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Abstract
Clustering is regarded as one of the most difficult tasks due to the large search space that
must be explored. Feature selection aims to reduce the dimensionality of data, thereby
contributing to further processing. The feature subset achieved by any feature selection
method should enhance classification accuracy by removing redundant features. To this
end, this paper proposes a new model, called Best Clustering Normalized Mutual
Information Quantile (BC-NMIQ), to rank the best features using the square root
threshold. Finally, the proposed BC-NMIQ is improved with the optimal set of features
selected automatically using the Incremental Association Markov Blanket (IAMB) fea-
ture selection method. The measurement criteria are applied to BC-NMIQ-IAMB as the
main proposed method and to BC-NMIQ as a subsidiary proposed method. In fact, the
hybrid BC-NMIQ-IAMB is the combination of the proposed filter method (BC-NMIQ)
and the existing automatic filter feature selection approach (IAMB). To test the perfor-
mance of the proposed BC-NMIQ-IAMB algorithm, its performance is compared with
that of some other algorithms recently proposed in the literature. The results of the
experiments, which were conducted on ten benchmark high-dimensional medical datasets
(including binary and multi-class), confirmed that BC-NMIQ-IAMB increases the aver-
age accuracy of existing binary and multi-class algorithms to 0.92 and 0.94, respectively.

Keywords Clustering . Feature selection . Normalizedmutual information . High-dimensional
medical datasets

1 Introduction

Feature selection is one of the dimensionality reduction methods, which helps to choose the
most relevant features before applying the learning algorithm [39]. The goal of this method is
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to get a subset of all available features that are much more useful for the next trend. In other
words, feature selection is aimed at eliminating irrelevant and redundant features that may lead
to undesirable correlations in the next process (learning) [26]. Feature selection approaches
have brought significant improvements to both the learning performance and the computa-
tional efficiency of the classification algorithms. Such improvements are particularly observed
when feature selection approaches are wrapped around evolutionary computation (EC) tech-
niques that are known to be powerful global search methods [50]. The performance of the
feature selection method is usually evaluated by the machine learning model. Deep learning (a
sub-branch of machine learning) algorithms have been popular for automatic recognition of
digits and characters of different languages. Deep networks can be trained in a supervised
mode requiring labels, or in an unsupervised way without the need for labels [5, 27]. The
commonly-used machine learning models include Naïve Bayes, KNN, C4.5, SVM, BPNN,
RBF-NN, K-means, Hierarchical clustering, and Density based clustering [38]. A good feature
selection method should have high learning accuracy, but less computational overhead (time
and space complexity). Although there have been solid reviews on feature selection [45], they
mainly focus on specific research fields in feature selection. Therefore, it is still worth
comprehensively surveying recent advances in feature selection and discussing some future
challenges.

Feature selection has been the subject of much research in the field of supervised and
unsupervised data engineering in recent decades [31], and existing methods for supervised
classification are mainly divided into three categories: the filter methods [22], the wrapper
methods [33], and the embedded methods [54]. The wrapper methods follow innovative
guidelines for selecting a subset of features with the best predictive performance. Since the
number of subsets may be extremely large and new classifiers need to be created for each
updated subset, the wrapper methods are usually computationally expensive, which makes
them difficult to be applied to datasets with a large number of instances or feature candidates
[13, 24, 51]. Embedded methods, despite their higher speed than the wrapper methods, are still
computationally heavy, and their feature selection results depend on the learning machine [13].
On the other hand, the filter feature selection methods score and rank the feature candidates
according to a certain criterion, and extract one feature at a time to form a subset with a
predefined dimension. They are also computationally cheaper and do not rely on particular
predictors [13].

Cluster analysis is an unsupervised learning method aiming to group a set of unlabeled
objects into clusters in such a way that each cluster could contain items that are more similar to
the rest of the items in the same cluster than those in the other clusters [52]. Clustering can help
scientists analyze data and solve practical problems; thus, it has been widely used in disparate
fields, including statistical analysis [6, 7], pattern recognition [30], information retrieval [17],
and bioinformatics [16]. The traditional clustering algorithms can be divided into different
categories such as partition methods [11], hierarchical algorithms [32], density-based algo-
rithms [9], intelligent traffic prediction [10], and graph-based methods [14].

Many feature selection methods use meta-heuristics, evolutionary, and swarm intelligence-
based algorithms to avoid increasing computational complexity in the high-dimensional
medical datasets. Meta-heuristic algorithms have been very successful in tackling many
optimization problems such as data mining, machine learning, engineering design, production
tasks, and Feature Selection (FS) [48]. Meta-heuristic algorithms are general-purpose stochas-
tic methods that can find a near-optimal solution within a reasonable time. Lately, various
Swarm Intelligence (SI)-based meta-heuristics have been developed and proved efficient in
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handling FS tasks in different fields [35, 41]. SI-based algorithms generally consist of a simple
population of artificial agents. This concept is typically inspired by nature, and each agent
performs an easy job, but local interactions and partly-random interactions between these
agents lead to the emergence of “intelligent” global behavior, which is unknown to individual
agents [39].

