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Abstract
In today’s technologically evolved world, users have become accustomed to personalized
tools that provide accurate and precise recommendations that consider their needs and inter-
ests, leading to a perceived reduction in information overload in a fiercely competitive
marketplace. However, sparsity issues render the effective prediction infeasible and hamper
the performance of the recommendation, as users typically only rate a small proportion of
the offered items. To solve these problems, we propose, in this paper, a novel hybrid model
named Kernelized Finetuned Deep Belief Network (KFDBN) for accurate rating predic-
tion and efficient Top-k recommendation. First, we learn a deep generative model using a
Deep Belief Network (DBN) to capture higher-level latent feature representations of users
and items to effectively predict missing entries in the rating matrix. Next, we present the
practical KFDBN approach to seamlessly incorporate features extracted by the generative
model into kernel-based feature extraction. Subsequently, KFDBN is leveraged to learn reli-
able hidden features that improve the performance of sparse recommendations. Finally, we
introduce the KFDBN-based imputation technique to create a denser user-item interaction
matrix for a relevant item ranking in the Top-k recommendation. Experimental evaluations
on six datasets in various domains reveal that the proposed generative model enhances
the accuracy of rating prediction and outperforms the state-of-the-art methods by 21.32%
and 16.35% in RMSE and MAE, respectively, averaging on all used datasets. Moreover,
the KFDBN exceeds baseline approaches and enhances the Top-k recommendation perfor-
mance by 5.2% and 8.1% in HR@10 and NDCG@10, respectively, averaging on the six
datasets.
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1 Introduction

The expanding demand for personalization has paved the way for the emergence of Rec-
ommender Systems (RSs) to defeat the tyranny of prevailing data overwhelm by predicting
users’ intentions. The efficiency of such a system is generally determined by how effectively
diverse users’ interests are identified [1, 17], how accurately users’ transactions on items
are represented [17, 32], and how significant user and item features are extracted [17]. Col-
laborative filtering (CF) is a fast-evolving technique [18, 36] that relies on feedback scores
to infer similar users and items. The Netflix prize competition, which began in 2006, has
led to several recent advances in this area and pioneered the research community’s access
to movie rating datasets, which drew the interest and attention of many researchers and sci-
entists [4]. However, comprehending precisely varied users’ preferences demands complex
models requiring massive information, which runs counter to the sparsity limitation. The
latter refers to the situation where available data of users’ interactions with items is sparse
[17], making it challenging for the RS to infer accurate predictions.

The continuous upsurge of better prediction accuracy has led to the use of Deep Learn-
ing (DL), a subfield of Machine learning (ML), to propose robust and powerful RSs. The
current growth of interest in such deep models in the recommendation field is due to novel
methods that showed practical training, thus outperforming shallow techniques, especially
in sparse conditions [17, 23, 24, 44]. On the other hand, kernel methods have also gained a
keen interest in RSs, due to their meaningful feature extraction and efficient structure dis-
covery in data. Recent approaches based on kernel techniques leverage the kernel trick to
explore relevant structures in non-linear empirical data in different contexts, thereby cap-
turing reliable features for better prediction [7, 30], or classification [31, 44], as long as the
kernel function is selected accurately.

Several state-of-the-art papers integrate side information into DL-based models as an
inevitable choice to propose hybrid solutions for missing rating prediction [22, 24]. The
additional information could be items properties [24], textual reviews [43], or simply demo-
graphics gathered from users’ profiles [37]. Nevertheless, accurate personalization is not
about names, ages, or places, as it does not track users’ volatile tastes and behaviors [17].
Not to mention that such data is hard to collect due to privacy aspects. On the other hand,
to generate Top-k recommendations, consisting of ranked and personalized lists of items to
users, some papers employ auxiliary information in Matrix Factorization (MF) techniques
as regularizations to learn latent features [33, 48]. However, such feature vectors represent
linearly user and item interactions, which is notably not useful for heterogeneous real-world
data, especially if the user-item matrix is scarce and additional information is unavailable
[17].

To address these problems, we introduce, in this paper, the Kernelized Finetuned Deep
Belief Network (KFDBN) model to accurately predict missing ratings and generate effi-
cient Top-k recommendations even if only a few ratings of users on items are available. We
first learn a deep generative model using a Deep Belief Network (DBN) for missing rat-
ing prediction. The model captures higher-level hidden feature representations of users and
items by allowing reliable layer-by-layer learning of weights, resulting in better generaliza-
tion. The deep structure is performed by stacking multiple Restricted Boltzmann Machines
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(RBMs) to learn the visible layer’s distribution probabilistically, allowing each successive
RBM to apprehend meaningful features in the sparse rating matrix. We use the Contrastive
Divergence (CD) algorithm [13] to initialize the deep architecture of the generative model
in an unsupervised way. Such initialization avoids the typical problems of gradient-based
approaches that are time-consuming and have to deal with many layers and parameters
throughout the learning process, which might lead to local minima [23]. Next, the com-
pressed data representation and the restricted parameter space establish a starting point for
supervised fine-tuning. This optimization ensures further effective generative reconstruction
of user-item interactions yielding accurate predictions and personalized recommendations.

We also present the efficient KFDBN classifier that emphasizes extracting power-
ful hidden features of users and items, unlike classification-based CF approaches, which
merely employ shallow feature extraction. We demonstrate that KFDBN can be successfully
applied to enhance classification performance for different datasets by using the deep gen-
erative approach as a base pre-model that produces, along with Kernel Principal Component
Analysis (KPCA) [35], meaningful latent feature vectors to conduct an efficient two-step
kernel-based discriminative semi-supervised classification.

Another crucial contribution of this paper is to develop a novel imputation technique to
solve sparsity issues in MF-based recommendations. We use KFDBN as a hybrid impu-
tation technique to infer missing entries in the original sparse rating matrix. The positive
predictions emanated from the generative model are merged with ratings of relevant items
resulting from the KFDBN classifier component to create a denser user-item rating matrix
for the Top-k recommendation. This leads to solving the optimization issues that occur
when MF-based methods are applied directly to sparse data since the error function con-
siders only available inputs. On the other hand, the proposed unified model discovers the
underlying local and global non-linear correlations on sparse data to infer missing user-
item entries, which significantly differs from state-of-the-art MF-based recommendation
approaches [11, 34] that treat unobserved ratings as negative inputs compensating for the
skewed distribution of known interactions.

The contributions of this paper are summarized as follows:

• We propose a novel hybrid model named Kernelized Finetuned Deep Belief Network
(KFDBN) that combines the practical training of the DBN with kernel methods’ rele-
vant exploration of data structures to overcome sparsity issues in RSs. We first present
the effective fine-tuned (FDBN) model for accurate missing rating prediction.

• We show that going deeper helps to capture reliable features by comparing the
performance of RBM with DBN.

• We demonstrate that supervised fine-tuning of the generative model yields better
prediction results.

• We present a practical hybrid approach to seamlessly incorporate features extracted by
the generative model into kernel-based feature extraction using KPCA to create user
profiles. The unified KFDBN feature extraction helps to apprehend important informa-
tion among items by discovering correlation features among co-rated items from users’
perspectives, capturing thus precise and relevant items that satisfy users’ preferences.
The proposed user profile expansion mechanism significantly impacts the performance
enhancement of the sparse recommendation.

• We prove that output features extracted using the hybrid KFDBN lead to higher Support
Vector Classification (SVC) outcomes, demonstrating that KFDBN can be successfully
extended to effective semi-supervised classification.
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• We develop a novel imputation technique that infers missing ratings in the original
sparse user-item interaction matrix to solve sparsity issues in MF-based recommenda-
tions.

• Finally, extensive experimentation on six sparse datasets in diverse domains shows that
the FDBN generative model significantly enhances the missing rating prediction and
outperforms the state-of-the-art methods by 21.32% and 16.35% in terms of RMSE and
MAE, respectively, averaging on all used datasets. We also empirically prove that the
KFDBN leads to higher performance for the Top-k recommendation and yields 5.2%
and 8.1% improvement in HR@10 and NDCG@10, respectively, averaging on the six
datasets.

The remainder of this paper is divided into five sections. Section 2 provides an overview
of related work in DL-based feature learning and kernel-based methods applied in RSs.
The foundations and preliminaries of RBM, DBN, and Kernel methods are presented in
Section 3. Section 4 is dedicated to thoroughly describing the proposed KFDBN and
discussing the different components. Section 5 reports experimental results, answers the
research questions addressed in this paper and discusses the findings. Finally, the paper
conclusions and future direction of the work are presented in Section 6.

2 Related work

The related work of the paper covers two chief points: DL-based models for enhanced
feature extraction and kernel-based technique applied in RSs.

2.1 Enhanced-feature extraction based on deep networks

Autoencoders (AEs) are widely employed in RSs for their appropriate latent feature rep-
resentation. Bathla et al. [3] uses a shared layer in an AE to incorporate indirect social
trust with ratings and learn accurately from linked representations. Hybrid AE-based mod-
els include users’ side information to address data scarcity [46]. However, users’ latent
information is typically diverse and multimodal and may contain improper aspects for pre-
diction. As a result, emphasizing such features by the AE will cause overfitting. Not to
mention that reconstruction outputs of AE-based approaches are sometimes directly lever-
aged as predictions of unknown rating values [23], which may impair the effectiveness of
the recommendation.

