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Abstract
Cracks are one of the forms of damage to concrete structures that debase the strength and
durability of the building material and may pose a danger to the living being associated
with it. Proper and regular diagnosis of concrete cracks is therefore necessary. Nowadays,
for the more accurate identification and classification of cracks, various automated crack
detection techniques are employed over a manual human inspection. Convolution Neural
Network (CNN) has shown excellent performance in image processing. Thus, it is
becoming the mainstream choice to replace the manual crack classification techniques,
but this technique requires huge labeled data for training. Transfer learning is a strategy
that tackles this issue by using pre-trained models. This work first time strives to classify
concrete surface cracks by re-training of six pre-trained deep CNN models such as VGG-
16, DenseNet-121, Inception-v3, ResNet-50, Xception, and InceptionResNet-v2 using
transfer learning and comparing them with different metrics, such as Accuracy, Precision,
Recall, F1-Score, Cohen Kappa, ROC AUC, and Error Rate in order to find the model
with the best suitability. A dataset from two separate sources is considered for the re-
training of pre-trained models, for the classification of cracks on concrete surfaces.
Initially, the selective crack and non-crack images of the Mendeley dataset are consid-
ered, and later, a new dataset is used. As a result, the re-trained classifier of CNN models
provides a consistent performance with an accuracy range of 0.95 to 0.99 on the first
dataset and 0.85 to 0.98 on the new dataset. The results show that these CNN variants can
produce the best outcome when finding cracks in the real situation and have strong
generalization capabilities.

https://doi.org/10.1007/s11042-023-15136-z

* Prashant Kumar
prashant.mnnit10@gmail.com

1 CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031, India
2 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
3 CSIR - National Aerospace Laboratories, Bengaluru, Karnataka 560017, India

Multimedia Tools and Applications (2023) 82:38249–38274

Received: 24 May 2021 /Revised: 3 November 2022 /Accepted: 13 March 2023 /

# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023
Published online: 23 March 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15136-z&domain=pdf
http://orcid.org/0000-0002-7902-8924
mailto:prashant.mnnit10@gmail.com


Keywords Convolutionneuralnetworkmodel .Transfer learning . Imagepre-processing .Global
standardization .Clippingandrescalingpixelvalues .Confusionmatrix .VGG-16 . Inception-v3 .

ResNet-50 . DenseNet-121 . Xception . InceptionResNet-v2

1 Introduction

In today’s world, concrete is the most frequently used human-madematerial for the construction of
various smart city structures, such as buildings, bridges, dams, highways, nuclear facilities, and
many more. It is ubiquitous because it has some positive characteristics, such as strength,
durability, and a long-life cycle. Most living beings are somehow surrounded and dependent on
concrete in order to ensure their protection and a substantial loss of property, the health of concrete
structures should bemonitored after a certain period of time. Concrete is known for its stability, but
the cumulative impact of aging, the climate, human activities, and heavy loads have contributed to
a degradation of concrete strength [15]. The concrete damages can be seen in the form of cracks
and spalling. Little ignorance of these concrete damages can cause degradation in the quality of the
infrastructure which can lead to significant damage to lives and economic losses. Even the slight
findings of cracks on concrete are a major concern, indicating the early signs of infrastructure
failure. Therefore, there is an urgent need for crack monitoring and detection by civil engineers.

The conventional approach for detecting concrete damage is to carry out a human exam-
ination by manually inspecting the presence of any damage with their naked eyes. Although,
with this traditional approach, there are more chances of carelessness, which could lead to
major losses. Automatic damage detection has now gained popularity through the use of
Artificial Intelligence-based Machine Learning and Deep learning algorithms, which can
detect even small defects with less Error Rate, minimizing time and cost consumption. In
recent years, a variety of vision-based methods have been proposed for the concrete crack
detection through Grey-Scale Histogram, Fuzzy C-Means Clustering, Cascade Features, V-
Shaped Features, Spatial Tuned-Robust Multi-Feature (STRUM), and Spectral Analysis. Deep
Convolutional Neural Networks (CNN) have recently been developed for the classification
and detection of objects in Computer Vision [42]. In this research, CNN models based on
transfer learning are developed to classifying the concrete surface cracks in two classes called
crack and non-crack. The main contribution to the paper is as follows:

& Dataset Formation: All the CNN models are trained and validated separately on the
standard dataset (Mendeley dataset) and the new dataset. Apart from the standard dataset, a
new dataset is created by capturing images of various types of crack and non-crack areas
on different campus buildings in CSIR-CEERI, Pilani. All of these datasets include various
types of defects (Horizontal Cracks, Vertical Cracks, Diagonal Cracks, Shadows, Surface
Roughness, Scaling, and Edges) on a concrete surface that helps to distinguish.

& Image Pre-processing: All images of both datasets before introducing them to the CNN
models are pre-processed by standardization and rescaling of values in the ranges of 0 and
1. This reduces training time, promotes the convergence of optimization algorithms, and
takes care of other modeling difficulties.

& CNNModels: This research refers to 6 deep CNN models such as VGG-16, Inception-v3,
ResNet-50, Xception, InceptionResnet-v2, and DenseNet-121 with a transfer learning
technique for crack classification of two distinct types of datasets. The classifier section
of all 12 models (6*2) is modified to satisfy our problem requirements. Also, in the
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classifier section, at least one Dense Layer is sandwiched so that a sufficient number of
classifier parameters are available for learning features during training.

& Tuning of Models: During training, each model is validated on 20% images of the
training set and after training, the history of the model is plotted to verify the correctness
of the training. The hyperparameters of the model are tuned accordingly. This practice is
followed with all models until the best curve fitting is achieved. Each model is executed at
least 10–15 times in this way.

& Metrics Calculation: Apart from the accuracy that may be deceptive in evaluating the
performance of the trained models, 6 other performance metrics, such as Precision, Recall,
F1-Score, Cohen Kappa, ROC AUC, and Error Rate are measured on both datasets.

The structure for the paper is as follows. Section 2 offers a Literature Analysis of papers
written in recent years. Shortly after a brief overview of the CNN models, is used for damage
classification is given. Section 4 briefly outlines the methodology, including experimental set-
up, dataset formation, pre-processing, and training & testing. Section 5 provides a thorough
review of the results; Section 6 is for the conclusion.