In the field of Machine Learning and Data Mining, many learning algorithms have been
proposed, which are primarily applied to handling discrete features. However, data in real
world are often continuous in nature. Hence, discretization is a commonly used data prepro-
cessing procedure that transforms continuous features into discrete features [19]. It is the
process of partitioning continuous variables into categories. Unfortunately, the number of
ways to discretize a continuous attribute is infinite. Discretization is a potential time-
consuming bottleneck since the number of possible discretization is exponential in the number
of interval threshold candidates within the domain. Discretization techniques are often used by
the classification algorithms, genetic algorithms, and a wide range of learning algorithms. The
use of discrete values has a number of advantages such as:

& Discrete features require less memory space.
& Discrete features are often closer to a knowledge-level representation.
& Data can be reduced and simplified through discretization, which becomes easier to

understand, use, and explain.
& Learning will be more accurate and faster using the discrete features.

The focus of this paper is on proposing a hybrid filter feature selection method including the
concept of clustering, NMI, and IAMB, based on MRMR. Three feature clustering methods
are used in this study, i.e., ward method, equal width discretization, and k-means. The
selection of clustering methods was based on the following criteria. The ward method is noise
robust and biased towards globular clusters. Equal width is straightforward and simple to
apply. It works solely by having the smallest and largest value of each feature as well as the
number of samples. k-means is very fast compared to many other clustering algorithms. In
addition, feature selection based on learning the IAMB does not depend on a specific classifier.
Moreover, IAMB does not need to know the number of features prior to applying feature
selection. It is also globally optimal and less prone to over-fitting than other existing methods.
The contributions of the proposed method are summarized as follows:

& To convert features with continuous values to the respective features with discrete values
using k-means, complete link, and equal width discretization clustering algorithm and to
find the number of clusters of each feature by normalize mutual information based on the
labels.

& To select the most informative features using the concept of Maximum Relevance
Minimum Redundancy (MRMR) within a filter method via predefined thresholds.

& To apply Incremental Association Markov Blanket Feature Selection (IAMB) to automat-
ically select the features.

In the rest of the paper, we will introduce the evaluation measure for feature selection.
Section 2 introduces some recent studies on feature selection approaches, including wrapper,
embedded, and filter approaches. Section 3 explains the proposed methodology. Section 4
presents an introduction to experimental data and setup and provides the summery of
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experimental results and related discussions. Finally, in Section 5, conclusion and trends for
future research are presented.

2 Related work

In this section, recent studies conducted on the feature selection methods are reviewed. Sheng
et al. introduced a niching memetic approach (NMA-CFS) to clustering and feature selection.
In NMA-CFS, a type of variable-string length genetic algorithm was used as an optimizer, and
a kind of within-cluster scatter was utilized as an evaluation criterion to find the correct number
of clusters. NMA-CFS could find the exact number of clusters using a smaller number of
features, but the datasets used in their experiments mostly involved a small number of clusters
and features [46].

Lensen et al. put forward a comparative study of medoid-based and centroid-based
encoding schemes on the PSO framework for clustering and feature selection. Although the
medoid-based encoding scheme performed better than the centroid-based one, in most cases, it
could not obtain the optimal number of clusters [28].

Lensen et al. proposed a three-stage PSO-based clustering and feature selection approach.
In the first stage, an initial number of clusters was utilized using the Silhouette index. Then, in
the second stage, the evolutionary process was carried out with the help of the initial cluster
number. Finally, the best solution previously represented by the medoid-based encoding was
converted to centroid-based encoding to find the optimal cluster. Like the previous ones, this
approach also could not properly estimate the optimal number of clusters in most datasets [29].

Rostami et al. proposed a multi objective feature selection method on PSO-based. Their
proposed method involves three main steps. At the first step, the main features are shown as a
graph representation model. At the next step, feature centralities for all nodes in the chart are
calculated, and finally, at the third step, an improved PSO-based search process is applied to the
final feature selection. The novel approach employed in their study evaluates a feature subset by
the combination of feature separability index, similarity, and feature subset size. Although the
results on five medical datasets indicated that the proposed method improves previous related
methods in terms of efficiency and effectiveness, several users are needed to specify the
parameters used in the proposed methods. Thus, their corresponding values should be deter-
mined by users. Given that the accuracy of the learning model must be calculated to evaluate
each combination of parameter values, this approach will not be applicable to situations where
the construction of the learning model has a high computational complexity [39].

Rostami et al., in another research, proposed the Community Detection-based Genetic
Algorithm for Feature Selection (CDGAFS) operating in three stages. The similarities of the
features are calculated at the first step. Then, the features are classified by community detection
algorithms into clusters at the second step. Finally, at the third step, features are selected by a
genetic algorithm with a new community-based repair operation. Although the proposed
method gives higher efficiency, faster convergence, and search efficiency compared to other
feature selection methods, there are several user-specified parameters used in the developed
feature selection methods. Therefore, their corresponding values should be determined by
users. As a result, choosing the best values for the parameters is an optimization problem [42].

