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Abstract

Automatic text generation is the generation of natural language text by machines. Enabling
machines to generate readable and coherent text is one of the most vital yet challenging
tasks. Traditionally, text generation has been implemented either by using production rules
of a predefined grammar or performing statistical analysis of existing human-written texts
to predict sequences of words. Recently a paradigm change has emerged in text generation,
induced by technological advancements, including deep learning methods and pre-trained
transformers. However, many open challenges in text generation need to be addressed,
including the generation of fluent, coherent, diverse, controllable, and consistent human-
like text. This survey aims to provide a comprehensive overview of current advancements
in automated text generation and introduce the topic to researchers by offering pointers
and synthesis to pertinent studies. This paper studied the relevant twelve years of articles
from 2011 onwards in the field of text generation and observed a total of 146 prime studies
relevant to the objective of this survey that has been thoroughly reviewed and discussed.
It covers core text generation applications, including text summarization, question—answer
generation, story generation, machine translation, dialogue response generation, paraphrase
generation, and image/video captioning. The most commonly used datasets for text gen-
eration and existing tools with their application domain have also been mentioned. Vari-
ous text decoding and optimization methods have been provided with their strengths and
weaknesses. For evaluating the effectiveness of the generated text, automatic evaluation
metrices have been discussed. Finally, the article discusses the main challenges and notable
future directions in the field of automated text generation for potential researchers.
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1 Introduction

Text Generation is a sub-discipline of Natural Language Processing used to fulfill specific
communicative requirements by automatically generating natural language texts that lever-
age computational linguistics and artificial intelligence abilities [168]. Text generation has
many real-world [51] applications depending on the input (data, text, or multimodal); how-
ever, the output is always a natural language text. Thus, based on the type of input, the text
generation has been categorized mainly into three categories: text-to-text generation (T2T),
data-to-text generation (D2T), and multimodality-to-text generation (M2T), as shown in
Fig. 1. The text-to-text generation tasks take existing text as input and automatically gen-
erate a new, coherent text as output. For T2T generation, the most common applications
include summarising the input document [13, 101], generating questions and answers
from a text document [4, 48, 193], translating a sentence from one language to another
[1, 11], creating or completing a story outline [66, 171, 211]. The data-to-text generation
tasks automatically generate text from numerical or structured data such as key-value lists
and tables. For D2T generation, the example applications include reports generation from
numerical data [148, 154], and generating text from the meaning representations to rep-
resent the meaning of natural language [113, 180]. The multimodality-to-text generation
tasks transfer the semantics in multimodal input, such as videos or images, into natural
language texts. For M2T generation, the example applications include generating captions
from images or videos [71, 126], video summarization, and visual storytelling.

The research on text generation has a long history. The earliest text generation systems
used template and rule based methods to capture linguistic knowledge of vocabulary, syn-
tax, and grammar. The next-generation models encode the dependency between vocabu-
lary and context in conditional probability. These methods also couple with template-based
methods for text generation. Then with the development of deep learning technologies,
neural-based models gradually occupy a dominant position. Deep Learning belongs to a
class of machine learning algorithms that identifies patterns in text and identifies features
that assist in solving several text generation tasks [97]. The capacity of deep neural net-
works to learn representations of varying degrees of complexity has aided in achieving
state-of-the-art performances across different text generation tasks, such as machine trans-
lation, text summarization, storytelling, and dialogue systems [62]. The availability and
accessibility of a vast number of corpora and massive computational resources are other
factors supporting deep learning growth. Most recently, the pre-trained text generation
models based on the Transformer architecture have the ability to better capture the lin-
guistic knowledge of vocabulary, syntax, and grammar. However, while these models gen-
erate fluent and grammatical text, they are prone to making factual errors that contradict
the input text. Generating fluent, informative, well-structured, and coherent text is pivotal
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Fig. 1 Categories of common text generation tasks
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for many text generation tasks. It takes significant effort by humans to generate text that
is consistent and model long-term dependencies. And it is an equally challenging to do
it automatically because of the discrete nature of textual data. Traditional template-based
methods generate reliable texts but lack diversity, fluency, and informativeness. The deep
learning models generate fluent and informative texts but are limited by the faithfulness
and controllability of the neural-based models. And the transformer based models generate
fluent, informative, and controllable text, but the inconsistency with the input information
persists. The motivation for conducting this survey and the primary contributions of the
paper are presented in the following subsection.

1.1 Motivation and our contribution

Automated text generation has been gaining attention with the advances in deep learning.
In the last ten years, the text generation field has evolved significantly. Numerous appealing
surveys [51, 59, 120, 123, 173, 216] have been introduced, summarizing the work done in
this field. However, there is no proper survey on ATG in terms of prominent benchmark
datasets, real-world tools, decoding methods, evaluation metrices, and challenges of auto-
mated text generation applications. This motivates us to perform a Systematic Literature
Review for automatic text generation using deep learning techniques. Another motivation
is the gaining interest in this research field of text generation. The analysis of the twelve-
year articles published in this field has consistently increased, indicating that automated
text generation is gaining interest each year. Keeping this in mind, this paper studies all the
relevant articles from 2011 onwards to find methods for automated generation of text in dif-
ferent application domains, different existing tools and datasets used with their application
domain, and evaluation metrices for evaluating the effectiveness of the generated text. The
purpose of this survey is to provide a comprehensive overview of current advancements in
automated text generation and introduce the topic to researchers by providing pointers and
synthesis to pertinent studies.
The main contribution of this paper comprises the following key points:

1. This survey provides an up-to-date synthesis of automated text generation along with
its core applications, including text summarization, question—answer generation,
dialogue generation, machine translation, story generation, paraphrasing, and image
captioning, and the key techniques behind them.

II. A comprehensive outline of techniques and methods employed to generate text auto-
matically, including traditional statistical methods, deep learning, and pre-trained
transformer based models, has been discussed.

III.  This paper enlists standard datasets required to train, test, and validate the text gen-
eration models for the automated generation of fluent and coherent texts.

IV. The text decoding strategies and optimization techniques significantly impact the
quality of the generated text. This paper discussed these decoding techniques and
optimization methods with their strengths and limitations.

V. In this article, real-time task-specific tools for automated text generation have also
been provided with their features and URLs.

VI. For the effectiveness of the generated text, various metrices/approaches have also
been summarized to evaluate text generation models automatically that depict dif-
ferent text attributes such as fluency, grammaticality, coherence, readability, and
diversity.

@ Springer



43092 Multimedia Tools and Applications (2023) 82:43089-43144

VII. This paper also identifies various challenges of text generation applications, including
the generation of human-like text that is fluent, diverse, controllable, and consistent.
This survey also outlines potential future research directions in the area of automated
text generation.

1.2 Comparison with other surveys

There have been related attempts and literature surveys on automated text generation. This
subsection overviews such attempts and highlights the contrast between existing and cur-
rent surveys with their strengths and limitations. For example, Gatt et al. [51] surveyed
natural language generation emphasizing image-to-text tasks. Liu et al. [120] reviewed
deep learning architectures and limited text generation applications. Xie [216] describes
techniques for training and dealing with natural language generation models using neural
networks. Santhanam et al. Lu et al. [123] surveyed only neural text generation models.
[173] review language generation with a focus on dialogue systems. Garbacea et al. [59]
present an overview of natural language generation methods, tasks, and assessments. Yu
et al. [232] reviewed knowledge-enhanced text generation. However, there are many exist-
ing surveys on text generation but are limited in terms of standard datasets, existing real-
time tools, optimization methods, evaluation metrices, and challenges of automated text
generation applications. This motivates us to perform a Systematic Literature Review on
automatic text generation. This survey captures the comprehensive study and up-to-date
review of current advancements in the field of text generation and also studies various
methods for automated generation of text in different application domains, different exist-
ing tools, and datasets used with their application domain, text decoding, and optimization
techniques, and evaluation metrices for evaluating the effectiveness of the generated text.
Table 1 summarizes these aspects in comparison to the surveys mentioned above reports
and contributions in literature.

The rest of this paper is organized as follows. A detailed review strategy and various
research questions with significance are provided in Sect. 2. This section also mentions the
search criteria and the research parameters for writing this survey paper. The extraction
of studies and discussion is presented in Sects. 3 to 10. In Sect. 3, the core applications of
text generation are reviewed. Section 4 mentions the methods and techniques employed for

Table 1 Comparative analysis of Authors [Ref.]
the proposed survey with existing :
surveys
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Gatt et al. [51] v v * * X * X
Liu et al. [120] * v X X X X X
Xie [216] X v X X X X X
Lu et al. [123] X v X X X X X
Santhanam et al. [173] v v X * * X X
Garbacea et al. [59] v v b’ e X v X
Yu et al. [233] v v x X x X X
Our Survey v v v v v v v

where 1: Text Generation Applications, 2: Text Generation
Approaches, 3: Real-Time Tools, 4: Standard Datasets, 5: Text Decod-
ing and Optimization Methods, 6: Automatic Evaluation Metrices, 7:
Text Generation Application Challenges; andv'—Detailed Study, x—
Limited Consideration, Xx—No Discussion.
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generating text. Section 5 enlists application-specific standard datasets required to train,
test, and validate the models. Text decoding and optimization techniques significantly
impact the generated text, which are mentioned in Sect. 6. There are many real-time task-
specific tools for text generation, which are provided in Sect. 7, along with their access
URLs. Section 8 reviewed the approaches to evaluate the effectiveness of the generated
text. Various open challenges to automate the text generation task is mentioned in Sect. 9.
Finally, Sect. 10 concludes this paper and outlines potential directions for future research.

2 Research methodology

The research methodology is a process of systematically researching. It includes an empiri-
cal analysis of all concepts relevant to the field of research. Generally, it includes the con-
cepts of phases, models, and quantitative as well as qualitative techniques. This paper
follows the review process suggested by Kitchenham and Charters [92], which includes
planning, conducting, and reporting the review, as shown in Fig. 2.