CapsMF [22] leverages Bi-directional Recurrent Neural networks (RNN) with Capsule
Networks for textual analysis of reviews to generate recommendations, thus enhancing the
capabilities of Convolutional Neural Networks (CNN) and RNN-based models in text mod-
eling and representation. On the other hand, Capsule networks need to be fine-tuned since
they take time to be trained, especially for large-scale recommendations.

Generative Adversarial Networks (GAN) are employed to learn user and item represen-
tations [9, 29] and perform rating augmentation [6] to alleviate the sparsity in CF. However,
GAN-based models tend to predict high-value ratings for most missing entries in the user-
item matrix [6]. Hence, if proposed approaches adopt such a biased augmented matrix for
generating recommendations, they are likely to result in poor performance as they fail to
apprehend users’ actual interests. Furthermore, such models’ discriminator sometimes leads
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to a high percentage of contradicting labels for the same items due to early and mislead-
ing convergence [29]. Additionally, inverting in a wholly trained GAN-based system is a
tedious task.

2.2 Kernel-basedmethods for recommendation

Though linear methods are simpler to interpret and have shown promising prediction results
[38], they may not be proper to train the non-linearly separable and heterogeneous real-
world data [17], which promoted the application of kernel methods in RSs. Chen et al.
[7] proposes kernel-based matrix completion for a neighborhood-based recommendation.
Approximation for missing ratings is enhanced by integrating the Gaussian kernel function
with the similarity measure. The technique combines various characteristics in non-linear
latent feature spaces by employing a multi-kernel framework, adjusting the kernels’ weights
to generate relevant recommendations.

The Kernel Context Recommender System (KCR) employs the kernel trick to build a
model based on a context rating matrix for prediction using contextual information [21].
The research shows that variation in kernel functions leads to higher performance than stan-
dard context-aware RSs. However, Principal Component Analysis (PCA) could be further
applied to filter relevant context features to enhance the efficiency of the kernel mapping
framework. Besides, investigating a DL-based model can learn from diverse representations
from varied contexts, thus improving the quality of recommendations.

To transcend the idea of incorporating mapped features of similar users directly into
classifiers to generate recommendations, [31] used the Multiple Kernel Learning for fea-
ture separation; then incorporated output results in the Adaptive Neuro-Fuzzy Inference
System (ANFIS) for classification. The proposed model has shown relevant sensitivity
and specificity. However, it has not been evaluated in scarce conditions. Furthermore, it
is relevant solely for heart disease recommendations. Another paper [44] combined the
Scale-Invariant Feature Transform (SIFT) with the Faster R-CNN algorithm and Support
vector machine (SVM) classification for music recommendation based on DL and IoT archi-
tecture. First, SIFT is used to locally extract features based on the Gaussian convolution
kernel. Then, Fast-RCNN is utilized to extract underlying multi-scale features of the scene
images. Finally, middle-layer characteristics with spatial information are acquired using
SVM classification to develop the background music system. Otherwise, Singular Value
Decomposition (SVD) may be leveraged to infer low-dimensional vectors of users’ data
[30]; after that, a kernel function can discover relevant latent features between users before
predicting ratings using neural-based models such as Multilayer perceptron (MLP) [30].

3 Background preliminaries

3.1 Restricted BoltzmannMachine

A Restricted Boltzmann Machine is a stochastic generative Neural Network (NN) that learns
a probability distribution over its set of inputs [13]. The weighted bipartite graph of the
RBM, θ = (Wij , vbiasi , hbiasj ) is composed of two layers (the visible layer V and the
hidden layer H ) connected through a set of weights Wij , and biases (vbiasi , hbiasj ). RBMs
can be used for regression, classification, dimensionality reduction, CF, and so forth [19].
Depending on the task, they can be trained in a supervised or unsupervised way. A Restricted
Boltzmann Machine is illustrated by Fig. 1.
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Fig. 1 Restricted Boltzmann Machine

The binary units of the RBM are connected to form a joint configuration (v, h) whose
overall energy is defined by (1)

E(v, h; θ) =
n∑

i

m∑

j

Wij vihj −
∑

i

vbiasi vi −
∑

j

hbiasj hj (1)

In a Boltzmann machine (BM), the only restrictions are that all connections are symmet-
rical, and no unit has a connection to itself. However, due to their high complexity, such
networks are much less utilized compared to RBMs, which are BMs in which there are
no visible-visible, and hidden-hidden connections [13]. The joint probability distribution is
then calculated using (2).

p(v, h; θ) = e−E(v,h;θ)

η(θ)
(2)

Where η(θ) = ∑
v

∑
h e−E(v,h;θ) defines the appropriate normalization factor.

The probability that a model assigns states of hidden units to the vector h is computed by
marginalizing out the visible vector v as presented in (3).

p(h; θ) =
∑

v

p(v, h; θ) = 1

η(θ)

∑

v

e−E(v,h;θ) (3)

To get a sample generated by the network according to the probability p(v), the Gibbs
sampling, which is a Markov chain Monte Carlo (MCMC) technique, is used [13]. Yet, to
obtain samples that are faithful to the learned distribution, it is theoretically necessary to
iterate between the states of the Markov chain until convergence.

Figure 2 depicts the sampling process of hidden units h(t) ← p(h = 1 | v(t)) followed
by visible units sampling v(t+1) ← p(v = 1 | h(t)).

Training the RBM is thus performed by maximizing the log probability, which consists
simply in minimizing the Kullback-Leibler divergence [13] between two distributions that
are the target distribution 〈vihj 〉0 of the learning base, namely the input, and the distribution
〈vihj 〉∞ modeled by the RBM. The gradient of the log probability with respect to a specific
weight is, therefore, computed according to (4).

∂log(p(v))

∂Wij

= ∂log( 1
η(θ)

∑
h e−E(v,h;θ))

∂Wij

∂log(p(v))

∂Wij

= 〈vihj 〉0− < vihj 〉∞ (4)
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Fig. 2 Gibbs sampling iterative process

3.2 Deep belief network

The Deep belief Network is a probabilistic model mainly composed of stacked RBMs. The
training of the DBN is performed through a greedy layer-by-layer learning algorithm [14].
A first unsupervised pre-training phase is achieved successively in each layer before finally
employing a supervised optimization on the initialized parameters resulting from the first
stage. When trained to a set of unsupervised examples, the stacked RBMs act as feature
detectors to probabilistically reconstruct input data. The chief purpose of this unsupervised
step is to match the inputs and outputs of successive hidden layers. This reconstruction
criterion thus ensures that most of the information is preserved after training all the layers.
The model parameters at layer Z, along with conditional probabilities of the hidden units,
are used as necessary generated data to train the model’s parameters at layer Z + 1. The
model can be further optimized with supervision to perform fine-tuning.

3.3 Kernel-basedmethods

The use of kernel techniques is driven by the possibility of projecting data values to another
space of a higher dimension where the linear separation is achievable [7]. The performance
of such approaches crucially depends on the appropriate choice of the kernel function. The
latter is a symmetric, continuous, and positive function corresponding to a scalar product
in a higher dimension space. Formally, for each kernel K , there exists a function φ : X ⊂
R

n → H such that:
K(x, x′) = 〈φ(x), φ(x′)〉H ∀x, x′ ∈ X (5)

with X the original space and H the Hilbert space of dimension greater than X . The ker-
nel functions examined in this work are presented in Table 1. Along with the cost C, each
kernel optimizes a specific parameter (i.e., γ, β, and P ), thus allowing an efficient per-
formance, making it possible to benefit from simple and rigorously guaranteed techniques
while dealing with non-linear problems.

In contrast to the linear kernel, which performs linear boundaries in a higher dimension,
the polynomial kernel expands m input features to mP features with degree-P > 0 of
polynomials by performing feature conjunctions that are valuable for cases where input data
is normalized [16]. This kernel also optimizes β, a real weighting parameter that trades off
the impact of lower polynomials. The Radial Basis Function (RBF) is a Gaussian kernel
independent of the nature of the observed data, which makes it more suitable for cases
when there is no prior information about training data [45]. Here, γ controls the variance
of the distribution; hence finding the optimal value of γ yields better performance of the
kernel. Unlike other statistical similarity metrics, the cosine kernel measures the similarity
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Table 1 Kernel functions

Kernel function Mathematical formula Optimization parameter

Linear K(x, x′) = 〈x, x′〉 C

Polynomial K(x, x′) = (γ 〈x, x′〉 + β)P C, γ, β, P

RBF K(x, x′) = exp(−γ ‖ x − x′ ‖2) C, γ

Cosine K(x, x′) = 〈 x
‖x‖ , x′

‖x′‖ 〉 C

Sigmoid K(x, x′) = tanh(γ 〈x, x′〉 + β) C, γ, β

as a normalized dot product of two vectors in a high dimensional space by abstracting
out their magnitude, which is beneficial in cases where the size of vectors influences the
similarity computation, primarily when the Euclidean distance is employed [42]. Otherwise,
employing a sigmoid kernel, the learning algorithm becomes similar to a two-layer NN, less
prone to a local optimum with great generalization results. A typical value for the slope γ

is 1
M

where M is the dimension of input data [28].
Thanks to their theoretical foundations, SVMs provide a unique approach less prone to

overfitting and advantageous compared to an Artificial Neural Network (ANN) that may not
allow robust classification of different samples [10]. Kernel methods have been particularly
effective for classification based on SVMs, which search for an optimal margin hyperplane
that corresponds to the accurate potential separations among the closest data points belong-
ing to different classes while being located with the maximum distance to observations
[5]. The mapping of points to a space of a higher dimension and the appropriate choice of
optimization parameters of the kernel function not only decreases the computational cost,
mainly when dealing with extensive data, but also enhances the generalization performance.

