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Abstract
Automatic text generation is the generation of natural language text by machines. Enabling 
machines to generate readable and coherent text is one of the most vital yet challenging 
tasks. Traditionally, text generation has been implemented either by using production rules 
of a predefined grammar or performing statistical analysis of existing human-written texts 
to predict sequences of words. Recently a paradigm change has emerged in text generation, 
induced by technological advancements, including deep learning methods and pre-trained 
transformers. However, many open challenges in text generation need to be addressed, 
including the generation of fluent, coherent, diverse, controllable, and consistent human-
like text. This survey aims to provide a comprehensive overview of current advancements 
in automated text generation and introduce the topic to researchers by offering pointers 
and synthesis to pertinent studies. This paper studied the relevant twelve years of articles 
from 2011 onwards in the field of text generation and observed a total of 146 prime studies 
relevant to the objective of this survey that has been thoroughly reviewed and discussed. 
It covers core text generation applications, including text summarization, question–answer 
generation, story generation, machine translation, dialogue response generation, paraphrase 
generation, and image/video captioning. The most commonly used datasets for text gen-
eration and existing tools with their application domain have also been mentioned. Vari-
ous text decoding and optimization methods have been provided with their strengths and 
weaknesses. For evaluating the effectiveness of the generated text, automatic evaluation 
metrices have been discussed. Finally, the article discusses the main challenges and notable 
future directions in the field of automated text generation for potential researchers.
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1  Introduction

Text Generation is a sub-discipline of Natural Language Processing used to fulfill specific 
communicative requirements by automatically generating natural language texts that lever-
age computational linguistics and artificial intelligence abilities [168]. Text generation has 
many real-world [51] applications depending on the input (data, text, or multimodal); how-
ever, the output is always a natural language text. Thus, based on the type of input, the text 
generation has been categorized mainly into three categories: text-to-text generation (T2T), 
data-to-text generation (D2T), and multimodality-to-text generation (M2T), as shown in 
Fig. 1. The text-to-text generation tasks take existing text as input and automatically gen-
erate a new, coherent text as output. For T2T generation, the most common applications 
include summarising the input document [13, 101], generating questions and answers 
from a text document [4, 48, 193], translating a sentence from one language to another 
[1, 11], creating or completing a story outline [66, 171, 211]. The data-to-text generation 
tasks automatically generate text from numerical or structured data such as key-value lists 
and tables. For D2T generation, the example applications include reports generation from 
numerical data [148, 154], and generating text from the meaning representations to rep-
resent the meaning of natural language [113, 180]. The multimodality-to-text generation 
tasks transfer the semantics in multimodal input, such as videos or images, into natural 
language texts. For M2T generation, the example applications include generating captions 
from images or videos [71, 126], video summarization, and visual storytelling.

The research on text generation has a long history. The earliest text generation systems 
used template and rule based methods to capture linguistic knowledge of vocabulary, syn-
tax, and grammar. The next-generation models encode the dependency between vocabu-
lary and context in conditional probability. These methods also couple with template-based 
methods for text generation. Then with the development of deep learning technologies, 
neural-based models gradually occupy a dominant position. Deep Learning belongs to a 
class of machine learning algorithms that identifies patterns in text and identifies features 
that assist in solving several text generation tasks [97]. The capacity of deep neural net-
works to learn representations of varying degrees of complexity has aided in achieving 
state-of-the-art performances across different text generation tasks, such as machine trans-
lation, text summarization, storytelling, and dialogue systems [62]. The availability and 
accessibility of a vast number of corpora and massive computational resources are other 
factors supporting deep learning growth. Most recently, the pre-trained text generation 
models based on the Transformer architecture have the ability to better capture the lin-
guistic knowledge of vocabulary, syntax, and grammar. However, while these models gen-
erate fluent and grammatical text, they are prone to making factual errors that contradict 
the input text. Generating fluent, informative, well-structured, and coherent text is pivotal 

Fig. 1   Categories of common text generation tasks
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for many text generation tasks. It takes significant effort by humans to generate text that 
is consistent and model long-term dependencies. And it is an equally challenging to do 
it automatically because of the discrete nature of textual data. Traditional template-based 
methods generate reliable texts but lack diversity, fluency, and informativeness. The deep 
learning models generate fluent and informative texts but are limited by the faithfulness 
and controllability of the neural-based models. And the transformer based models generate 
fluent, informative, and controllable text, but the inconsistency with the input information 
persists. The motivation for conducting this survey and the primary contributions of the 
paper are presented in the following subsection.

1.1 � Motivation and our contribution

Automated text generation has been gaining attention with the advances in deep learning. 
In the last ten years, the text generation field has evolved significantly. Numerous appealing 
surveys [51, 59, 120, 123, 173, 216] have been introduced, summarizing the work done in 
this field. However, there is no proper survey on ATG in terms of prominent benchmark 
datasets, real-world tools, decoding methods, evaluation metrices, and challenges of auto-
mated text generation applications. This motivates us to perform a Systematic Literature 
Review for automatic text generation using deep learning techniques. Another motivation 
is the gaining interest in this research field of text generation. The analysis of the twelve-
year articles published in this field has consistently increased, indicating that automated 
text generation is gaining interest each year. Keeping this in mind, this paper studies all the 
relevant articles from 2011 onwards to find methods for automated generation of text in dif-
ferent application domains, different existing tools and datasets used with their application 
domain, and evaluation metrices for evaluating the effectiveness of the generated text. The 
purpose of this survey is to provide a comprehensive overview of current advancements in 
automated text generation and introduce the topic to researchers by providing pointers and 
synthesis to pertinent studies.

The main contribution of this paper comprises the following key points:

	 I.	 This survey provides an up-to-date synthesis of automated text generation along with 
its core applications, including text summarization, question–answer generation, 
dialogue generation, machine translation, story generation, paraphrasing, and image 
captioning, and the key techniques behind them.

	 II.	 A comprehensive outline of techniques and methods employed to generate text auto-
matically, including traditional statistical methods, deep learning, and pre-trained 
transformer based models, has been discussed.

	 III.	 This paper enlists standard datasets required to train, test, and validate the text gen-
eration models for the automated generation of fluent and coherent texts.

	 IV.	 The text decoding strategies and optimization techniques significantly impact the 
quality of the generated text. This paper discussed these decoding techniques and 
optimization methods with their strengths and limitations.

	 V.	 In this article, real-time task-specific tools for automated text generation have also 
been provided with their features and URLs.

	 VI.	 For the effectiveness of the generated text, various metrices/approaches have also 
been summarized to evaluate text generation models automatically that depict dif-
ferent text attributes such as fluency, grammaticality, coherence, readability, and 
diversity.
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	VII.	 This paper also identifies various challenges of text generation applications, including 
the generation of human-like text that is fluent, diverse, controllable, and consistent. 
This survey also outlines potential future research directions in the area of automated 
text generation.

1.2 � Comparison with other surveys

There have been related attempts and literature surveys on automated text generation. This 
subsection overviews such attempts and highlights the contrast between existing and cur-
rent surveys with their strengths and limitations. For example, Gatt et  al. [51] surveyed 
natural language generation emphasizing image-to-text tasks. Liu et  al. [120] reviewed 
deep learning architectures and limited text generation applications. Xie [216] describes 
techniques for training and dealing with natural language generation models using neural 
networks. Santhanam et  al. Lu et  al. [123] surveyed only neural text generation models. 
[173] review language generation with a focus on dialogue systems. Garbacea et al. [59] 
present an overview of natural language generation methods, tasks, and assessments. Yu 
et al. [232] reviewed knowledge-enhanced text generation. However, there are many exist-
ing surveys on text generation but are limited in terms of standard datasets, existing real-
time tools, optimization methods, evaluation metrices, and challenges of automated text 
generation applications. This motivates us to perform a Systematic Literature Review on 
automatic text generation. This survey captures the comprehensive study and up-to-date 
review of current advancements in the field of text generation and also studies various 
methods for automated generation of text in different application domains, different exist-
ing tools, and datasets used with their application domain, text decoding, and optimization 
techniques, and evaluation metrices for evaluating the effectiveness of the generated text. 
Table 1 summarizes these aspects in comparison to the surveys mentioned above reports 
and contributions in literature.

The rest of this paper is organized as follows. A detailed review strategy and various 
research questions with significance are provided in Sect. 2. This section also mentions the 
search criteria and the research parameters for writing this survey paper. The extraction 
of studies and discussion is presented in Sects. 3 to 10. In Sect. 3, the core applications of 
text generation are reviewed. Section 4 mentions the methods and techniques employed for 

Table 1   Comparative analysis of 
the proposed survey with existing 
surveys

where 1: Text Generation Applications, 2: Text Generation 
Approaches, 3: Real-Time Tools, 4: Standard Datasets, 5: Text Decod-
ing and Optimization Methods, 6: Automatic Evaluation Metrices, 7: 
Text Generation Application Challenges; and✓—Detailed Study, ⋆—
Limited Consideration, ✗—No Discussion.