2.1 Planning review

The planning process included identifying the need for a Systematic Literature Review
(SLR) and concluding with the formulation and validation of the review procedure. A
systematic review is needed to identify, compare, and classify the existing text generation
work. The studies published on text generation in the last twelve years are observed, but
none are robust. This paper comprehensively analyzes emerging models, methods, tools,
and deep-learning-based text generation application techniques to identify and compare
them systematically.

The research questions (RQs) are prepared to facilitate the review process to be more
focused, clear, and consistent. Eight research questions (RQ 1 to RQ 8) have been framed,
which help to perform SLR. The research questions and their significance in this literature
review are mentioned in Table 2.

Specify Disseminate

Identify Needs

|

Develop and Validate
Review Protocol

Select Studies

Mechanism
Specily Rgsearch Extract required Data Document Observation
Questions

}

Data Synthesis

|

Analyze and Describe
Results

Fig.2 Overview of research methodology
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Table 2 Research Questions and their Significance

Research questions

Significance

RQ 1: How the automated text generation study
evolves with advancements in deep learning?

RQ 2: What are the main text generation applica-
tions that have arisen with advancements in the
field?

RQ 3: What are the various approaches and associ-
ated architectures in the field of text generation?

RQ 4: What are the available datasets adopted in
which the stated applications are organized?

RQ 5: What are various text decoding and optimiza-
tion techniques are used to generate fluent text

To identify the rate of adaptation of automated
text generation studies and the yearly analysis of
research in text generation with advancements in
the technology models

To classify text generation tasks and to describe
various text generation applications based on input
and usage

To identify and analyze various methods and tech-
niques for automatic text generation. This helps to
identify strengths and limitations associated with
the approaches

To identify the available standard datasets according
to application to test, train and validate the model

To identify the task specific text decoding strategies
and optimizers for automated text generation

automatically?

RQ 6: What real-time tools are available for auto-
matic text generation tasks?

To have a perception of the usage of text genera-
tion applications in the real world and to analyze
the strengths and weaknesses of the existing text
generation tools

RQ 7: Which metrics or indicators are used to evalu-
ate the generated text?

To evaluate the effectiveness of the generated text,
identification of the evaluation metrices used for
text generation applications

RQ 8: What challenges are faced in automated text
generation tasks?

To identify the issues related to the applications of
automatic text generation tasks

2.2 Conducting review

This phase involves selecting studies, extracting required resources, and synthesizing
knowledge. This SLR includes research papers from different publications and the var-
ious online electronic databases selected, such as IEEE Xplore, ACM digital library,
Science Direct-Elsevier, Springer link, Web of Science, and Wiley online library. The
search string includes keywords: “Text Generation” OR “Natural Language Generation”
OR “Text Generation using Deep Learning” OR “Neural Text Generation” OR “Neural
Language Generation” AND “Applications” OR “Text Generation Applications.” The
sources contain documents of several types, such as book chapters, research articles,
reviews, and proceeding papers, published in the last twelve years, i.e., from 2011 to
2022. It discusses the research papers from journals, magazines, conferences, work-
shops, and symposiums. The studies were explored and based on inclusion—exclusion
criteria, and a total of 146 research papers were obtained, as shown in Fig. 3.

These 146 research papers from the ‘2011-2022’ time frame are thoroughly reviewed
and discussed in this survey paper. The number of extracted research papers based on
their year of publication is shown in Fig. 4. It can be observed that before 2011 there
was limited work in the research area of text generation using deep neural networks.
And there has been a gradual increase in the number of research papers from 2011
onwards, showing growth in the field of automated text generation with the develop-
ments in deep neural models.
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Define Search String
“Text Generation” OR *Natural Language
Generation” OR “Text Generation using Deep
Leaming” OR “Neural Text Generation” OR
“Neural Language Generation” AND
ications™ OR “Text G i icati

Define Custom Range
2011-2022
Phase-1 Phase-2 Phase-3 Phase-4

Exclusion based on
Title

Exclusion based on
Duplicate entries

Exclusion based on
Abstract and Conclusion

Exclusion based on
full Text

Fig.3 Inclusion/Exclusion technique used in the systematic review
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Fig.4 Yearly analysis of the papers in the text generation research area with development in technology

Discussion on research question 1

This yearly analysis of papers helps answer RQ 1- “How the automated text generation
study evolves with advancements in deep learning.” It has been observed that limited work
has been done on text generation before 2011, and there is a gradual increase in the number
of research papers from the year 2011 onwards. This growth results from advancements in
text generation methods, from traditional rule-based methods to deep neural networks and
pre-trained transformer models. The traditional template or rule based methods were used
for text generation usually before 2013, but these rules/templates are difficult to design and
are very time consuming. These shortcomings of traditional approaches were overcome
in the years with the developments in deep learning methods. The research in the field
of text generation increases gradually thereafter. The availability of powerful deep neural
models and computationally intensive architecture results in the incredible adoption of a
variety of text generation applications, including text summarization, machine translation,
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Fig.5 Reviewing parameters for each text generation application

creative applications such as story generation, and dialogue generation. Now, with pre-
trained transformers models, the automated text generation work has immensely acceler-
ated. Many sectors have started using automated text to improve user experience as the
recent advancements in technology is capable of generating human-like texts. The content
generated by the automated tools is fast and cheap. The analysis of the published articles in
this field indicates consistent growth and adaptation to the research area of automated text
generation from 2011. Keeping this in mind, this paper studies all the relevant articles from
2011 onwards to find methods for automated generation of text in different application
domains, different existing tools and datasets used to achieve the task, text decoding and
optimization techniques, and evaluation metrices for the effectiveness of the generated text.

2.3 Reporting review

For reporting the review, this phase provides the research parameters. The research param-
eters that have been followed for SLR include the core text generation applications. For
each text generation application, the deep learning technique used, standard datasets, exist-
ing real-time tools for that application, optimization methods, evaluation metrics, and chal-
lenges for each application are presented. The different parameters used in this paper are
shown in Fig. 5. The extraction of studies and discussions is presented in this survey.
These research parameters are discussed in-depth in the following sections, and the
results or analysis of these parameters are also reviewed and mentioned in Sects. 3 to 10.

3 Applications of automated text generation

The field of artificial intelligence has developed techniques that generate text automatically
in seconds. Automatic text generation is one such application that is the need for the hour.
Many applications of text generation are crucial and very significant for smart systems and
enable better communication between humans and machines, for example, machine trans-
lation, summarization, and simplification of long or complex texts, grammar, and spelling
correction, generating peer reviews for scientific papers, questionnaire generation, auto-
matic documentation systems for large software, question—answer generation, business let-
ter writing, chatbots and much more. The core text generation applications are shown in
Fig. 6, and the details about these applications are discussed below.
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Fig.6 Text Generation Applications

3.1 Text summarization

With each day, enormous amounts of data from diversified sources have evolved. This mas-
sive volume of data incorporates crucial facts, information, and knowledge that needs to
be effectively summarized to be helpful. Thus, automatic text summarization came into
the picture to tackle the problem of information overloading [142]. A text summarization
method generates an abbreviated version of a document by filtering the significant informa-
tion from the original document [57]. A strong summary consists of all aspects, such as
coverage, non-redundancy, cohesion, relevancy, and readability, in addition to relevant key
points [145]. There are two prominent types of summarization techniques. First, extractive
summarization techniques form summaries by copying parts of the input sentences [134],
and second, the abstractive summarization technique [5, 132] generates a summary by
including words and phrases not present in the source [135]. Nallapati et al. [135] propose
recurrent neural network-based encoder-decoder models for abstractive text summarization.
In follow-up work [134], extractive summarization techniques using recurrent neural net-
works are presented. Rush et al. [172] propose an attention-based network for the abstrac-
tive summarization of sentences, and Cheng et al. [28] proposed an attentional encoder-
decoder for extractive single-document summarization. See et al. [177] used a pointer
generator network for abstractive summarization. Paulus et al. [147] use the reinforcement
learning model for abstractive summarization, while others use reinforcement learning for
extractive single-document summarization [136, 212]. Mehta et al. [129] use Long Short
Term Memory (LSTM) and attention model to summarize scientific papers. Liu et al. [118]
focus on multi-document summarization by generating fluent, coherent multi-sentence
Wikipedia articles using extractive summarization. Modified BERT transformer [40] for
extractive summarization is capable of extracting automatically the features in the internal
layers [116] Multi-document summarization using abstractive methods has also been used
[15, 239]. Xu et al. [221] propose a multi-task framework with a hybrid of the extractive
and abstractive models. Transformer architecture also performs great in many NLG tasks
[195]. Tan et al. [20] used a pretrained model, GPT-2 for the summarization task with the
idea that the model will start generating a summary based on the delimiter. More recent
works leverage pre-trained transformer based networks, such as GPT [162], BART [102],
T5 [163], and PEGASUS [240], for summary generation [63, 119, 213].

3.2 Question answer generation

Automatic question generation (QG) aims to generate questions from some form of input,
such as raw text or a database, whereas Question Answering (QA) is the task of automati-
cally providing precise responses to questions in the natural language given corresponding
document. In the last years, the widespread use of QA-based personal assistants has been
observed, including Microsoft’s Cortana, Apple’s Siri, Samsung’s Bixby, Amazon’s Alexa,
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and Google Assistant, which have answered a wide variety of questions. QG systems pro-
posed by [46, 185] automatically generate answer-unaware questions from within the given
document, whereas [88, 180, 186] generate answer-agnostic questions. Du et al. [47] initi-
ated a neural question generation model using an attention sequence-to-sequence model
[11]; subsequently, [48, 69, 245] also adopted an attention mechanism. Zhao et al. [241]
proposed a gated self-attention encoder. Most neural QG models [69, 95, 204, 245] employ
the copying mechanism for question generation. Weston et al. [206] proposed the use of a
Memory networks model in the system to answer the questions effectively. The Dynamic
Memory Networks model [94] overcomes the shortcomings of the memory networks by
combining the paradigms of memory networks and attention mechanisms. This work was
later extended by Xiong et al. [219] for visual question answering. Other works, includ-
ing visual question answering [2, 9, 58, 122] have generated natural and engaging ques-
tions for an image. [233] have adopted policy gradient methods to diversify the generated
question. [40, 99, 225] uses pre-trained models for the question-answering task, and [100]
uses transformer-based models to generate answer aware questions. [203, 204] propose a
neural model for question generation and answering that jointly asks and answers ques-
tions given a document. Most of the earlier work focuses on using a single QA dataset,
such as SQuAD [165]. While working on the generation of multi-hop [30], open ended and
controllable [23], or cause-effect [183] questions have gained attention, each direction is
studied in isolation as it usually requires a separate question—answer dataset. More recent
works leverage pre-trained transformer based networks, such as BART [102], T5 [163],
and PEGASUS [240], for question generation, which have been successful in many appli-
cations [6, 98, 107, 164, 194].

