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Abstract
Underwater image processing has received tremendous attention in the past few years.
The reason for increased research in this area is that the process of taking images
underwater is very difficult. Images obtained underwater frequently suffer from quality
deterioration issues such as poor contrast, blurring features, colour variations, non-
uniform lighting, the presence of dust particles, noise at the bottom of the sea, different
properties of the water medium, and so on. The improvement of underwater images is a
critical problem in image processing and computer vision for a variety of practical
applications. To address this problem, we need to find some other methods to increase
the quality of the image while capturing it underwater. But capturing the image in normal
circumstances as well as underwater is the same, so once we get an image, some
mechanism to increase the quality of the captured image will also be required. A complete
and in-depth study of relevant accomplishments and developments, particularly the
survey of underwater image methods and datasets, which are a critical issue in underwater
image processing and intelligent application, is still lacking. In this paper, we first provide
a review of more than 85 articles on the most recent advancements in underwater image
restoration methods, underwater image enhancement methods, and underwater image
enhancement using deep learning and machine learning methods, along with the tech-
niques, data sets, and evaluation criteria. To provide a thorough grasp of underwater
image restoration, enhancement, and enhancement using deep learning and machine
learning, we explore the strengths and limits of existing techniques. Additionally, we
offer thorough, unbiased reviews and evaluations of the representative methodologies for
five distinct types of underwater situations, which vary their usefulness in various
underwater circumstances. Two main evaluations, subjective image quality evaluation
and objective image quality evaluation; are used for evaluating the quality of images.
These evaluations are useful to determine the efficiency of the predefined methods. With
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the help of these image quality evaluations, we come to the conclusion that the image
enhancement methods and image enhancement methods using deep learning and machine
learning are superior in comparison to the image restoration methods. As deep learning
and machine learning based enhancement methods are newer and give far better results in
comparison to the other two methods, lots of researchers are moving towards these
methods. Finally, we also explore the potential difficulties and unresolved problems
associated with underwater image enhancement and offer potential future research areas.

Keywords Underwater image enhancement . Underwater image restoration . Deep learning .

Image quality evaluation . Image dehazing . Image datasets

1 Introduction

There is a different world under the ocean, and nowadays there are many ways available to
explore it. In today’s world, there is a very high level of technology which has attracted
attention to carry high and useful information [52, 68]. Researchers are capturing a very high
quality underwater image for enormous purposes and applications like robotics, ecological
monitoring, tracking of sea organisms, artefact inspection, which are present underwater,
rescue missions, and various real-time navigation [16, 57, 74, 78].

The underwater images are difficult to capture; the main constraints are light issues,
capturing phenomena, dust particles, etc. An artificial mechanism which consists of an optical
camera or some methods like spectral imaging, panoramic and polarization [1, 13, 64, 71] is
required, as under the sea light is not that much visible as it is in the normal environment.
Other than optical cameras, each of these techniques has its own limitations, such as narrow
field of view, complex and professional operation, limited depth, etc.

What happens when an image is captured underwater - The immensity of the underwater image
has been observed to diminish because of the nature of light. Light is made up of numerous
wavelengths of different hues, including red, green, and blue. It has been discovered that,
depending on light attenuation, blue and green color wavelengths reach deeper lengths than red
color wavelengths, which vanish beyond 5m, resulting in images withmostly blue and green tones
[70]. Because water is a thick content, when we snap a photo in it light propagates underwater,
becomes refracted, and consumed by the surrounding water, resulting in hazy pictures.

Underwater images get affected by poor visibility of light, which significantly fades while
travelling in the water, thus impacting the result in terms of haziness and poor contrast. The
visibility of light gets affected underwater by the distance travelled, i.e., around twenty meters
in the case of clear water and approximately five meters or less in the case of cloudy water.
Scattering and absorption affect the travel of light in water. In scattering, the direction of the
light path is changed, while in absorption, light energy is reduced. Hence, scattering and
absorption influence the overall performance of an underwater imaging system.

Scattering is basically of two types i.e. forward scattering and backward scattering. A light
deviating randomly while travelling from an object to the camera creates blurriness in the
image is featured in forwarding scattering while in the case of backward scattering contrast of
an image is impacted. The scattering and absorption effect increases with water itself but is
also affected by some other components like small dust particles, organic particles, tiny
observable floating particles, etc. The presence of all these particles will increase the effect
of scattering and absorption.
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As light propagates in the sea its amount is reduced and the color present in light gets
decreased sequentially, depending on the color wavelength. The shorter the wavelength, the
higher the range or distance it covers in the sea, similarly higher the wavelength, and the
shorter the range or distance it covers in the sea. We all know that in comparison to other
colors, the wavelength of blue color is the shortest thus it travels the longest in the sea. Hence,
the impact of blue color on objects in the sea is higher than any other colors. Therefore, the
images on which we are interested to work can be affected by any one of the reasons: dull
contrast, constant range visibility, blurring, haziness, non-uniform light, color diminished,
bluish appearance, and various types of noise. To work on these captured images we require
some mechanism so that we can increase the quality of these images.

Image processing is categorized on the basis of three viewpoints: first as an image
enhancement technique, second as an image restoration method and third as image enhance-
ment using deep learning and machine learning techniques.

Image enhancement in image processing techniques depends on subjective photo excep-
tional criteria. No mathematical criteria are used for optimizing processing outcomes. Image
enhancement depends mainly on quality subjective criteria in order to generate an image which
is of good quality. The generation of images, they are independent of any concrete model.
These techniques are generally faster and easier in comparison to others.

Using various models of degradation and of the original image construction, the image
restoration recovers the degraded image and it is basically a reverse process. These methods
are very specific; however, they require different parameters like depth estimation, attenuation
and diffusion coefficient, etc.

Deep learning techniques have rapidly evolved over the last several decades, and they have
been widely utilized in a variety of computer vision and image processing applications. Deep
learning has considerably enhanced the accuracy of high-level vision tasks such as object
identification. Furthermore, low-level vision tasks like image super-resolution and image
denoising benefit from deep network benefits and offer state-of-the-art performance. Fortu-
nately, we have seen the convincing quality of deep learning-based underwater image im-
provement. Because of that, many researchers have used deep learning approaches to improve
underwater image enhancement [7].

Underwater image processing is also categorized into three parts based on the model free
methods, model based methods and data driven methods. Although the techniques which have
been used either in restoration and enhancement methods or in model free and model based
methods are the same. But the differentiation between model free and model based depends on
their physical properties. Model-free approaches often redistribute the pixel values of a given
image to improve contrast or color correction without simulating the image generation process
underwater. Many common model-free approaches, such as histogram equalization, contrast
limited adaptive histogram equalization, gray-world assumption, color constancy and auto-
matic white balance, attempted to adjust underwater image pixels in the subspace. Model-
based techniques often create physics models that take into consideration the mechanics of
image processing and light transmission. People may get essential parameters of the deterio-
ration model based on previous assumptions and observations, and then invert the model to
obtain the desired outcomes. Many techniques have been proposed using model based
approaches like dark channel prior, underwater dark channel prior, red channel prior, maxi-
mum attenuation identification etc. Deep learning has made significant progress in recent
years, particularly in the field of vision, because of its immense potential in dealing with non-
linear issues. Modern learning-based algorithms give a cutting-edge performance for image
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enhancing tasks. Normally, these data driven models need a significant amount of information
paired with ground truth to achieve the desired results; however, for underwater image
enhancement, this is a major impediment to effectively applying a supervised learning method
to this specific task, because it is hard to procure numerous quality images of the same scenes
in a real-world underwater environment. Several underwater image enhancement researchers
have studied the utilization of synthetic images to solve the problem of a lack of matched
training data and claimed fair effectiveness. WaterGAN, UnderwaterGAN, CycleGAN, etc.
are some methods which are based on data driven approach [69].