Authors [Ref.] 1 2 3 4 5 6 7

Gatt et al. [51] ✓ ✓ ⋆ ⋆ ✗ ⋆ ✗
Liu et al. [120] ⋆ ✓ ✗ ✗ ✗ ✗ ✗
Xie [216] ✗ ✓ ✗ ✗ ✗ ✗ ✗
Lu et al. [123] ✗ ✓ ✗ ✗ ✗ ✗ ✗
Santhanam et al. [173] ✓ ✓ ✗ ⋆ ⋆ ✗ ✗
Garbacea et al. [59] ✓ ✓ ✗ ✗ ✗ ✓ ✗
Yu et al. [233] ✓ ✓ ✗ ✗ ✗ ✗ ✗
Our Survey ✓ ✓ ✓ ✓ ✓ ✓ ✓
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generating text. Section  5 enlists application-specific standard datasets required to train, 
test, and validate the models. Text decoding and optimization techniques significantly 
impact the generated text, which are mentioned in Sect. 6. There are many real-time task-
specific tools for text generation, which are provided in Sect.  7, along with their access 
URLs. Section  8 reviewed the approaches to evaluate the effectiveness of the generated 
text. Various open challenges to automate the text generation task is mentioned in Sect. 9. 
Finally, Sect. 10 concludes this paper and outlines potential directions for future research.

2 � Research methodology

The research methodology is a process of systematically researching. It includes an empiri-
cal analysis of all concepts relevant to the field of research. Generally, it includes the con-
cepts of phases, models, and quantitative as well as qualitative techniques. This paper 
follows the review process suggested by Kitchenham and Charters [92], which includes 
planning, conducting, and reporting the review, as shown in Fig. 2.

2.1 � Planning review

The planning process included identifying the need for a Systematic Literature Review 
(SLR) and concluding with the formulation and validation of the review procedure. A 
systematic review is needed to identify, compare, and classify the existing text generation 
work. The studies published on text generation in the last twelve years are observed, but 
none are robust. This paper comprehensively analyzes emerging models, methods, tools, 
and deep-learning-based text generation application techniques to identify and compare 
them systematically.

The research questions (RQs) are prepared to facilitate the review process to be more 
focused, clear, and consistent. Eight research questions (RQ 1 to RQ 8) have been framed, 
which help to perform SLR. The research questions and their significance in this literature 
review are mentioned in Table 2.

Fig. 2   Overview of research methodology
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2.2 � Conducting review

This phase involves selecting studies, extracting required resources, and synthesizing 
knowledge. This SLR includes research papers from different publications and the var-
ious online electronic databases selected, such as IEEE Xplore, ACM digital library, 
Science Direct-Elsevier, Springer link, Web of Science, and Wiley online library. The 
search string includes keywords: “Text Generation” OR “Natural Language Generation” 
OR “Text Generation using Deep Learning” OR “Neural Text Generation” OR “Neural 
Language Generation” AND “Applications” OR “Text Generation Applications.” The 
sources contain documents of several types, such as book chapters, research articles, 
reviews, and proceeding papers, published in the last twelve years, i.e., from 2011 to 
2022. It discusses the research papers from journals, magazines, conferences, work-
shops, and symposiums. The studies were explored and based on inclusion–exclusion 
criteria, and a total of 146 research papers were obtained, as shown in Fig. 3.

These 146 research papers from the ‘2011–2022’ time frame are thoroughly reviewed 
and discussed in this survey paper. The number of extracted research papers based on 
their year of publication is shown in Fig. 4. It can be observed that before 2011 there 
was limited work in the research area of text generation using deep neural networks. 
And there has been a gradual increase in the number of research papers from 2011 
onwards, showing growth in the field of automated text generation with the develop-
ments in deep neural models.

Table 2   Research Questions and their Significance

Research questions Significance

RQ 1: How the automated text generation study 
evolves with advancements in deep learning?

To identify the rate of adaptation of automated 
text generation studies and the yearly analysis of 
research in text generation with advancements in 
the technology models

RQ 2: What are the main text generation applica-
tions that have arisen with advancements in the 
field?

To classify text generation tasks and to describe 
various text generation applications based on input 
and usage

RQ 3: What are the various approaches and associ-
ated architectures in the field of text generation?

To identify and analyze various methods and tech-
niques for automatic text generation. This helps to 
identify strengths and limitations associated with 
the approaches

RQ 4: What are the available datasets adopted in 
which the stated applications are organized?

To identify the available standard datasets according 
to application to test, train and validate the model

RQ 5: What are various text decoding and optimiza-
tion techniques are used to generate fluent text 
automatically?

To identify the task specific text decoding strategies 
and optimizers for automated text generation

RQ 6: What real-time tools are available for auto-
matic text generation tasks?

To have a perception of the usage of text genera-
tion applications in the real world and to analyze 
the strengths and weaknesses of the existing text 
generation tools

RQ 7: Which metrics or indicators are used to evalu-
ate the generated text?

To evaluate the effectiveness of the generated text, 
identification of the evaluation metrices used for 
text generation applications

RQ 8: What challenges are faced in automated text 
generation tasks?

To identify the issues related to the applications of 
automatic text generation tasks
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Discussion on research question 1

This yearly analysis of papers helps answer RQ 1- “How the automated text generation 
study evolves with advancements in deep learning.” It has been observed that limited work 
has been done on text generation before 2011, and there is a gradual increase in the number 
of research papers from the year 2011 onwards. This growth results from advancements in 
text generation methods, from traditional rule-based methods to deep neural networks and 
pre-trained transformer models. The traditional template or rule based methods were used 
for text generation usually before 2013, but these rules/templates are difficult to design and 
are very time consuming. These shortcomings of traditional approaches were overcome 
in the years with the developments in deep learning methods. The research in the field 
of text generation increases gradually thereafter. The availability of powerful deep neural 
models and computationally intensive architecture results in the incredible adoption of a 
variety of text generation applications, including text summarization, machine translation, 

Fig. 3   Inclusion/Exclusion technique used in the systematic review
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Fig. 4   Yearly analysis of the papers in the text generation research area with development in technology
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creative applications such as story generation, and dialogue generation. Now, with pre-
trained transformers models, the automated text generation work has immensely acceler-
ated. Many sectors have started using automated text to improve user experience as the 
recent advancements in technology is capable of generating human-like texts. The content 
generated by the automated tools is fast and cheap. The analysis of the published articles in 
this field indicates consistent growth and adaptation to the research area of automated text 
generation from 2011. Keeping this in mind, this paper studies all the relevant articles from 
2011 onwards to find methods for automated generation of text in different application 
domains, different existing tools and datasets used to achieve the task, text decoding and 
optimization techniques, and evaluation metrices for the effectiveness of the generated text.

2.3 � Reporting review

For reporting the review, this phase provides the research parameters. The research param-
eters that have been followed for SLR include the core text generation applications. For 
each text generation application, the deep learning technique used, standard datasets, exist-
ing real-time tools for that application, optimization methods, evaluation metrics, and chal-
lenges for each application are presented. The different parameters used in this paper are 
shown in Fig. 5. The extraction of studies and discussions is presented in this survey.

These research parameters are discussed in-depth in the following sections, and the 
results or analysis of these parameters are also reviewed and mentioned in Sects. 3 to 10.

3 � Applications of automated text generation

The field of artificial intelligence has developed techniques that generate text automatically 
in seconds. Automatic text generation is one such application that is the need for the hour. 
Many applications of text generation are crucial and very significant for smart systems and 
enable better communication between humans and machines, for example, machine trans-
lation, summarization, and simplification of long or complex texts, grammar, and spelling 
correction, generating peer reviews for scientific papers, questionnaire generation, auto-
matic documentation systems for large software, question–answer generation, business let-
ter writing, chatbots and much more. The core text generation applications are shown in 
Fig. 6, and the details about these applications are discussed below.