Kernel methods are also leveraged in KPCA [35], which are a non-linear extension of
PCA. The latter determines new independent variables, called Principal Components (PC),
thus finding relevant projection spaces for the data by maximizing their projected vari-
ance. In other words, extracted information using KPCA is non-linearly related to the input
data. In fact, by employing kernel functions, KPCA projects the observations into a new
space of higher dimension and then carries out an ordinary PCA. Compared to other non-
linear extensions of PCA, for instance, NNs, KPCA is known for its stability and a reduced
computational cost [45].

4 Proposedmodel

This section represents the proposed Kernelized Finetuned Deep Belief Network (KFDBN)
model, which comprehends three major components:

• KFDBN feature extraction:

– Fine-tuned DBN (FDBN) for missing rating prediction: We first develop
a deep generative model of stacked RBMs by leveraging the unsupervised
pre-training as an initializer of the deep architecture instead of randomly ini-
tializing the model’s parameters. This unsupervised pre-training phase results
in a regularization effect that renders the learning process more efficient by
establishing a restricted parameter space for further optimization. We then
incorporate semi-supervised learning to improve the model’s generalization
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performance by reaching a lower minimum of the cost function. Once all
RBMs have been trained, the initialization phase is complete. The compressed
representation of data is used as input to a logistic layer that will be trained
with backpropagation (BP) to perform discriminative fine-tuning. Hence, the
FDBN allows the extraction of higher-level hidden features of users and items
and leads substantially to better prediction results in the reconstructed rating
matrix.

– kernel-based feature extraction: This stage provides an application of KPCA
to capture further the relevant hidden structure of categorical FDBN out-
put features. Processed latent factors are used to expand Users’ and Items’
Profiles to discover correlation features among co-rated items from users’
perspectives. As a result, each item is characterized by a number of hidden
characteristics of users that assessed the item. Then, PCA converts learnt fac-
tors into a new set of related unified KFDBN features, retaining only the
relevant patterns and meaningful information.

• KFDBN item relevancy classification: In this phase, we investigate a hybrid approach
to incorporate the extracted KFDBN features and available feature data as input vectors
of a kernel-based discriminative classifier aiming to efficiently group items into three
classes referring to items utility: (relevant, neutral, and irrelevant).

• KFDBN-SVD Top-k recommendation: The driving idea behind this phase is to enhance
the ranking performance in MF-based recommendation approaches. We use KFDBN
results to infer missing ratings in the original sparse user-item interaction matrix. The
positive predictions emanated from the FDBN generative model are merged with rat-
ings of relevant items resulting from the KFDBN classifier component to create a denser
imputed matrix for SVD-based Top-k recommendation.

The proposed KFDBN architecture is depicted in Fig. 3. The following sub-sections
discuss and examine the influence in an in-depth investigation of each component on the
entire proposed model.

4.1 KFDBN feature extraction

4.1.1 FDBN for missing rating prediction

Unsupervised pre-training In this phase, we aim for an accurate generative reconstruction
of sparse input data. This is achieved as long as the model’s parameters are initialized effec-
tively. Therefore, to overcome typical problems of gradient descent-based approaches that
can quickly get stuck with local minima [23] and do not allow the efficient training of large
dimensions of hidden layers [13]; we join an additional layer of feature detectors to an RBM
to learn an effective deep generative model for missing rating prediction. Here, the layer-
wise unsupervised training is performed on stacked RBMs to capture higher-level features
of input data. To expedite the sampling stage depicted in Fig. 2, the Contrastive Divergence
is applied [13]. The primary purpose is to maximize the log-likelihood, i.e., ∂log(p(v))

of the data to learn the weight matrix W = {Wij }, which guarantees the efficient recon-
struction of the sparse input user-item matrix. The weights of the network can be updated
according to (6).

�Wij = α(〈vihj 〉0 − 〈vihj 〉∞) (6)
Where 〈vihj 〉0 is the expectation under the training distribution, 〈vihj 〉∞ denotes the expec-
tation under reconstructed sparse data distribution provided by the RBM, and α is the
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Fig. 3 The architecture of the proposed KFDBN model

learning rate. Since the units of the same layer have no connection, the states in a layer only
depend on the states of the units in the other layer, hence 〈.〉0 can be easily computed. On
the other hand, 〈.〉∞ can be obtained by applying the CD algorithm by incorporating two
significant points that are:

• Instead of starting at a random visible point, i.e., v(0), CD uses an input example from
training data to initialize the Gibbs procedure, i.e., v(0) ← v ∈ T̂ , which makes it
possible to explore the regions near the training examples to modify the surface of the
energy function [13].

• To ensure a regularization effect by only performing GS iterations of Gibbs sampling
[2].

The algorithm of the Contrastive Divergence with GS steps is described in Algorithm 1.
Equation (7) is used to calculate the hidden binary units, and then the visible states are
computed using (8). Output visible units are approximate reconstructions of training data.

p(hj = 1 | v) = σ

(
n∑

i

wij vi + hbiasj

)
(7)

Where σ(s) = 1
1+e−s is the sigmoid logistic function.

p(vi = 1 | h) = σ

⎛

⎝
m∑

j

wijhj + vbiasi

⎞

⎠ (8)
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By comparing the computed probability with the predefined threshold κ according to
(9), hj is set to 0 if p(hj = 1 | v) is lower than κ and 1 otherwise. The same principle is
applied when it comes to activating or inhibiting the states of visible units.

xk =
{

0 p(xk = 1 | y)〈κ
1 p(xk = 1 | y)〉κ (9)

Where κ ranges from 0.5 to 1.

Algorithm 1 Contrastive Divergence(T̂ , α, W , vbias , hbias , mo, GS ).

When training the RBM with the Contrastive Divergence algorithm, the model’s param-
eters are updated in each training epoch, and the GS steps of Gibbs sampling are conducted.
We divide the training data T̂ into mini-batch samples with a batch size of BS data points.
Updating the summations only needs to be done once in each batch; hence, a batch of input
vectors still requires O(nm) complexity, where n and m are input vector and hidden vector
dimensions, respectively. Moreover, the CD algorithm avoids the exponential complexity of
summing over all of the values of the visible or hidden units by sampling the model distri-
bution with the probability distribution of the input vector. The calculation of conditional
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probabilities has a computation complexity of O(nm). Therefore, the overall complexity of
the Contrastive Divergence with GS of Gibbs sampling steps is given by O(BSGSnm).

Algorithm 2 Unsupervised pre-training(T̂ , Nls , αpr , W , hbias , mo, GS ).

The first RBM of the unsupervised DBN model is trained using the Contrastive Diver-
gence with the v(0) input sample of training data presented on its visible layer, regarding
categorical five-star ratings as five nodes, one for each potential evaluation value. Once
trained, for each sample v of the training set, the first RBM associates a configuration h of
neurons from the hidden layer. h is constructed by sampling the distributions p(hj | v(t)).
The configurations h thus obtained are compressed versions of v. Each of the following
RBMs learns about the hidden representations of the previous one. Here, the hidden layer
of the first RBM acts as a visible layer for the next RBM. Once all RBMs have been trained
in an unsupervised fashion, the compressed version of input data presented in the hidden
layer of the last RBM, along with the model’s inner parameter space, defines an initial-
ization point to a supervised fine-tuning algorithm and thus enabling the effectiveness of
semi-supervised strategies in achieving optimal generalization results. The unsupervised
pre-training stage of the DBN is detailed in Algorithm 2.

Supervised fine-tuning In the supervised fine-tuning phase, we back-propagate the error
to calculate gradients of the loss function to obtain optimal weights and biases that will
further enhance the performance of the generative rating prediction. The proposed model is
considered fine-tuned if it can find the desired target T associated with the corresponding
input data V . This is achieved by minimizing the quadratic cost function MSE defined by
(10).

� = 1

2N

∑

V

‖ T − H(V,Nls ) ‖2 (10)

Where Nls is the number of layers, N is the number of training examples, and H is the
vector of output activation states from the NN when using V as input.
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Algorithm 3 Supervised fine-tuning(T̂ , L,Nls , αf n, �).