1.1 Study selection

The selection procedure identified items that were most related to the purpose of this systematic
literature review. According to our research, if the same article appeared in more than one domain,
it was only examined once. The content of the publications chosen for the final studywas examined
to ensure that the outcomes of the current systematic literature review generated clear and non-
biased conclusions. We completed the examination in order to obtain a decision on ultimate
inclusion or exclusion. Following this, individual assessment inconsistencies were resolved
through discussion. When the articles were discovered, the first step was to remove duplicate titles
and those that were not related to the study. The inclusion criteria (IC) were confined to the search
for String, and a study done by at least one of the exclusion criteria (EC) is removed.

1.1.1 Inclusion criteria (IC)

IC1: The studies are available before September 2021.
IC2: Only workshop, report, symposium, conference and journal publication are studied.
IC3: Complete texts are available in a digital database.
IC4: Models or frameworks that have been proposed are present.

1.1.2 Exclusion criteria (EC)

EC1: Duplicate research has been avoided.
EC2: Remove previews, book chapters, periodicals, theses, monographs, and interviews

based papers.
EC3: Studies relying on quality rating standards should be excluded.
EC4: Different from English, studies are written in other languages.

The selection of articles was based on the above-mentioned explicit criteria for inclusion
and disqualification. Figure 1 was created using the information from the PRISMA model.
Figure 1 depicts the study selection procedure.

The focus of this paper is as follows: (i) about eighty-five research papers have been
reviewed and their existing methodology, data set and evaluation process is summarized,
which will help the researcher to understand the progress in this field; (ii) clear evaluation of
target and complete analysis of the methods of underwater enhancement is performed, so a
researcher can select the suitable method for practical case; (iii) Dataset which is one of the
major concern in underwater image enhancement is explained and (iv) further, some of the
open issues and challenges of underwater image enhancement and restoration will be discuss-
ed, which will provide some research direction for future.
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Under section 2 of this paper, there is a literature survey on recent underwater image
restoration and enhancement methods. In section 3, underwater image enhancement is eval-
uated and the dataset is recorded, subsequently experimental results on some groups related to
the underwater image are discussed. Section 4 contains the result analysis of various methods
with specific parameters. Section 5 discusses open challenges and issues in the processing of
underwater images so that a researcher can identify the new research objection in this domain.
In the last section 6, the conclusion of the paper is given and then publications.

2 Underwater image processing algorithm

The Underwater Image Processing algorithms are broadly classified into three parameters, first
parameter is based on the image restoration method. The second parameter is based on the

Identification of Studies via Databases

Identification

Records identified from:

Databases (k = 720)

Records remove before screening:

Duplicate records removed (k = 90)

Screening

Records screened

(k = 340)

Records excluded

(k =  380)

Papers not retrieved

(k = 120)

Papers sought for retrieval

(k = 220)

Papers assessed for eligibility

(k = 150)

Papers excluded

EC1: (k =  25)

EC2: (k =  20)

EC3: (k =  15)

EC4: (k =  10)

Included

Papers included in review

( k = 85)

Fig. 1 PRISMA flow chart based studies selection procedure
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image enhancement method. The third parameter is based on the newer concept of underwater
image enhancement with the help of machine learning and deep learning [84]. Hence, in our
study, all these three parameters will be discussed. All the literature survey is based on these
parameters, so here we are going to discuss the various papers with methods that have been
used with their objectives.

2.1 Underwater image restoration method

In detail, underwater image restoration method is classified in four main groups

(i) Turbulence degradation model
(ii) Jaffe-McGlamery model
(iii) Point spread function (PSF) model
(iv) Image dehazing based model

2.1.1 Turbulence degradation model

Turbulence generates a non-uniform switch in the refractive index of the atmosphere; it
resembles light propagation in water. Degradation model A designed by Hufnagel and Stanley
[44] is totally based on the atmospheric turbulence properties. On the basis of frequency
domain (u, v) it is defined by Eq. (1):

A u; vð Þ ¼ exp −k u2 þ v2
� �5=6h i

ð1Þ

Here, k represents the magnitude of turbulence. The underwater image restoration is realized
by merging the degradation model with the evaluation function. Yang and Gong [82] also
designed an underwater image restoration method on the basis of turbulence, where the
weighted contrast average grads (WCAG) are applied in determining the standard of under-
water images.

2.1.2 Jaffe-McGlamery model

This method of underwater image restoration [17, 39, 56] is one of the most widely used models,
in which the light ET coming from the camera is divided into the following divisions: (i) reflected
light from an object Ed, (ii) light which is emulated from a target known as forward scattered light
Ef and (iii) the non-target reflected light known as back scattered light Eb, as given in Eq. (2).

ET ¼ Ed þ Ef þ Eb ð2Þ
Based on the simplified model by Jaffe McGlamery model; Trucco and Olmos [73] designed a
self-calibrated filter. The filter designed in this method is based on two presumptions: (i) lighting
(direct sunlight) underwater is consistent, and (ii) forward scattering is an important component
whereas other components like direct component and backscattering were neglected.

Few researchers not only focused on backscattering in the Jaffe McGlamery model but also
used the Dark Channel Prior (DCP). Here in this method, it was presumed that backscattering
did not affect a high contrast region in an image. The parameters of this model were evaluated
on the basis of this presumption.
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2.1.3 Point spread function model

The imaging process in seawater with the help of a linear system was introduced by Hou et al.
[40–42]. They also introduced optical properties of water under the standard underwater image
restoration system. Various parameters like attenuation, volume scattering function, absorp-
tion, and particle distribution were measured with some specific instruments. Grosso [23],
Voss [35] and Chapin [77] also used some specific instruments to measure the PSF. However,
the instruments were too complicated and expensive.

2.1.4 Image Dehazing based model

This model is divided into two parts: (i) classical DCP based underwater image restoration
model and (ii) learning DCP based underwater image restoration model. Table 1 is represent-
ing these methods, where in model column R is restoration, C is color correction, ML is
machine learning, and DL is deep learning. In the Hypothesis priori column, DCP is dark
channel prior, DBGR is the difference between blue green and red channels, RDCP is red dark
channel prior, UDCP is underwater dark channel prior, and CDCP is color corrected images of
dark channel prior. In the background light column, GB is global background light estimation
and LB is local background light estimation. In the transmission map (TM) estimation column
DEP is depth, AP is attenuation prior, FDC is from the dark channel, RET is Retinex, BM is
blurring map, and MIL is minimum information loss.

In previous years DCP based underwater image restoration model has gained attention
[3–5, 14, 18, 19, 24–27, 31, 38, 43, 48, 49, 53, 58–60, 80, 81, 83]. In it, there is a presumption
that red debilitation is agile as compared to other attenuation colors, which is absolutely true in
the case of open water and is used for calculating dark channel images in both DCP based
restoration models.

Table 1 DCP based underwater image restoration models

# Publication Model Hypothesis Priori Background Light Color correction TM estimation Year

25 OCEANS R DBGR GB N FDC 2010
23 PAMI R DCP GB N FDC 2011
26 TIP R DCP GB N DEP+AP 2012
28 JCCV R UDCP GB N FDC 2013
27 JVCIR R RDCP GB N FDC 2015
29 ICIP R+C DCP GB Y BM 2015
30 BMVC R UDCP GB N FDC 2015
31 ICIP R+C DCP GB Y DEP 2016
32 OCEANS R+C+ML DCP GB Y DEP 2016
33 ICIP R+C DCP GB Y MIL+FDC 2016
34 ICPR R DCP LB Y FDC 2016
35 TIP R+C DCP GB Y DEP+AP 2017
36 PRL R+C+ML CDCP GB Y ML+AP 2017
37 OCEANS R+C+DL DCP GB Y DL+DEP 2017
38 ICIP R+C CDCP GB Y FDC 2017
39 CVPR R+C CDCP GB Y FDC 2017
40 ISCAS R+ML DCP GB N DEP+AP 2017
41 TCSI R+ML DCP GB N DEP+AP 2018
42 CVIU R+C UDCP GB Y FDC 2018
43 ICIP R+C+DL DCP GB Y DL+DEP 2018
44 JOE R+C DCP LB Y RET+AP 2019

38377Multimedia Tools and Applications (2023) 82:38371–38396



Carlevaris et al. [14] initially computed the highest variation in red and blue–green
channels. Thereafter, the transmission map is evaluated by setting the maximum variation till
it becomes one. Whatever is the least value of the transmission map, it is considered
background light. Now, the posterior probability is maximized and the final image is evalu-
ated. The transmission map is further studied by Chiang and Chen [18] in terms of the ratio of
residual energy of the input image to the camera after reflection. The average brightness
difference between foreground and background is compared to estimate an artificial light
source. The red channel was taken as underwater prior by Galdran et al. [31]. Here using the
highest value of the red channel the background light was computed. The red channel was
considered as the fasted attenuated channel by P. Drews, Jr., et al. [25], because of which any
information related to field depth was not provided. Therefore one new method having an
underwater dark channel prior (UDCP) was proposed. This dark channel image was computed
after calculating the smallest difference between green and blue channels and from the highest
value which was obtained from the dark channel image the background light was estimated.