Fig. 5   Reviewing parameters for each text generation application
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3.1 � Text summarization

With each day, enormous amounts of data from diversified sources have evolved. This mas-
sive volume of data incorporates crucial facts, information, and knowledge that needs to 
be effectively summarized to be helpful. Thus, automatic text summarization came into 
the picture to tackle the problem of information overloading [142]. A text summarization 
method generates an abbreviated version of a document by filtering the significant informa-
tion from the original document [57]. A strong summary consists of all aspects, such as 
coverage, non-redundancy, cohesion, relevancy, and readability, in addition to relevant key 
points [145]. There are two prominent types of summarization techniques. First, extractive 
summarization techniques form summaries by copying parts of the input sentences [134], 
and second, the abstractive summarization technique [5, 132] generates a summary by 
including words and phrases not present in the source [135]. Nallapati et al. [135] propose 
recurrent neural network-based encoder-decoder models for abstractive text summarization. 
In follow-up work [134], extractive summarization techniques using recurrent neural net-
works are presented. Rush et al. [172] propose an attention-based network for the abstrac-
tive summarization of sentences, and Cheng et  al. [28] proposed an attentional encoder-
decoder for extractive single-document summarization. See et  al. [177] used a pointer 
generator network for abstractive summarization. Paulus et al. [147] use the reinforcement 
learning model for abstractive summarization, while others use reinforcement learning for 
extractive single-document summarization [136, 212]. Mehta et al. [129] use Long Short 
Term Memory (LSTM) and attention model to summarize scientific papers. Liu et al. [118] 
focus on multi-document summarization by generating fluent, coherent multi-sentence 
Wikipedia articles using extractive summarization. Modified BERT transformer [40] for 
extractive summarization is capable of extracting automatically the features in the internal 
layers [116] Multi-document summarization using abstractive methods has also been used 
[15, 239]. Xu et al. [221] propose a multi-task framework with a hybrid of the extractive 
and abstractive models. Transformer architecture also performs great in many NLG tasks 
[195]. Tan et al. [20] used a pretrained model, GPT-2 for the summarization task with the 
idea that the model will start generating a summary based on the delimiter. More recent 
works leverage pre-trained transformer based networks, such as GPT [162], BART [102], 
T5 [163], and PEGASUS [240], for summary generation [63, 119, 213].

3.2 � Question answer generation

Automatic question generation (QG) aims to generate questions from some form of input, 
such as raw text or a database, whereas Question Answering (QA) is the task of automati-
cally providing precise responses to questions in the natural language given corresponding 
document. In the last years, the widespread use of QA-based personal assistants has been 
observed, including Microsoft’s Cortana, Apple’s Siri, Samsung’s Bixby, Amazon’s Alexa, 

Fig. 6   Text Generation Applications
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and Google Assistant, which have answered a wide variety of questions. QG systems pro-
posed by [46, 185] automatically generate answer-unaware questions from within the given 
document, whereas [88, 180, 186] generate answer-agnostic questions. Du et al. [47] initi-
ated a neural question generation model using an attention sequence-to-sequence model 
[11]; subsequently, [48, 69, 245] also adopted an attention mechanism. Zhao et al. [241] 
proposed a gated self-attention encoder. Most neural QG models [69, 95, 204, 245] employ 
the copying mechanism for question generation. Weston et al. [206] proposed the use of a 
Memory networks model in the system to answer the questions effectively. The Dynamic 
Memory Networks model [94] overcomes the shortcomings of the memory networks by 
combining the paradigms of memory networks and attention mechanisms. This work was 
later extended by Xiong et al. [219] for visual question answering. Other works, includ-
ing visual question answering [2, 9, 58, 122] have generated natural and engaging ques-
tions for an image. [233] have adopted policy gradient methods to diversify the generated 
question. [40, 99, 225] uses pre-trained models for the question-answering task, and [100] 
uses transformer-based models to generate answer aware questions. [203, 204] propose a 
neural model for question generation and answering that jointly asks and answers ques-
tions given a document. Most of the earlier work focuses on using a single QA dataset, 
such as SQuAD [165]. While working on the generation of multi-hop [30], open ended and 
controllable [23], or cause-effect [183] questions have gained attention, each direction is 
studied in isolation as it usually requires a separate question–answer dataset. More recent 
works leverage pre-trained transformer based networks, such as BART [102], T5 [163], 
and PEGASUS [240], for question generation, which have been successful in many appli-
cations [6, 98, 107, 164, 194].

3.3 � Dialogue response generation

Dialogue systems or conversational agents are computer programs capable of replying with 
natural, coherent, meaningful, and engaging responses. A good dialogue model generates 
dialogues with high human similarity [104]. [131, 181] work on building end-to-end dialog 
generation systems using neural networks, whereas [178, 191] use hierarchical encoder-
decoder to generate responses. [218, 228] use the attention model, while [103, 110] use rein-
forcement learning, and Li et al. [111] use generative adversarial networks for dialog gen-
eration. Niu et al. [141] also use a reinforcement learning model focusing on polite dialogue 
responses. The use of pre-trained models for conversational agents is also observed. [10, 
242] use embeddings; [41, 209] use transformers for response generation [98, 107]. These 
conversational models have enabled robots to interact with humans in natural languages; for 
example, Window’s Cortana, Google’s assistant, Apple’s Siri, and Amazon’s Alexa are the 
software and devices that follow Dialogue systems. [76, 153] proposes dialogue generation 
with recognition of emotions, and [56, 167] also generates empathetic dialogues. [181, 243, 
244] generates single-turn dialogue responses while [159, 167, 235] generates multi-turn dia-
logues. [184] has used text style transfer and GPT for the creation of a dialog generation sys-
tem over gender-specific, emotion-specific, and sentiment-specific dialogue datasets.

3.4 � Neural machine translation

The data accessible to everyone is a challenge because language becomes the barrier, and 
machine translation came into the picture to overcome this. Machine translation is the task 
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of automatic translation of written text from one natural language into another. Neural 
machine translation (NMT) uses neural nets to transform the source sentence into the target 
sentence [29, 82, 188]. [11] introduced attention mechanism in NMT models, which was 
later extended [124]. Luong et al. [124] have used a unidirectional recurrent neural network 
model, while [214] used bidirectional recurrent neural networks (BRNN). [3] and [79] 
does the translation for low-resource language pairs. [29, 31] uses gated recurrent units 
and achieves better performance on NMT. Tu et al. [192] use a copy and coverage mecha-
nism; Wang et al. [200] use a pre-computed word embedding layer, GlOVe (Global Vectors 
for Word Representation). Park et al. [144] proposed a mobile device-based sign language 
translation system. [1] uses an attention-based multi-layer neural network. Transformer 
architecture [195] also performs well in NMT. [12, 200] proposed deep Transformer mod-
els for translation. Transformers like BART [102], BERT [35, 40] and GPT [20] have also 
been used for the NMT task. More recent works leverage pre-trained transformer based 
networks for machine translation [54, 64]. Recent works on non-autoregressive neural 
machine translation [65, 72, 161] improve model efficiency by decoding in parallel as com-
pared to sequential decoding in traditional autoregressive machine translation methods 
[215].

3.5 � Story generation

Automated story generation is the task of automatically identifying a series of actions, 
events, or words that have been told as a story. Li [106] attempts to automatically generate 
a story about any domain without prior knowledge. To encode the context, recurrent net-
works, and convolutional networks successfully model sentences [38, 81]. A fusion mech-
anism [182] is introduced to support sequence-to-sequence models build dependencies 
between their input and output. Pawade et al. [149] have implemented a recurrent neural 
network-based story system to generate a new story based on a series of inputted stories. 
Vaswani et al. [195] use multi-head attention. [108, 170] use LSTM networks to learn the 
text hierarchically. Jain et al. [78] chain a series of variable length independent descriptions 
together into a well-formed comprehensive story. Clark et al. [34] model entities in story 
generation. Martin et al. [128] present an event-based end-to-end story generation pipeline. 
Similarly, [68] generates summaries of movies as sequences of events using a recurrent 
neural network (RNN) and sample event representations. [53, 227] propose a hierarchical 
story generation framework that first plans a storyline and then generates a story based 
on the storyline. [151, 208] propose a framework that enables controllable story genera-
tion. [7, 189] uses policy gradient deep reinforcement learners to perform an event-to-event 
task. [26] uses the BERT language model for story plot generation.

3.6 � Paraphrase generation

Texts that convey a similar meaning but different expressions are referred to as para-
phrases. Paraphrase generation refers to an activity in which, given a sentence, the system 
creates paraphrases of it. Bowman et al. [18] use a variational autoencoder (VAE) to model 
holistic properties of sentences such as style, topic, and other features. Gupta et al. [67] use 
VAE-LSTM to generate more diverse paraphrases. Prakash et al. [155] employ a stacked 
residual LSTM network in the Sequence-to-sequence model. [105, 166] propose deep rein-
forcement learning (RL) to guide Sequence-to-sequence training. Cao et al. [22] utilize a 
novel sequence-to-sequence model to join copying, and restricted generation [237] tackle 
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a comparable task with the Sequence-to-sequence model coupled with deep reinforcement 
learning. See et  al. [177] use a pointer-generator while [125] utilizes an attention layer. 
Iyyer et al. [77] utilize syntactic information for controllable paraphrase generation. Yang 
et al. [224] propose an end-to-end conditional generative architecture for generating para-
phrases. Qian et al. [160] propose an approach that generates a diverse variety of differ-
ent paraphrases. [21, 43] tackle the problem of QA-specific paraphrasing while [223] help 
diversifies the response of chatbot systems. [117] first uses abstract rules and then leverage 
neural networks to generate paraphrases by refining the transformed sentences.