The aim of the fine-turning stage, described in Algorithm 3, is to investigate how weight
changes and biases affect the reconstruction loss function � by computing the gradients
( ∂�
∂W

, ∂�
∂hbias

). Thence, an intermediate output error outNls in the last layer is computed by

taking into account the rate of change of � according to output activations: ∇H � = ∂�

∂HNls

and σ ′, the derivative of the activation function. Given that D(Z) ← WZHZ−1 + hZ
bias , σ ′

indicates how fast the activation function is changing at DNls . outNls is measured using the
(11). In case of MSE function, ∇H � = HNls − T .

outNls = ∂�

∂HNls
σ ′(DNls ) (11)

The output error for any layer can be measured by merging (11) with (12). The latter is
based on the error of the next layer, which involves a backward propagation of the error
through the NN.

outZ = (W(Z+1))T out(Z+1) · σ ′(DZ) (12)

To examine the impact of the weights and biases of any layer Z on � the gradient ∂�
∂WZ and

∂�

∂hZ
bias

are calculated using (13) and (14) respectively.

∂�

∂WZ
= HZ−1outZ (13)

∂�

∂hZ
bias

= outZ (14)

The gradients are further updated using different batches until training examples are entirely
fine-tuned. Resulted weights and biases from Algorithm 3 are then employed to optimize
the FDBN model for better prediction.
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4.1.2 Kernel-based feature extraction

In this stage, we seamlessly incorporate hidden features learned by the generative FDBN
model into the kernel-based feature extraction using KPCA. Since visible units of the FDBN
model are not just simple nodes with a single entry but have instead been considered five
nodes to represent individual evaluations (1–5 rating scale), we accordingly convert each
set of five binary latent feature nodes of the last hidden layer of the FDBN into categorical
feature data. Then, KPCA maps these non-linear FDBN features {x1, x2..., xX} ∈ R

M to a
high-dimensional space by transforming them to linearly separable factors F ′. The mapping
projection function φ extends data points into a feature space F of a higher dimension as
follows:

φ : RM → F, x → φ(x) (15)

Where {φ(x1), φ(x2), ......φ(xX)} are assumed to be centered at the origin of F, i.e∑X
k=1 φ(xk) = 0
Given C, the covariance matrix in the resulting space F, KPCA satisfies the equation

νV = CV for positive eigenvalues ν and eigenvectors V ∈ F \ {0}. C is described by (16).

C = 1

X

X∑

j=1

φ(xj )φ(xj )
T (16)

One may note that all V with ν �= 0 lie in the subspace generated by
{φ(x1), φ(x2), ......φ(xX)}. We may thence consider the following equivalent equations for
all i = 1, ...., X:

φ(xi)CV = ν(φ(xi)V ) (17)

and that there exist eigenvector coefficients eu(u = 1, ...., X) such that:

V =
X∑

u=1

euφ(xu) (18)

Given a kernel function K , to get eu, we define the X×X kernel matrix K according to (19)

Kuj := 〈φ(xu), φ(xj )〉 = (K(xu, xj ))uj (19)

Then, substituting C, and V into (17), we arrive at:

XνKe = K
2
e (20)

Which is equivalent to solving Xνe = Ke for nonzero ν [35].
It is noteworthy that, by employing kernel functions K(x, x′) defined in Table 1 dot

products of projected vectors φ(x) are computed without explicitly carrying out the map
φ(.). Besides, data points cannot be directly centered in F. Hence, the final definition of the
kernel matrix of centered data can be described using the matrix K as follows:

K̃uj = K − 1XK − K1X + 1XK1X (21)

Where the matrix (1X)uj = 1
X

, further details can be referred in [35].
To extract Principal Components (PC), corresponding to a kernel function K , we first

compute the matrix K , then calculate and normalize V in the feature space F. The mapping

of a data point sample x is calculated onto V
i

in F, which can be expressed by:

(K PC)i(x) = V
i
φ(x) (22)
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Therefore, for the test point x, we can describe the i − th feature representation value as
follows:

F ′
i = V

i
φ(x) =

X∑

u=1

ei
uK(x, xu) (23)

As shown in Fig. 4, we use output F ′ features to create Users’ Profiles (UPs), which in
turn generate novel Items’ Profiles (IPs). Here, we suppose that all users who have rated
a particular item have common characteristics. Hence IPs represent hidden features hc in
items that may interest the users. In other words, an item ik is described by merged UPs
of users that rated the item, which is beneficial in cold-start situations where items and
users are new to the system, and no initial rating or feedback is available [20]. Therefore,
dimensionality reduction using PCA is applied to new UP-based items’ profiles to boost
computational efficiency and capture important information among items relying on UPs.
PCA constructs the transformation matrix M that covert D = {hc1, hc2..., hcD}, the original
combined hidden features of IPs in q-dimensional space to new reduced KFDBN features
D′ in a t-dimensional space, where (t ≤ q). The Eigen Decomposition (ED) decomposes
the Covariance Matrix C(D.DT ) into three matrices as follows:

D.DT → S.L.ST (24)

Fig. 4 Kernel-based feature extraction
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Where S is the matrix (q ×q) that contains Eigenvectors V , which represent directions; and
L is the diagonal matrix (q × q) with eigenvalues ν that represent data magnitude.

Algorithm 4 PCA(D,q,t).

One primary benefit of employing PCA on UP-based items profiles remains in further
discovering correlation features among co-rated items from users’ perspectives, capturing
thus precise and relevant items that satisfy users’ needs. The impact of resulting KFDBN
features on item relevancy classification is examined in-depth through the following
sections.

4.2 KFDBN item relevancy classification

To perform item relevancy classification, we emphasise powerful deep feature engineering
by incorporating the hidden, latent factors extracted by KFDBN in the classification task,
unlike traditional classifiers that apply sallow techniques in the learning process [40, 44].
The purpose is to take advantage of the practical training procedure of the FDBN generative
approach by using it as a base pre-model that produces input features, along with KPCA,
to improve classification results when facing sparsity issues. The KFDBN model is lever-
aged to create input vectors for kernel-based Support Vector Classification (SVC) in two
prominent cases:

• KPCA is applied on features as a pre-processing stage to apprehend other meaningful
hidden structures to enhance the item relevancy classification. Let {x1, x2..., xX} ∈ R

M

be the training data with X observations of features resulting from the KFDBN model
combined with other feature data related to rating and items in a given space R of
dimension M . KPCA first maps X to a high-dimensional space using Equations defined
in Section 4.1.2. Therefore, the projection of training data is used as input to the SVC.

• KFDBN output features are combined with other features and then directly incorporated
to perform the kernel-based semi-supervised classification approach.

Let {(yp, Rp)}Yp=1 be the training set with input examples yp ∈ Y ⊂ R
N and corre-

sponding labels Rp ∈ {1, ..., Nc}Yp=1 of N -dimensional feature vectors yp. Let Nc be the
number of possible classes; we use the one-versus-one (OvO) approach, also referred to as
pairwise classification [25], to introduce Nc(Nc−1)

2 classifiers, one for each pair of classes.
The following binary optimisation equation is solved to train the classifier for the class pair
separating the class of index r from that of index r ′.
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min
wrr′ ,brr′ ,ξ rr′

1

2
‖ wrr ′ ‖2 +C

∑

l

ξ rr ′
l (wrr ′

)T (25a)

subject to (wrr ′
)T φ(yl) + brr ′ ≥ 1 − ξ rr ′

l , if Rl = r (25b)

(wrr ′
)T φ(yl) + brr ′ ≤ −1 + ξ rr ′

l , if Rl = r ′ (25c)

ξ rr ′
l ≥ 0 (25d)

Where wrr ′
is a vector of dimension L (L ≥ N ), C is the penalty parameter, ξl are the slack

variables, and b denotes the bias term.
The decision function for classes r and r ′ is defined according to (26).

Fr,r ′(y) = (wrr ′
)T φ(y) + brr ′

(26)

Here, φ(y) are mapped vectors in a feature space of dimension L and Fr,r ′(y) =
−Fr ′,r (y). The voting strategy [15] is used to classify a new sample. Specifically, for the
input instance y, we compute

Vr (y) =
Nc∑

r ′ �=r,r ′=1

sign(Frr ′(y)) (27)

Where

sign(t) =
{

1, if t > 0

0, otherwise
(28)

Namely, the binary classifier gives 1 as its vote to Vr (y) when the instance y is allocated to
class r rather than class r ′. Otherwise, it votes 0. Vr (y)) is hence the sum of all contributed
votes obtained from the classifiers determining that y is assigned to the class r .

r∗(y) = arg max
r=1,...,Nc

Vr (y) (29)

Therefore, as described by (29), the sample y is classified into the relevancy class (relevant,
neutral, and irrelevant) that receives the highest number of votes from the classifiers.

The employed multi-support vector classification using the OvO technique is beneficial
for kernel methods since it solves a two-class binary classification instead of using the entire
training data Nc times. The proposed classification approach allows thus robust and effi-
cient classification of both small and large data. Moreover, the KFDBN classifier leverages
a quadratic optimization that does not suffer from local optimum and overcomes the overfit-
ting problem by employing regularization principles, which expedites the learning process
naturally.

4.3 KFDBN-SVD Top-k recommendation

Now that the KFDBN model has generated missing rating predictions using its FDBN gen-
erative model and has classified the relevant items using the classifier component, we exploit
the KFDBN results to propose a new imputation technique for MF-based recommendation
approaches. Specifically, we merge high FDBN’s output predictions with ratings of relevant
items to create a denser user-item interaction matrix. Then we apply SVD to the imputed
rating matrix to generate Top-k recommendation lists of ranked items for the users.