When light is absorbed through water, it causes scattered color projection which generally
causes dark channels prior to failing to identify the transmission map more precisely. Further-
more, an underwater scenario is generally defined by a limited or inappropriate light. There
will be no change in the dark scene area even after imaging. In some previous work, fuzzy
image and field depth is used for enhancing the transmission map estimation [19, 24, 58–60]
and color correction has been added to adjust the uneven projection occurred by absorption [4,
5, 19, 24, 27, 43, 48, 49, 58–60, 83]. Ancuti et al. [3] used the local highest value of dark
channels for evaluating background light.

Background’s light whether global or local is also defined as flat area [48, 49] or blurry
region [26, 27]. In order to compute the blurry area in an underwater image and identify the
background light, Emberton et al. [26] designed a hierarchical model. While the color of the
underwater target was near to blur area, this model became unreliable. Emberton et al. [27]
again dissolved the underwater image into; (i) greenish, (ii) bluish and (iii) blue greenish,
based on the hierarchy technique. Before the DCP based restoration, different white balance
procedures were gained for each part. Whereas, if the theoretical highest merit of background
light was applied as a denominator for evaluating the transmission map, then this resulted in
over saturation phenomenon leading to the appearance of artefacts in the background area [79].

In existing approaches, the maximum of learning used in DCP based restoration models is
based on supervised scenarios [49]. Whereas in some of the approaches, unsupervised methods
were used. With respect to the statistical distribution of color images, authors [80, 81]
combined the colors present in original images in 500 types. Every pixel present in color
image was presented with the cluster centre. In clustering space, color pixel shows a line
segment based on distance with respect to the camera. Clustering with the logarithmic of the
RGB value, an attenuation curve is obtained using the k dimension (KD) tree. After identifying
the pixel value that has a maximum variation between RGB channels in the image, background
light has been evaluated. To correct the transmission map simultaneously, the saturation
constraint is applied; still, the restored image remained over saturated and dark.

2.2 Underwater image enhancement method

In this method, information related to the image is extracted even in absence of prior
knowledge of the environment. Hence these methods are more generalized compared to the
restoration method. In underwater image processing and analysis, many underwater
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enhancements are combined which are taken from methods directly applied to natural images
[37, 65, 76]. Here we are discussing the main aspects of underwater image enhancement
methods in which they focus on contrast stretching, merged improvement along with multi
information and noise removal. All these methods have been listed in Table 2.

2.2.1 Filter based method

Arnold-Bos et al., [8] designed a pre processing model for luminance components in the
underwater image. This model identified a specific noise range in the underwater image by
combining enhancement and deconvolution methods. Log Gabor wavelet is used for
denoising, decreasing various quantization errors and also to suspend particle noise. This
system increases the effect of edge detection. A model designed by Bazeille [9] contains
various filtering steps which enhance the quality of non-uniform illumination, increase
contrast, decrease noise, and update color of an underwater image. In order to minimize the
noise in the underwater image, a non-sub sampled contourlet transform (NSCT) which
depends on adaptive total variation was designed by Jia and Ge [46]. A partial differential
equation (PDE) was also used by the authors to reduce noise in an image and construct
frequency components. The quality of enhancement of underwater images was examined by
using the sharpness and PSNR i.e. peak signal to noise ratio.

2.2.2 Color correction based method

A model was proposed by Chambah et al. [15] in which automatic color equalization (ACE)
was applied on each channel of RGB separately and adjusted the outputs of all three channels
to increase the efficiency of identifying the fish recognition from an aquarium. ACE algo-
rithm’s various parameters were adjusted internally. A model based on Rayleigh distribution
which contains a sequence of color correction schemes was designed by Ghani and Isa [32,

Table 2 Underwater image enhancement techniques

# Publication Technique Quality Fusion Year

52 ISOP ACE None N 2003
49 EuCPS Gaussian filter, Contrast Stretch None N 2005
55 Emmcvpr MRF None N 2005
50 CMM’06 Homomorphic filtering, Wavelet

Transform, Anisotropic filtering,
Contrast Stretch

Distribution of gradient
histogram

N 2006

56 IJCS Integrated color model None N 2007
57 ICASSP Quaternion’s rotation None N 2009
48 Acta Phot Sin Morphological filter None N 2011
58 CVPR White Balance, Bilateral Filter,

Histogram equalization
None Y 2012

51 CSIP NSCT, ATV PSNR and Sharpness N 2012
53 Springer Plus Rayleigh stretching None N 2014
54 Applied Soft Computing Rayleigh stretching None N 2015
59 ICIP Retibex, color correct None N 2015
60 TIP Gray World, Gamma Correction,

High Pass Filter
PCQI Y 2017

47 OE Wavelet SSIM, PSNR, Entropy N 2017
61 Neurocomputing Retinex MSE, UIQM, UCIQE Y 2017
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33]. An underwater image was taken by Torres-Méndez and Dudek [72], which was treated
like a Markov random field (MRF) and in it, nodes evident in random fields indicated the poor
quality of color values while those which were not visible indicated the true color values in the
underwater image. It explained the relationship between the pixels and their neighborhood by
training the true color of sample pixels. Iqbal et al. [45] designed an underwater image
enhancement model for the marine environment using the integrated color model. In this
model, an RGB color space is used and it depends on the sequence of sliding stretching like
contrast stretching whereas in HSI color space it depends on brightness and saturation
stretching. An underwater image color enhancement model, designed by Petit et al. [62] was
based on optical attenuation inversion.

The variational Retinex model was designed by Fu et al. [29] that were on the basis of
Retinex theory and herein using the linear domain variational Retinex the spatial luminance
parameter of color corrected underwater image was disintegrated through 4–6 iterations. In
[30], triangular and bilateral filters were used on a, b and L components in place of the Gaussian
filter, and then they were combined based on the ratio of values present in the RGB space.

2.2.3 Image fusion based method

There are many methods and model based on observation which plays an important role in
improvement. Gradually, the fusion process was also considered under image enhancement. A
fusion based underwater image enhancement model was designed by Ancuti et al. [2], here
white balance color improvement and the output of bilateral filtering were weighted using the
outcome of histogram equalization. In order to get a pixel level fusion output, four types of
fusion weights having Gaussian, local, sensitometry and saliency contrast were calculated.
However, under the consideration that fast attenuation was of the red channel, they increased
the white balance processing in [6].

2.3 Comparison between image restoration and image enhancement methods

Comparison of various techniques used in the image restoration method and image enhance-
ment method with their advantage and disadvantage has been shown in Tables 3 and 4.

2.4 Deep learning based method

Based on deep learning, underwater image enhancement has challenges like labeling of
images, difficulty to collect practically etc. Some of the approaches are discussed in Table 5
wherein training images column N stands for normal images and U stands for underwater
images.