In another study, Rostami et al. proposed a novel pairwise constraints-based method for
feature selection. In the proposed method, the similarity between the pair constraints is
calculated and an uncertainty region is created based on it. Then, in an iterative process, most

42620 Multimedia Tools and Applications (2023) 82:42617–42639



informative pairs are selected. The proposed method was compared to different supervised and
unsupervised feature selection approaches, including LS, GCNC, FJUFS, FS, FAST, FJMI,
and PCA. The reported findings indicated that, in most cases, their proposed approach was
more accurate and selected fewer features [40]. Alirezanejad et al. proposed two heuristic filter
methods for gene selection, namely Xvariance against Mutual Congestion (MC). Xvariance
depends on internal features such as variance and mean, while the Mutual Congestion is based
on the frequency of features. Experimental results showed that Mutual Congestion increased
the accuracy of basic classifiers in subsequent datasets, whereas Xvariance had significant
results in standard datasets. The comparisons of the results with those of the state-of-the-art
methods confirmed that their methods performed better than the existing ones. Even though
Xvariance and Mutual Congestion achieved significant results, both methods selected 10 best
features in the data set as the final feature subset. In fact, Alirezanejad et al. used a fixed
threshold in their work [8].

Abbasabadi et al. suggested that the ensemble feature selection method was adopted on the
premise that combining a number of feature selection methods yields more reliable results than
using just one feature selection method in order to combine rankings of features from various
algorithms into a single rank for each feature, a combinational method should be used when
performing ensemble feature selection. Additionally, a threshold must be established in order
to acquire a functional subset of features. This study proposes Automatic Thresholding Feature
Selection (ATFS), a three-step ensemble feature selection method. Diversity generation is the
first step, in which various rankers are applied to each dataset to produce various feature
rankings. The proposed ensemble is given automatic thresholding capabilities by fast non-
dominated sorting, which is used to combine the output rankings of individual selectors. This
is the second step in order to create the best feature set, feature sets are generated, which is the
third step. In addition, Sorted Label Interference (SLI), a brand-new filter technique built on
the interference between class labels, is suggested. Binary datasets can be used with SLI and
ATFS [1].

Nematzadeh et al. introduced Whale-Mutual Congestion (WMC) as a hybrid filter feature
selection method for medical datasets. It was shown that Mutual Congestion (MC) can well
predict class labels. The authors also demonstrated how the whale algorithm could improve the
Mutual Congestion performance by removing half of the trivial features. The accuracy,
sensitivity, specificity, and MC of the proposed method were calculated in the top 10 subsets
of features using a majority of votes. To further evaluate the proposed method, the whale
effectiveness analysis, box diagram analysis, and whale convergence analysis were performed.
The results revealed that the proposed method can achieve superior results in most cases in
terms of accuracy and size of the subset. Similar to the Xvariance and Mutual Congestion
proposed by Alirezanejad et al., WMC had a fixed threshold τ = 10 and could not automat-
ically select the final feature subset [34].

Abbasabadi et al also proposed a hybrid method using a proposed filter feature selection
(SLI-γ) and a wrapper GA-based feature selection approach known as GArank&rand. In the first
phase, SLI-γ was used to eliminate 99% of unnecessary features. The first phase solutions
were; then, optimized by GA using the SLI-γ most calculated pertinent features. For the
evaluation of the measurement criteria, this paper used 11 well-known datasets, including 4
standard datasets and 7 high-dimensional datasets. The experimental findings demonstrated
that SLI-γ was able to outperform the other rankers (taken into account in this study) across all
datasets. Additionally, SLI-γ had a big impact on GA’s performance, in terms of, classification
precision and the number of features chosen. Furthermore, when 1% of the highest ranked
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features were chosen for the GA population generation, the execution time of GArank&rand was
significantly reduced. [2].

Al-Batah et al. applied the Correlation-based Feature Selection (CFS) algorithm to the
feature selection process to reduce the dimensionality of data and find a set of discriminatory
genes. Then, the Decision Table, JRip, and OneR were employed for the classification process.
They indicated that the feature selection by CFS improves not only the efficiency, but also the
accuracy of the classification process. However, the number of selected genes using CFS had
much more features within the data set as a final feature subset [4].

Sadeghian et al. first, proposed the Information Gain Binary Butterfly Optimization
Algorithm (IG-bBOA) to circumvent the S-bBOA constraints. In addition to improving
classification accuracy, IG-bBOA maximized the mean of the mutual information between
features and class labels. Additionally, the three-stage process of the Ensemble Information
Theory-based Binary Butterfly Optimization Algorithm used IG-bBOA to decrease the num-
ber of selected features (EIT-bBOA). The first phase employs the Minimal Redundancy-
Maximum New Classification Information (MRMNCI) feature selection technique to remove
80% of unnecessary and redundant features. In the subsequent phase, IG-bBOA is used to
select the best subset of features. Utilizing a ranking system based on similarity, the ultimate
feature subset is selected. [43].

Brankovic et al. introduced a novel feature selection approach, which employs the distance
correlation (dCor) as a criterion for evaluating the dependence of the class on a given feature
subset (D2CORFS). The dCorindex provides a reliable dependence measure among random
vectors of arbitrary dimension, without any assumption on their distribution. The dCorindex
appears to be a particularly robust criterion with respect to overfitting and redundancy issues,
which are common with multivariate filter methods. The distributed combinatorial optimiza-
tion scheme was used to handle the severe asymmetry of microarray datasets by dividing the
feature set into several feature bins and running independently the FS algorithm on each of
them [12].