3.3 Dialogue response generation

Dialogue systems or conversational agents are computer programs capable of replying with
natural, coherent, meaningful, and engaging responses. A good dialogue model generates
dialogues with high human similarity [104]. [131, 181] work on building end-to-end dialog
generation systems using neural networks, whereas [178, 191] use hierarchical encoder-
decoder to generate responses. [218, 228] use the attention model, while [103, 110] use rein-
forcement learning, and Li et al. [111] use generative adversarial networks for dialog gen-
eration. Niu et al. [141] also use a reinforcement learning model focusing on polite dialogue
responses. The use of pre-trained models for conversational agents is also observed. [10,
242] use embeddings; [41, 209] use transformers for response generation [98, 107]. These
conversational models have enabled robots to interact with humans in natural languages; for
example, Window’s Cortana, Google’s assistant, Apple’s Siri, and Amazon’s Alexa are the
software and devices that follow Dialogue systems. [76, 153] proposes dialogue generation
with recognition of emotions, and [56, 167] also generates empathetic dialogues. [181, 243,
244] generates single-turn dialogue responses while [159, 167, 235] generates multi-turn dia-
logues. [184] has used text style transfer and GPT for the creation of a dialog generation sys-
tem over gender-specific, emotion-specific, and sentiment-specific dialogue datasets.

3.4 Neural machine translation

The data accessible to everyone is a challenge because language becomes the barrier, and
machine translation came into the picture to overcome this. Machine translation is the task
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of automatic translation of written text from one natural language into another. Neural
machine translation (NMT) uses neural nets to transform the source sentence into the target
sentence [29, 82, 188]. [11] introduced attention mechanism in NMT models, which was
later extended [124]. Luong et al. [124] have used a unidirectional recurrent neural network
model, while [214] used bidirectional recurrent neural networks (BRNN). [3] and [79]
does the translation for low-resource language pairs. [29, 31] uses gated recurrent units
and achieves better performance on NMT. Tu et al. [192] use a copy and coverage mecha-
nism; Wang et al. [200] use a pre-computed word embedding layer, GIOVe (Global Vectors
for Word Representation). Park et al. [144] proposed a mobile device-based sign language
translation system. [1] uses an attention-based multi-layer neural network. Transformer
architecture [195] also performs well in NMT. [12, 200] proposed deep Transformer mod-
els for translation. Transformers like BART [102], BERT [35, 40] and GPT [20] have also
been used for the NMT task. More recent works leverage pre-trained transformer based
networks for machine translation [54, 64]. Recent works on non-autoregressive neural
machine translation [65, 72, 161] improve model efficiency by decoding in parallel as com-
pared to sequential decoding in traditional autoregressive machine translation methods
[215].

3.5 Story generation

Automated story generation is the task of automatically identifying a series of actions,
events, or words that have been told as a story. Li [106] attempts to automatically generate
a story about any domain without prior knowledge. To encode the context, recurrent net-
works, and convolutional networks successfully model sentences [38, 81]. A fusion mech-
anism [182] is introduced to support sequence-to-sequence models build dependencies
between their input and output. Pawade et al. [149] have implemented a recurrent neural
network-based story system to generate a new story based on a series of inputted stories.
Vaswani et al. [195] use multi-head attention. [108, 170] use LSTM networks to learn the
text hierarchically. Jain et al. [78] chain a series of variable length independent descriptions
together into a well-formed comprehensive story. Clark et al. [34] model entities in story
generation. Martin et al. [128] present an event-based end-to-end story generation pipeline.
Similarly, [68] generates summaries of movies as sequences of events using a recurrent
neural network (RNN) and sample event representations. [53, 227] propose a hierarchical
story generation framework that first plans a storyline and then generates a story based
on the storyline. [151, 208] propose a framework that enables controllable story genera-
tion. [7, 189] uses policy gradient deep reinforcement learners to perform an event-to-event
task. [26] uses the BERT language model for story plot generation.

3.6 Paraphrase generation

Texts that convey a similar meaning but different expressions are referred to as para-
phrases. Paraphrase generation refers to an activity in which, given a sentence, the system
creates paraphrases of it. Bowman et al. [18] use a variational autoencoder (VAE) to model
holistic properties of sentences such as style, topic, and other features. Gupta et al. [67] use
VAE-LSTM to generate more diverse paraphrases. Prakash et al. [155] employ a stacked
residual LSTM network in the Sequence-to-sequence model. [105, 166] propose deep rein-
forcement learning (RL) to guide Sequence-to-sequence training. Cao et al. [22] utilize a
novel sequence-to-sequence model to join copying, and restricted generation [237] tackle
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a comparable task with the Sequence-to-sequence model coupled with deep reinforcement
learning. See et al. [177] use a pointer-generator while [125] utilizes an attention layer.
Iyyer et al. [77] utilize syntactic information for controllable paraphrase generation. Yang
et al. [224] propose an end-to-end conditional generative architecture for generating para-
phrases. Qian et al. [160] propose an approach that generates a diverse variety of differ-
ent paraphrases. [21, 43] tackle the problem of QA-specific paraphrasing while [223] help
diversifies the response of chatbot systems. [117] first uses abstract rules and then leverage
neural networks to generate paraphrases by refining the transformed sentences.

3.7 Image/Video caption generation

The generation of semantically and syntactically correct description sentences of an image
is called image captioning. The recognition of vital objects, their properties, and their
relationships in an image is required for image captioning. Kiros [90] propose the initial
work for extracting image features with the use of a convolutional neural network (CNN)
in generating image captions. Then, with the use of LSTM [90] extended their work [91].
Mao et al. [127] proposed a multimodal recurrent neural network (m-RNN) and [229] used
hierarchical recurrent neural networks for generating image descriptions. [201] proposed
a deep Bi-LSTM based method for image captions. [80, 220] proposed an attention-based
image captioning method. [169, 238] introduced a reinforcement learning-based image
captioning method. [37, 179] proposed an image captioning method based on Generative
Adversarial Networks (GAN). Vinyals et al. [199] proposed a neural image caption genera-
tor method. Donahue et al. [42] propose long-term recurrent convolutional networks that
have been processing variable-length inputs. [150, 230] propose an attention-based image
captioning model. Some method uses a CNN for image representations and an LSTM for
generating image captions. Yao et al. [226] proposed a copying mechanism to generate a
description for novel objects. [55, 85] use pre-computed word embedding layers and thus
generate better image captions. [202] has proposed a framework that unifies a diverse set
of cross-modal and unimodal tasks, including image captioning, and language modelling.

Discussion on research question 2

Text generation research consists of various tasks, topics, or trends. This section helped
to answer RQ 2- “What are the main core text generation applications that have arisen with
advancements in the field.” It has been observed that there are many real-world applica-
tions depending on the input (data, text, or multimodal); however, the output is always a
natural language text. Thus, based on the type of input, the text generation has been cat-
egorized mainly into three categories: text-to-text generation (T2T), data-to-text generation
(D2T), and multimodality-to-text generation (M2T), as discussed earlier. For T2T genera-
tion, the most common applications include summarising the input document, generating
questions and answers from a text document, translating a sentence from one language to
another, and creating or completing a story outline. For D2T generation, the example appli-
cations include reports generation from numerical data and generating text from the mean-
ing representations to represent the meaning of natural language. For M2T generation, the
example applications include generating captions from images or videos, video summari-
zation, and visual storytelling. The summarized description of the above-mentioned text
generation applications is mentioned in Table 3.
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The availability of powerful deep neural models, computationally intensive architecture,
and pre-trained transformer models results in the incredible adoption of a variety of text genera-
tion applications. The applications use different methods including recurrent neural networks, long
short-term memory networks, gated recurrent units for learning language representations, and later
sequence-to-sequence learning, which opens a new chapter characterized by the wide application
of the encoder-decoder architecture. However, these sequence-to-sequence models cannot capture
long term dependencies, motivated the development of pointer networks and attention networks.
Then, the transformer architecture incorporates an encoder and a decoder with self-attention mech-
anism, which is now widely used by text generation tasks. Applying these models to different text
generation tasks can result in different levels of performance due to differences in task-specific
requirements, training data availability, model architecture, hyperparameters, and evaluation met-
rics. Even if the same or similar models are used for different tasks, the architecture of the model
may need to be modified or fine-tuned based on the requirements of the specific task.

The availability and quality of training data can significantly impact the performance of a text
generation model. Models that are trained on large, diverse, and high-quality datasets specific to a
given task or domain tend to perform better than those trained on more general datasets or limited
data. Different text generation tasks may require different data preprocessing steps, such as tokeni-
zation, normalization, stemming, and stop-word removal. The choice of the model architecture and
hyperparameters can also impact the performance of a text generation model. For example, trans-
former-based models such as GPT tend to perform well on a variety of text generation tasks due to
their ability to capture long-term dependencies, but different hyperparameters, such as the number
of layers or attention heads, can affect the model’s performance. Different text generation tasks have
different requirements and constraints that affect the effectiveness of the model. Models that are
optimized for a specific task may perform better than those that are more general-purpose. Thus, it
is important to carefully consider these factors when selecting a model for a particular task.