A collection of color corrected underwater images [12] has been used as a training data set
in [61], in which based on a CNN an underwater image enhancement method is constructed. In
this model, 55 elements are used following which a three-D enhanced underwater image is
achieved. In [50] WaterGAN network was designed for underwater image color alteration
enhancement which is used to simulate the attenuation caused by the water body. This is
similar to the Generative Adversarial Networks (GAN) [34], where two training sets were
taken into consideration, one containing normal images and their relative depth maps in air and
another one containing underwater images that are taken from simulated underwater and
laboratory images referred by Jaffe- McGlamery model.
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Table 3 Comparison of various techniques used in image restoration method

Image Restoration Methods

Techniques Advantages (A) and Disadvantages (D)

Blind Deconvolution Approach with
Wells’ Approximation Theory

A: applicable to stripe image
D: no guarantee for good result by iteration

Homomorphic Filtering A: betterment on inhomogeneous illumination
D: double time-consuming Fourier transform

Inverse Wavelet Transformation A: decrease the noise of bright spot in ultrasound images
D: restrict application scope

Light Channel Prior Model Calculation A: artificial light source is taken into account
D: few shadow or dark images have no bright channel

Modelling of Point Spread Function A: determine medium attenuation in detail
D: applicable to polarized laser image

Model Calculation and Wiener Filter A: improvement on inhomogeneous illumination
D: recurrent parameter calculation generate difficulty of time control

Model Calculation A: good restoration for low contrast ratio image
D: noise points on result image

Stereo RANSAC A: depth information restoration for 3 dimensional image
D: very time consuming

Unsupervised ColorCorrection Model A: lager color fidelity and clarity
D: high time consuming and computation overhead

Self-Tuning Model Calculation A: coefficient self-adaption
D: high time consuming and computation overhead

Wiener Filter & Adaptive Contrast Stretch A: comprehensive enhancement and restoration algorithms
D: can’t applied to different noise situation

Table 4 Comparison of various techniques used in image enhancement method

Image Enhancement Methods

Techniques Advantages (A) and Disadvantages (D)

Automatic Color Correction A: accurate than auto enhanced technique
D: not applicable to remove noise

Brightness Preserving Histogram Equalization
with Maximum Entropy

A: save the average brightness with maximum entropy
D: not suitable for some dark or shadow image

Fuzzy Histogram Equalization A: improved image contrast, good equalization
D: not applicable for single image

Fusion Method A: improved considerably the visibility range
D: distant region in the image is not considering

RGB and HSV Contrast Limited
Adaptive Histogram Equalization

A: generate the lower MSE and the higher PSNR values
D: less comparison with other color models

Partial Differential Equation of Histogram
Equalization

A: improved interpretability or perception of information
in images

D: cannot automatic enhance image
RGB Tone Vector Quaternion Transformation A: improve contrast and color restoration

D: saturation decreases
Remainder Energy Ratio Estimate Water Depth,

Reductive Color Balance Compensation Change
A: effectively restore image color balance and remove haze
D: highly computing overhead

Two-Dimension Empirical Mode Decomposition A: widely Encountered low contrast problem
D: low Color Correction

Unsupervised Color Correction Method A: improve the lower red color and lower illumination
D: cannot suitable for low blue color image

38381Multimedia Tools and Applications (2023) 82:38371–38396



Inspired by the cycle consistent adversarial network (CycleGAN) [85] a weakly supervised
color migrationmodel was proposed by Lie et al. [51], to provide accuracy in color deformation
in deep sea underwater images. Herein between the underwater and normal images, forward
and backward mapping and also adversarial discriminators were incorporated. Several distor-
tion functions like adversarial losses LossGAN, Structural similarity LossSSIM, and periodic
continuity LossCyc were used in the forward mapping and backward mapping generator. All
useful information of underwater images was the same while the color was improved.

3 Underwater image dataset and evaluation

3.1 Underwater image dataset

The underwater image dataset is very useful in the evolution of underwater image processing
techniques. Here various underwater image datasets that have been used by several authors for
image enhancement and image restoration have been summarized, in Table 6.

In Fig. 2, images for these datasets are recorded. Due to the difficulty in the collection of
datasets, we cannot confirm that this dataset is the complete dataset. Few problems like low
accuracy labelling information, small category and single target object hamper the develop-
ment of underwater image enhancement techniques.

3.2 Evaluation of underwater image quality

There are some parameters such as image restoration, image enhancement, image classification, image
retrieval, image transmission, and optimization in optical image systems where the assessment of
image quality plays a vital role. Twomainmethods i.e., subjective image quality evaluation (IQE) and
objective image quality evaluation are used for evaluating the quality of images. Classification of
objective IQE is independent of the reference image. If a reference image for any underwater image is
not found, then to obtain the image quality we need a no-reference image metric.

We can use a number of quantitative metrics to assess the restoration and enhancement
performance of different types of underwater images. These are (i) global contrast dealing with
a grayscale underwater image quality; (ii) weighted gray scale angle (WGSA) metrics to
evaluate the improvement of restored image, and (iii) robustness index to identify the
proximity of gray scale histogram to their exponential distribution. Some papers also defined
a method to assess the robustness of underwater image noise removal.

In color based underwater images, two important no reference evaluationmetricswere used.One is
underwater image quality measure (UIQM) in which the following three methods were combined to
assess the quality of underwater images, (i) underwater image sharpness measure UISM, (ii)
underwater image contrastmeasureUIConMand (iii) underwater image colorfulnessmeasureUICM.

Table 5 Deep learning based underwater image enhancement models

# Publication Model Source of training sets Training Images Effects Year

63 IWINAC CNN Corrected Underwater Images Not mentioned Color Correction 2017
34 IEEERAL GAN [34] Tank and Simulated underwater

images
5348 N+7000 U Color Correction 2018

66 SPL CycleGAN [85] online underwater images 3800 N+3800 U Color Correction 2018
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Fig. 2 Some images from different dataset. a Wild Fish Marker [20] and OUCVISION Dataset [47] b
Underwater Photography-Fish [75] and Rock Database [63] c Port Royal [50, 63] and HabCam Underwater
dataset [21, 22, 36] d MOUSS [21, 22] and AFSC Underwater dataset [21, 22] e MBARI [21, 22, 55] and
NWFSC Underwater Dataset [21, 22] (f) RUIE [54, 67] and RGBD Underwater Dataset [10, 28, 53]
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The other reference metric is the underwater color image quality evaluation (UCIQE)
metric which is widely used to evaluate the quantity of non uniform color cast, enhance the
quality of the image and quantify the blur and noise in the underwater image.

In subjective evaluation, some methods are defined to evaluate the quality of natural images like
patch based contrast quality index (PCQI), mean square error (MSE), global contrast factor (GCF),
structural similarity index measure (SSIM), average execution, peak signal to noise ratio (PSNR),
entropy, a contrast to noise ratio (CNR), visibility metrics based on CNR (VM-CNNR), discrete
entropy and contrast measure (DECM) and gradient ration in visible edge (GAVE).

The overall deterioration dominates all underwater images, including chroma reduction,
poor contrast, nonuniform light, blurring, nonuniform color casts, and noise from numerous
parameters. Because of the various distortions present in underwater images, it is difficult to
develop a standard image quality metric which can be applied to all kinds of underwater
conditions. Using the existing underwater image quality criteria, an incorrect score was given
for an underwater image containing dark areas, oversaturation, and non-uniform brightness.

Fig. 3 Bluish Underwater images results comparison. a Original Images b He model results [38] c Galdran
model results [31] d Peng model results [59] e Li model results [49] f Yang model results [83] g ACE model
results [11] h Iqbal model results [45] i Fu model results [29] j Li model results [51]
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4 Result evaluation and analysis

Various types of techniques for underwater image restoration and enhancement were tested in
this section to identify their subjective and objective performance. The images were classified
into five parts: bluish, greenish, yellowish, whitish and deep sea underwater images. Various
underwater image dehazing methods were analyzed as given by He et al. [38], and Galdran
et al. [31]. Moreover, techniques using DCP with color correction like those given by Yang
et al. [83], Peng et al. [59], Le et al. [49], tested color enhancement method used in ACE [11],
by Iqbal et al. [45], a method based on Retinex [29] and deep learning model based method
[51] were studied and analyzed.