The regularized SVD decomposes the rating matrix R ∈ R
n×m into two low-rank matri-

ces, such that users are associated with feature vectors ai of A ∈ R
n×p , and items are

described by their latent features bj of B ∈ R
p×m, where the rank p << min(n, m) .
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Hence, the matrix R can be estimated using:

R ≈ AT B (30)

The rating record rij is factorized into user and item latent feature vectors by minimizing
the following squared loss function:

minA,B

1

2

n∑

i=1

m∑

j=1

Iij (rij − aT
i bj )

2 + �A

2
|| A||2F + �B

2
|| B||2F (31)

Since most inputs in R are missing due to the sparsity, the indicator function Iij takes 1 if the

user i has evaluated the item j and 0 otherwise. The regularization terms (�A = σ 2
A

σ 2
,�B =

σ 2
B

σ 2
) are incorporated into the objective function to make a trade-off between overfitting and

the variance σ in approximating available entries. The optimum minimization with respect
to the Frobenius norm || . ||F can be obtained by employing gradient descent in A and B.

Therefore, the low-rank linear approximation of the KFDBN-based imputed rating
matrix ImpR can be estimated by solving the following optimization:

minA,B�ω + �ψ + �A

2
|| A||2F + �B

2
|| B||2F (32)

Where �ω = 1

2

∑n
i=1

∑m
j=1 Iω(i, j)(rij −aT

i bj )
2 and �ψ = 1

2

∑n
i=1

∑m
j=1 Iψ(i, j)(r∗

ij −
aT
i bj )

2. Iω(i, j) is the indicator function that takes 1 if the entry rij is available and 0
otherwise. Iψ(i, j) is the observed indicator which equals to 1 if the imputed rating r∗

ij exists
and 0 otherwise. ω and ψ are respectively the sets of known entries and KFDBN-based
imputed ratings. Combining �ω and �ψ , the aim is to minimize the following equation:

minA,B

1

2

n∑

i=1

m∑

j=1

I (i, j)(
︷︸︸︷
rij −aT

i bj )
2 + �A

2
|| A||2F + �B

2
|| B||2F (33)

Where
︷︸︸︷
rij =

{
rij (i, j) ∈ ω

r∗
ij (i, j) ∈ ψ

. Updating latent matrices of ImpR for users and items is

performed as follows:

ai = ai + αA(ιij bj − �Aai) (34a)

bj = bj + αB(ιij ai − �Bbj ) (34b)

Where αA, αB are the learning rates and ιij = ︷︸︸︷
rij −aT

i bj is the prediction error.
Finally, based on the extracted correlation matrices, we generate the Top-k item

recommendations for users. The proposed KFDBN-based imputation approach is partic-
ularly useful in solving the sparsity hurdle in SVD while leveraging its advantages from
complexity reduction to performance improvement [30].

5 Experiments and evaluation

To fully evaluate the effectiveness of the proposed KFDBN model, we perform extensive
experiments on two main recommendation tasks: missing rating prediction and Top-k rank-
ing recommendation. We first present each task’s experimental setup, including evaluation
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Table 2 Description of evaluation datasets

Datasets #Users #Items #Ratings Sparsity

MovieLens 100K 943 1 682 100 000 93.7%

MovieLens 1M 6 040 3 706 1 000 209 95.55%

FilmTrust 1 508 2 071 35 497 98.86%

Amazon Digital Music 5 541 3 568 64 706 99.67%

Amazon Automotive 2 928 1 835 20 473 99.62%

Amazon Instant Video 5 130 1 685 37 126 99.57%

metrics, baseline approaches, and parameter settings. Next, we analyze and discuss the
experimental findings, aiming to answer the following Research Questions (RQs):

1. RQ1. What is the performance of the RBM model in rating prediction?
2. RQ2. Does going deeper using the RBM leads to better accuracy?
3. RQ3. Does the FDBN outperform the state-of-the-art approaches in missing rating

prediction?
4. RQ4. Do KFDBN features yield better accuracy in the KFDBN classifier?
5. RQ5. What is the impact of kernel Dimensionality Reduction on KFDBN classifier

performance?
6. RQ6. Does the KFDBN-based imputation technique outperform the state-of-the-art

approaches in the Top-k recommendation?

The experiments are conducted using six real datasets resulting from various domain
fields and characterized by different sparsity levels. Table 2 summarizes the statistics of
each data set. One may note that experiments are performed both on large-scale and small
datasets to examine the effectiveness of the proposed approach in different data sizes. The
MovieLens dataset, which was collected by GroupLens,1 over several periods, describes
rating transactions from the MovieLens website. FilmTrust2 was crawled from a website
where users provide feedback ratings on recommended movies. Amazon Digital Music,
Automotive, and Instant Video reflect users’ interests for items of several categories and
industries in the Amazon platform.3 The sparsity reported in Table 2 is computed using the
following formula: 1 − NR

NU ×NI
. Where NR , NU , and NI are the number of ratings, users,

and items.
We investigate the sensitivity of the chief parameters and settings of the proposed model

and benchmark approaches for each recommendation task. Table 3 presents these hyper-
parameters, their definitions, and their impact on the performance of solutions.

5.1 Evaluation for missing rating prediction

5.1.1 Experiment settings

Evaluation metrics We use two widely employed metrics, Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE), to calculate the average error in the rating

1https://grouplens.org/datasets/movielens/
2https://guoguibing.github.io/librec/datasets.html
3http://jmcauley.ucsd.edu/data/amazon/
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Table 3 Hyper-parameters of the proposed KFDBN and benchmark methods

Symbol Parameter Definition Impact

α Learning The step size that controls the Small α = slower convergence. High

rate amount of weight updates. α = Miss the local minima

BS Batch size/ The number of training samples Has an influence on the convergence

mini batch propagated through the network speed, the stability, and the generalization

to calculate the gradient error performance of the learning process

before updating the parameters.

D Latent Number of hidden factors / latent Influences the output and the capacity

dimension features. of the proposed approach. Small D may

result in underfitting. High D increases

the training time and leads to overfitting

E Epochs The number of complete forward Underfitting occurs when using only one

and backward passes through the epoch. High number of epochs can lead

network. to overfitting

d Dropout Ignoring visible and hidden units A regularization approach that prevents

at random during the training the co-adaptation of neurons, which helps

stage. to reduce the overfitting

λ Regularization Controls the extent of regularization A well-defined λ meaningfully reduces the

coefficient to enhance the generalization variance of the model without losing any

and avoid the overfitting. valuable data. Ill-defined λ causes under-

fitting, where significant properties in the

data are lost

WD Weight A L2 regularisation method that A well-chosen size improves the

decay causes the weights to decrease generalization of the network and helps

to zero. in preventing overfitting

mo Momentum Like α, it also controls the weight Small momentum = slows down the

updates by increasing the size of training and does not avoid local minima.

the steps. Large momentum = faster convergence

predictions. MAE and RMSE indicate, as presented in (35) and (36), the extent to which the
proposed model can generate relevant predictions close to the ratings provided by users.

MAE = 1

| N |
∑

nk∈N

| R̂(nk) − R(nk) | (35)

Due to the linearity of MAE, the average variations are weighted equally, whereas the
RMSE measure emphasizes the most substantial deviations by squaring the errors before
averaging them.

RMSE =√
1

|N |
∑

nk∈N (R̂(nk)−R(nk))
2 (36)

Where N , R̂(nk), and R(nk) are respectively the number of assessed items, the predicted
rating and the ground truth rating.
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Baselines To assess the performance of the proposed generative model in missing rating
prediction, we compare it with the following state-the-art methods on different recommen-
dation domains:

• Non-Negative Matrix factorization (NMF) [12]: MF method with a non-negative
probabilistic constraint to select similar user groups and explain CF recommendations.

• Neural Collaborative Filtering (NCF) [11]: A state-of-the-art NN-based approach
that models hidden user-item interaction using a standard MLP.

• SVD++ [26]: SVD extension that integrates implicit records into the recommendation
model to uncover latent factors that characterize dense ratings.

• A hybrid Deep Learning-based Recommender System (DNNREC) [24]: DNN-
based approach that learns non-linear latent features using embedding and auxiliary
information about users and items.

• Joint Representation Learning with Ratings and Reviews (JRLRR) [43]: A deep
hybrid method that fuses rating embedding and textual item features based on Gated
Recurrent Unit and attention mechanisms for prediction.

• Multi-Objective Evolutionary Algorithm (MOEA) [32]: A multi-objective method
to find the appropriate set of similar neighbors for an active user in CF recommendation.