3.7 � Image/Video caption generation

The generation of semantically and syntactically correct description sentences of an image 
is called image captioning. The recognition of vital objects, their properties, and their 
relationships in an image is required for image captioning. Kiros [90] propose the initial 
work for extracting image features with the use of a convolutional neural network (CNN) 
in generating image captions. Then, with the use of LSTM [90] extended their work [91]. 
Mao et al. [127] proposed a multimodal recurrent neural network (m-RNN) and [229] used 
hierarchical recurrent neural networks for generating image descriptions. [201] proposed 
a deep Bi-LSTM based method for image captions. [80, 220] proposed an attention-based 
image captioning method. [169, 238] introduced a reinforcement learning-based image 
captioning method. [37, 179] proposed an image captioning method based on Generative 
Adversarial Networks (GAN). Vinyals et al. [199] proposed a neural image caption genera-
tor method. Donahue et al. [42] propose long-term recurrent convolutional networks that 
have been processing variable-length inputs. [150, 230] propose an attention-based image 
captioning model. Some method uses a CNN for image representations and an LSTM for 
generating image captions. Yao et al. [226] proposed a copying mechanism to generate a 
description for novel objects. [55, 85] use pre-computed word embedding layers and thus 
generate better image captions. [202] has proposed a framework that unifies a diverse set 
of cross-modal and unimodal tasks, including image captioning, and language modelling.

Discussion on research question 2

Text generation research consists of various tasks, topics, or trends. This section helped 
to answer RQ 2- “What are the main core text generation applications that have arisen with 
advancements in the field.” It has been observed that there are many real-world applica-
tions depending on the input (data, text, or multimodal); however, the output is always a 
natural language text. Thus, based on the type of input, the text generation has been cat-
egorized mainly into three categories: text-to-text generation (T2T), data-to-text generation 
(D2T), and multimodality-to-text generation (M2T), as discussed earlier. For T2T genera-
tion, the most common applications include summarising the input document, generating 
questions and answers from a text document, translating a sentence from one language to 
another, and creating or completing a story outline. For D2T generation, the example appli-
cations include reports generation from numerical data and generating text from the mean-
ing representations to represent the meaning of natural language. For M2T generation, the 
example applications include generating captions from images or videos, video summari-
zation, and visual storytelling. The summarized description of the above-mentioned text 
generation applications is mentioned in Table 3.
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The availability of powerful deep neural models, computationally intensive architecture, 
and pre-trained transformer models results in the incredible adoption of a variety of text genera-
tion applications. The applications use different methods including recurrent neural networks, long 
short-term memory networks, gated recurrent units for learning language representations, and later 
sequence-to-sequence learning, which opens a new chapter characterized by the wide application 
of the encoder-decoder architecture. However, these sequence-to-sequence models cannot capture 
long term dependencies, motivated the development of pointer networks and attention networks. 
Then, the transformer architecture incorporates an encoder and a decoder with self-attention mech-
anism, which is now widely used by text generation tasks. Applying these models to different text 
generation tasks can result in different levels of performance due to differences in task-specific 
requirements, training data availability, model architecture, hyperparameters, and evaluation met-
rics. Even if the same or similar models are used for different tasks, the architecture of the model 
may need to be modified or fine-tuned based on the requirements of the specific task.

The availability and quality of training data can significantly impact the performance of a text 
generation model. Models that are trained on large, diverse, and high-quality datasets specific to a 
given task or domain tend to perform better than those trained on more general datasets or limited 
data. Different text generation tasks may require different data preprocessing steps, such as tokeni-
zation, normalization, stemming, and stop-word removal. The choice of the model architecture and 
hyperparameters can also impact the performance of a text generation model. For example, trans-
former-based models such as GPT tend to perform well on a variety of text generation tasks due to 
their ability to capture long-term dependencies, but different hyperparameters, such as the number 
of layers or attention heads, can affect the model’s performance. Different text generation tasks have 
different requirements and constraints that affect the effectiveness of the model. Models that are 
optimized for a specific task may perform better than those that are more general-purpose. Thus, it 
is important to carefully consider these factors when selecting a model for a particular task.

In this section, advancements in text generation applications have been seen with the rise of deep 
neural network approaches. The text generation approaches are discussed in the next section.

4 � Text generation approaches

Text Generation is an emerging area of research. Recently, deep learning approaches have 
made remarkable success in various text generation tasks [138], including text summari-
zation, machine translation, question answering, story generation, short-dialog generation, 
and paraphrasing. This section presents the traditional approaches for text generation, deep 
learning techniques, and pre-trained transformer-based approaches to text generation.

4.1 � Traditional approaches

Traditionally, text generation was done either by using templates or production rules of a 
predefined grammar or performing statistical analysis of existing human-written texts to 
predict sequences of words [17, 60, 139, 222]. The template-based text generation sys-
tems adopted rules and templates to design different modules for text generation that reflect 
the linguistic knowledge of vocabulary, syntax, and grammar. This approach decomposes 
the text-generation task into several interacting subtasks depending on the task-specific text 
generation application. The template-based approaches usually consist of several compo-
nents, including content planning (deciding the input data, selecting and structuring content), 
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sentence planning (choosing words, syntactic structures, choosing appropriate referring 
expressions to describe input entities), and text realization (converting specifications to a real 
text), each performing a specific function [137]. The statistical-based text generation systems 
encode the dependency between vocabulary and context in conditional probability [93]. The 
most popular statistical text generation model is the n-gram language model, which is usually 
coupled with the template-based approach for re-ordering and selecting fluent generated texts. 
With the traditional approaches, it is very time-consuming to automatically generate text like 
those generated by humans. Deep learning techniques have overcome these shortcomings of 
traditional approaches. With the development of deep learning approaches, the neural-based 
text generation models have gradually occupied a dominant position that better models the 
statistical relationship between vocabulary and context, thus significantly improving the per-
formance of text generation, as discussed in the subsequent section.

4.2 � Deep learning techniques

Deep learning architectures and algorithms have recently achieved state-of-the-art 
results in question–answer generation, machine translation, text summarization, dia-
logue response generation, and other text generation tasks. Deep learning supports 
automated multi-level attribute representation learning. The deep neural networks pro-
vide a uniform end-to-end framework for text generation. First, a neural network cre-
ates a representation of the user input. Then, this representation is used as input to a 
decoder which generates the system response. Representation learning often happens 
in a continuous space, such that different modalities of text (words, sentences, and 
even paragraphs) are represented by dense vectors.

A variety of architectures based on deep neural networks have been developed for the 
different application tasks of text generation. This section introduces deep learning tech-
niques that are commonly used in text generation application tasks.

4.2.1 � The encoder‑decoder framework

Much of the work on neural text generation adopts the encoder-decoder approach that was 
first advocated and shown to be successful for machine translation [32, 188]. First, the input 
is encoded into a continuous representation using an encoder. Then the text is produced using 
the decoder. Figure 7 illustrates this encoder-decoder framework for text generation. This net-
work is often referred to as a sequence-to-sequence model as it takes as input a sequence, one 
element at a time, and then outputs a sequence, one element at a time.

This encoder and decoder are neural networks. The encoder depicts the input sequence 
as a hidden state vector and then transfers it to the decoder. The decoder then produces the 
output sequence.

4.2.2 � Convolutional neural networks

Convolutional neural networks (CNNs) are specialized for processing data with a known 
grid-like topology. These networks have succeeded in computer vision tasks, which have 
been represented as 2-dimensional grids of image pixels [201, 217]. In recent years, CNNs 
have also been applied to natural language. In particular, they have been used to learn word 
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representations for language modelling effectively [177] and summarization [28, 136, 
138]. CNNs employ a specialized kind of linear operation called convolution (filter which 
extracts a specific pattern), followed by a pooling operation (subsamples the input on each 
filter to a fixed dimension of output), to build a representation that is aware of spatial inter-
actions among input data points as shown in Fig. 8.

There are many variants of CNN that have different application areas, as mentioned in 
Table 4.

4.2.3 � Recurrent neural networks

Recurrent Neural Networks are based on the concept of processing sequential data. They 
are termed “recurrent” since they perform the same computation over each token in the 
sequence, and each step depends on the results of previous computations, as shown in 
Fig. 9.