4.1 Subjective evaluation

The experimental results of various methods have been shown in Figs. 3, 4, 5, 6 and 7. In
this, it is observed that the output of the technique by Galdran et al. [31], Peng et al. [59],

Fig. 4 Yellowish Underwater images results comparison. a Original Images b He model results [38] c Galdran
model results [31] d Peng model results [59] e Li model results [49] f Yang model results [83] g ACE model
results [11] h Iqbal model results [45] i Fu model results [29] j Li model results [51]

38386 Multimedia Tools and Applications (2023) 82:38371–38396



ACE [11], Le et al. [49], Yang et al. [83], Fu et al. [29], enhances color visibly up to an
optimum level in different parts of the underwater image. Among all, the ACE method
[11], method of Le et al. [49], Yang et al. [83], and Fu et al. [29]; recorded fine
performance. Fu et al. also enhanced the color congestion but in the output image, it
generated blurred details. Difficulties in developing the bright targeted images were
generated by various other DCP based underwater image restoration methods. The method
of Yang et al. [83], generally experienced superior color restoration effects for every type
of underwater image. It helped in increasing divergence of the dark region but also
simplified technicalities in underwater images.

4.2 Objective evaluation

The result of restoration has been assessed by UCIQE, UIQM and PCQI metrics; because
these metrics have been largely used to evaluate the execution of underwater images. To

Fig. 5 Greenish Underwater images results comparison. a Original Images b He model results [38] c Galdran
model results [31] d Peng model results [59] e Li model results [49] f Yang model results [83] g ACE model
results [11] h Iqbal model results [45] i Fu model results [29] j Li model results [51]
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evaluate the difference between the original and the enhanced gray scale images, the PCQI has
been used. If we get 1, it shows no change between both of the input and evaluated images
whereas a value less than or more than 1, signifies a change. This significant change doesn’t
essentially mean up-gradation of image quality.

In order to amplify the quality of images, higher values in UIQM and UCIQE of underwater
images were observed. Tables 7 and 8 represents the five groups having ten methods each with
their numeric values of three metrics. The variation between the original image and the
processed image was observed to be less; when the value of PCQI was closer to 1. The reason
is no information to evaluate the color involved in PCQI. In Tables 7 and 8, the lower values of
output images indicate that the overall brightness of these images has changed significantly.
These images are shown in Figs. 3, 4, 5e, 6j and 7g. The images given in Figs. 4, 5 and 6d and
in Fig. 7j have extremely dark regions in output images that include an average saturation, and
peculiarly high global contrast, causing larger values in UCIQE. This data is presented in
Tables 7 and 8. In Tables 7 and 8, the UIQM image value attained by model Li et al. is affected

Fig. 6 Whitish Underwater images results comparison. a Original Images b He model results [38] c Galdran
model results [31] d Peng model results [59] e Li model results [49] f Yang model results [83] g ACE model
results [11] h Iqbal model results [45] i Fu model results [29] j Li model results [51]
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through color deviation in output images that can be represented by high chroma variance and
local contrast.

In conclusion, the accuracy of state-of-the-art underwater image quality evaluation tech-
niques was not appropriate owing to the complexity of the underwater imaging environment
and degradation categories (low contrast, color deviation, noise, blurring, etc.). The validity of
color restoration and the amount of detail restoration in dark regions, particularly, did not meet
the quality evaluation requirements of subjective visual assessment. The UCIQE has the
shortest processing time among the PCQI, UCIQE, and UIQM average processing times
and it is also suitable for real-time underwater applications.

If we compare the image restoration method and the image enhancement method based on
the objective and subjective evaluations, then we find that the values of these evaluations are
more appropriate in techniques that use enhancement methods rather than the restoration
method. But if we compare the enhancement method with deep learning and machine learning
enhancement techniques, then we get better results in deep learning and machine learning

Fig. 7 Deep sea underwater images results comparison. a Original Images b He model results [38] c Galdran
model results [31] d Peng model results [59] e Li model results [49] f Yang model results [83] g ACE model
results [11] h Iqbal model results [45] i Fu model results [29] j Li model results [51]
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techniques. But to conclude this, we need some more research on deep learning and machine
learning enhancement techniques.

5 Discussion on future work

The comparison and assessment provided in this research demonstrate that by using an
appropriate enhancement technique for various underwater activities and situations, a
satisfying outcome may be attained. To satisfy the needs of complicated circumstances,
the optimal algorithm should be capable of automatically assessing the information in the
input underwater image and make adaptive adjustments for diverse scenarios and lighting
conditions. There is currently a lack of knowledge on the best underwater enhancement
technique. Furthermore, the impact of uneven illumination from artificial lighting sources
is a little bit discussed. Furthermore, motion blurring is a deterioration that occurs in
practically every underwater image, although it is hardly taken into account in enhance-
ment or restoration procedures.

Table 7 Bluish, Yellowish and Greenish underwater images quality evaluation in Figs. 3, 4 and 5 respectively

Methods Bluish underwater images
quality evaluation

Yellowish underwater
images quality evaluation

Greenish underwater
images quality evaluation

PCQI UCIQE UIQM PCQI UCIQE UIQM PCQI UCIQE UIQM

DCP [38] 0.9998 0.5753 0.7331 0.9997 0.5220 1.0030 0.9998 0.4662 1.3590
0.9999 0.5373 0.6543 0.9999 0.5495 2.0703 0.9999 0.4601 1.1571
0.9997 0.6206 1.3922 1.0000 0.5120 1.6096 0.9999 0.6153 1.4145

Carlevaris et al. [14] 0.9996 0.6617 1.2793 0.9998 0.5168 0.9297 0.9998 0.4662 1.2963
0.9993 0.6723 −9.8942 0.9999 0.5612 2.3912 0.9999 0.5305 1.3641
0.9996 0.7001 7.3351 0.9996 0.4788 1.9463 0.9998 0.6090 1.3012

Galdran et al. [31] 0.9995 0.5095 1.0839 0.9992 0.5759 1.1584 0.9995 0.5502 1.1036
0.9999 0.5427 0.7909 0.9996 0.6116 2.1556 0.9999 0.4926 1.3740
0.9998 0.5640 1.6841 0.9998 0.4664 2.4878 0.9996 0.5753 1.5394

Peng et al. [59] 0.9997 0.6506 1.2415 0.9990 0.6647 1.1260 0.9990 0.6647 1.1260
1.0000 0.6080 0.8416 0.9996 0.6867 2.6617 1.0000 0.5499 1.6100
0.9999 0.6974 1.9013 0.9995 0.6842 2.3114 0.9998 0.6580 2.2868

Li et al. [49] 0.9984 0.6438 1.3415 0.9991 0.6693 1.7985 0.9985 0.6109 1.0522
0.9983 0.6349 1.4812 0.9986 0.6392 2.9309 0.9986 0.6030 3.0888
0.9984 0.6996 1.6962 0.9984 0.5813 2.2163 0.9983 0.6310 2.5077

Yang et al. [83] 0.9995 0.6281 1.0638 0.9997 0.5265 0.7070 0.9997 0.5953 1.1409
0.9994 0.6173 1.1396 0.9999 0.6283 2.3095 0.9992 0.5574 1.5148
0.9995 0.6606 1.7997 0.9998 0.6312 2.0441 0.9997 0.5968 2.1840

ACE [11] 0.9990 0.6363 3.1240 0.9985 0.5631 3.0004 0.9984 0.6010 1.8157
0.9990 0.6175 1.7808 0.9988 0.6216 4.5135 0.9986 0.5924 2.9807
0.9988 0.6617 3.1858 0.9986 0.6255 4.6322 0.9991 0.5679 5.2560

Iqbal et al. [45] 0.9998 0.5900 0.0951 0.9999 0.4787 1.0029 0.9993 0.5324 1.0550
0.9999 0.5502 0.7017 0.9996 0.5399 2.2466 1.0000 0.5374 1.4593
0.9988 0.6208 1.6988 0.9992 0.5499 1.7704 1.0000 0.5996 2.1166

Fu et al. [29] 0.9989 0.6048 2.6445 0.9986 0.5146 0.5483 0.9985 0.5635 1.3496
0.9985 0.6039 2.3926 0.9986 0.6028 3.3883 0.9988 0.5611 3.4128
0.9987 0.6431 2.5730 0.9985 0.6029 3.7813 0.9987 0.5687 3.5260

Li et al. [51] 0.9985 0.6187 2.8621 0.9984 0.6055 0.8810 0.9985 0.6225 1.8308
0.9986 0.5268 2.5723 0.9986 0.5899 3.7556 0.9986 0.6372 4.1197
0.9985 0.6450 2.7541 0.9981 0.6051 3.3028 0.9998 0.6330 1.7280
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Most studies concentrate on a single underwater image and spend little emphasis to
underwater video processing; yet underwater video processing is critical relevance in practical
applications. At the moment, there are several issues that require immediate attention, such as
underwater pollution, video processing efficiency and inter-frame uniformity is required.