The mutual information and three-dimensional mutual information (TDMI) between the
features and the class label are the foundation of many feature selection algorithms. The
performance of feature selection can be affected because these algorithms do not take TDMI
into account when considering features. Xiangyuan et al. suggested researching feature
selection based on TDMI among features in the light of the issue. The joint mutual information
between the class label and feature set is used to describe relevance in accordance with the
maximal relevance minimal redundancy criterion, and mutual information between feature sets
is utilized to describe redundancy. The mutual information between feature sets as well as that
between the class label and feature set is then separated. TDMI, among other features, is taken
into account during the decomposition process in order to produce an objective function.
Lastly, a feature selection algorithm based on conditional mutual information for maximal
relevance with minimal redundancy (CMI-MRMR) was proposed. [23]. A novel relevancy-
redundancy measurement based on distance is presented by Hallajian et al. They use an
unsupervised method and the mRMR criteria concept. In addition, a supervised approach in
which the features are ranked according to the separation between each pair of samples in
various feature vector classes. To select the most pertinent feature subset, an ensemble of the
suggested supervised and unsupervised methods was used. The effectiveness of the suggested
feature selection methods was examined, investigated, and compared using the effects of 24
distance measures drawn from five major families of distance functions. The highest-ranked
characteristics are chosen based on an empirically determined criterion. Three classifiers,
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Decision Tree, Support Vector Machine, and Naive Bayes, were used on biomedical datasets
representing binary issues from the UCI data repository to assess the selected features. [25].
Thejas et al. proposed a hybrid approach with two distinguished stages, namely feature ranking
and feature selection. The proposed method was independent of any number of class labels and
used Random Forest as a classifier. The main idea in the feature ranking stage was to cluster
the features using mini-batch k-means, which performed clustering by using a batch of data.
Each cluster was scored in [0, 1] using Normalized Mutual Information (NMI). The higher the
score is, the better the candidate feature is for classification. The feature ranking list was
constructed through calculating cluster scores separately for all features. The features were
sorted and the ranking list was created. The feature selection stage comprised two approaches:
Feature Inclusion and Least Ranked Feature Exclusion. The Feature Inclusion exploited a
process called Mini Batch k-means Normalized Mutual Information Feature Inclusion (KNFI).
Likewise, the Least Ranked Feature Exclusion used a process called Mini-Batch k-means
Normalized Mutual Information least ranked Feature Exclusion (KNFE). KNFE achieved
better results when there was little relationship among features, whereas KNFI had acceptable
results in the majority of the data sets. There were no evidence that their proposed method
could be applied to high dimensional data sets [49]. Table 1 illustrates the existing works in
Tabular format.

Unlike WOA-MC [34], Xvariance [8], and D-PSO Scaled [29], which calculated the final
feature subset manually (with a pre-defined threshold), this paper proposes a hybrid filter
method that automatically selects the optimal feature subset. Although the feature selection
methods proposed by D-PSO Scaled [29] and KNFI-KNFE [49] had acceptable results, the
applicability of the methods decreases when the number of features is considerably high (the
number of features is greater than the number of samples). This paper investigates feature
selection in high dimensional medical datasets with any number of class labels. The majority
of works in Table 1 have moderate (MODE-CFS [26], PSO(4–2) [50], DHSTNet [6], NMA-
CFS [46], Dynamic Medoid PSO [28], D-PSO Scaled [29], Xvariance [8], WOA-MC [34],
IG-bBOA [43],) or high selected subset length at least in some datasets (MPSONC [39],
MHBPSO1 [24], CDGAFS [42],ATFS [1], GArank&rand [2], CFS [4], CMI-MRMR [23],
MRmMC [25], KNFI-KNFE [49]) The subset length calculated in this research is considerably
less than existing works.

The data are, first, clustered using k-means, complete link, and equal width discretization to
generate different clustering within an unsupervised approach. Next, the number of clusters of
each feature is found by Normalize Mutual Information (NMI) based on the labels; then, the
maximum amount of calculation is selected for each feature. Finally, the optimal set of features
is selected automatically through Incremental Association Markov Blanket feature selection
(IAMB).

3 Preliminaries

Considering that our method applies three clustering methods namely, Ward method,
k-means, Equal Width Discretization, and subsequently NMI, we discuss these con-
cepts below.

The objective of the Ward method, also known as Minimum Variance Method
(MVM), is to reduce the sum of squared errors among individual clusters. It measures
the distance among the cluster pair in two ways. First, it estimates the distance between
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two individual clusters (xi, xj) with single data object based on the Squared Euclidean
and is defined as expressed in Eq. (1):

d xi;k ; x j
� � ¼ xi−x j

�� ��2 ð1Þ
Second, it calculates the distance between merged cluster (xi ∪ xj) and new cluster xk based on
the lance-William method and is defined as follows:

d xi;k ; x j
� � ¼ Ni þ Nk

Ni þ N j þ Nk
d xi; xkð Þ þ N j þ Nk

Ni þ N j þ Nk
d x j; xk
� �

−
Nk

Ni þ N j þ Nk
d xi; x j
� �� �

ð2Þ
where xi, j denotes the newly-merged cluster, and Ni, Nj and Nk represent the size of the ith, jth

and kth clusters, respectively [47].
Agglomerative hierarchical methods include, but are not limited to, Ward’s Link,