2 Literature review

Over the last few years, progress has been made in the analysis and research work of the Structural
Health Monitoring System to advance the processing and segmentation of concrete images based on
Machine Learning. In the paper [10], the author proposed a model to detect various types of concrete
damage and to classify them into five different groups, namely: longitudinal crack (LC), transverse
crack (TC), diagonal crack (DC), spall damage (SD), and intact wall (IW). Steerable filters and
projection integrals are used for image processing tasks to extract features from images along with
machine learning algorithms; support vector machine (SVM) and least square support vector machine
(LSSVM) to analyze and classify images into one of the five class labels. A satisfactory result with a
classification accuracy of 85.33% has been achieved, which demonstrates that the combination of
image processing and machine learning algorithms can achieve good accuracy. In the paper [8], the
authors proposed a model for the identification of various cracks and the assessment of crack density
using a deep, fully convolutional network (FCN). Three separate CNN models, i.e. VGG-16,
Inception, and ResNet are employed for image classification, and their performance is compared,
with VGG16 performing better than Inception-v3 and ResNet. The segmentation method, which
achieved an approximate accuracy of 90%, was also used to classify cracks more precisely. The
method of variation of pixel density ratio was used to measure crack density. In the paper [11], the
authors proposed a model for detecting and segmenting crack and leakage defects that are typically
located in the inner lining of the tunnel using FCN. In order to segment the defect images, two-stream
algorithms are used to implement the corresponding FCNmodels, i.e. one stream is used to recognize
crack by sliding-window-assembling process, and the other stream is adopted for the leakage by the
resizing-interpolation operation. A deep learning algorithmwas used in the paper [15] to detect cracks,
and image processing techniques were used to analyze crack length and width. Crack segmentation
was conducted using 2DCNNaccompanied by the use of thinning, tracking, and profiling algorithms
for crack characteristics. In the paper [18], the author proposed an AI-based approach for detecting
low-level steel defects using the CNN algorithm. Different case studies have been performed and
compared with each other. In the end, the proposed model was the one with the highest accuracy of
about 95%. This paper [7] shows a comparative study of the six standard edge detection techniques
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and the deep learning-based DCNN approaches used to detect concrete defects. The study shows that
AlexNet DCNN used is much better than edge detection methods in many ways such as DCNN
computational time is almost half as compared to the edge detection system, DCNN can be trained
with awide dataset that will help to improve the accuracy of themodel, DCNN can detect finer cracks
as narrow as 0.04mm to 0.08mm.On the other hand, edge detectionmethods are useful for detecting
cracks greater than 0.1. These results demonstrate the importance of the adaptation of the DCNN
system to edgedetectionmethods. In addition, in order tominimize residual noise, the hybrid approach
was proposed by integrating both edge detection methods and DCNN, which would result in a
reduction in noise with a factor of 24. In the paper [33], horizontal and vertical cracks are detected
using a statistical learning system, the whole process is divided into two phases, one of which is the
training process and the other is the image detection process. The training process is completed by
applying one of the Meta-algorithms, the Adaboost Learning Algorithm. Detected cracks are marked
by red boxes. In the paper [9], VGG-16 was proposedwith transfer learning to improve the efficiency
of themodel. In the paper [3], the author suggested amodel usingMaskR-CNNand image processing
techniques. The validation of the trained model was carried out on 30 images, which were collected
using drones, imaging cars, and road scanning cars. A total of 74 cracks were observed, of which 71
cracks are correctly identified by Mask R-CNN, and nine cracks are falsely detected, resulting in an
accuracy of 88.7% and 95.5% of Recall. In the paper [40], the author proposed a method for dealing
with the “All Black” problem, inwhich all the pixels of the imagewere considered as background and
result in a significant loss. Crack-Patch-Only (CPO) supervision and generative adversarial learning
have therefore been implemented to address the same problem. Semantic segmentation was intro-
duced in the paper [41], in its entirety to the Fully Convolutional Networks. FCNN was proposed in
this paper on the basis of dilated convolution for concrete crack detection over conventional
segmentation algorithms, keeping in mind the lack of information when doing downsampling. At
the encoding point, Resnet-18 was used as a simple network to extract features from the input image
along with dilated convolutions at different dilation speeds. At the decoding stage, up-sampling is
performed using deconvolutions until the size has become the same as the input image. The SoftMax
function was then used to classify the up-sampling feature maps. The proposed model performance
was then compared with three different DCNNmodels: FCN-Resnet-50, FCN-Resnet-18, and FCN-
VGG, out of which the performance of the proposed model proved to be the most successful. In the
