters as approaches. In this way, several computational experiments
were done during the course of this work, with multiple digital images degraded by Gaus-
sian noise, which showed that the proposed method can generate, on average, significantly
better outcomes in terms of PSNR when compared to the continuous application of the stan-
dard NLM, Total Variation, BM3D, Anisotropic Diffusion, Wiener, Wavelet and Bilateral
filters.
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Fig. 2 Example image result (a), noisy image (b), Dual NLM Cauchy-Schwarz filter (c), BM3D filter (d),
Bilateral filter (e), Wiener filter (f), Wavelet filter (g), Anisotropic Diffusion filter (h) and Total Variation
filter (i)

Finally, future works can include the usage of different families of entropy, such as
Renyi’s and Sharma-Mittal’s entropies. Methods that are applied to solve problems of
dimensionality reduction, for example, PCA, can be used to better understand a more com-
pact and significant representation for patches inside the browser window. Besides that,
methods like the Parametric PCA, the ISOMAP and the Laplacian Eigemaps can be applied
before the calculation of the Euclidian distances as a way of asymptotically guarantee the
greatest similarity measures.
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Fig. 3 Example image result (a), noisy image (b), Dual NLM Cauchy-Schwarz filter (c), BM3D filter (d),
Bilateral filter (e), Wiener filter (f), Wavelet filter (g), Anisotropic diffusion filter (h) and Total Variation
filter (i)
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Fig. 4 Example image result (a), noisy image (b), Dual NLM Cauchy-Schwarz filter (c), BM3D filter (d),
Bilateral filter (e), Wiener filter (f), Wavelet filter (g), Anisotropic Diffusion filter (h) and Total Variation
filter (i)
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Fig. 5 Example image result (a), noisy image (b), Dual NLM Kullback-Leibler filter (c), BM3D filter (d),
Bilateral filter (e), Wiener filter (f), Wavelet filter (g), Anisotropic Diffusion filter (h) and Total Variation
filter (i)
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Fig. 6 Example image result (a), noisy image (b), Dual NLM Kullback-Leibler filter (c), BM3D filter (d),
Bilateral filter (e), Wiener filter (f), Wavelet filter (g), Anisotropic Diffusion filter (h) and Total Variation
filter (i)
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Fig. 7 Example image result (a), noisy image (b), Dual NLM Kullback-Leibler filter (c), BM3D filter (d),
Bilateral filter (e), Wiener filter (f), Wavelet filter (g), Anisotropic Diffusion filter (h) and Total Variation
filter (i)
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Fig. 8 Example image result (a), noisy image (b), Dual NLM Kullback-Leibler filter (c), BM3D filter (d),
Bilateral filter (e), Wiener filter (f), Wavelet filter (g), Anisotropic Diffusion filter (h) and Total Variation
filter (i)
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