In this section, advancements in text generation applications have been seen with the rise of deep
neural network approaches. The text generation approaches are discussed in the next section.

4 Text generation approaches

Text Generation is an emerging area of research. Recently, deep learning approaches have
made remarkable success in various text generation tasks [138], including text summari-
zation, machine translation, question answering, story generation, short-dialog generation,
and paraphrasing. This section presents the traditional approaches for text generation, deep
learning techniques, and pre-trained transformer-based approaches to text generation.

4.1 Traditional approaches

Traditionally, text generation was done either by using templates or production rules of a
predefined grammar or performing statistical analysis of existing human-written texts to
predict sequences of words [17, 60, 139, 222]. The template-based text generation sys-
tems adopted rules and templates to design different modules for text generation that reflect
the linguistic knowledge of vocabulary, syntax, and grammar. This approach decomposes
the text-generation task into several interacting subtasks depending on the task-specific text
generation application. The template-based approaches usually consist of several compo-
nents, including content planning (deciding the input data, selecting and structuring content),
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sentence planning (choosing words, syntactic structures, choosing appropriate referring
expressions to describe input entities), and text realization (converting specifications to a real
text), each performing a specific function [137]. The statistical-based text generation systems
encode the dependency between vocabulary and context in conditional probability [93]. The
most popular statistical text generation model is the n-gram language model, which is usually
coupled with the template-based approach for re-ordering and selecting fluent generated texts.
With the traditional approaches, it is very time-consuming to automatically generate text like
those generated by humans. Deep learning techniques have overcome these shortcomings of
traditional approaches. With the development of deep learning approaches, the neural-based
text generation models have gradually occupied a dominant position that better models the
statistical relationship between vocabulary and context, thus significantly improving the per-
formance of text generation, as discussed in the subsequent section.

4.2 Deep learning techniques

Deep learning architectures and algorithms have recently achieved state-of-the-art
results in question—answer generation, machine translation, text summarization, dia-
logue response generation, and other text generation tasks. Deep learning supports
automated multi-level attribute representation learning. The deep neural networks pro-
vide a uniform end-to-end framework for text generation. First, a neural network cre-
ates a representation of the user input. Then, this representation is used as input to a
decoder which generates the system response. Representation learning often happens
in a continuous space, such that different modalities of text (words, sentences, and
even paragraphs) are represented by dense vectors.

A variety of architectures based on deep neural networks have been developed for the
different application tasks of text generation. This section introduces deep learning tech-
niques that are commonly used in text generation application tasks.

4.2.1 The encoder-decoder framework

Much of the work on neural text generation adopts the encoder-decoder approach that was
first advocated and shown to be successful for machine translation [32, 188]. First, the input
is encoded into a continuous representation using an encoder. Then the text is produced using
the decoder. Figure 7 illustrates this encoder-decoder framework for text generation. This net-
work is often referred to as a sequence-to-sequence model as it takes as input a sequence, one
element at a time, and then outputs a sequence, one element at a time.

This encoder and decoder are neural networks. The encoder depicts the input sequence
as a hidden state vector and then transfers it to the decoder. The decoder then produces the
output sequence.

4.2.2 Convolutional neural networks
Convolutional neural networks (CNNs) are specialized for processing data with a known
grid-like topology. These networks have succeeded in computer vision tasks, which have

been represented as 2-dimensional grids of image pixels [201, 217]. In recent years, CNNs
have also been applied to natural language. In particular, they have been used to learn word
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Fig.8 Convolutional Neural Network

representations for language modelling effectively [177] and summarization [28, 136,
138]. CNNs employ a specialized kind of linear operation called convolution (filter which
extracts a specific pattern), followed by a pooling operation (subsamples the input on each
filter to a fixed dimension of output), to build a representation that is aware of spatial inter-
actions among input data points as shown in Fig. 8.

There are many variants of CNN that have different application areas, as mentioned in
Table 4.

4.2.3 Recurrent neural networks

Recurrent Neural Networks are based on the concept of processing sequential data. They
are termed “recurrent” since they perform the same computation over each token in the
sequence, and each step depends on the results of previous computations, as shown in
Fig. 9.

Most work on neural text generation has used RNNs due to their ability to capture the
sequential nature of the text naturally and to process inputs and outputs of arbitrary length.
There are various variants of RNN, including Bi-directional RNN, Parallel-RNN, Quasi
RNN, RNN with external memory, and Convolutional RNN. Their features and application
areas are provided in Table 5.

However, as the length of the input sequence grows, RNNs are prone to losing informa-
tion from the beginning of the sequences due to vanishing and exploding gradients issues
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Fig.9 Recurrent Neural Network

Output Unit

Input Unit

[16, 146]. RNNs fail to model the long-range dependencies of natural languages. Conse-
quently, Long short-term memory [74] and gated recurrent unit [32] have been proposed as
alternative recurrent networks that are better prepared to learn long-distance dependencies.
These units are better at learning to memorize only the part that is relevant for the future.
At each time step, they dynamically update their states, deciding on what to memorize and
what to forget from the previous input. The LSTM cell has separate input and forget gates
as shown in Fig. 10, while the GRU cell performs both of these operations together using
its reset gate.

The forget gate decides which information of the long-term memory is useful and which
to forget. The next input gate determines which new information to be added to the net-
work, and the final output gate decides the new hidden state. In a vanilla RNN, the entire
cell state is updated with the current activation, whereas both LSTMs and GRUs have the
mechanism to keep the memory from previous activations. This allows recurrent networks
with LSTM or GRU cells to remember features for a long time and reduces the vanishing
gradient problems as the gradient back propagates through multiple bounded nonlineari-
ties. LSTMs and GRUs have been very successful in modelling natural languages in recent
years
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4.2.4 SeqGANs and reinforcement learning

SeqGAN (Sequential Generative Adversarial Network) is a variant of GAN (Generative
Adversarial Network), used to generate text. This SeqGAN combines reinforcement learn-
ing and GANS for learning from discrete sequence data [231]. In SeqGANS, the generator
is treated as an RL agent. The tokens generated till a particular time become the state. The
token to be generated next is the action and the reward is the feedback given by the dis-
criminator to guide the generator in evaluating the generated sequence.

Reinforcement learning (RL) is a gradual stamping of behaviour [86, 166] where an
agent learns how to act in an environment by performing actions and analyzing the out-
comes, as shown in Fig. 11. The performance is maximized by allowing software agents
and machines to determine the ideal behaviour within a specific context automatically. The
agents are required to learn their behaviour using simple reward feedback, known as the
reinforcement signal.

When using reinforcement learning for automated text generation, the actions are writ-
ing words, and the states are the words already written by the algorithm. The actions,
rewards, and policies corresponding to text generation tasks are mentioned in Table 6.
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4.2.5 Transformer models

The Transformer models introduced by [195] have facilitated the enhancement of a wide
range of text generation tasks. Transformer models are based on global dependencies
between the input and output, use attention mechanisms, and have the capability to cap-
ture the linguistic knowledge of vocabulary, syntax, and semantics. The transformer is an
encoder-decoder architecture. RNNs and LSTM architectures have significant difficulties
with longer sequences as a result of the vanishing gradient problem [16, 146]. The prob-
ability of keeping context from a word that is further away from the word that is being pro-
cessed diminishes exponentially as the sentence grows longer. Parallelization is a practical
approach for training on larger datasets. The transformers expand with data and architec-
tural size, capture longer sequence features, and enables parallel training. As a result, more
effective and coherent language models are feasible. Prior to this, most of the ATG models
were trained on supervised learning. However, supervised models need a large amount of
annotated data for learning a particular task which is often not easily available, and they
fail to generalize for other tasks.

The Transformer is a sequence-to-sequence model and consists of an encoder and
decoder. Both encoder and decoder are multiple identical blocks layered on top of each
other. The overall architecture of the Transformer is shown in Fig. 12. Each encoder block
consists of a multi-head self-attention module followed by a position-wise feed-forward
network (FFN). Around each module, a residual connection is employed, followed by the
layer Normalization. Compared to the encoder blocks, decoder blocks additionally insert a
third module, known as encoder-decoder attention, between the multi-head self-attention
and FFN module. Furthermore, the masked attention module preserves the auto-regressive
property, ensuring to prevent each position from attending to subsequent positions.

Transformer models such as BERT [40], and GPT-3 [20] are pre-trained on large
corpora and use unsupervised learning for text generation. These pre-trained transformers are
classified into three categories, namely: encoder-only (like BERT), decoder-only (like GPT-
n), and encoder-decoder (like T5). Bidirectional Encoder Representations from Transformers
(BERT) is the first deep bidirectional, unsupervised language representation [40] model. It is
built upon work in contextual representations. BERT uses an attention mechanism along with
a Transformer that learns contextual relations in text to generate a text [40]. Generative Pre-
Trained Transformer (GPT) is an autoregressive language model that was trained with 175
billion parameters to generate text automatically. It uses unlabeled data and then fine-tuning
for the specific downstream task. GPT-n series (GPT-1 [162], GPT-2 [20], GPT-3 [20]) shows
significant performance on various ATG tasks even without finetuning or gradient updates.
Transformer-based models, such as GPT, TS5, XLNet, and BERT [20, 40, 163], showed
impressive results on several text generation tasks such as question answering, language
modelling, machine translation, sentiment analysis, and summarization, as shown in Table 7.

Discussion on research question 3
With the advancements in deep neural networks, text generation models are capable of
generating realistic, fluent, and coherent natural language. This section helped to answer

RQ 3- “What are the various approaches and associated architectures in the field of text
generation.” It has been observed that the field of text generation has undergone significant
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Fig. 12 Transformer architecture

changes from template-based and statistical-based traditional approaches to, most recently,
pre-trained transformer based models. As a result of these advancements in techniques,
the text generation research field has witnessed remarkable progress and a surge in interest
for the study. The shift starts with recurrent neural networks, long short-term memory
networks, gated recurrent units for learning language representations, and later sequence-
to-sequence learning, which opens a new chapter characterized by the wide application
of the encoder-decoder architecture. However, these sequence-to-sequence models cannot
capture long term dependencies, which motivated the development of pointer networks
and attention networks. Then, the transformer architecture incorporates an encoder and a
decoder with self-attention mechanism, which is now widely used by text generation tasks.
The availability of powerful deep neural models, computationally intensive architecture
and pre-trained transformer models results in the incredible adoption of a variety of text
generation applications, including text summarization, machine translation, creative
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applications such as story generation, and dialogue generation. However, applying these
models to different neural text generation tasks can depend on various factors, including
the type of task, the architecture of the model, the size and quality of the training data, and
the evaluation metrics used to measure the performance of the model.