paper [42], the author proposed a method for the identification of different types of defects using
vision-based techniques. A CNN variant, Inception-v3 was used to train the model and then tested,
which resulted in a test set accuracy of 97.8%. In the paper [1], a multifractal study of the features was
carried out to identify variations in crack complexity. The level of crack damage was detected with an
accuracy of 89.3%. In the paper [5], VGG16with transfer learning was applied to the dataset of 3500
images, training and the testing division maintained a ratio of 80–20. The accuracy of 92.27% has
been achieved. In the paper [12], pixel to pixel classification was performed using a deep
convolutional neural network (DCNN) technique. One of its variant VGGNet was used for training
purposes. The proposed model was compared to SVM and CNN with the best performance, with
92.8% accuracy and 92.7% F1-Score. The performance of both CNN with structured prediction and
FCN were evaluated in paper [13] to detect the presence of cracks on pavements and their level of
severity. Performance measurements parameters such as Precision, Recall and F1-Score for low,
medium, and high severity are determined for both models. In paper [14], one of CNN’s versions,
AlexNetwas trainedwith five different classes to detect cracks automatically. The proposedmodel has
been compared to other models and has been found to classify cracks more precisely. The proposed
modelwas tested on 40 imageswith an average Precision of 92.35%and an averageRecall of 89.28%
at pixel level and in real-time video with a Recall of 81% and a Precision of 88%. In the paper [34], a
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newmulti-layer EML-basedmodelwas proposed for both learning and classification purposes instead
of using other widely available crack detection techniques. This technique has shown a satisfactory
result with effective training and testing speed. In the paper [4], the author addressed the value of time
to time inspection of civil infrastructures such as bridges, tunnels, underground pipes and asphalt
pavements. Several recent computer vision-based techniques have been reviewed. Image analysis
methods for roof hole and wall crack detection have been used in paper [26]. SIFT and K-means
clustering algorithm were used for roof hole detection and wall crack detection, and wall crack
detection morphology, such as Dilation, Erosion, and Skeleton was applied. The CNN-based method
and the SURF-based method were used in paper [16], after producing CCRs. The main aim of the
paperwas to distinguish crack and non-crack objects that could bemisclassified as cracks usingCCRs.
The accuracy of theCNN-based approachwas found to bemore reliable and effective than the SURF-
based crack identification method. In paper [31], the author addresses the forms of crack on concrete
and the differentmethod used to identify them.Morphological operation and theKD-treewere used to
improve the image and to link the discontinuities present in the crack. Otsu’s method of thresholding
was used to identify cracks. The ANN algorithm was used in paper [19] to train and evaluate the
model. Image processing was carried out using different filters and other morphological operations
accompanied by an image classification using a backpropagation neural network. The accuracy of the
crack image was 90% and the non-crack image was 92% with an overall accuracy of 90.25%. The
CNN model with Atrous Spatial Pyramid Pooling (ASPP) module was proposed in paper [37]. The
comparison of the proposed model was made with other versions of CNN, which resulted in the
highest accuracy of 96.37%. Moreover, the proposed model can capture multi-scale image informa-
tion at multiple sampling rates, taking the minimum computational time. One of the CNN variant
AlexNet was introduced in paper [17] with few variations in it. Comparison of training outcomes by
maintaining different base learning rates was made, and as a result, CNN obtained the highest
validation accuracy of 99.06% at the base learning rate of 0.01. In paper [27], crack classification
was performed by AE testing using AE parameters named RA and AF values. Classification of the
model was achieved by the Gaussian Mixture Model, and the clustered data was separated by the
SVM hyperplane. The combination of the two was used to classify various types of cracks. In paper
[22], the CNN variant VGG-16 was used to model the CAM (Class Activation Mapping) method to
locate the object. Followed by contrastwithResNet-50 and Inceptionmodels. In paper [32], the author
compared four different CNNmodels according to different parameters, such as from scratchwith and
without DA, pre-trained VGG-16 with DA and pre-trained DA and FT. The results showed that the
greatest accuracy of validation is the large pre-trained ConvNet with DA and FT. The genetic
algorithm was used in paper [24] to detect defects on concrete. Genetic algorithm model based on
genetic programming (GP) and percolation, not only has a high accuracy rate but also successfully
produces performances that avoids additional interference factors such as stain, block, water leakage,
etc. The threshold approach was used in paper [30] instead of the edge detection or machine
learning algorithm dependent methods. The threshold method was used because of its ability to
detect very thin cracks and gives a different colour to the crack that distinguishes it from the
background. The clustering and thresholding of the input image were accomplished by the
implementation of the geometric and contextual filters resulting in the output image in which
the cracks were mapped in red.