Most work on neural text generation has used RNNs due to their ability to capture the 
sequential nature of the text naturally and to process inputs and outputs of arbitrary length. 
There are various variants of RNN, including Bi-directional RNN, Parallel-RNN, Quasi 
RNN, RNN with external memory, and Convolutional RNN. Their features and application 
areas are provided in Table 5.

However, as the length of the input sequence grows, RNNs are prone to losing informa-
tion from the beginning of the sequences due to vanishing and exploding gradients issues 

Fig. 7   Encoder-Decoder frame-
work

Fig. 8   Convolutional Neural Network
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[16, 146]. RNNs fail to model the long-range dependencies of natural languages. Conse-
quently, Long short-term memory [74] and gated recurrent unit [32] have been proposed as 
alternative recurrent networks that are better prepared to learn long-distance dependencies. 
These units are better at learning to memorize only the part that is relevant for the future. 
At each time step, they dynamically update their states, deciding on what to memorize and 
what to forget from the previous input. The LSTM cell has separate input and forget gates 
as shown in Fig. 10, while the GRU cell performs both of these operations together using 
its reset gate.

The forget gate decides which information of the long-term memory is useful and which 
to forget. The next input gate determines which new information to be added to the net-
work, and the final output gate decides the new hidden state. In a vanilla RNN, the entire 
cell state is updated with the current activation, whereas both LSTMs and GRUs have the 
mechanism to keep the memory from previous activations. This allows recurrent networks 
with LSTM or GRU cells to remember features for a long time and reduces the vanishing 
gradient problems as the gradient back propagates through multiple bounded nonlineari-
ties. LSTMs and GRUs have been very successful in modelling natural languages in recent 
years

Fig. 9   Recurrent Neural Network
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4.2.4 � SeqGANs and reinforcement learning

SeqGAN (Sequential Generative Adversarial Network) is a variant of GAN (Generative 
Adversarial Network), used to generate text. This SeqGAN combines reinforcement learn-
ing and GANs for learning from discrete sequence data [231]. In SeqGANs, the generator 
is treated as an RL agent. The tokens generated till a particular time become the state. The 
token to be generated next is the action and the reward is the feedback given by the dis-
criminator to guide the generator in evaluating the generated sequence.

Reinforcement learning (RL) is a gradual stamping of behaviour [86, 166] where an 
agent learns how to act in an environment by performing actions and analyzing the out-
comes, as shown in Fig. 11. The performance is maximized by allowing software agents 
and machines to determine the ideal behaviour within a specific context automatically. The 
agents are required to learn their behaviour using simple reward feedback, known as the 
reinforcement signal.

When using reinforcement learning for automated text generation, the actions are writ-
ing words, and the states are the words already written by the algorithm. The actions, 
rewards, and policies corresponding to text generation tasks are mentioned in Table 6.

Fig. 10   Long Short Term Memory (LSTM)

Fig. 11   Reinforcement Learning
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4.2.5 � Transformer models

The Transformer models introduced by [195] have facilitated the enhancement of a wide 
range of text generation tasks. Transformer models are based on global dependencies 
between the input and output, use attention mechanisms, and have the capability to cap-
ture the linguistic knowledge of vocabulary, syntax, and semantics. The transformer is an 
encoder-decoder architecture. RNNs and LSTM architectures have significant difficulties 
with longer sequences as a result of the vanishing gradient problem [16, 146]. The prob-
ability of keeping context from a word that is further away from the word that is being pro-
cessed diminishes exponentially as the sentence grows longer. Parallelization is a practical 
approach for training on larger datasets. The transformers expand with data and architec-
tural size, capture longer sequence features, and enables parallel training. As a result, more 
effective and coherent language models are feasible. Prior to this, most of the ATG models 
were trained on supervised learning. However, supervised models need a large amount of 
annotated data for learning a particular task which is often not easily available, and they 
fail to generalize for other tasks.

The Transformer is a sequence-to-sequence model and consists of an encoder and 
decoder. Both encoder and decoder are multiple identical blocks layered on top of each 
other. The overall architecture of the Transformer is shown in Fig. 12. Each encoder block 
consists of a multi-head self-attention module followed by a position-wise feed-forward 
network (FFN). Around each module, a residual connection is employed, followed by the 
layer Normalization. Compared to the encoder blocks, decoder blocks additionally insert a 
third module, known as encoder-decoder attention, between the multi-head self-attention 
and FFN module. Furthermore, the masked attention module preserves the auto-regressive 
property, ensuring to prevent each position from attending to subsequent positions.

Transformer models such as BERT [40], and GPT-3 [20] are pre-trained on large 
corpora and use unsupervised learning for text generation. These pre-trained transformers are 
classified into three categories, namely: encoder-only (like BERT), decoder-only (like GPT-
n), and encoder-decoder (like T5). Bidirectional Encoder Representations from Transformers 
(BERT) is the first deep bidirectional, unsupervised language representation [40] model. It is 
built upon work in contextual representations. BERT uses an attention mechanism along with 
a Transformer that learns contextual relations in text to generate a text [40]. Generative Pre-
Trained Transformer (GPT) is an autoregressive language model that was trained with 175 
billion parameters to generate text automatically. It uses unlabeled data and then fine-tuning 
for the specific downstream task. GPT-n series (GPT-1 [162], GPT-2 [20], GPT-3 [20]) shows 
significant performance on various ATG tasks even without finetuning or gradient updates. 
Transformer-based models, such as GPT, T5, XLNet, and BERT [20, 40, 163], showed 
impressive results on several text generation tasks such as question answering, language 
modelling, machine translation, sentiment analysis, and summarization, as shown in Table 7. 
 

Discussion on research question 3

With the advancements in deep neural networks, text generation models are capable of 
generating realistic, fluent, and coherent natural language. This section helped to answer 
RQ 3- “What are the various approaches and associated architectures in the field of text 
generation.” It has been observed that the field of text generation has undergone significant 
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changes from template-based and statistical-based traditional approaches to, most recently, 
pre-trained transformer based models. As a result of these advancements in techniques, 
the text generation research field has witnessed remarkable progress and a surge in interest 
for the study. The shift starts with recurrent neural networks, long short-term memory 
networks, gated recurrent units for learning language representations, and later sequence-
to-sequence learning, which opens a new chapter characterized by the wide application 
of the encoder-decoder architecture. However, these sequence-to-sequence models cannot 
capture long term dependencies, which motivated the development of pointer networks 
and attention networks. Then, the transformer architecture incorporates an encoder and a 
decoder with self-attention mechanism, which is now widely used by text generation tasks. 
The availability of powerful deep neural models, computationally intensive architecture 
and pre-trained transformer models results in the incredible adoption of a variety of text 
generation applications, including text summarization, machine translation, creative 

Fig. 12   Transformer architecture
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applications such as story generation, and dialogue generation. However, applying these 
models to different neural text generation tasks can depend on various factors, including 
the type of task, the architecture of the model, the size and quality of the training data, and 
the evaluation metrics used to measure the performance of the model.

The deep learning approaches arise due to the availability of a large number of corpora 
and significant computational resources. The standard datasets for text generation applica-
tions are mentioned in the next section.

5 � Datasets for text generation tasks

In research, the datasets have been used to assess the performance of a proposed method. 
The deep learning models trained on large-scale datasets demonstrate unrivalled abilities 
to understand patterns in the data, opening a whole slew of new possibilities for creating 
realistic and coherent texts. Several datasets were recently created to support the training of 
text generation models. The datasets vary in terms of output lengths, generation tasks, and 
domain specificity. This section describes some of the datasets that are commonly used in 
text generation tasks. In Table 8, a shortlist of some of the task-specific standard datasets is 
provided, which is organized by the text generation applications.

Each dataset has many files, including training, testing, and validation files, in various 
formats. Few datasets have files in json format, text format, and excel format, while others 
are in csv format. For a better understanding of the above-mentioned datasets, screenshots 
of few datasets have been provided in the Fig. 13 below.

 
Discussion on research question 4 

The availability of large and diverse datasets has also benefited the recent progress 
in text generation. This section helped to answer RQ 4- “What are the available datasets 
adopted in which the stated applications are organized.” It has been observed that there 
are many datasets that vary in terms of text generation tasks and domain specificity. The 
datasets help to train, test and validate the text generation models. Nowadays, there is a 
trend to train models on massive datasets. However, training text generation models on 
diverse datasets provide the opportunity to improve their robustness. The models trained on 
massive datasets show an unmatched ability to automate the generation of fluent and coher-
ent texts. Thus, while training a text generation model for a particular task, it is critical to 
choose the dataset carefully. For a specific text generation task, the most commonly used 
datasets are shown in Fig. 14. It also specifies the percentage of articles in which a given 
dataset is used for a specific text generation task.

After training the model, text decoding plays a vital role in the generation of text. The 
following sections discuss text decoding techniques and optimization methods for text 
generation.