The deep learning approaches arise due to the availability of a large number of corpora
and significant computational resources. The standard datasets for text generation applica-
tions are mentioned in the next section.

5 Datasets for text generation tasks

In research, the datasets have been used to assess the performance of a proposed method.
The deep learning models trained on large-scale datasets demonstrate unrivalled abilities
to understand patterns in the data, opening a whole slew of new possibilities for creating
realistic and coherent texts. Several datasets were recently created to support the training of
text generation models. The datasets vary in terms of output lengths, generation tasks, and
domain specificity. This section describes some of the datasets that are commonly used in
text generation tasks. In Table 8, a shortlist of some of the task-specific standard datasets is
provided, which is organized by the text generation applications.

Each dataset has many files, including training, testing, and validation files, in various
formats. Few datasets have files in json format, text format, and excel format, while others
are in csv format. For a better understanding of the above-mentioned datasets, screenshots
of few datasets have been provided in the Fig. 13 below.

Discussion on research question 4

The availability of large and diverse datasets has also benefited the recent progress
in text generation. This section helped to answer RQ 4- “What are the available datasets
adopted in which the stated applications are organized.” It has been observed that there
are many datasets that vary in terms of text generation tasks and domain specificity. The
datasets help to train, test and validate the text generation models. Nowadays, there is a
trend to train models on massive datasets. However, training text generation models on
diverse datasets provide the opportunity to improve their robustness. The models trained on
massive datasets show an unmatched ability to automate the generation of fluent and coher-
ent texts. Thus, while training a text generation model for a particular task, it is critical to
choose the dataset carefully. For a specific text generation task, the most commonly used
datasets are shown in Fig. 14. It also specifies the percentage of articles in which a given
dataset is used for a specific text generation task.

After training the model, text decoding plays a vital role in the generation of text. The
following sections discuss text decoding techniques and optimization methods for text
generation.

6 Text decoding techniques and optimization algorithms
The automatic text generation model aims to generate text that is as good as human-written

text. And after training the model, the quality of the generated text has a significant impact
on the decoding strategy and optimization technique that one employs. In this section,

@ Springer



Multimedia Tools and Applications (2023) 82:43089-43144

43114

121
odxa-yoDoy/orqnyis-z-3uays//:sdny

Jorqnpis-ebjodioyy/:sdny
/re-oenby/:sdny

oxe/e1Rp/3I0 TRUR[[R//:SdNY

suonsanb-ues[ooq/s1o
SeIeP-[21easaI-o[3003/wod qnyg,/sdny

/eberarn/mpa uoiSurysem-so-diuy:dny

/101
ordxe-qynds/orqnuis-resandlers/:sdny
1X)°SO[OT}IE SMaU
Tsown AuU=109[3S(, SA[O1}IB-SWT) 10K
-MAU/Z G B[BZU/WOD A[FTey mmm//:sdny
K1
rwrwns-juas/djupreareywod qnuyis,/:sdny

wngx/qnuyysuoryseys/wod qnyid//:sdny

[uny-eyep/Aos-isuronpy/:sdny
/89 Lrewwns//:sdny

[rewAIep-uuo/29siqe/wod qnipis//:sdny

smau Suipuodsa1Iod Wolj JOMSUR Sey
uonsanb A1onb yoes ‘sarronb +(00‘0Z‘1
A SI[OIIE SMIU+ (00 0L
sired
Iomsue—uonsanb paseq-epadyipm Y €11
sted vO ¥ 001
s1omsue 901070 ofd
-n[nuW yIm suonsanb 9ousros Y § punory

SIOMSUE )M Suonsang) Y 91
sordin
QOUIPIA-pUEB-IdMSUB—UOTIsanb Y )G9

sa[one erpadiyip jo
uoneidwods y3noiy) SuroIospmord £q
Pa3o910o sared Jomsue—uonsanb + 001

soLIeW
-wns [1Q'p6T ‘SIUAWNI0P §CE66E 1

SO[ONIR SMAU + JA § SUIRIUOD I]
saLrewwns 76018
M SJUSWNOOP /H]66°C “O[oNIe smou
ndur 9y Jo Arewruns 90UUIS AUQ
saLrewIwnS
QOUAIAJAI PaJeIouas-UrWINY JUAIDJ
-JIp INOJ (NI (OB ‘SI[OILIR SMAU ()0S
BIRPEISW pUB SI[ONIE SMAU A €'
soLrewrwuns Inoj ojdn
UM ORI ‘SI[ONIR SMAU Y /87 PUNoOIy

[6102] 90Dy

[8102] VOIOd10H
[8102] OVnO

[8102] snd10D) DYV
[6102] Ol00Og
[L102] VORIALLL

[8102 ‘91021 (0T Pue 0 1) (@VYNOS)
19s ®jEp SULIOMSUY U0NsSaNn() pIojuels

[8002] saponte sowt], AN

[S102] promesi

[810T] wngx

[¥00T
‘€00z] (a8uayrey) uonEzZIRWIWING

Juewnooq) £00z-ONd PUe €002-ONA
[810C] 10SeIEP WOOISMON

[L10€] 10se1ED [TRIN ATTEQ-NND

Suruoseay asuas
-uouro)) PIm uorsuayardwo)) Surpeay

Surromsuy uonsang)
Surromsuy uonsang)

suonsang) 2010y [dnnA
suonsang) ON/SOx
UoIRISUID

uonsand) pue JuLlomsuy uonson)

uoneIduan)
uonsand) pue JuLlomsuy uonsan)

Arewwing SMIN

UOT)BIQUSD) QUI[PR

Arewwing SmMaN

uoneZLIPWIWING IX3],
UONBZLIBWIWNG X3,

UONBZLIBWWNG X3,

TN

uondrosag

[1eax ] 10seIRq

uoneorddy

$19sBIR(J UONRIAUAN) 1XJ], dyroads-uoneornddy g ajqep

pringer

A s


https://github.com/abisee/cnn-dailymail
https://summari.es/
https://duc.nist.gov/data.html
https://github.com/shashiongithub/XSum
https://github.com/harvardnlp/sent-summary
https://github.com/harvardnlp/sent-summary
https://www.kaggle.com/nzalake52/new-york-times-articles?select=nytimes_news_articles.txt
https://www.kaggle.com/nzalake52/new-york-times-articles?select=nytimes_news_articles.txt
https://www.kaggle.com/nzalake52/new-york-times-articles?select=nytimes_news_articles.txt
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
http://nlp.cs.washington.edu/triviaqa/
https://github.com/google-research-datasets/boolean-questions
https://github.com/google-research-datasets/boolean-questions
https://allenai.org/data/arc
https://quac.ai/
https://hotpotqa.github.io/
https://sheng-z.github.io/ReCoRD-explorer/
https://sheng-z.github.io/ReCoRD-explorer/

43115

Multimedia Tools and Applications (2023) 82:43089-43144

JuondrosaoapIa
/durero/[uy/s1osn/npa sexan-so-mmm//:dny

a3ua[reyd
/L107/wod a3uaf[eyd-eIpawnnw-swy//:dpy

/310°195818P0202//:dNYy

Asy'suonsonb—oyed
1idnp~eronbyjau-upoeionb sy wib/:dny

SrewyPULqS LS
/dyd-xopuy/nyimsis/so nya 1s-zexiy:dny

86£7S=Pp1; xdses[relop/peo
[UMOP/SN-UQ/WO0I ) JOSOIITW MMM //:sdNY

/SOLIO
1s001/d[u/npa19)saYO0I SO MMM //:sdNY

[uny-sey
-UoONR[SURI)/{ [ JWM/SIOTWIRIS Mmm//:dny

[uny-sndio)~sSoer-IA0N ]
QUIOD/UBT)SLIO~/NP" [[QUI0D SO MMM //:sdNy

dyd-sepnqnguad/nadiussndoy/:dny

/eboosor qnuis-diupiojueys//:sdny

suondes paje)
-ouue-uLwWNY ()} YOBS pue SOIPIA ()L6]
suondes pejejouue-uewINY
0 Sururejuod yoes pue SOIPIA J O]
soSeWI Y O¢¢
(sared opdnnu
$SOIO€ INdO0 suonsanb Y 111 punore
3say) jo) sared uonsanb Y ooy punory

L10T=C10¢
I0j swnJoj 1asn pue ‘suondeo aFewr

‘SQUITPEAY SMAU WOIJ JX3) SaPN[ouT J|
SUOTIBIOUUE UBWINY [)IM
S9OINOS SMAU JUI[UO WOIJ UIYE) SIOUI)
-uas juoreamba onuewsas jo sired 00gs

SLIO)S 9SUQS
-~UOWIIOD 9JUJUIS-AAY Y 0] PUNOIY

spIom JA S'ZLZ PUe ] 06 Jo eiodiod
Po[MBID OM] PUR ‘(SpIom JA G°G) AIe)
-UQWIOD $MAU ‘(spIom JA 19) [Tedoing
‘(spiom N 12+) NN Jo erodioo [orfered
youdrJ—ysi3ug woij spiom JA 0S8
SI9)oRIRYD AIAOW
3 0] UBY) 2I0W UdIMIAq saNSO[eIP N 07

SI9)ORIBYD STAOW UM SIT
-AOW + [ () 10§ SUOTJESISAUOD SUTBIUOD J]

SIOMSUR )X9) WLIOJ
-901 )Im suonsanb [BUOTIEBSIOATOD Y /7]