Average Link, Complete Link, or Single Link. In this work, we focus on the Ward’s
Link. For more information on clustering algorithms, we recommend Chapter 14 of
Rencher’s Multivariate Analysis reference. The Ward’s clustering algorithm optimizes
the “within sum of squares” (WSS) for each cluster, which is estimated for each pairwise
combination of clusters, and the merging of clusters that provide the smallest contribution
to the WSS measure is implemented. The Ward method is robust against outliers and
provides even clusters across the data set, making it a reliable algorithm for exploratory
work such as the study in [20].

The k-means algorithm is a simple iterative clustering algorithm. Using the distance
(typically the Euclidean distance) as the metric and given the K number of clusters, the k-
means algorithm calculates the centroids and specifies the cluster members. Assuming an
arbitrary dataset with n multi-dimensional data points, K predefined number of clusters, and
the Euclidean distance as the similarity index, k-means attempts to minimize the within-cluster
sum of squares using Eq. (3) [56]:

d ¼ ∑
k

k¼1
∑
n

i¼1
xi−ukð Þk k2 ð3Þ

where uk represents the kth center, and xi represents the ith point in the data set. The solution to
the centroid uk is as expressed in Eq. (4):

∂
∂uk

¼ ∂
∂uk

∑
k

k¼1
∑
n

i¼1
xi−ukð Þ2 ¼ ∑

k

k¼1
∑
n

i¼1

∂
∂uk

xi−ukð Þ2 ¼ ∑
n

i¼1
2 xi−ukð Þ ð4Þ

If Eq. (3) is zero, then uk ¼ 1
n ∑

n

i¼1
xi.

The basic idea of the k-means algorithm is to randomly extract K data points from the
sample set containing n multi-dimensional data points as the centroids of the initial
clusters. The distance of the rest of the samples (data points) within a dataset are calculated
with respect to the centroids, and the cluster members are specified. The new centroids are
derived from existing clusters and the members of each cluster are updated. The k-means
algorithm repeats the process until the centroids of the clusters remain unchanged. The
result of the k-means algorithm directly depends on the initial centroids [37].

42626 Multimedia Tools and Applications (2023) 82:42617–42639



Algorithm 1. Equal Width Discretization algorithm.

The mutual information (MI) is used to assess how arbitrary random variables are depen-
dent. MI returns 1 for maximum dependency between two random variables of X and Y. On
the contrary, MI = 0 shows the two random variables are completely independent. Let x ∈ X
and y ∈ Y be two random variables, P (x, y ) be the joint probability density function of X and
Y, and P (x) and P (y ) be the corresponding marginal probability density functions, then the
mutual information X and Y can be expressed as follows in Eq. (5) [44].

MI X ; Yð Þ ¼ ∑
x∈X

∑
y∈Y

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ ð5Þ

Using Eq. (1) and entropy H(X) = − ∑x ∈ Xp(x)logP(x), the Normalized Mutual Information
(NMI) is calculated using Eq. (6) as follows.

NMI X ; Yð Þ ¼ MI x; Yð Þ
min H Xð Þ;H Yð Þf g ð6Þ

In statistics, the quantile function plays a crucial role in prescribing the probability distribu-
tions. It is indispensable in determining the location and spread of any given distribution,
especially the median that is resistant to extreme values or outliers. The quantile function is
used extensively in the simulation of non-uniform random variables and details of the use of
the quantile function in modeling, statistical, reliability, and survival analysis can be found in
[36]. A quantile defines a particular part of a data set; it determines how many values in a
distribution are above or below a certain limit. Special quantiles are the quartile (quarter), the
quintile (fifth), and the percentiles (hundredth).

The probability density function of the chi-square distribution and the cumulative distribu-
tion function are given by Eqs. (7) and (8).

f xð Þ ¼ 1

2
k
2Γ

k
2

� � x
k
2−1e

x
2 ; k > 0; x∈ 0;þ∞½ � ð7Þ

F x; kð Þ ¼
γ

k
2
;
x
2

� �

Γ
k
2

� � ¼ P
k
2
;
x
2

� �
ð8Þ

where γ (., .) = incomplete gamma function and P(., .) = regularized gamma function.
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The quantile (Q) approach was used to obtain the second order nonlinear differential eq. Q
is applied to distributions whose Cumulative Distribution Function (CDF) is monotonously
increasing and absolutely continuous. The Chi-square distribution is one of such distributions,
which is expressed in Eq. (9):

Q pð Þ ¼ F−1 pð Þ ð9Þ
where the function F−1(p) is the composition inverse of the CDF. Suppose the Probability
Density Function (PDF) f(x) is known and the differentiation exists. The first-order quantile
equation is obtained from the differentiation of Eq. (9) to obtain Eq. (10):

Q
0
pð Þ ¼ 1

F
0
F−1 pð Þ� � ¼ 1

f Q pð Þð Þ ð10Þ

Maximum Relevance and Minimum Redundancy (MRMR) is an efficient variable selection
method with confirmed successful results on biological datasets. MRMR finds the most
informative features based on the correlation with class label with minimum redundancy
among features. In other words, in the MRMR method, each feature is ranked based on not
only its relevance to the target variable, but also its redundancy in the feature set [3].