6 � Text decoding techniques and optimization algorithms

The automatic text generation model aims to generate text that is as good as human-written 
text. And after training the model, the quality of the generated text has a significant impact 
on the decoding strategy and optimization technique that one employs. In this section, 
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Fig. 13   Screenshots of datasets [a CNN/DM dataset for summarization task b Gigaword dataset for sum-
marization task c SQuAD dataset for question-answering task d Empathetic dialogues dataset for dialogue 
generation task e ROC story dataset for story generation and question-answering task f WMT dataset for 
translation task g Quora question pairs dataset for paraphrasing task h Flickr30k dataset for captioning task]
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a: Summary of text summarization datasets

b: Summary of question answering datasets

d: Summary of machine translation datasets

e: Summary of story generation datasets

f: Summary of paraphrasing datasets

g: Summary of image/video description datasets
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Fig. 14   Summarized percentage of datasets usage in particular text generation task [a Summary of text 
summarization datasets  b  Summary of question answering datasets c Summary of dialogue generation 
datasets d Summary of machine translation datasets e Summary of story generation datasets f Summary of 
paraphrasing datasets g Summary of image/video description datasets] 
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decoding methods and optimization techniques important for text generation have been 
discussed.

6.1 � Decoding techniques

Decoding is the process of generating natural language texts from a model. As there is a 
need for one-to-one correspondence between input and output time steps of generation, 
which leads to a crucial key aspect named decoding. The decoding approach in a neu-
ral text generation system describes how the system searches for potential output utter-
ances when generating a sequence. It specifies how the words are combined to form text 
and sentences. Without an appropriate decoding technique, the generated text results in 
vague and dull text.

Primarily, decoding can be categorized as autoregressive and non-autoregressive [215]. 
In an autoregressive generation, the target tokens are generated one by one in a sequential 
manner, as shown in Fig. 15. The beginning and end of decoding are controlled by special 
tokens, including [BOS] (beginning of a sentence) and [EOS] (end of a sentence), which 
implicitly determine the target length during decoding.

Traditional models capture the true distributions of words using this strategy. The fun-
damental reason is the conditional dependence property from left to right. The transformer-
based models that cannot replicate the training benefits as training can be nonsequential, 
and inference holds to be sequential with autoregressive decoding is among one issue with 
this technique. Another issue with the autoregressive approach is that it is time-consuming, 

Fig. 15   Autoregressive method
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especially for generating long target sentences. To alleviate this problem and accelerate 
decoding, non-autoregressive generation is proposed [65, 72]. The non-autoregressive 
decoding technique can generate all the target tokens in parallel, as shown in Fig. 16.

In this method, as all the target tokens are generated in parallel, there is no need for spe-
cial token or target information to guide the termination of decoding. Using this technique, 
inference speed is hugely increased. [115, 157] proposes non-autoregressive techniques 
for summarization. The autoregressive techniques can be further viewed as sampling and 
search techniques. There are many different decoding strategies, including greedy, beam 
search, random sampling, top-k sampling, and nucleus sampling, as discussed.

A greedy search selects the most probability word from the language model. It uses 
this word as the next word and feeds it as input on the next step till it reaches maximum 
length [207]. However, greedy search is bound in a loop of the same words, resolved by 
random sampling [14]. Greedy search also lacks backtracking, which results in unnatural 
and meaningless sentences. The greedy search is not optimal for generating high-proba-
bility sentences [109], and this problem has been addressed by the beam search decoding 
method.

Random sampling picks the word randomly according to the conditional word probabil-
ity extracted from the text generation model [14]. However, directly using the probabilities 
extracted from the text generation models often leads to incoherent text. Moreover, this text 
decoding method is not deterministic. Nevertheless, applying a softmax over the probabil-
ity distribution and varying its parameter makes it smoother.

Beam search keeps the most probable words by tracking multiple possible sequences at 
once. It keeps track of the k-most probable partial sequences at each step, where k is the 
beam size. Beam search chooses the words to obtain an overall highest probability sentence 
[109, 198]. The text generated with beam search is more fluent as compared to greedy 

Fig. 16   Non-autoregressive 
method
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search. But when beam size is equal to one, beam search behaves as greedy search. Beam 
search produces a list of nearly identical sequences that fail to capture the inherent ambi-
guity of complex text generation tasks. Diverse Beam Search overcomes this problem by 
describing beam search as an optimization problem and augments the objective with diver-
sity [197].

In top-k sampling, the ‘k’ most likely next words are selected, and then the next pre-
dicted word is sampled only from these ‘k’ words [53]. As’k’ is fixed in top-k sampling, 
the number of words filtered from the next word probability distribution is not dynamically 
modified [205]. As a result, unlikely words may be selected among these ‘k’ words if the 
next word probability distribution is very sharp.

Nucleus sampling (or top-p sampling) selects words from the smallest possible set with 
a cumulative probability greater than some probability p. As a consequence, the number of 
words in the set can dynamically decrease and increase according to the next word prob-
ability distribution [75]. It is the best available decoding strategy for generating long-form 
text that is both high-quality as measured by human evaluation and as diverse as human-
written text.

Other decoding techniques include semi-autoregressive, iterative, and mixed decoding 
[215]. The semi-autoregressive decoding generates multiple target tokens at one decod-
ing step. The iterative decoding provides target information on each decoding step. Some 
works aim to combine these decoding strategies into a unified model. Tian et al. [190] pro-
pose a unified approach for machine translation that supports autoregressive, iterative, and 
autoregressive decoding methods.

Thus, based on the strengths and limitations of the text decoding techniques, the choice 
of decoding method has a significant impact on the linguistic features and the quality of the 
generated text.

6.2 � Optimization techniques

With the tremendous growth in the amount of data, optimization has become an essen-
tial part of deep learning. The goal of the optimization algorithm is to minimize the loss 
function by reaching global semi-minima. Deep Learning models are becoming efficient 
and achieve better results with the use of optimization techniques. This section describes 
the commonly used optimization methods from a neural text generation perspective. 
There has been much interest in modifying the stochastic gradient descent algorithm 
with an adaptive learning rate for more stable training, e.g., AdaGrad, AdaDelta, and 
Adam, as shown in Fig. 17.

Further, these optimization algorithms are reviewed in a summarized manner based 
on their properties, pros, and cons, as mentioned in Table 9. 

Discussion on research question 5 

The text decoding methods and optimization techniques significantly impact the quality 
of the generated text This section helps to answer RQ 5- “What are various text decod-
ing and optimization techniques used to automatically generate text.” These techniques 
can be applied to different text generation tasks, i.e., text summarization, story generation, 
paraphrasing task, translation, and image captioning. Based on the text generation task, 
the autoregressive and non-autoregressive decoding technique can be utilized. Using a 
good model with bad decoding strategies lead to repetitive loop problem and inconsistent, 
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incoherent text generation problems. As a result, it is recommended to choose a decoding strat-
egy carefully. Decoding methods like, top-k sampling and nucleus sampling produce more flu-
ent text than beam search and greedy search. However, top-k sampling has suffered from gen-
erating repetitive word sequences recently. There has also been observed that greedy and beam 
search perform better if a different training objective is used by the text generation model.

In an end-to-end neural framework, all kinds of inputs, including target generated text 
are firstly mapped into numeric embeddings, and then neural modules feed-forward infor-
mation layer by layer. Finally, the last output of the neural framework is used to generate 
the target tokens with a decoding strategy and calculate the losses to optimize parameters. 
Optimization algorithms are among those parameters and play an important part to infer 
the losses between neural networks. Thus, optimization algorithms are equally important 
for text generation models. It has been observed that the training performance of the model 
is influenced by the selection of an optimization algorithm. After understanding the con-
cepts of various optimization algorithms and the function of their parameters, text genera-
tion models perform better. For a particular text generation task, the most commonly used 
optimizers are shown in Fig. 18. It also specifies the percentage of articles in which a given 
optimizer is used for a specific text generation task. There are many real-time text genera-
tion tools which are discussed in next section.

7 � Real‑time text generation tools

Text generation has played an essential role in various applications of text generation, such as paraphras-
ing, question generation, summarization, and dialogue systems. Text generation systems assist human 
writers and make the writing process more effective and time-saving. This section describes several 
real-time tools for text generation. The tools for text generation applications are mentioned in Table 10. 