[T10Z] AASINAXSLZqNLNOX

[L102] LLA-ISIN
[120z] 398 18P 0DOD

[£102] suonsenQ) eodrdng eiond)

[L10T] UOTY
-nodwod AJLIR[IWIS 1X9], ONUBWAS S, DV

[s002] sndioo asexydered 1JOSOIOIA]

[910¢] sa101SD0Y

[P102] ¥1 LAM
[1102] sndio) san3o[eI(] SIAOIA [[9UI0))
[9102] sepnqnguado

[610C] 10s18P VOOO

Suruonde) 0opIA

Suruonde) 0dpIA

Suruonde)) a3ew]

uonerauan) aseydereq

uoneIauan aserydereq

uonerouan) aserydereq

Suroy, A101§

UONR[SURIL], QUIYORIA]
uoneIaudn) anoreI(
uonerauan) angoreiq

SUIIOMSTY UoTISaN() [BUOTIBSISAUOD)

TN

uonduosaq

[1eax ] 10seIR

uoneorddy

(ponunuod) g sjqer

pringer

As


https://stanfordnlp.github.io/coqa/
http://opus.nlpl.eu/OpenSubtitles.php
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
https://www.cs.rochester.edu/nlp/rocstories/
https://www.cs.rochester.edu/nlp/rocstories/
https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://www.microsoft.com/en-us/download/details.aspx?id=52398
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv
http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv
http://cocodataset.org/
http://ms-multimedia-challenge.com/2017/challenge
http://ms-multimedia-challenge.com/2017/challenge
http://www.cs.utexas.edu/users/ml/clamp/videoDescription/
http://www.cs.utexas.edu/users/ml/clamp/videoDescription/

Multimedia Tools and Applications (2023) 82:43089-43144

was retrieved from

287113
unique valves

0001811¢24637964130
143209402 160c6c57101

00020950551cba3e2136  (CNN)
60901920954330c3050f

working

Ralph Mata

Police Department

unique values.

taking tise
after being

affairs

Craig Ece
Todd, 27

% aay ey
posoned et week, e St ot

™

Hoicre s aenbie st They it Lok Bey had evanaed when Py &

Spapes T e agpesor e oybend ook o ek, she s eyt e deybiend e e it an s s oot T Y el andeaked

S wsdepeng ~

document (string)

summary (string)

°

4 catied citis, which represent a higher evel of material e o a highe

L]

earier ,in 1803, louisians had become 8 part of the united states

because of the region s impeon
amenican midwest

Back 10 the Future

Select from workdwide kst

As & matter of fact, chilisation is that stage in the culural

rmw g
rwgamw

Americar R

T TEd, 1800 %, R 3R e e A g b
o i S

wad i v, sl & gl Rem Al R,
i

HRTR

228, a7 e 2 et T e b

¥, A AR

figure it out

*australia ‘s current account “australian current account defict: standard of Ining EeEe1]
deficit shrunk by a record #.ee. narzoes sharply®
5 UsaRay #ay
“at least people were killed in “at least two Cead in southern
A suspected bomd attack on a. philippines blast* e A za 3w 2 cod wmed scvden el ) qra g
“australian shares closed domn 0.9 “australian stocks close domn 0.0 f
pexcent monday following a weak. pexcent”
“south kozea 's nuclear envoy kim to restar
00k uIged noIth korea monday to. “ ga gl questical questicad s dsplicate
“south kores on monday announced nnounces tax cuts to 00 1 2 0
sweeping tax reforms , including.. economy*”
11 3¢ 0
“taiman share prices closed domn “tainan shares close comn 0.00
0.00 pexcent mondsy on mall street. percent” 2702 SN %- 0
“australian shaxes closed domn 0.0  “australian stocks close comn 0.0 13 7 8 Wy Y Nt 0
4 9 % st 0
(b) $ 5 1 12 Aoy oo Voon and asoeedin. 1
A image_name # comment_number = A comment =
[null) 296%
158915 158915 . o
unique values total values Other (6442) a%
1800292795 jpg [} Two young guys with
shaggy hair look at
their hands while
hanging out in the
yard
1000892795. jpg 1 Two young , White
males are outside
(c) neor aany bushes
1800@92795. §pg 2 Two men in green
Label: Afraid shirts are standing
Situation: Speaker felt this when... 1ais yord
wp, . L P
I've been hearing noises around the house at night' 1600092795, 199 3 A mon in 8 blue
Conversation: shirt stonding in o
Speaker: I've been hearing some strange noises around garden
the house at night.
Listener: oh no! That's scary! What do you think it is? 1000092795 Jp9 4 Two friends enjoy
. ”, », . time spent t th
Speaker: I don’t know, that’s what’s making me anx- IS SO
ious.
Listener: I'm sorry to hear that. I wish I could help you 10002456 Jpg ) Several men in hard

hats are operating a

(d)

(h)

Fig. 13 Screenshots of datasets [a CNN/DM dataset for summarization task b Gigaword dataset for sum-
marization task ¢ SQuAD dataset for question-answering task d Empathetic dialogues dataset for dialogue
generation task e ROC story dataset for story generation and question-answering task f WMT dataset for
translation task g Quora question pairs dataset for paraphrasing task h Flickr30k dataset for captioning task]
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datasets d Summary of machine translation datasets e Summary of story generation datasets f Summary of
paraphrasing datasets g Summary of image/video description datasets]
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decoding methods and optimization techniques important for text generation have been
discussed.

6.1 Decoding techniques

Decoding is the process of generating natural language texts from a model. As there is a
need for one-to-one correspondence between input and output time steps of generation,
which leads to a crucial key aspect named decoding. The decoding approach in a neu-
ral text generation system describes how the system searches for potential output utter-
ances when generating a sequence. It specifies how the words are combined to form text
and sentences. Without an appropriate decoding technique, the generated text results in
vague and dull text.

Primarily, decoding can be categorized as autoregressive and non-autoregressive [215].
In an autoregressive generation, the target tokens are generated one by one in a sequential
manner, as shown in Fig. 15. The beginning and end of decoding are controlled by special
tokens, including [BOS] (beginning of a sentence) and [EOS] (end of a sentence), which
implicitly determine the target length during decoding.

Traditional models capture the true distributions of words using this strategy. The fun-
damental reason is the conditional dependence property from left to right. The transformer-
based models that cannot replicate the training benefits as training can be nonsequential,
and inference holds to be sequential with autoregressive decoding is among one issue with
this technique. Another issue with the autoregressive approach is that it is time-consuming,
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especially for generating long target sentences. To alleviate this problem and accelerate
decoding, non-autoregressive generation is proposed [65, 72]. The non-autoregressive
decoding technique can generate all the target tokens in parallel, as shown in Fig. 16.

In this method, as all the target tokens are generated in parallel, there is no need for spe-
cial token or target information to guide the termination of decoding. Using this technique,
inference speed is hugely increased. [115, 157] proposes non-autoregressive techniques
for summarization. The autoregressive techniques can be further viewed as sampling and
search techniques. There are many different decoding strategies, including greedy, beam
search, random sampling, top-k sampling, and nucleus sampling, as discussed.

A greedy search selects the most probability word from the language model. It uses
this word as the next word and feeds it as input on the next step till it reaches maximum
length [207]. However, greedy search is bound in a loop of the same words, resolved by
random sampling [14]. Greedy search also lacks backtracking, which results in unnatural
and meaningless sentences. The greedy search is not optimal for generating high-proba-
bility sentences [109], and this problem has been addressed by the beam search decoding
method.

Random sampling picks the word randomly according to the conditional word probabil-
ity extracted from the text generation model [14]. However, directly using the probabilities
extracted from the text generation models often leads to incoherent text. Moreover, this text
decoding method is not deterministic. Nevertheless, applying a softmax over the probabil-
ity distribution and varying its parameter makes it smoother.

Beam search keeps the most probable words by tracking multiple possible sequences at
once. It keeps track of the k-most probable partial sequences at each step, where k is the
beam size. Beam search chooses the words to obtain an overall highest probability sentence
[109, 198]. The text generated with beam search is more fluent as compared to greedy
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search. But when beam size is equal to one, beam search behaves as greedy search. Beam
search produces a list of nearly identical sequences that fail to capture the inherent ambi-
guity of complex text generation tasks. Diverse Beam Search overcomes this problem by
describing beam search as an optimization problem and augments the objective with diver-
sity [197].

In top-k sampling, the k’ most likely next words are selected, and then the next pre-
dicted word is sampled only from these ‘k’ words [53]. As’k’ is fixed in top-k sampling,
the number of words filtered from the next word probability distribution is not dynamically
modified [205]. As a result, unlikely words may be selected among these ‘k’ words if the
next word probability distribution is very sharp.

Nucleus sampling (or top-p sampling) selects words from the smallest possible set with
a cumulative probability greater than some probability p. As a consequence, the number of
words in the set can dynamically decrease and increase according to the next word prob-
ability distribution [75]. It is the best available decoding strategy for generating long-form
text that is both high-quality as measured by human evaluation and as diverse as human-
written text.

Other decoding techniques include semi-autoregressive, iterative, and mixed decoding
[215]. The semi-autoregressive decoding generates multiple target tokens at one decod-
ing step. The iterative decoding provides target information on each decoding step. Some
works aim to combine these decoding strategies into a unified model. Tian et al. [190] pro-
pose a unified approach for machine translation that supports autoregressive, iterative, and
autoregressive decoding methods.

Thus, based on the strengths and limitations of the text decoding techniques, the choice
of decoding method has a significant impact on the linguistic features and the quality of the
generated text.

6.2 Optimization techniques

With the tremendous growth in the amount of data, optimization has become an essen-
tial part of deep learning. The goal of the optimization algorithm is to minimize the loss
function by reaching global semi-minima. Deep Learning models are becoming efficient
and achieve better results with the use of optimization techniques. This section describes
the commonly used optimization methods from a neural text generation perspective.
There has been much interest in modifying the stochastic gradient descent algorithm
with an adaptive learning rate for more stable training, e.g., AdaGrad, AdaDelta, and
Adam, as shown in Fig. 17.