Parameter settings To train the RBM, we use mo of 0.1 for the six datasets. We set α as
0.0001 for Digital Music (DG), Instant Video (AIV), and automotive (Auto), while α is set
as 0.0005 for both MovieLens 100K (ml-100k) and MovieLens 1M (ml-1m), and as 0.09 for
Filmtrust data set. The BS of 32 performed well on all datasets. Several experiments are set
up to examine the hyper-parameters validity and select their optimal values for the FDBN
model. Based on the validation outcomes, D is set to 2000 latent features for the first hidden
layer and 1000 latent features for the second hidden layer, while the number of propagated
training samples BS is set as 32 on all datasets. α is set as 0.9 on all datasets except AIV,
where α = 0.2 shows better performance. With unsupervised pre-training, mo is set as 0.1
on all datasets to prevent the model from getting stuck in local minima. For benchmark
models, the parameters are determined from the proclaimed ones and by a grid-search,
which optimizes the approaches to determine the hyper-parameters that result in the most
precise recommendation. The optimal values for each method according to recommendation
domains and datasets are reported in Tables 4 and 5.

5.1.2 The performance of the RBMmodel (RQ1)

Figures 5 and 6 show the sensitivity of the dimension of hidden features on the accu-
racy of the RBM model. The RMSE results of the RBM model are presented in Fig. 5,
while the MAE results are reported in Fig. 6. The best accuracy on all datasets is
achieved when setting D to 5000. By increasing the dimension of latent features, RBM
leads to better performance, which indicates that the model can extract more reliable
information.

Figure 7 depicts the time complexity of all datasets in both the training and testing phases.
It has been observed that the use of a smaller batch size leads to better accuracy results but
slows down the convergence of the learning process. Likewise, a lower learning rate allows
the model to find a more optimal set of weights but takes longer to train.
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Table 4 Hyper-parameters of benchmark models in movie recommendation domain: Rating Prediction task

Model Hyper-parameters MovieLens 100K MovieLens 1M Filmtrust

DNNREC α 1e − 2, 1e − 5 1e − 2, 1e − 5 1e − 2, 1e − 5

BS 65 65 65

d 0.25 0.25 0.25

WD 1e − 4 1e − 4 1e − 4

NMF α 0.007 0.007 0.007

D 10 10 2

E 100 100 100

λ 0.1 0.1 0.1

SVD++ α 0.007 0.007 0.0014

D 10 10 2

E 100 100 100

d 0.2 0.2 0.2

λ 0.1 0.1 0.1

NCF BS 256 256 256

D 50 50 40

MOEA E 500 500 500

Table 5 Hyper-parameters of benchmark models in music, video, and automotive recommendation domains:
Rating Prediction task

Model Hyper-parameters Digital music Instant video Automotive

JRLLR α [0.0001, 0.001]

BS 100 100 100

D 50 50 50

d [0 , 0.1, 0.2 , 0.5]

NMF α [0.006, 0.005, 0.004, 0.003, 0.002, 0.001]

D [10, 25, 50, 100, 150, 200]

E 60 60 60

λ [0.001, 0.01, 0.1, 1.0]

SVD++ D 16 16 16

d 0.5 0.5 0.5

5.1.3 The performance of the DBNmodel (RQ2)

To illustrate the performance of the DBN model before and after fine-tuning, Table 6 reports
RMSE and MAE results on the six datasets. We can observe that the RBM model outper-
forms better than DBN before fine-tuning on four out of the six datasets: ml-1m, Filmtrust,
AIV, and Auto. While the DBN before fine-tuning outperforms better than RBM on ml-
100k and DG. Nevertheless, after fine-tuning the DBN model, its performance leads to more
accurate predictive results.
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Fig. 5 RMSE Results of the RBM model (the lowest is better) according to the dimension of latent features

Fig. 6 MAE Results of the RBM model (the lowest is better) according to the dimension of latent features

The best values of RMSE and MAE on all datasets are achieved using the FDBN, which
indicates the significance of the supervised fine-tuning phase. Through the BP, we have con-
ducted the fine-tuning procedure to get an optimal model. The goal here is not to discover
new latent features but to search locally for relevant parameters using the hidden features.
For further accuracy, the optimization method aims at updating the weights, as depicted in
Fig. 8. The weights distribution of the RBM-0 is presented using Matplotlib, while the dis-
tribution of the weights of the RBM-1 is presented using Tensorboard. These new adjusted
weights result from the fine-tuning stage using BP, which leverages the valuable data in
the labels. The model’s accuracy is hence increased after seeking the optimal values of the
weights of the RBMs, which produced the efficient FDBN generative model.
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Fig. 7 Time complexity of the RBM model in both training and testing stages in seconds based on the
dimension of latent features

Table 6 Comparison of prediction accuracy of the RBM, DBN, and FDBN (fine-tuned DBN)

RBM DBN FDBN

RMSE MAE RMSE MAE RMSE MAE

MovieLens 100K 0.891 0.683 0.8657 0.667 0.6382 0.4886

MovieLens 1M 0.8698 0.677 0.8848 0.693 0.6266 0.4966

FilmTrust 0.726 0.5544 0.833 0.637 0.6989 0.5301

Amazon Digital Music 1.2787 0.826 0.9045 0.6592 0.6673 0.4916

Amazon Instant Video 0.8642 0.6152 0.8733 0.6343 0.6789 0.5

Amazon Automotive 0.8296 0.5946 0.9027 0.6249 0.681 0.481

5.1.4 Overall performance of the FDBNmodel in missing rating prediction (RQ3)

We compare the prediction errors of the FDBN and benchmark models using the six
datasets. Table 7 presents RMSE and MAE error values in the movie recommendation field,
while Table 8 reports RMSEs and MAEs of the methods in the music, video, and automotive
recommendation domains.

The FDBN model immensely outperforms all the state-of-the-art approaches using the
six real datasets in the various recommendation fields. Specifically, on ml-100k, ml-1m,
and Filmtrust, the RMSE values of the FDBN are, respectively, 0.6382, 0.6266, and 0.6989;
which are 22.6%, 24.84 %, and 10.61% lower in error compared to the most competitive
solution, i.e., DNNREC. The FDBN also outperforms DNNREC in MAE with 17.74%,
19.14 %, and 9.59% on ml-100k, ml-1m, and Filmtrust, respectively. DNNREC employs
side information as input to model users’ and items’ feature vectors, operating different
embedding layers. However, the learned latent factors are simply merged and fed to MLP for
missing rating prediction. Each feature vector is directly exploited for representation, which
can overfit the training data. This fails to ensure an accurate recommendation, especially
in cases where the model needs numerous content data to learn significant hidden factors.
Nevertheless, the efficient greedy layer-wise training of FDBN not only yields relevant
rating predictions without relying on auxiliary or implicit information but also enhances
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Fig. 8 Weights distribution of the DBN before and after fine-tuning on Movielens 100K

Table 7 FDBN performance compared with benchmark approaches in the movie recommendation field

Model MovieLens 100K MovieLens 1M Filmtrust

RMSE MAE RMSE MAE RMSE MAE

DNNREC 0.864 0.666 0.875 0.688 0.805 0.626

NMF 0.968 0.752 0.923 0.719 0.8507 0.646

SVD++ 0.869 0.671 0.882 0.691 0.825 0.659

NCF 0.9363 0.7437 0.8758 0.6921 0.8743 0.656

MOEA 0.8695 0.6783 0.9254 0.7219 0.8876 0.6924

FDBN 0.6382 0.4886 0.6266 0.4966 0.6989 0.5301

Improvement �DNNREC �DNNREC �DNNREC �DNNREC �DNNREC �DNNREC

(%) 22.6 17.7 24.8 19.1 10.6 9.6

the generalization to new data, thereby avoiding the overfitting problem that may occur in
DNNREC.

On Amazon datasets, SVD++ and JRLRR show good results but fail to surpass the FDBN
in RMSE and MAE. On Amazon DG, the RMSE value of FDBN is 0.6673, which is 22.1%
lower than the second-best solution, i.e., JRLRR. The latter relies substantially on auxiliary
data, which is not always effortlessly obtained, especially if privacy constraints remain.
Nevertheless, the FDBN copes with co-rated items limitation by incorporating all available
interactions of users with items in the learning process without relying on side information.
On the AIV dataset, the FDBN achieves an RMSE of 0.6789 and outperforms the MF-based
SVD++ technique with 26.3% improvement. This demonstrates that the generative FDBN is
better than MF-based techniques (NMF, SVD++) that may lose valuable information from
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Table 8 FDBN performance compared with benchmark approaches in the music, video, and automotive
recommendation fields

Model Amazon Digital Music Amazon Instant video Amazon Automotive

RMSE MAE RMSE MAE RMSE MAE

JRLRR 0.8883 0.6481 0.9733 0.7188 0.917 0.6319

NMF 0.997 0.7 1.1156 0.8429 1.1002 0.847

SVD++ 0.905 0.641 0.9418 0.721 0.896 0.63

FDBN 0.6673 0.4916 0.6789 0.5 0.681 0.481

Improvement �JRLRR �SV D++ �SV D++ �JRLRR �SV D++ �SV D++
(%) 22.1 14.9 26.3 21.9 21.5 14.9

the original matrix. However, the FDBN learns relevant latent factors and valuable hidden
features based on probabilistic building blocks, where neural units merely communicate
their activation states.