Discussion on research question 6 

The existing automatic text generation application tools have been able to generate inter-
esting text but are limited in terms of consistency, fluency, controllability, and diversity of 

Fig. 17   Optimization algorithms 
for Text Generation
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a: Summary of text summarization Optimizer

b: Summary of Question Answering Optimizer

c: Summary of Dialogue Generation Optimizer

d: Summary of Machine translation Optimizer

e: Summary of story generation Optimizer

f: Summary of paraphrasing Optimizer

g: Summary of image/video description Optimizer
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Fig. 18   Summarized percentage of optimizers used in particular text generation task  [a Summary of text 
summarization Optimizer b Summary of Question Answering Optimizer c Summary of Dialogue Genera-
tion Optimizer d Summary of Machine translation Optimizer e Summary of story generation Optimizer f 
Summary of paraphrasing Optimizer g Summary of image/video description Optimizer]
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1 3

the generated text. This section helps to answer RQ 6- “What real-time tools are available 
for automatic text generation tasks.” It has been observed that there are diverse categories 
of automated text generation tools for different applications in the real world, such as some 
excel in generating short texts like headlines or tweets, and others excel at generating long 
texts like articles or blog entries. However, the authenticity of the content is missing with 
automated text generation tools, thus the fake/inaccurate content is roaming around. Many 
sectors have started using automated text to improve user experience as the algorithms are 
capable of generating human-like texts. But the automated tools can be exploited nega-
tively. These tools can be abused by students who want to cheat on school work and ham-
pers the student’s ability. The content generated by these tools is fast and cheap but lacks 
the artistry involved in expressing thoughts. However, some of the observed tools are aver-
age in text generation, while others generate fluent text but are not freely accessible. Some-
times the text generated by these tools is superficial and repetitive. Thus, there is still much 
research being done and many problems to be solved, including long-term dependencies, 
redundancy while generating text, word sense ambiguity, incorrect grammar, consistency, 
and many more. These tools are limited by the data they were trained on and may not have 
a deep understanding of the topic one is writing about. The automated text generators can-
not provide original and creative ideas, and makes people lazy and dependent on automa-
tion. For the effective text generation and the reliable assessment of the text generation 
models, there are many task-specific evaluation measures, as described in the next section.

8 � Evaluation metrics for text generation

This section discusses the automatic evaluation measures that are frequently used to assess 
the advancements in the text generation system. Without proper evaluation, it is difficult to 
measure a system’s competitiveness, which hinders the development of advanced algorithms 
for text generation. The goal of evaluation metrics is to evaluate the effectiveness of text gen-
eration tasks, and for this, a robust and unbiased evaluation metric is important. An automatic 
metric that correlates well with human assessments is ideal. It is desirable to employ a variety 
of metrics to assess the efficiency of the system over multiple aspects. The most popular auto-
mated evaluation methods for evaluating machine-generated text are mentioned in Table 11, 
with the pros and cons of the metric.

Automated text evaluation metrics are used to assess the text generation models, such 
as question–answer generation, text summarization, or machine translation. These evalu-
ation measures provide a score that reflects the similarity between a human written ref-
erence text and an automatically generated text. There are many criteria based on which 
one decides which metric to use for which text generation task, as shown in Table  12. 

Discussion on research question 7 

As the field of text generation is continually advancing, evaluation is becoming criti-
cal for assessing progress in the area and performing comparisons between text generation 
models. This section answered the RQ 7- “Which metrics or indicators are used to evalu-
ate automated text generation.” It has been observed that traditionally language models 
have been evaluated based on perplexity, which concerns with the probability of a sentence 
being produced by the model. There are many well established automated evaluation met-
rics for assessing specific text generation tasks, such as METEOR and ROUGE for text 
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summarization, BLEU for machine translation, SPICE and CIDEr for image captioning. 
However, there is no universal metric that suits all text generation tasks and reflects all 
relevant features of text. These work well to judge the quality of the generated text that 
the model has generated natural, human-like and grammatically correct sentences. How-
ever, with open-ended generation tasks such as story telling or dialogue generation, the 
model is expected to not only produce high quality text but also to be creative and diverse. 
Another important aspect to open-ended text generation is commonsense reasoning, which 
is referred as consistency. Since the models are expected to produce much longer text, they 
are more prone to generating illogical or factually incorrect sentences. BEAMetrics [176], 
a Benchmark to Evaluate Automatic Metrics help in better understanding the strengths and 
limitations of current metrics across a broad spectrum of tasks. Fast and reliable evaluation 
metrics are key to progress in research. While traditional natural language generation met-
rics are fast, they are not very reliable. Conversely, new metrics based on large pretrained 
language models are much more reliable, but require significant computational resources 
[83]. It is important that language models are evaluated in all dimensions of open-ended 
text generation—quality, diversity and consistency [140]. When evaluating language mod-
els on open-ended text generation task, it has been observed that Corpus-BLEU is the best 

Table 12   Summary of evaluation metrics with their application usage

where MT- Machine translation; QAG- Question–Answer Generation; SUM- Summarization; SG- Story 
Generation; DG- Dialog Response Generation; PRG- Paraphrase generation; IC- Image Captioning

Criteria Evaluation Metric SUM QAG DG MT SG PRG IC

n-gram based metrics BLEU ✓ ✓ ✓ ✓ ✓ ✓ ✓
NIST - - ✓ ✓ - - -
ROUGE ✓ ✓ - ✓ ✓ - ✓
METEOR ✓ ✓ ✓ ✓ ✓ ✓ ✓
CIDEr ✓ - - - - - ✓
WER - - ✓ - - - ✓
SPICE - - - - - - ✓
RIBES - - ✓ - - -
F-Score ✓ ✓ ✓ ✓ ✓ ✓ ✓

Distance-based Metrics TER - - - - ✓ ✓ -
EED ✓ - - - - - -
WER - - - ✓ - - -

Diversity-based Metric TTR​ - - ✓ - - - -
SELF-BLEU - - - - - - ✓
Distinct-k - - ✓ - - - -

Embedding-based Metrics WMD - - - - - - ✓
SMD ✓ - - ✓ - - -
RUBER - - ✓ - - - -

Learned Evaluation Metrics BERTScore ✓ ✓ - ✓ - ✓ ✓
MoverScore ✓ - - - ✓ - -
HUSE - - ✓ - ✓ - -

Human-Centric Evaluation Human Judgement ✓ ✓ ✓ ✓ ✓ ✓ ✓
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metric to evaluate the quality of generated text due to its similarity with human judge-
ment. As for diversity, Self-BLEU appears to be the best metric to use due to its simplicity 
to calculate. To evaluate the consistency of the generated text, using selection accuracy 
on the MultiNLI dataset is good enough for most cases. For specific task such as story 
generation, other dataset can be considered such as StoryCloze. Thus, the evaluation of 
large language models such as GPT is task specific [24, 63, 119]. While evaluating the 
text generation models for efficiency, it is necessary to rely on multiple metrics that reflect 
different text attributes such as fluency, grammaticality, coherence, readability, diversity, 
etc., Though human evaluations represent the gold standard for assessing the quality of 
machine-generated texts, but it is costly and time-consuming. As a result, automated meas-
ures for evaluation are to be used. But these automated evaluation measures should only 
be used as a supplement to human judgments and not as a replacement. Also, the auto-
mated metrices of evaluation are to be used when they present a reasonable correlation 
with human judgments.

However, there are still many issues or open problems in the generation of automated 
text which are discussed in the next section.

9 � Challenges of automated text generation tasks

Generating fluent, meaningful, well-structured, and coherent text is pivotal for many text 
generation tasks. It takes significant effort by humans to model long-term dependencies 
while generating consistent text. It is an equally challenging task to do it automatically due 
to the discrete nature of textual data. This section identifies the main difficulties or chal-
lenges for the effective generation of text as below.

9.1 � Text summarization

Text  summarization is a challenging task since it requires thorough text analysis to pro-
vide a reliable summary [57]. A good summary must include relevant details and must be 
precise, but it must also consider aspects such as non-redundancy, significance, coverage, 
coherence, and readability [145]. To achieve all these things, in summary, is a major chal-
lenge. While many text summarization models provide tangible results, several issues are 
being suppressed. They often tend to repeat factually inaccurate information, struggle with 
Out of Vocabulary (OOV) words, emphasize a word/phrase several times, and are also a bit 
repetitive [142]. Another challenge is to develop a system that summarizes multi-lingual 
texts and generates a summary whose quality matches that of a human generated summary 
[57]. For multi-document summarizing, redundancy is the biggest problem [15, 239]. The 
so far proposed systems strive to identify important sentences in groups of different themes 
and hence suffer from the problem of sentence ordering. There is a need for a richer dataset 
and computation power. Thus, pre-trained models came into the picture [195]. The hybrid 
approach has gained attention recently [221]. By combining extractive and abstractive 
techniques, developing efficient hybrid approach methods to generate good quality sum-
maries so that they match closely to human-written ones is another major challenge. The 
automatic text summarization evaluation metric such as ROUGE [114] is not considered 
complete [147]. The challenge with summary evaluation is to determine how adequate or 
useful a summary is relative to its source. Thus, methods for generating and evaluating 
summaries should complement each other.
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9.2 � Question‑answering