Assuming fi is the ith feature and the class label is c, the Maximum-Relevance method
selects the top m features relevant to the class label in Eq. (11).

maxs
1

sj j ∑ f i∈SI f i; cð Þ ð11Þ

To eliminate the redundancy among features, a Minimum-Redundancy criterion was defined
in Eq. (12).

minS
1

sj j ∑ f i; f j∈SI f i; f j

	 

ð12Þ

A sequential incremental algorithm was used to solve the simultaneous optimizations of Eqs.
(7) and (5) in Eq. (9). Assuming G is the set of all features and Sm-1 number of features are
already selected, then the task is to select the mth feature from the G − (Sm-1 ) so that it could
maximize the single-variable relevance subtracted from the redundancy function in Eq. (13).

max f i∈G−Sm−1

 
I f i; cð Þ− 1

m−1
∑ f i∈Sm−1 I f i; f j

	 
!
ð13Þ

4 Proposed method

The general steps of the method (BC-NMIQ-IAMB) proposed in the current paper are shown
in Fig. 1. In this method, first, the diversity of clustering is generated (using Equal Width
Discretization, k-means, and Ward Link) for each feature of dataset D. Then, the Best
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Clustering (BC) for each feature is selected with normalized mutual information with respect
to class labels (L). Next, the features are ranked based on the concept of MRMR and the initial
best features are selected using a predefined threshold that is the square root of the number of

Fig. 1 Flowchart of feature gene selection and classification prediction

Table 2 Notations used in the pa-
per and their descriptions Symbol Description

F Set of initial features
L Class labels
M Total number of original features
Fi Each feature
ESS The Euclidean Sum of Squares
Ep Euclidean Sum of Squares a Cluster p
μpj Mean of Variable j for Cluster p
wj Optional Differential Weight for Variable j
Ip⋃q The union of two clusters p and q
cj Cluster Center

x jð Þ
i

Among Data Point

k The number of Clusters
S Feature Subset
Cri Best Clustering
IS Instance Set
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features. Finally, the proposed BC-NMIQ is improved with IAMB. The measurement criteria
were applied to BC-NMIQ-IAMB as the main proposed method and also to BC-NMIQ as the
subsidiary proposed method. Table 2 shows the notations used in the paper.

First, each feature of a dataset (Fi) is clustered using k-means, Ward Link, and Equal Width
Discretization cluster algorithm so that k could be equal to main cluster datasets to achieve
equal clusters for each feature (Fi). Then, the clustering with maximum NMI with respect to

the response variable (L) is selected for each Fi to construct C*
i . Therefore, Fi with continuous

feature values was changed to the corresponding clusters with discrete values with different

diversities in C*
i as shown in Fig. 2.

Algorithm 2, first, clusters the features based on k-means-Ward Linkage- Equal Width
Discretization and then selects the optimal clustering using NMI among all features.

Algorithm 2. Feature clustering.

Input: Dataset (D(n,m)) 

Output: Clustered Features 

F
        r=0 
       jmax=0

 // clustering is done using k-means, Ward Link, Equal Width Discretization 

// 

The Best Clustering (BC) for each feature is selected using Maximum NMI.

C*
i ¼ max NMI Cri; Lð Þf gp−1r¼1 i ¼ 1; 2;…:;m ð14Þ

Next, using the concept of normalized mutual information quantile (NMIQ), the most infor-
mative features are selected based on a filter approach in Algorithm 2, which uses an
incremental search method to find the optimal features. The normalized MI between fi and
fs, NMI(fi; fs) is calculated using Eq. (15).

Fig. 2 Converting continuous values to discrete values
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NMI f i; f sð Þ ¼ I f i; f sð Þ
min H f ið Þ;H f sð Þf g ð15Þ

In this paper, we propose to use the average normalizedMI as a measure of redundancy between
the ith feature and the subset of selected features S = {fs}, for s = 1, …, |S|, i. e. , in Eq. (16).

1

jSj ∑
f s∈S

NMI f i; f sð Þ ð16Þ

where ∣S∣ is the cardinality of set S. Equation (16) is a kind of correlation measure that is
symmetric and takes values in [0,1]. The value of 0 indicates that feature fi and the subset S of
the selected features are independent. The value of 1 indicates that feature fi is highly correlated
with all features in the subset S.

The selection criterion used in NMIFS selects the feature that maximizes the measure G in
Eq. (17).

G¼̇NMI C; f ið Þ− 1

Sj j ∑
f s∈S

NMI f i; f sð Þ: ð17Þ

The right-hand side of Eq. (17) is an adaptive redundancy penalization term, which corre-
sponds to the average normalized MI between the candidate feature and the set of selected
features [21].

The selection criterion used in NMI selects the feature that maximizes the measure. The
complete NMI algorithm is in Algorithm 3.

Algorithm 3. BC-NMIQ.