Further, these optimization algorithms are reviewed in a summarized manner based
on their properties, pros, and cons, as mentioned in Table 9.

Discussion on research question 5

The text decoding methods and optimization techniques significantly impact the quality
of the generated text This section helps to answer RQ 5- “What are various text decod-
ing and optimization techniques used to automatically generate text.” These techniques
can be applied to different text generation tasks, i.e., text summarization, story generation,
paraphrasing task, translation, and image captioning. Based on the text generation task,
the autoregressive and non-autoregressive decoding technique can be utilized. Using a
good model with bad decoding strategies lead to repetitive loop problem and inconsistent,
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Fig. 17 Optimization algorithms Gradient Descent
for Text Generation l

Stochastic Gradient Descent

Momentum | Adaptive Learning

l l Rate

| ; —

incoherent text generation problems. As a result, it is recommended to choose a decoding strat-
egy carefully. Decoding methods like, top-k sampling and nucleus sampling produce more flu-
ent text than beam search and greedy search. However, top-k sampling has suffered from gen-
erating repetitive word sequences recently. There has also been observed that greedy and beam
search perform better if a different training objective is used by the text generation model.

In an end-to-end neural framework, all kinds of inputs, including target generated text
are firstly mapped into numeric embeddings, and then neural modules feed-forward infor-
mation layer by layer. Finally, the last output of the neural framework is used to generate
the target tokens with a decoding strategy and calculate the losses to optimize parameters.
Optimization algorithms are among those parameters and play an important part to infer
the losses between neural networks. Thus, optimization algorithms are equally important
for text generation models. It has been observed that the training performance of the model
is influenced by the selection of an optimization algorithm. After understanding the con-
cepts of various optimization algorithms and the function of their parameters, text genera-
tion models perform better. For a particular text generation task, the most commonly used
optimizers are shown in Fig. 18. It also specifies the percentage of articles in which a given
optimizer is used for a specific text generation task. There are many real-time text genera-
tion tools which are discussed in next section.

7 Real-time text generation tools

Text generation has played an essential role in various applications of text generation, such as paraphras-
ing, question generation, summarization, and dialogue systems. Text generation systems assist human
writers and make the writing process more effective and time-saving. This section describes several
real-time tools for text generation. The tools for text generation applications are mentioned in Table 10.

Discussion on research question 6

The existing automatic text generation application tools have been able to generate inter-
esting text but are limited in terms of consistency, fluency, controllability, and diversity of
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Text Summarization Optimizer Machine Translation Optimizer
Summary Summary
RMSProp
3%
Adagrad
7%
Adadelta SGD
27% 67%
a: Summary of text summarization Optimizer d: Summary of Machine translation Optimizer
Question Answering Optimizer Story Generation Optimizer Summary
Summary
RMSProp Softmax
6% 7%
Adagrad

9%

AdaFactor Adamax
15% 4%
b: Summary of Question Answering Optimizer e: Summary of story generation Optimizer
Dialogue Generation Optimizer Paraphrase Generation Optimizer
Summary Summary
Softmax
o
5% Softmax
Adadelt: 6%

Adagrad
5%

Adamax
Adamax
5% 3%

¢: Summary of Dialogue Generation Optimizer f: Summary of paraphrasing Optimizer

Image/Video Captioning Optimizer

Summary
Softmax Cross
% SGD Entropy
21% 5%
Adadelta
14%
Adagrad
10%
Adamax
17%

g: Summary of image/video description Optimizer

Fig. 18 Summarized percentage of optimizers used in particular text generation task [a Summary of text
summarization Optimizer b Summary of Question Answering Optimizer ¢ Summary of Dialogue Genera-
tion Optimizer d Summary of Machine translation Optimizer e Summary of story generation Optimizer f
Summary of paraphrasing Optimizer g Summary of image/video description Optimizer]
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the generated text. This section helps to answer RQ 6- “What real-time tools are available
for automatic text generation tasks.” It has been observed that there are diverse categories
of automated text generation tools for different applications in the real world, such as some
excel in generating short texts like headlines or tweets, and others excel at generating long
texts like articles or blog entries. However, the authenticity of the content is missing with
automated text generation tools, thus the fake/inaccurate content is roaming around. Many
sectors have started using automated text to improve user experience as the algorithms are
capable of generating human-like texts. But the automated tools can be exploited nega-
tively. These tools can be abused by students who want to cheat on school work and ham-
pers the student’s ability. The content generated by these tools is fast and cheap but lacks
the artistry involved in expressing thoughts. However, some of the observed tools are aver-
age in text generation, while others generate fluent text but are not freely accessible. Some-
times the text generated by these tools is superficial and repetitive. Thus, there is still much
research being done and many problems to be solved, including long-term dependencies,
redundancy while generating text, word sense ambiguity, incorrect grammar, consistency,
and many more. These tools are limited by the data they were trained on and may not have
a deep understanding of the topic one is writing about. The automated text generators can-
not provide original and creative ideas, and makes people lazy and dependent on automa-
tion. For the effective text generation and the reliable assessment of the text generation
models, there are many task-specific evaluation measures, as described in the next section.

8 Evaluation metrics for text generation

This section discusses the automatic evaluation measures that are frequently used to assess
the advancements in the text generation system. Without proper evaluation, it is difficult to
measure a system’s competitiveness, which hinders the development of advanced algorithms
for text generation. The goal of evaluation metrics is to evaluate the effectiveness of text gen-
eration tasks, and for this, a robust and unbiased evaluation metric is important. An automatic
metric that correlates well with human assessments is ideal. It is desirable to employ a variety
of metrics to assess the efficiency of the system over multiple aspects. The most popular auto-
mated evaluation methods for evaluating machine-generated text are mentioned in Table 11,
with the pros and cons of the metric.

Automated text evaluation metrics are used to assess the text generation models, such
as question—answer generation, text summarization, or machine translation. These evalu-
ation measures provide a score that reflects the similarity between a human written ref-
erence text and an automatically generated text. There are many criteria based on which
one decides which metric to use for which text generation task, as shown in Table 12.

Discussion on research question 7

As the field of text generation is continually advancing, evaluation is becoming criti-
cal for assessing progress in the area and performing comparisons between text generation
models. This section answered the RQ 7- “Which metrics or indicators are used to evalu-
ate automated text generation.” It has been observed that traditionally language models
have been evaluated based on perplexity, which concerns with the probability of a sentence
being produced by the model. There are many well established automated evaluation met-
rics for assessing specific text generation tasks, such as METEOR and ROUGE for text
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Table 12 Summary of evaluation metrics with their application usage

Criteria Evaluation Metric SUM QAG DG MT SG PRG IC

n-gram based metrics BLEU v v v
NIST -
ROUGE v
METEOR v
CIDEr v
WER -
SPICE - - - - - _
RIBES - -
F-Score v v v
Distance-based Metrics TER - - - -
EED v - -
WER - . . v
Diversity-based Metric TTR - - v - - - R
SELF-BLEU - - - - - - v
Distinct-k - - v - - - -
Embedding-based Metrics WMD - - - - - - v
SMD
RUBER
Learned Evaluation Metrics ~ BERTScore v v - v - v v
MoverScore v v
HUSE - - v - v - -
v v v

<
AN NN
BN
BN
RN

AR
<
AR
<

<
D NI N NN

! <<
e <!
e <!
\ <

BN
<
BN

Human-Centric Evaluation Human Judgement v/ v v v

where MT- Machine translation; QAG- Question—Answer Generation; SUM- Summarization; SG- Story
Generation; DG- Dialog Response Generation; PRG- Paraphrase generation; IC- Image Captioning

summarization, BLEU for machine translation, SPICE and CIDEr for image captioning.
However, there is no universal metric that suits all text generation tasks and reflects all
relevant features of text. These work well to judge the quality of the generated text that
the model has generated natural, human-like and grammatically correct sentences. How-
ever, with open-ended generation tasks such as story telling or dialogue generation, the
model is expected to not only produce high quality text but also to be creative and diverse.
Another important aspect to open-ended text generation is commonsense reasoning, which
is referred as consistency. Since the models are expected to produce much longer text, they
are more prone to generating illogical or factually incorrect sentences. BEAMetrics [176],
a Benchmark to Evaluate Automatic Metrics help in better understanding the strengths and
limitations of current metrics across a broad spectrum of tasks. Fast and reliable evaluation
metrics are key to progress in research. While traditional natural language generation met-
rics are fast, they are not very reliable. Conversely, new metrics based on large pretrained
language models are much more reliable, but require significant computational resources
[83]. It is important that language models are evaluated in all dimensions of open-ended
text generation—quality, diversity and consistency [140]. When evaluating language mod-
els on open-ended text generation task, it has been observed that Corpus-BLEU is the best
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metric to evaluate the quality of generated text due to its similarity with human judge-
ment. As for diversity, Self-BLEU appears to be the best metric to use due to its simplicity
to calculate. To evaluate the consistency of the generated text, using selection accuracy
on the MultiNLI dataset is good enough for most cases. For specific task such as story
generation, other dataset can be considered such as StoryCloze. Thus, the evaluation of
large language models such as GPT is task specific [24, 63, 119]. While evaluating the
text generation models for efficiency, it is necessary to rely on multiple metrics that reflect
different text attributes such as fluency, grammaticality, coherence, readability, diversity,
etc., Though human evaluations represent the gold standard for assessing the quality of
machine-generated texts, but it is costly and time-consuming. As a result, automated meas-
ures for evaluation are to be used. But these automated evaluation measures should only
be used as a supplement to human judgments and not as a replacement. Also, the auto-
mated metrices of evaluation are to be used when they present a reasonable correlation
with human judgments.

However, there are still many issues or open problems in the generation of automated
text which are discussed in the next section.