Automatic question–answer generation is a significant advancement still many challenging 
issues are yet to be resolved. One such issue is to precisely understand the natural language 
questions and deduce the exact meaning to retrieve specific responses [50]. Another chal-
lenge is the selection of a question that has good coverage of the content and is of appropri-
ate difficulty, and in the case of multiple-choice questions, distractor generation is the big 
challenge. As input texts grow longer, sequence-to-sequence models struggle to effectively 
utilize relevant contexts while avoiding unnecessary information [47]. The models do not 
pay much attention to the answers that are critical to question word generation. As a result, 
the generated question words do not match the answer form [186]. Previous neural ques-
tion generation models suffer from a problem where a large percentage of the generated 
questions contain words from the question target. As a result, they generate unintended 
questions [88]. The models are not aware of the positions of the context words. Instead of 
considering the close and relevant words to the answer, they copy the context words that 
are far apart and irrelevant to the answer [186]. The one most frequent problem is the Lexi-
cal gap between questions. It concerns variation in the formation of questions in natural 
language. Users formulate the question in different ways and ask for the same information. 
This results in questions that differ lexically but are semantically equivalent. The problem 
of word sense ambiguity is still a challenge in the QA field [180]. To leverage the wide 
range of the available datasets for the question–answer generation is not trivial. The task 
of selecting an appropriate dataset is still an open problem [50]. Challenges also arise due 
to the limited size of the user’s utterance, ambiguous, and missing information while inter-
preting a question.

9.3 � Dialog response generation

Usually, conversational systems rely on RNN models, and RNNs are not able to model 
high-level variability [178]. The end-to-end conversational agents are prone to generat-
ing dull, generic, and boring responses [173]. To elicit a coherent, novel, and insightful 
response that is in line with the conversation spectrum, The conversational agents require 
adequate, accessible data [178, 181]. However, the conversational models, even with the 
powerful performance of neural networks, lack style, which possesses to be an issue as 
users may not be entirely satisfied with the interaction. Another problem is to encode con-
textual data such as world facts from knowledge bases or prior conversations. The response 
generated has to be contextually relevant to the conversation and also convey accurate 
paralinguistic functionality. Generating personalized dialogues is another challenging task 
[141].

9.4 � Machine translation

Although neural machine translation (NMT) has been witnessing fast-growing research 
progresses, there are still many challenges. The major neural MT challenges are listed here. 
A major limitation of NMT is that it is not able to incorporable larger contextual infor-
mation efficiently due to the learning ability of the model itself. The problem of reorder-
ing has not been addressed much so far [124]. The problems of alignment mechanism and 
vocabulary coverage always affect most of the NMT models [192]. NMT also struggles 
to deal with the translation of idioms [3]. Low-resource language MT is another hot spot, 
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owing to multiple reasons, including morphological complexity and diversity, in addition 
to a lack of resources for many languages [79].

9.5 � Story generation

Automatic story generation is challenging since it requires the generation of long-range 
dependencies and coherent natural language to describe a sensible sequence of events 
[227]. Another challenge in story generation is to create interactive narration along a cer-
tain story path so that the interactor has been provided the ability to modify the space or 
even the plot [208]. The commonly observed issues in generated stories are repeated plots, 
conflicting logic, and inter-sentence incoherence [20, 34, 53]. Another challenge is to use 
constraints to generate a creative story within the structure of the plot [151]. In most sys-
tems, evaluating the topicality, fluency, and overall quality of the stories generated poses a 
unique challenge [53].

9.6 � Paraphrase generation

The ability to automatically generate alternative phrases of the same content has been dem-
onstrated to be useful in several NLG areas, such as text summarization and question gen-
eration [155]. Automatically generating diverse and accurate paraphrases continues to be a 
difficult challenge due to the complexity of natural language [224]. Evaluation of the para-
phrases generated is the most difficult aspect [105]. Another issue to be addressed is the 
generation of multiple diverse paraphrases of high quality to enhance generalization and 
robustness [160]. The issue of model holistic properties of sentences such as topic, style, 
and other features is still challenging.

9.7 � Image captioning/ Video description

The major challenge in describing visual information to text is to learn the intermedi-
ate representation between the natural language domain and the visual domain [127]. 
Another challenge is the fine-grained natural descriptions of images or videos [42]. For 
instance, occlusions of interactive objects and unclear unit boundaries present addi-
tional challenges in effectively decoding the intent of the human behavior in a video. 
There are challenges associated with automatically generating textual reports for medi-
cal images and helping medical professionals produce reports more accurately and effi-
ciently. The first is to generate prolonged texts with several sentences or even paragraphs, 
and the other is to generate captions with a wide range of heterogeneous forms [229]. 

Discussion on research question 8 

The automated text generation applications have various challenges, including the gen-
eration of human-like text that is fluent, unambiguous, and diverse. This section helped to 
answer the RQ 8- “What challenges are faced in automated text generation tasks.” As the 
textual data is discrete in nature, it takes time and effort to model long-term dependen-
cies while generating consistent text. Thus, applying neural models to different neural text 
generation tasks can depend on various factors, including the type of task, the architecture 
of the model, the size and quality of the training data, and the evaluation metrics used to 
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measure the performance of the model. It has also been observed that the automated text 
generation is challenging, since it is not always possible to reproduce the reported results. 
Since the datasets used for text generation models are not always available publicly, it is 
difficult to conduct comparisons among various approaches to text generation. The size of 
training data and other key hyperparameters have a substantial impact on the quality of the 
generation text. However, there are still many open challenges in text generation that need 
to be addressed, including the generation of fluent, coherent, diverse, controllable, and con-
sistent human-like text. Inspired by these challenges, the future aspects of this research 
area are presented in the next section.

10 � Conclusion and future aspects

This survey captures a comprehensive study and up-to-date systematic review of current 
advancements in the field of text generation. Text generation applications has been cat-
egorized mainly into three categories: text-to-text generation (T2T), data-to-text generation 
(D2T), and multimodality-to-text generation (M2T), depending on the input (data, text, or 
multimodal). A variety of text-to-text generation applications, including text summariza-
tion, question–answer generation, story generation, machine translation, dialogue response 
generation, and paraphrase generation, have been discussed and analyzed. The main focus 
of this survey is on text-to-text generation applications, and it is beyond the scope of this 
survey to include all the recent developments in the various data or multimodality-to-text 
applications. This paper also mentions various models for text generation, including tra-
ditional and statistical models, deep learning based models, and pre-trained transformer 
architectures, and observed that deep learning approaches and transformer-based architec-
tures have been generally achieving better performance than traditional methods. However, 
applying these models to different neural text generation tasks can depend on various fac-
tors, including the type of task, the architecture of the model, the size and quality of the 
training data, and the evaluation metrics used to measure the performance of the model. 
The quality of the generated text has a huge impact on the decoding strategy and optimiza-
tion technique that one employs. This paper discussed the decoding methods and optimi-
zation techniques important for generating human-like fluent text. A diverse text genera-
tion task-specific standard datasets that are required to train, test, and validate the systems 
have also been provided in this article, along with their URLs. This field has made much 
progress in recent years. As a result, various text generation application-specific tools are 
available in the real world, which is also reviewed in this paper along with their strengths 
and limitations. Many sectors have started using automated text to improve user experience 
as the recent advancements in the technology is capable of generating human-like texts. 
Though, the content generated by the automated tools is fast and cheap but lacks artistry 
involved in expressing thoughts. The automatic text generation system’s goal is to gener-
ate text as good as human-written text. The assessment of the generated text is essential to 
improve the performance of text generative models. However, human evaluation remains 
the gold standard for assessing the quality of automated generated texts, but it is time-
consuming and expensive.

 For effective text evaluation, various automatic evaluation metrices have been analyzed 
and reviewed in this paper. Nevertheless, many open challenges in text generation need to 
be addressed, including the generation of fluent, coherent, diverse, controllable, and con-
sistent human-like text. Inspired by these challenges, the future aspects in this research 
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direction include generating long-term fluent and coherent text.The advancements in the 
generic models should be done so that they can learn from some low resources and can 
handlemultiple languages without large quantities of training data. The generation of 
diverse texts conditioned by specific attributesand characteristics is another research direc-
tion. Practical applications for real-time text generation should be developed thatensure 
responsible usage of the generated text. The need of the hour is to create a universal evalu-
ation metric that suits all textgeneration tasks and reflects all desired properties of text that 
correlate with human judgments.

This survey aims to provide a comprehensive overview of current advancements in 
automated text generation and to introducethe topic to researchers by providing pointers 
and synthesis to pertinent studies. This paper is believed to serve as a valuablereference for 
those concerned with learning and advancing this interesting research area.
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