Unlike NCF, which employs simple MLP for feature learning, FDBN leverages a more
powerful deep generative model to capture higher-level latent feature interaction in the
sparse user-item matrix. The FDBN significantly outperforms neighborhood-based tech-
niques (e.g., MOEA) due to its effective learning process of complex hidden features.
MOEA uses Non-dominated Sorting Genetic Algorithm II (NSGA-II) to determine the
user’s ideal number of similar neighbors. The genetic technique is based on crowded dis-
tance comparison that does not consider the distribution of decisions, thus resulting in
a biased solution, which tends to fall into a local optimum and poor convergence [39].
However, the FDBN’s greedy unsupervised pre-training provides a regularization effect by
efficiently initializing chief parameters. This enhances the generalization performance and
directs the model’s weights toward a good local minimum, indicating why the FDBN vastly
exceeds baseline approaches and justifies the best accuracy values in RMSE and MAE
errors.

5.2 Evaluation for Top-k ranking recommendation

5.2.1 Experiment settings

Evaluation metrics We use the Hit Rate (HR) and the Normalized Discounted Cumulative
Gain (NDCG) metrics to assess the performance of the proposed KFDBN model in provid-
ing an effective ranked list of Top-k items. HR@k examines the presence of the test item
in the recommended Top-k list, while the NDCG@k evaluates the ranking’s quality, taking
into account the position of the hits. The HR and the NDCG, according to k, the truncated
number, are described by (37) and (38).

HR@k = N hits@k

N users
(37)

where N hits@k is the total number of users for which the exact test item appears in the
top-k recommendation and N users denotes the number of users in the test set.

NDCG@k = 1

IDCG@k
×

k∑

i=1

2rel(i) − 1

log2(i + 1)
(38)
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NDCG reduces the scores to hits by log2 at lower positions and increases those at top ranks;
rel(i) is the ith rating.

IDCG@k =
|RELk |∑

i

2rel(i) − 1

log2(i + 1)
(39)

To provide a normalization factor, the IDCG (Ideal Discounted Cumulative Gain) deter-
mines the Discounted Cumulative Gain (DCG) score for the ideal ranking ordered by
relevance; | RELk | is the sorted ideal list of relevant items.

Since the KFDBN-based imputation technique proposed for the Top-k recommendation
is a hybrid approach that relies on the results of the KFDBN classifier, we define in (40) the
accuracy metric to evaluate the performance of the classification model.

Accuracy = T P + T N

T P + T N + FP + FN
(40)

The accuracy measures the proportion of right predictions by the classifier from the
total number of individuals in the data set. TP (True Positive) presents an accurate positive
prediction, where the prediction is positive, and the real value is indeed positive. TN (True
Negative) is the case of a correct negative prediction, where the real value is negative, and
the prediction is also negative. While False Positive (FP) indicates an incorrect prediction,
where the prediction is positive, but the actual value is negative. FN (False Negative) is the
case of a wrong negative prediction, where the prediction is negative, but the true value is
positive.

Baselines We compare the KFDBN with the following competitive approaches on the Top-
k ranking task:

• Bayesian Personalised Ranking (BPR) [34]: MF-based approach that exploits
pairwise learning for personalized ranking.

• Deep Matrix Factorization (DMF) [47]: A DL-based approach that maps non-linear
projections of users and items into a common low-dimensional feature space with a
binary-based cross-entropy loss function.

• Neural Matrix Factorization (NeuMF) [11]: A model that fuses generalized matrix
factorization (GMF) and MLP. GMF allows the application of a linear kernel that learns
latent low-rank features, while the MLP employs a non-linear kernel to extract latent
feature interactions.

• Deep Collaborative Filtering (DeepCF) [8]: It proposes a representation learning
based on the fusion of CF models, including the Collaborative Filtering Network
(CFNet), for complex matching function modeling while retaining the capability to
learn low-rank user-item interactions effectively.

• Neural Graph Collaborative Filtering (NGCF) [41]: It exploits the high-order con-
nectivity in the bipartite graph of user-item transactions to inject a collaborative signal
into an embedding propagation layer.

Parameter settings For baseline approaches, the optimal values of hyper-parameters on
the Top-k recommendation task are reported in Tables 9 and 10.

5.2.2 Impact of KFDBN features on the classification performance (RQ4)

We perform the item relevancy classification using three different types of SVC kernels
(RBF, Sigmoid, and Polynomial) with a regularization parameter C = 1. To examine the
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Table 9 Hyper-parameters of benchmark models in movie recommendation domain: Top-k recommendation
task

Model Hyper-parameters MovieLens 100K MovieLens 1M Filmtrust

BPR α [0.5, 0.1, 0.01, 0.001, 0.0001]

d [0, 0.3, 0.5, 0.7]

NeuMF BS 256 256 256

D 50 50 40

DMF α 0.0001 0.0001 0.0001

BS 256 256 256

D 128 128 128

DeepCF α [0.001, 0.005, 0.0001, 0.0005]

BS 256 256 256

D 128 128 128

E 20 20 20

Table 10 Hyper-parameters of benchmark models in music, video, and automotive recommendation
domains: Top-k recommendation task

Model Hyper-parameters Digital music Instant video Automotive

BPR α [0.001, 0.005, 0.01, 0.05, 0.1]

BS [8, 16, 32, 64]

D 500 100 200

λ [0.00001, 0.0001, 0.001, 0.01]

NeuMF D 64 64 64

E 8 8 8

DMF D 64 50 40

λ [0.0001, 0.001, 0.01, 0.1, 1, 10]

NGCF α [0.025, 0.020, 0.015, 0.010]

D 64 64 64

d [0.0, 0.1, · · ·, 0.8]

impact of KFDBN output features on the model performance, we conduct the classifica-
tion on ml-100k and ml-1m datasets using: (1) Rating features such as the average rating
and ratings count combined with item features such as the year and genre. (2) Rating fea-
tures combined with KFDBN features. (3) Rating features combined with item features and
KFDBN features. Classification results in the three cases using the different SVC kernels
are reported in Fig. 9.

The obtained classification outcomes show that the RBF kernel outperformed other ker-
nel functions in SVC for all datasets. In comparison, the Sigmoid function provided the
lowest accuracies. With a classification accuracy of 97.62%, the SVC with RBF kernel on
ml-100k rating features combined with KFDBN features achieved the best performance.
It is significant to highlight that combining KFDBN features with rating information led
to better accuracy using all SVC kernels on ml-100k, followed by cases where KFDBN
features are merged with items and rating features for item relevancy classification. On
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Fig. 9 Classification Accuracy with and without KFDBN features by using different SVC kernels

the other hand, on the ml-1m dataset, the SVC with RBF kernel yielded the highest accu-
racy of 98.38% when applied on KFDBN features merged with ratings and item features.
Moreover, KFDBN features improved the classification results of SVC with other kernels,
especially when they are incorporated solely with rating information. However, when com-
bining only item features with rating factors, the classification showed inferior results for
both datasets. When PCA was not applied to UP-based Items profiles, the classification
accuracy decreased by 17% for ml-100k and 16% for ml-1m. This further proves the sig-
nificance of the KFDBN model in extracting meaningful latent features that can efficiently
train the SVC for a classification problem.

5.2.3 Influence of kernel dimensionality reduction in KFDBN classification (RQ5)

We show the impact of the KPCA employed in the KFDBN item relevancy classifier by
comparing the classification results after applying the kernel PC with SVC accuracies,
reported in Fig. 9. Classification outcomes before and after the application of KPCA on ml-
100k and ml-1m datasets are presented in Figs. 10 and 11, respectively. We have applied
KPCA on rating features, item characteristics, and KFDBN latent factors used by the SVC
model. We use four kernels for the examination (RBF, Sigmoid, Polynomial, and Cosine).

For ml-100k, the best accuracy of 98.61% is obtained when applying Sigmoid PCA
on rating features combined with KFDBN latent factors used to train the SVC classifier
with RBF kernel. Similarly, for ml-1m, the application of Sigmoid PCA on rating features
merged with KFDBN and item factors achieved the highest accuracy of 98, 83%.

Note that, when KFDBN features are incorporated with training factors, using a Sig-
moid PCA leads to higher accuracy of SVC with RBF kernel outperforming, thus other
classification results. On the contrary, KPCA with other kernels hampers the performance
of SVC with all kernels. Otherwise, when only ratings and item factors are included, reduc-
ing the dimensionality of features using KPCA leads to a relatively lower accuracy on
SVC based on all kernels for all datasets. This proves the efficiency of Sigmoid PCA in
extracting relevant PC of latent features obtained by the KFDBN model, thus enhancing
the semi-supervised classification results. Nevertheless, leveraging RBF, Polynomial, and
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Fig. 10 Classification accuracy of SVC with and without the application of KPCA on trained features: ml-
100k dataset

Fig. 11 Classification accuracy of SVC with and without the application of KPCA on trained features :
ml-1m dataset

Cosine kernels in PCA adversely affects the performance of SVC classification by changing
features drastically due to the ignorance of some dimensions.