The available underwater image quality evaluation methods cannot accurately assess
contrast and partial color improvements. It is difficult to build a significant standardized
objective assessment approach for underwater image improvement. Although present natural
image databases contribute significantly to the advancement of image quality assessment,
image deformation in these datasets is either single deformation created manually or defor-
mation of an image obtained by mobile devices. Furthermore, when applied to another
database, the accuracy of an image quality assessment approach based on training with only
one database is frequently poor.

With respect to future work, the researcher may contemplate the following features to carry
out the relevant work: (i) by comparing and analyzing various methods present in the present
study, we needed more appropriate underwater image enhancement methods which focus on
adaptive adjustment for various scene and lightening issue in the deep sea, (ii) uneven

Table 8 Whitish and Deep sea underwater images quality evaluation in Figs. 6 and 7 respectively

Methods Whitish underwater images quality
evaluation

Deep sea underwater images quality
evaluation

PCQI UCIQE UIQM PCQI UCIQE UIQM

DCP [38] 0.9991 0.4868 0.9216 0.9995 0.5621 1.3005
0.9995 0.6332 1.5901 0.9996 0.3875 1.8184
0.9994 0.4506 1.5081 0.9995 0.5267 1.7723

Carlevaris et al. [14] 0.9998 0.4936 1.6122 0.9997 0.5907 1.6579
0.9994 0.6570 1.5804 0.9998 0.4124 2.0374
0.9998 0.4687 1.6462 1.0002 0.6052 2.4124

Galdran et al. [31] 0.9997 0.5086 1.6818 0.9999 0.5570 1.5566
0.9996 0.5810 1.7226 0.9999 0.4918 1.8768
0.9996 0.5173 1.5890 1.0000 0.5161 2.4359

Peng et al. [59] 0.9991 0.6435 1.5226 0.9990 0.5865 1.9853
0.9994 0.6644 1.6376 0.9996 0.4871 2.0641
0.9997 0.5009 1.8489 1.0001 0.5637 2.5266

Li et al. [49] 0.9985 0.5662 1.7145 0.9989 0.5800 0.7010
0.9985 0.6348 0.5088 0.9985 0.5784 2.8738
0.9985 0.5861 2.5875 0.9986 0.6207 4.0225

Yang et al. [83] 1.0000 0.5395 1.4461 0.9997 0.5251 1.8474
0.9998 0.6145 2.0333 0.9999 0.5786 2.2721
0.9999 0.5673 1.7655 0.9998 0.5627 2.4049

ACE [11] 0.9987 0.5610 4.1327 0.9980 0.5351 4.2408
0.9981 0.6152 1.2117 0.9987 0.5602 4.2793
0.9986 0.5868 3.2399 0.9996 0.6153 4.7435

Iqbal et al. [45] 0.9992 0.5242 1.5409 0.9999 0.5638 1.5289
0.9994 0.5781 1.6597 0.9991 0.4921 1.7773
0.9990 0.4759 1.5078 0.9999 0.5156 2.2373

Fu et al. [29] 0.9986 0.5241 2.3631 0.9990 0.5100 1.6565
0.9985 0.5819 0.7441 0.9984 0.5491 3.4114
0.9987 0.5513 3.5733 0.9993 0.5736 4.6958

Li et al. [51] 0.9984 0.6017 2.2486 0.9988 0.6084 1.5257
0.9985 0.5966 1.2255 0.9981 0.6234 2.3039
0.9985 0.5770 4.1733 0.9990 0.5448 5.5620
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availability of external light source in underwater sea, (iii) motion blurring also is one parameter
for improvement in underwater image enhancement and restoration, (iv) researcher should not
only focus on underwater image processing but also focus on underwater video processing.

6 Conclusion

The difficulty of achieving visibility of things at long or short distances in underwater
environments is a challenge for the image analysis community. Even while there is various
image enhancing techniques available, they are mostly confined to regular images, and only a
handful have been created expressly for underwater images. We evaluated some of them in this
paper to bring the facts together for a deeper understanding and evaluation of the approaches.
We outlined the existing approaches for image restoration, enhancement and enhancement
using deep learning and machine learning, concentrating on the conditions under which each
algorithm was initially designed. We also examined the methods used to assess the efficacy of
the algorithms, highlighting studies that employed a quantitative quality score.

According to our research findings, a shared acceptable dataset of test images for varied
imaging situations, as well as standard criteria for qualitative and quantitative evaluation of the
results, is still necessary to improve underwater imaging processing.

Emerging underwater photography techniques and technologies necessitate the adaptation
and extension of the methods described above, for example, to handle data from numerous
sources which can collect 3-dimensional scene information. However, investigating the visual
systems of underwater creatures will undoubtedly provide us with clean perspectives into the
knowledge extraction of underwater images.

This paper introduced various predefined models of underwater image enhancement and
restoration. Some common issues present are outlined. Results from various underwater image
restoration and enhancement techniques on yellow, green, blue, white, and deep sea images are
correlated, which is helpful to identify the most suitable methods under various constraints.
Other than this the accuracy and limitation of various underwater image quality evaluation
metrics are analyzed. In this, we also summarized various underwater image datasets and
provided future research directions for researchers in this area.

Funding Any agency does not fund this study.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during the
current study.

Declarations Author 1 declares that he/she has no conflict of interest.
Author 2 declares that he/she has no conflict of interest.
This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval This article does not contain any studies with human participants or animals performed by
any of the authors.

Conflict of interest All the authors of this paper declare that he/she has no conflict of interest.

38392 Multimedia Tools and Applications (2023) 82:38371–38396



References

1. Almabouada F, Abreu MA, Coelho JMP, Aiadi KE (2019) Experimental and simulation assessments of
underwater light propagation. Front Optoelectron 12(4):405–412

2. Ancuti C, Ancuti CO, Haber T et al (2012) Enhancing underwater images and videos by fusion. Proceeding
IEEE conference on computer vision and pattern recognition (CVPR 2012) pp 81–88

3. Ancuti C, Ancuti CO, De C et al (2016) Multi-scale underwater descattering. Procceding of 23rd
international conference on pattern recognition (ICPR 2016) pp 4202–4207

4. Ancuti CO, Ancuti C, De C et al (2017) Color transfer for underwater dehazing and depth estimation.
Proceeding IEEE international conference on image processing (2017) pp 695–699

5. Ancuti CO, Ancuti C, De C et al (2017) Locally adaptive color correction for underwater image dehazing
and matching, proceeding on IEEE computer vision and pattern recognition. Workshops pp 1–9

6. Ancuti CO, Ancuti C, De Vleeschouwer C et al (2018) Color balance and fusion for underwater image
enhancement. IEEE Trans Image Process 27(1):379–393

7. Anwar S, Li C (2020) Diving deeper into underwater image enhancement: A survey. Signal Process Image
Commun 89:115,978–115,978