Algorithm 3 shows how the feature subset (S) is incrementally selected using the BC-
NMIQ algorithm. Finally, the Incremental Association Markov Blanket Feature Selection
(IAMB) uses the subset of features (S) calculated from Algorithm 3 as an input to generate
the final feature subset automatically in Algorithm 4.

42631Multimedia Tools and Applications (2023) 82:42617–42639



Algorithm 4. BC-NMIQ-IAMB

Assuming the dataset with n instances and m features, Algorithms 2, 3, and 4 have the time

complexity of O n
3
2 � logn� m

	 

, O(m

3
2 � nlognÞ, and O(m2), respectively.

5 Experimental results

In this work, the hybrid filter method was used to increase the accuracy of the machine
learning model. Ten benchmark medical datasets (including binary and multi-labeled) were
used to evaluate the proposed method. The evaluations are in terms of the number of selected
features and the classification accuracy. Prior to introducing the datasets in Section 5.2, the
classifiers used to calculate the measurement criteria are described in Section 5.1. Finally, the
implementation results and the comparative results are given in Section 5.3.

5.1 Experimental setup

The experiments in this study were carried out using a standard PC with Intel Core i5, CPU
2.7 GHz, and GeForce GTX 1080 GPU, with 8 GB memory. All the experiments were
performed in MATLAB using the MATLAB–R2018 libraries.

In this paper, the performance evaluation was done by randomly partitioning the original
datasets into training and test sets using stratified 10-fold cross validation. The system was
tuned in the validation phase so that the hyper parameters, including the depth of the decision
tree, the number of trees in random forest, distance in the ward linkage, and the value of k in
KNN could be cross validated for each dataset. Cross validation prevents the model from being
too complex for possible over-fitting or too simple for possible under-fitting.

Decision tree (DT) The family of decision tree algorithms is generally classified by creating a
tree-like pattern in a descending way. The leaves of the decision tree correspond to the
classifications. DT deals with both numerical and symbolic data.
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Random Forest (RF) RF is an ensemble technique in multiple decision trees that uses majority
voting. This technique has wide applicability to pattern recognition for high-dimensional and
complex problems. RF tries to decrease the high variance of decision trees.

K-nearest neighbors (KNN) KNN is one of the machine learning algorithms that has accept-
able classification performance when data are not easily separable. KNN scans through all past
experiences and looks for the K closest experiences (data points), which are called the K
nearest neighbors.

5.2 Experimental data

In this research, ten medical benchmark datasets were used to investigate the proposed method
(BC-NMIQ-IAMBFS), as presented in Table 1. The information in Table 3 includes the
number of genes, number of instances, and number of class labels. The total number of genes
ranges from 2000 to 15,154.

When analyzing the performance of the partitional approaches, the information presented in
Table 2 shows that k-means and Ward Linkage have outperformed the Equal Width
Discretization algorithm, and the performance of Equal Width Discretization, especially in

Table 3 The public gene expression datasets with dataset names, number of samples (N), number of genes (M),
number of classes C, and distribution of samples within the classes (Dist. Classes)

datasets N M C Dist. Classes

Ovarian [55] 253 15,154 2 162 Cancers, 91 Normal
CNS [15] 60 7129 2 21Y, 39 N
Colon [53] 62 2000 2 40 Cancers, 22 Normal
Leukemia2c [15] 72 7129 2 47 ALL, 25 AML
Leukemia3c [15] 72 7129 3 38 B Cell, 9 T Cell, 25 AML
Leukemia4c [15] 72 7129 4 38 B Cell, 9 T Cell, 21 BM, 4 PB
Lung [18] 203 12,533 5 139 AD, 17 NL, 6 SCLC, 21 SD, 20 COID
Lymphoma [55] 66 4026 3 46 DLBCL, 9 FL, 11 CLL
MLL [18] 72 12,582 3 24 ALL, 20 MLL, 28 AML
SRBCT [53] 83 2308 4 29 EWS, 11 BL, 18 NB, 25 RMS

Table 4 Comparison of the clustering accuracies achieved by the three methods on 10 datasets using three
classifiers

Dataset Equal Width Discretization k-means Ward Linkage

DT KNN RF DT KNN RF DT KNN RF

Ovarian 0.9529 0.8586 0.9627 0.9731 0.8641 0.9742 0.9615 0.8815 0.9870
CNS 0.6111 0.5682 0.6568 0.6223 0.6200 0.6576 0.5777 0.6367 0.6514
Leukemia_2c 0.8471 0.7581 0.8445 0.8431 0.8115 0.8994 0.8318 0.8434 0.9319
Colon 0.7196 0.7283 0.7794 0.7188 0.7523 0.8249 0.6881 0.7120 0.7630
Leukemia_3c 0.7790 0.7938 0.8750 0.9330 0.8394 0.9219 0.9081 0.8347 0.9552
MLL 0.8670 0.8722 0.9563 0.8927 0.8441 0.9164 0.8839 0.8689 0.9559
Lymphoma 0.8710 0.9863 0.9520 0.8757 0.9829 0.9580 0.8757 0.9668 0.9277
Leukemia_4c 0.8377 0.8172 0.8516 0.9063 0.8357 0.8777 0.9044 0.8731 0.8800
SRBCT 0.8670 0.8567 0.9696 0.8658 0.8360 0.9738 0.8885 0.8106 0.9795
Lung 0.9228 0.9441 0.9588 0.9227 0.9274 0.9376 0.9365 0.9312 0.9457
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Table 6 Comparison with four state-of-the-art methods