5.2.4 Overall performance of the KFDBNmodel in the Top-k ranking recommendation
(RQ6)

The HR and NDCG values of the proposed KFDBN model and the baseline methods on
the six datasets are summarized in Tables 11 and 12. The highest score in each column is
bold, and the underlined value is the second-best, while � represents KFDBN’s relative
improvement over the best competitive solution. The experimental results demonstrate that
the hybrid KFDBN model achieves the most promising ranking performance on all datasets,
meaningfully outperforming baseline methods, including DMF, by the largest margin of
17% in NDCG@10 on ml-100k. We believe this is because DMF learns the latent space
to capture users’ transactions on items with the inner product directly on the sparse rating
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Table 11 KFDBN ranking performance compared with benchmark approaches in the movie recommenda-
tion field

Model MovieLens 100K MovieLens 1M Filmtrust

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

BPR 0.6914 0.3933 0.7162 0.4628 0.868 0.7632

NeuMF 0.6886 0.4008 0.7045 0.4201 0.9171 0.8067

DMF 0.6797 0.405 0.6565 0.415 0.9071 0.7896

DeepCF 0.6819 0.3981 0.7253 0.4416 0.9158 0.8074

KFDBN 0.7808 0.5750 0.7440 0.5939 0.9393 0.8204

Improvement �BPR �DMF �DeepCF �BPR �NeuMF �DeepCF

(%) 8.94 17 1.87 13.11 2.22 1.3

Table 12 KFDBN ranking performance compared with benchmark approaches in the music, video, and
automotive recommendation fields

Model Amazon Digital Music Amazon Instant video Amazon Automotive

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

BPR 0.4742 0.2045 0.5904 0.3949 0.4607 0.2992

NeuMF 0.5322 0.2643 0.5821 0.3876 0.4501 0.2891

DMF 0.3201 0.1462 0.42 0.325 0.13 0.06

NGCF 0.4971 0.2575 0.375 0.1916 0.2283 0.1191

KFDBN 0.5625 0.3390 0.6571 0.4458 0.5454 0.3459

Improvement �NeuMF �NeuMF �BPR �BPR �BPR �BPR

(%) 3.03 7.47 6.67 5.09 8.47 4.67

matrix, which is inadequate for complex real-world data. In contrast, using a generated
denser rating matrix, the KFDBN hybrid model effectively determines the item’s relevance
for personalized ranking. Not to mention that the cosine measure employed by DMF may
not incorporate the varied rating scales assessed by a particular user [17], further hindering
its efficiency in the Top-k recommendation.

On the ml-1m dataset, the HR@10 value of KFDBN is 0.7440 and surpasses the second-
best approach, i.e., DeepCF (0.7253). The latter merges DMF and MLP for enhanced user-
item matching score prediction and reaches the closest results to NeuMF. Nevertheless,
despite their efficiency, NeuMF and DeepCF models show inferior results compared to the
proposed KFDBN model. In fact, two reasons that hinder the performance are the use of dual
embedding spaces in NeuMF that may lead to overfitting and the reliance on simple MLP
for feature extraction in DeepCF. However, the KFDBN leverages more powerful DL-based
feature interaction learning rather than using MLP as a mapping function to capture complex
low-rank features. Furthermore, KFDBN employs a greedy unsupervised pre-training phase
to effectively initialize the models’ parameters, which enhances the regularization effect,
addresses the gaps in training state-of-the-art DNN approaches, and makes the proposed
model less prone to overfitting.
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Otherwise, one major limitation with graph-based models (e.g., NGCF) is the poten-
tial of exploring the bipartite graph structure of irrelevant user-item transactions, which
encodes a poor collaborative signal in the embedding function. Such a limitation explains
why KFDBN largely outperforms NGCF in item ranking performance and demonstrates that
imputing a denser rating matrix using KFDBN is more accurate in user interest detection
than propagating embeddings on the user-item bipartite graph structure.

Besides, DL-based models do not always outperform non-deep methods. Regarding HR
and NDCG, BPR performs well on AIV and Auto datasets. However, on AIV, the HR@10
and NDCG@10 values of KFDBN are 0.6571 and 0.4458, which are 6.67% and 5.09%
higher than the second-best solution, i.e., BPR. On Auto data set, the KFDBN surpasses the
competitive solution, BPR, with 8.47% and 4.67% in HR@10 and NDCG@10, respec-
tively. This demonstrates that KFDBN hybridization exceeds the performance of bayesian
ranking in capturing complex correlations of users and items.

Moreover, instead of relying on the standard uniform negative sampler used in BPR to
incorporate unavailable interactions as crucial indicators of users’ potential negative entries
and suppose unobserved items as negative instances, KFDBN aims for reliable imputation of
unobserved ratings in the original sparse matrix and then applies MF on the denser generated
matrix to learn significant latent features of users and items, yielding highly encouraging
results and justifying KFDBN’s meaningful outperformance over baselines in the Top-k
recommendation.

5.3 Implications of findings

The proposed model fully exploits DBN’s advantages to present a deep structure learn-
ing architecture for discovering multiple and high-level feature representations for users
and items. The unsupervised pre-training tackles traditional random weight initialization,
which may draw the model to locally optimal solutions or increase training complexity.
The KFDBN results in better generalization by providing a greedy layer-by-layer learning
procedure of reliable weights. This stage establishes a starting point for further supervised
fine-tuning by placing the model’s parameters in an appropriate restricted range. Leveraging
such a semi-supervised synergy yields a regularizing impact that renders the learning strat-
egy more efficient, especially in sparse conditions, which is evident in conducted extensive
experimentations that proved the significant improvement of FDBN in terms of RMSE and
MAE.

Unlike traditional classification-based CF approaches, which merely employ shallow
feature extraction [40, 44], the proposed KFDBN generates deep and meaningful latent
representations for users and items, leading to higher SVC-based classification outcomes.
The unsupervised procedure of KFDBN indirectly affects the classifier’s performance by
providing a reliable initialization of weights; then, the supervised fine-tuning phase helps
further optimize the model by searching locally for optimal parameters. Therefore, the SVC
can benefit from these stages by adopting output KFDBN features to conduct an efficient
semi-supervised classification. Moreover, experimental results proved that KFDBN features
could help enhance the accuracy of supervised classifiers, especially if Sigmoid KPCA
is further leveraged. Therefore, the sigmoid extraction of features learned by the KFDBN
model is a promising new approach that consistently yields an accurate and practical
recommendation based on semi-supervised classification.

Some state-of-the-art imputation-based techniques replace missing ratings with plau-
sible values. The column mean or the row mean of the rating matrix may, for instance,
be substituted for an empty entry [40]. Such an imputed value is not derived from users’
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interests, which alters the data’s covariance structure and thus impeding the system per-
formance. On the other hand, several ranking-based benchmark methods [8, 11, 34] imply
a significant modification of the experimental evaluation by treating unobserved ratings
as negative instances, thus making up for the skewed distribution of known interaction.
Nevertheless, the proposed model exploits a more powerful architecture for imputation to
infer unavailable ratings in the original sparse matrix and thus overcome the hindrance of
missing values on MF-based ranking performance. We showed that by imploying SVD
on a denser matrix imputed using KFDBN, the model captured more significant latent
features yielding promising prediction results for the Top-k recommendation. The pro-
posed unified model exploits local and global correlations in the data for imputation. An
MF technique can directly be leveraged to make relevant predictions using a reduced
rating matrix, making this hybrid approach appropriate for high dimensional and heteroge-
neous datasets while exhibiting more meaningful accuracy than traditional imputation-based
techniques.

One of the significant issues that sparsity is imposing is the inability to generate reliable
predictions for long-tail items with only a few ratings [27]. This challenge occurs when the
recommendation approach depends on a single latent representation to exploit the ratings
concentrated on a few popular items. However, the proposed imputation approach can pro-
vide users with personalized and accurate recommendations from the items available in the
long tail using hybridization of deep and kernel-based methods to learn latent features of
users and items stemming from various aspects. These latent factors comprehensively reflect
users’ interests and items’ characteristics for effective missing rating prediction, resulting
in better novelty and diversity [17].

6 Conclusion

The proposed KFDBN first leans a deep generative model by leveraging greedy learn-
ing layer-by-layer procedure for efficient feature extraction and missing rating prediction.
Then, it creates input vectors for kernel-based discriminative support vector classification,
performed in two stages to explore the impact of KFDBN output features on kernel-
based classification. This work intensively investigates the influence of kernel-based feature
extraction on the system’s performance. Experiments prove that further Sigmoid extraction
applied to output KFDBN features using Kernel Principal Component Analysis yields accu-
rate and practical recommendations based on semi-supervised classification. Moreover, the
positive predictions derived from the KFDBN’s generative model are combined with rat-
ings of relevant items resulting from the KFDBN kernel-based classifier to impute a denser
user-item interaction matrix for effective Matrix Factorization-based Top-k recommenda-
tion. Empirical evaluations on six datasets with varying sparsity levels demonstrate that the
KFDBN achieves higher accuracy outcomes and outperforms the state-of-the-art models.
Future perspectives include extending the KFDBN to meta-learning by inferring powerful
generalization from meta rating interactions to model the preference learning for cold-start
users and items.

Data Availability The datasets that support the findings of the current study are available on the repositories
named MovieLens, LibRec, and Amazon Review data (URLs are https://grouplens.org/datasets/movielens/,
https://guoguibing.github.io/librec/datasets.html, and https://jmcauley.ucsd.edu/data/amazon/), respectively.
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