9 Challenges of automated text generation tasks

Generating fluent, meaningful, well-structured, and coherent text is pivotal for many text
generation tasks. It takes significant effort by humans to model long-term dependencies
while generating consistent text. It is an equally challenging task to do it automatically due
to the discrete nature of textual data. This section identifies the main difficulties or chal-
lenges for the effective generation of text as below.

9.1 Text summarization

Text summarization is a challenging task since it requires thorough text analysis to pro-
vide a reliable summary [57]. A good summary must include relevant details and must be
precise, but it must also consider aspects such as non-redundancy, significance, coverage,
coherence, and readability [145]. To achieve all these things, in summary, is a major chal-
lenge. While many text summarization models provide tangible results, several issues are
being suppressed. They often tend to repeat factually inaccurate information, struggle with
Out of Vocabulary (OOV) words, emphasize a word/phrase several times, and are also a bit
repetitive [142]. Another challenge is to develop a system that summarizes multi-lingual
texts and generates a summary whose quality matches that of a human generated summary
[57]. For multi-document summarizing, redundancy is the biggest problem [15, 239]. The
so far proposed systems strive to identify important sentences in groups of different themes
and hence suffer from the problem of sentence ordering. There is a need for a richer dataset
and computation power. Thus, pre-trained models came into the picture [195]. The hybrid
approach has gained attention recently [221]. By combining extractive and abstractive
techniques, developing efficient hybrid approach methods to generate good quality sum-
maries so that they match closely to human-written ones is another major challenge. The
automatic text summarization evaluation metric such as ROUGE [114] is not considered
complete [147]. The challenge with summary evaluation is to determine how adequate or
useful a summary is relative to its source. Thus, methods for generating and evaluating
summaries should complement each other.
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9.2 Question-answering

Automatic question—answer generation is a significant advancement still many challenging
issues are yet to be resolved. One such issue is to precisely understand the natural language
questions and deduce the exact meaning to retrieve specific responses [50]. Another chal-
lenge is the selection of a question that has good coverage of the content and is of appropri-
ate difficulty, and in the case of multiple-choice questions, distractor generation is the big
challenge. As input texts grow longer, sequence-to-sequence models struggle to effectively
utilize relevant contexts while avoiding unnecessary information [47]. The models do not
pay much attention to the answers that are critical to question word generation. As a result,
the generated question words do not match the answer form [186]. Previous neural ques-
tion generation models suffer from a problem where a large percentage of the generated
questions contain words from the question target. As a result, they generate unintended
questions [88]. The models are not aware of the positions of the context words. Instead of
considering the close and relevant words to the answer, they copy the context words that
are far apart and irrelevant to the answer [186]. The one most frequent problem is the Lexi-
cal gap between questions. It concerns variation in the formation of questions in natural
language. Users formulate the question in different ways and ask for the same information.
This results in questions that differ lexically but are semantically equivalent. The problem
of word sense ambiguity is still a challenge in the QA field [180]. To leverage the wide
range of the available datasets for the question—answer generation is not trivial. The task
of selecting an appropriate dataset is still an open problem [50]. Challenges also arise due
to the limited size of the user’s utterance, ambiguous, and missing information while inter-
preting a question.

9.3 Dialog response generation

Usually, conversational systems rely on RNN models, and RNNs are not able to model
high-level variability [178]. The end-to-end conversational agents are prone to generat-
ing dull, generic, and boring responses [173]. To elicit a coherent, novel, and insightful
response that is in line with the conversation spectrum, The conversational agents require
adequate, accessible data [178, 181]. However, the conversational models, even with the
powerful performance of neural networks, lack style, which possesses to be an issue as
users may not be entirely satisfied with the interaction. Another problem is to encode con-
textual data such as world facts from knowledge bases or prior conversations. The response
generated has to be contextually relevant to the conversation and also convey accurate
paralinguistic functionality. Generating personalized dialogues is another challenging task
[141].

9.4 Machine translation

Although neural machine translation (NMT) has been witnessing fast-growing research
progresses, there are still many challenges. The major neural MT challenges are listed here.
A major limitation of NMT is that it is not able to incorporable larger contextual infor-
mation efficiently due to the learning ability of the model itself. The problem of reorder-
ing has not been addressed much so far [124]. The problems of alignment mechanism and
vocabulary coverage always affect most of the NMT models [192]. NMT also struggles
to deal with the translation of idioms [3]. Low-resource language MT is another hot spot,
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owing to multiple reasons, including morphological complexity and diversity, in addition
to a lack of resources for many languages [79].

9.5 Story generation

Automatic story generation is challenging since it requires the generation of long-range
dependencies and coherent natural language to describe a sensible sequence of events
[227]. Another challenge in story generation is to create interactive narration along a cer-
tain story path so that the interactor has been provided the ability to modify the space or
even the plot [208]. The commonly observed issues in generated stories are repeated plots,
conflicting logic, and inter-sentence incoherence [20, 34, 53]. Another challenge is to use
constraints to generate a creative story within the structure of the plot [151]. In most sys-
tems, evaluating the topicality, fluency, and overall quality of the stories generated poses a
unique challenge [53].

9.6 Paraphrase generation

The ability to automatically generate alternative phrases of the same content has been dem-
onstrated to be useful in several NLG areas, such as text summarization and question gen-
eration [155]. Automatically generating diverse and accurate paraphrases continues to be a
difficult challenge due to the complexity of natural language [224]. Evaluation of the para-
phrases generated is the most difficult aspect [105]. Another issue to be addressed is the
generation of multiple diverse paraphrases of high quality to enhance generalization and
robustness [160]. The issue of model holistic properties of sentences such as topic, style,
and other features is still challenging.

9.7 Image captioning/ Video description

The major challenge in describing visual information to text is to learn the intermedi-
ate representation between the natural language domain and the visual domain [127].
Another challenge is the fine-grained natural descriptions of images or videos [42]. For
instance, occlusions of interactive objects and unclear unit boundaries present addi-
tional challenges in effectively decoding the intent of the human behavior in a video.
There are challenges associated with automatically generating textual reports for medi-
cal images and helping medical professionals produce reports more accurately and effi-
ciently. The first is to generate prolonged texts with several sentences or even paragraphs,
and the other is to generate captions with a wide range of heterogeneous forms [229].

Discussion on research question 8

The automated text generation applications have various challenges, including the gen-
eration of human-like text that is fluent, unambiguous, and diverse. This section helped to
answer the RQ 8- “What challenges are faced in automated text generation tasks.” As the
textual data is discrete in nature, it takes time and effort to model long-term dependen-
cies while generating consistent text. Thus, applying neural models to different neural text
generation tasks can depend on various factors, including the type of task, the architecture
of the model, the size and quality of the training data, and the evaluation metrics used to
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measure the performance of the model. It has also been observed that the automated text
generation is challenging, since it is not always possible to reproduce the reported results.
Since the datasets used for text generation models are not always available publicly, it is
difficult to conduct comparisons among various approaches to text generation. The size of
training data and other key hyperparameters have a substantial impact on the quality of the
generation text. However, there are still many open challenges in text generation that need
to be addressed, including the generation of fluent, coherent, diverse, controllable, and con-
sistent human-like text. Inspired by these challenges, the future aspects of this research
area are presented in the next section.

10 Conclusion and future aspects

This survey captures a comprehensive study and up-to-date systematic review of current
advancements in the field of text generation. Text generation applications has been cat-
egorized mainly into three categories: text-to-text generation (T2T), data-to-text generation
(D2T), and multimodality-to-text generation (M2T), depending on the input (data, text, or
multimodal). A variety of text-to-text generation applications, including text summariza-
tion, question—answer generation, story generation, machine translation, dialogue response
generation, and paraphrase generation, have been discussed and analyzed. The main focus
of this survey is on text-to-text generation applications, and it is beyond the scope of this
survey to include all the recent developments in the various data or multimodality-to-text
applications. This paper also mentions various models for text generation, including tra-
ditional and statistical models, deep learning based models, and pre-trained transformer
architectures, and observed that deep learning approaches and transformer-based architec-
tures have been generally achieving better performance than traditional methods. However,
applying these models to different neural text generation tasks can depend on various fac-
tors, including the type of task, the architecture of the model, the size and quality of the
training data, and the evaluation metrics used to measure the performance of the model.
The quality of the generated text has a huge impact on the decoding strategy and optimiza-
tion technique that one employs. This paper discussed the decoding methods and optimi-
zation techniques important for generating human-like fluent text. A diverse text genera-
tion task-specific standard datasets that are required to train, test, and validate the systems
have also been provided in this article, along with their URLs. This field has made much
progress in recent years. As a result, various text generation application-specific tools are
available in the real world, which is also reviewed in this paper along with their strengths
and limitations. Many sectors have started using automated text to improve user experience
as the recent advancements in the technology is capable of generating human-like texts.
Though, the content generated by the automated tools is fast and cheap but lacks artistry
involved in expressing thoughts. The automatic text generation system’s goal is to gener-
ate text as good as human-written text. The assessment of the generated text is essential to
improve the performance of text generative models. However, human evaluation remains
the gold standard for assessing the quality of automated generated texts, but it is time-
consuming and expensive.

For effective text evaluation, various automatic evaluation metrices have been analyzed
and reviewed in this paper. Nevertheless, many open challenges in text generation need to
be addressed, including the generation of fluent, coherent, diverse, controllable, and con-
sistent human-like text. Inspired by these challenges, the future aspects in this research
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direction include generating long-term fluent and coherent text.The advancements in the
generic models should be done so that they can learn from some low resources and can
handlemultiple languages without large quantities of training data. The generation of
diverse texts conditioned by specific attributesand characteristics is another research direc-
tion. Practical applications for real-time text generation should be developed thatensure
responsible usage of the generated text. The need of the hour is to create a universal evalu-
ation metric that suits all textgeneration tasks and reflects all desired properties of text that
correlate with human judgments.

This survey aims to provide a comprehensive overview of current advancements in
automated text generation and to introducethe topic to researchers by providing pointers
and synthesis to pertinent studies. This paper is believed to serve as a valuablereference for
those concerned with learning and advancing this interesting research area.
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