8. Arnold-Bos A, Malkasse JP, Kervern G (2005) A preprocessing framework for automatic underwater
images denoising, european conference on propagation and systems. pp 15–18

9. Bazeille S, Quidu I, Jaulin L et al (2006) Automatic underwater image pre-processing. Proceeding
Caracterisation Du Milieu Marin. pp 16–19

10. Berman D, Levy D, Avidan S et al (2018) Underwater single image color restoration using haze-lines and a
new quantitative dataset. URL: https://arxiv.org/abs/1811.01343

11. Boom BJ, He J, Palazzo S, Huang PX, Beyan C, Chou HM, Lin FP, Spampinato C, Fisher RB (2014) A
research tool for long term and continuous analysis of fish assemblage in coral-reefs using underwater
camera footage. Ecol Inform 23:83–97

12. Bryson M, Johnson-Roberson M, Pizarro O, Williams SB (2016) True color correction of autonomous
underwater vehicle imagery. J Field Robot 33(6):853–874

13. Caimi FM, Dalgleish FR, Giddings TE et al (2007) Pulse versus CW laser line scan imaging detection
methods: simulation results. Europe 18:1–4

14. Carlevaris-Bianco N, Mohan A, Eustice RM (2010) Initial results in underwater single image dehazing,
Oceans Mts/IEEE Seattle pp 1–8

15. Chambah M, Semani D, Renouf A et al (2003) Underwater color constancy: enhancement of automatic live
fish recognition, Color Imaging IX: Processing, Hardcopy, and Applications pp 157–168

16. Chen CLP, Zhou J, Zhao W (2012) A real-time vehicle navigation algorithm in sensor network environ-
ments. IEEE Trans Intell Transp Syst 13(4):1657–1666

17. Chiang JY, Chen YC (2011) Underwater image enhancement by wavelength compensation and dehazing.
IEEE Trans Image Process 21(4):1756–1769

18. Chiang JY, Chen YC, Chen YF (2011) Underwater image enhancement: using wavelength compensation
and image dehazing (WCID). In International conference on advanced concepts for intelligent vision
systems pp 372–383

19. Cho Y, Shin YS, Kim A (2016) Online depth estimation and application to underwater image dehazing.
Proceeding of IEEE Oceans pp 1–7

20. Cutter G, Stierhoff K, Zeng J et al (2015) Automated detection of rocks in unconstrained underwater videos
using Haar cascades and a new image dataset: labelled fishes in the wild. IEEE Winter Appl Comput Vis
Workshops 1:57–62

21. CVPR 2018 Workshop and Challenge (AAMVEM) (n.d.) Available: http://www.viametoolkit.org/cvpr-
2018-workshop-data-challenge/challenge-data-description/

22. CVPR 2019 Workshop and Challenge (AAMVEM) (n.d.) Available: https://www.aamvem.com/
datachallenge

23. Del Grosso VA (1975) Modulation transfer function of water. Oceans 75 Conference pp 331–347
24. Ding X, Wang Y, Zhang J (2017) Underwater image dehaze using scene depth estimation with adaptive

color correction, Procceding of IEEE Oceans pp 1–5
25. Drews P, Nascimento E, Moraes F et al (2013) Transmission estimation in underwater single images.

Proceedings of the IEEE international conference on computer vision workshops pp 815–830
26. Emberton S, Chittka L, Cavallaro A (2015) Hierarchical rank-based veiling light estimation for underwater

dehazing. Proceedings of the British machine vision conference pp 1–12
27. Emberton S, Chittka L, Cavallaro A (2018) Underwater image and video dehazing with pure haze region

segmentation. Comput Vis Image Underst 168:145–156

38393Multimedia Tools and Applications (2023) 82:38371–38396

https://arxiv.org/abs/1811.01343
http://www.viametoolkit.org/cvpr-2018-workshop-data-challenge/challenge-data-description/
http://www.viametoolkit.org/cvpr-2018-workshop-data-challenge/challenge-data-description/
https://www.aamvem.com/datachallenge
https://www.aamvem.com/datachallenge


28. Fish4Knowledge (n.d.) Available: http://homepages.nf.ed.ac.uk/rbf/Fish4Knowledge/?tdsourcetag=s_
pcqq_aiomsg.

29. Fu X, Zhuang P, Huang Y et al (2014) A Retinex-based enhancing approach for single underwater image.
Proceeding IEEE international conference on image processing, (ICIP 2014) pp 4572–4576

30. Fu X, Zhuang P, Huang Y et al (2014) A retinex-based enhancing approach for single underwater image.
IEEE international conference on image processing (ICIP 2014) pp 4572–4576

31. Galdran A, Pardo D, Picón A et al (2015) Automatic red channel underwater image restoration. J Vis
Commun Image Represent 26:132–145

32. Ghani ASA, Isa NAM (2014) Underwater image quality enhancement through composition of dual-
intensity images and Rayleigh-stretching. Springer Plus 3(1):757

33. Ghani ASA, Isa NAM (2015) Underwater image quality enhancement through integrated color model with
Rayleigh distribution. Appl Soft Comput 27:219–230

34. Goodfellow I, Pouget-Abadie J, Mirza M et al Generative adversarial nets. Proceeding International
Conference on Neural Information Processing Systems pp 2672–2680

35. Grosso VAD (1978) Optical transfer function measurements in the Sargasso Sea. International Society for
Optics and Photonics pp 74–101

36. HabCam Underwater Image Dataset. (n.d.) Available: https://habcam.whoi.edu/
37. Han HW, Zhang XH, Ge WL et al (2011) A mixed noise reduction algorithm for underwater laser images

based on soft-morphological filter. Acta Photonica Sinica 40(1):136–141
38. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal

Mach Intell 33(12):2341–2353
39. Honjo S, Doherty KW, Agrawal YC (1984) Direct optical assessment of large amorphous aggregates

(marine snow) in the deep ocean. Deep Sea Res Part A Oceanogr Res Pap 31(1):67–76
40. Hou W, Gray DJ, Weidemann AD (2007) Automated underwater image restoration and retrieval of related

optical properties. IEEE International Geoscience and Remote Sensing Symposium pp 1889–1892
41. Hou W, Weidemann D, Gray DJ (2007) Imagery derived modulation transfer function and its applications

for underwater imaging. Int Soc Optics Photonics 6696:707–714
42. Hou W, Gray DJ, Weidemann AD, Arnone RA (2008) Comparison and validation of point spread models

for imaging in natural waters. Opt Express 16(13):9958–9965
43. Hou M, Liu R, Fan X et al (2018) Joint residual learning for underwater image enhancement. Proceeding

IEEE international conference on image processing pp 4043–4047
44. Hufnagel RE, Stanley NR (1964) Modulation transfer function associated with image transmission through

turbulent media. J Opt Soc Am 54(1):52–60
45. Iqbal K, Salam RA, Osman A et al (2007) Underwater image enhancement using an integrated color model.