Dataset CFS [4] D2CORFS [12] MC [34] WOA-MC
[34]

BC-NMIQ-IAMB

No. of
genes
selected

acc No. of
genes
selected

acc No. of
genes
selected

acc No. of
genes
selected

acc No. of
genes
selected

acc

Ovarian 35 0.97 3 1.00 10 0.94 10 0.97 3 1.00
CNS 39 0.73 8 0.82 10 0.70 10 0.72 4 0.89
Colon 26 0.83 6 0.87 10 0.75 10 0.74 3 0.83
Leukemia2c 79 0.87 2 0.97 10 0.91 10 0.96 2 0.96
Average 44.75 0.85 4.75 0.915 10 0.83 10 0.85 3 0.92
Leukemia3c 104 0.84 4 0.89 NA NA NA NA 2 0.97
Leukemia4c 119 0.81 3 0.88 2 0.97
Lung 548 0.87 4 0.99 2 0.95
Lymphoma 175 0.86 4 0.92 2 0.97
MLL 142 0.87 3 0.87 2 0.90
SRBCT 112 0.74 3 0.87 2 0.89
Average 200 0.83 3.5 0.9033 2 0.94

Fig. 3 ROC curve of binary datasets applying the DT classifier to BC-NMIQ-IAMB
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terms of the external validation, may remarkably deteriorate in some datasets (e.g., CNS and
Colon). Table 4 shows that k-means with DT has competitively the best accuracy on the
average. Table 5 shows that BC-NMIQ-IAMB achieves the highest average accuracies with
less number of selected features than those of BC-NMIQ and BC (recalling that BC uses the
entire set of features). Table 6 compares BC-NMIQ-IAMB with four existing approaches, the
most accurate of which is the method we suggest.

Figure 3 shows the Receiver Operating Characteristics (ROC) curve of binary datasets,
which is one of the major metrics used to check the performance of classification models. In
other words, the ROC curve demonstrates to what extent the classification model is able to
distinguish between classes. The ROC curve with greater Area Under Curve (AUC) shows a
better separability of classes. The optimal situation is when AUC equals 1. The ROC curves in
Fig. 4 are based on the DT classifier. The ROC curve is plotted with True Positive Rate (TPR)
or recall in y-axis (Recall ¼ TP

FNþTP) and False Positive Rate (FPR) in x-axis (FPR ¼ FP
TNþFP).

(The blue curve indicates cancer genes, and the red curve shows normal genes).
The overall goal of this paper is to select a smaller number of genes and achieve similar or

better classification accuracy than using all genes. The tests of the proposed BC-NMIQ-IAMB
on ten datasets using random forest classifier shows that our algorithm is better than all other
compared algorithms in terms of the classification accuracy and dimension reduction. In
addition, with using different evaluation measures, the proposed algorithms are found highly
efficient offering better solutions than other algorithms considered in this paper, i.e., CFS [4],
MC, WOA-MC [34], and D2CORFS [12]. The lower accuracies of CFS and MC compared to
WOA-MC and BC-NMIQ-IAMB is predictable because CFS and MC are simple filter
methods (especially CFS in which the classification accuracy decreases when the number of
features exceeds in the dataset). On the other hand, D2CORFS achieves higher accuracy than
CFS, MC, and WOA-MC. The proposed hybrid method is successful in reaching the best
accuracy and finding the smallest subset of features, which is due to the high capability of BC-
NMIQ-IAMB to model the complex problem of high dimensional data. All in all, BC-NMIQ-
IAMB increases the average accuracy of similar algorithms in this domain on binary and
multi-class datasets so that this increase is considerable in comparison with CFS (in both
binary and multi-class datasets) as well as MC and WOA-MC (in binary datasets).

6 Conclusion

This paper proposes a feature selection approach, i.e., the hybrid BC-NMIQ-IAMB method
comprising two filter methods, namely BC-NMIQ and IAMB, to find the most informative
genes for the cancer classification and diagnosis. The main objective of the proposed approach
is to find the smallest subset of biomarkers, which can signify the disease efficiently. The
contribution of the proposed method is that it can effectively model the interactions in complex
systems and is applicable to the problem of feature selection on high dimensional data. The
proposed approach is evaluated on 10 popular microarray datasets and compared with some of
the most recent approaches. The experimental results obtained on different datasets shows that
despite the selection of a minimal subset of features, the selected genes have high influence on
separating different classes. The results of the experiments demonstrate that the proposed
approach achieved a high accuracy rate even with 2 or 4 highly-informative genes. There is
also much work to be done in the future, for example, investigating how to improve the
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efficiency of algorithms; how to combine the findings of this paper with some of the current,
advanced feature selection algorithms such as semi-supervised manifold learning methods and
sparse classification algorithms; and/or how to apply the proposed algorithms to automatically
determining the number of clusters and feature clustering with incorporating the clinical
biological information.
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from the corresponding author on reasonable request.
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