Int J Comput Sci 34(2):1–6
46. Jia DX, Ge YR (2012) Underwater image de-noising algorithm based on non sub sampled contour let

transform and total variation. International conference on computer science and information processing
(CSIP 2012) pp 76–80

47. Jian M, Qi Q, Dong J et al (2017) The OUCvision large-scale underwater image database. IEEE
international conference on multimedia and expo (ICME 2017) pp 1297–1302

48. Li C, Guo J, Chen S et al (2016) Underwater image restoration based on minimum information loss
principle and optical properties of underwater imaging, proceeding IEEE international conference on image
processing, (ICIP 2016) pp 1993–1997

49. Li C, Guo J, Guo C, Cong R, Gong J (2017) A hybrid method for underwater image correction. Pattern
Recogn Lett 94:62–67

50. Li J, Skinner KA, Eustice RM et al (2018) Water-GAN: unsupervised generative network to enable real-
time color correction of monocular underwater images. IEEE Robot Autom Lett 3(1):387–394

51. Li C, Guo J, Guo C et al (2018) Emerging from water: underwater image color correction based on weakly
supervised color transfer. IEEE Signal Process Lett 25(3):323–327

52. Li Y, Takahashi S, Serikawa S (2019) Cognitive Ocean of things: a comprehensive review and future
trends. Wirel Netw. pp 1–10

53. Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, Tao D (2019) An underwater image enhancement
benchmark dataset and beyond. IEEE Trans Image Process 29:4376–4389

54. Liu R, Fan X, Zhu M et al (2019) Real-world underwater enhancement: Challenges, benchmarks, and
solutions, (2019), Available: https://arxiv.org/abs/1901.05320

55. MBARI Underwater Image Dataset (n.d.) Available: https://www.mbari.org
56. McGlamery BL (1980) A computer model for underwater camera systems. International Society for Optics

and Photonics (208)

38394 Multimedia Tools and Applications (2023) 82:38371–38396

http://homepages.nf.ed.ac.uk/rbf/Fish4Knowledge/?tdsourcetag=s_pcqq_aiomsg
http://homepages.nf.ed.ac.uk/rbf/Fish4Knowledge/?tdsourcetag=s_pcqq_aiomsg
https://habcam.whoi.edu/
https://arxiv.org/abs/1901.05320
https://www.mbari.org


57. Nery MS, Machado AM, Campos MFM et al (2005) Determining the appropriate feature set for fish
classification tasks. XVIII Brazilian symposium on computer graphics and image processing
(SIBGRAPI'05) pp 173–180

58. Peng YT, Cosman PC (2016) Single image restoration using scene ambient light differential. Proceeding
IEEE international conference on image processing (ICIP 2016) pp 1953–1957

59. Peng YT, Cosman PC (2017) Underwater image restoration based on image blurriness and light absorption.
IEEE Trans Image Process 26(4):1579–1594

60. Peng YT, Zhao X, Cosman PC (2015) Single underwater image enhancement using depth estimation based
on blurriness. Proceeding IEEE international conference on image processing pp 4952–4956

61. Perez J, Attanasio AC, Nechyporenko N et al (2017) A deep learning approach for underwater image
enhancement. International work-conference on the interplay between natural and artificial computation pp
183–192

62. Petit F, Capelle-Laize AS, Carre P (2009) Underwater image enhancement by attenuation inversion with
quaternions. IEEE international conference on acoustics, speech and signal processing, (ICASSP 2009) pp
1177–1180

63. Port Royal Underwater Image Database and Underwater Rock Image Database (n.d.) Available: https://
github.com/kskin/WaterGAN/

64. Qin D, Yue G, Yeqiu L, Le Z et al (2013) High-precision measurement technology of laser pulse flight time
based on TDC-GP21. Infrared Laser Eng 42(7):1706–1709

65. Rai KR, Gour P, Singh B (2012) Underwater image segmentation using CLAHE enhancement and
thresholding. Int J Emerg Technol Adv Eng 2(1):118–123

66. RGBD Underwater Image Dataset (n.d.) Available: http://csms.haifa.ac.il/proles/tTreibitz/datasets/ambient_
forwardlooking/index.html

67. RUIE Dataset (n.d.) Available: https://github.com/dlut-dimt/Realworld-Underwater-Image-Enhancement-
RUIEBenchmark

68. Sahoo A, Dwivedy SK, Robi PS (2019) Advancements in the field of autonomous underwater vehicle.
Ocean Eng 181:145–116

69. Singh N, Bhat A (2021) A detailed understanding of underwater image enhancement using deep
learning. In: 2021 5th International Conference on Information Systems and Computer
Networks (ISCON 2021). IEEE, pp 1–6

70. Soni OK, Kumar JS et al (2020) A survey on underwater images enhancement techniques. IEEE 9th
international conference on communication systems and network technologies (CSNT 2020) pp 333-338

71. Tan CS, Sluzek A, G. Seet GL, Jiang TY (2006) Range gated imaging system for underwater robotic
vehicle. In: OCEANS 2006-Asia Pacific. IEEE, pp 1–6

72. Torres-Méndez LA, Dudek G (2005) Color correction of underwater images for aquatic robot inspection. In:
Energy Minimization Methods in Computer Vision and Pattern Recognition: 5th International Workshop,
EMMCVPR 2005, St. Augustine, FL, USA, November 9-11, 2005. Proceedings 5. Springer Berlin
Heidelberg, pp 60–73

73. Trucco E, Olmos-Antillon AT (2006) Self-tuning underwater image restoration. IEEE J Ocean Eng 31(2):
511–519

74. Uemura T, Lu H, Kim H (2020) Marine organisms tracking and recognizing using yolo. In: 2nd EAI
International Conference on Robotic Sensor Networks: ROSENET 2018. Springer International Publishing,
pp 53–58

75. Underwater Photography Fish Database (n.d.) Available: http://www.fishdb.co.uk/. Accessed 27 Aug 2019
76. Vasamsetti S, Mittal N, Neelapu BC, Sardana HK (2017) Wavelet based perspective on variational

enhancement technique for underwater imagery. Ocean Eng 141:88–100
77. Voss KJ, Chapin AL (1990) Measurement of the point spread function in the ocean. Appl Opt 29(25):3638–

3642
78. Wang M, Wu Y, Li J et al (2010) Object recognition via adaptive multi-level feature integration. 12th

international Asia-Pacific web conference pp 253–259
79. Wang K, Dunn E, Tighe, Frahm JM (2014) Combining scene priors and haze removal for single image

depth estimation. In: IEEE Winter Conference on Applications of Computer Vision. IEEE, pp 800–807
80. Wang Y, Liu H, Chau LP (2017) Single underwater image restoration using attenuation-curve prior. In:

2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–4
81. Wang Y, Liu H, Chau LP (2018) Single underwater image restoration using adaptive attenuation-curve

prior. IEEE Trans Circuits Syst I Reg Pap 65(3):992–1002
82. Yang M, Gong C et al (2012) Underwater image restoration by turbulence model based on image gradient

distribution. 2nd international conference on uncertainty reasoning and knowledge engineering pp 296–299

38395Multimedia Tools and Applications (2023) 82:38371–38396

https://github.com/kskin/WaterGAN/
https://github.com/kskin/WaterGAN/
http://csms.haifa.ac.il/proles/tTreibitz/datasets/ambient_forwardlooking/index.html
http://csms.haifa.ac.il/proles/tTreibitz/datasets/ambient_forwardlooking/index.html
https://github.com/dlut-dimt/Realworld-Underwater-Image-Enhancement-RUIEBenchmark
https://github.com/dlut-dimt/Realworld-Underwater-Image-Enhancement-RUIEBenchmark
http://www.fishdb.co.uk/


83. Yang M, Sowmya A, Wei Z et al (2019) Offshore underwater image restoration using reaction-
decomposition-based transmission map estimation. IEEE J Ocean Eng 45(2):521–533

84. Yang M, Hu J, Li C, Rohde G, du Y, Hu K (2019) An in-depth survey of underwater image enhancement
and restoration. IEEE Access 7:123638–123657

85. Zhu JY, Park T, Isola P et al (2017) Unpaired image-to-image translation using cycle-consistent adversarial
networks. Proceeding IEEE international conference on computer vision (ICCV 2017) pp 2223–2232

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

38396 Multimedia Tools and Applications (2023) 82:38371–38396


	A systematic review of the methodologies for the processing and enhancement of the underwater images
	Abstract
	Introduction
	Study selection
	Inclusion criteria (IC)
	Exclusion criteria (EC)


	Underwater image processing algorithm
	Underwater image restoration method
	Turbulence degradation model
	Jaffe-McGlamery model
	Point spread function model
	Image Dehazing based model

	Underwater image enhancement method
	Filter based method
	Color correction based method
	Image fusion based method

	Comparison between image restoration and image enhancement methods
	Deep learning based method

	Underwater image dataset and evaluation
	Underwater image dataset
	Evaluation of underwater image quality

	Result evaluation and analysis
	Subjective evaluation
	Objective evaluation

	Discussion on future work
	Conclusion
	References