This study employs a transfer learning technique to classify crack (Horizontal Cracks,
Vertical Cracks, Diagonal Cracks, and Branch Cracks) and non-crack concrete surface images
using CNN models such as VGG-16, ResNet-50, DenseNet-121, Inception-v3, Xception, and
InceptionResNet-v2. Which are more sophisticated than typical image processing approaches
like edge detection, fuzzy c-means clustering, and grey-scale histogram. Furthermore, their use
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in crack classification with transfer learning is seldom seen in literature. In addition, the
performance of CNN models is evaluated on two datasets so that the adaptability of CNN
models for crack classification can be validated. The use of transfer learning allows the CNN
models to train easily, rapidly converge and show improved generalization capabilities.

3 CNN models

CNN is a type of Neural Network that has shown its potential in the field of image recognition
and classification. It is a multilayer model specially designed to identify the two-dimensional
image. Like a neural network it has an input layer, an output layer and hidden layers consisting
of several convolution layers with filters (Kernals), a non-linear activation layer (ReLu), a
Pooling layer, a fully connected layer (FC) followed by a SoftMax function to classify an
object with probabilistic values between 0 and 1.

The input can be in the form of an image, video, audio, or text with dimension, say
W*H*D, when passed through the kernels or filters of any size, say 3*3*D (with the same
depth as input) gives the output the size of W*H*N (where N is the number of filters). After
each conv layer, the non-linear activation layer must be used to add non-linearity to the system
since the associated functions are often usually non-linear. ReLUs are favored over other
activation functions as they minimize computational time by speeding up training resulting in
the improvement of the neural network. It has a simple calculation as it sets all the negative
elements to 0. The pooling layer is a building block of CNN that is non-linear and used for
downsampling to minimize image size and thus reduce computational and memory complex-
ity. Mostly the max pool function is used, followed by a fully connected layer, which is
connected to all the activation functions of the previous layers to define the final output
category. Top categories are picked using SoftMax or SVM and display the associated
probability. Here, the models of CNN are briefly described below. This research includes
Inception-v3, DenseNet-121, Resnet-50, VGG-16, Xception and InceptionResnet-v2 (Tables 1
and 2).

Table 1 CNN Models Classifier Configuration for Training on DB1

CNN Models Input
Size

Layers in
Classifier

Name of the Added Layers No of
Non-
Trainable
Parameters

No of
Trainable
Parameters

VGG-16 224*224 3 Flatten (25088), Dense (256), Dense (1) 14,714,688 6,423,041
DenseNet-121 224*224 5 Dense (1000), Activation (1000), Dense

(500), Activation (500), Dense (1)
7,037,504 1,526,001

Inception-v3 224*224 3 GlobalAveragePooling2D (2048), Dense
(1024), Dense (1)

21,802,784 2,099,201

ResNet-50 224*224 3 GlobalAveragePooling2D (2048), Dense
(256), Dense (1)

23,587,712 524,801

Xception 224*224 4 GlobalAveragePooling2D (2048),
Dropout (2048), Dense (256),
Dense (1)

20,861,480 524,801

InceptionResNet-v2 224*224 3 GlobalAveragePooling2D (1536), Dense
(1024), Dense (1)

54,336,736 1,574,913
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3.1 VGG-16

VGG16 [38] is a type of convolution network given by K. Simonyan and A. Zisserman. The model
obtains 92.7% test accuracy while being trained on the ImageNet dataset, which consists of over 14
million images of 1000 categories. It improves AlexNet by substituting large filters with several
small 3*3 filters. It has a total of 21 layers, 13 Convolutional Layers with 3*3 filters and stride is
fixed to 1 pixel. The 224*224RGB image is given as an input to this layer. 5Max Pooling Layers of
2*2 filters with stride 2 are also used with the same padding. The Convolution and Max Pooling
Layers arrangement is being followed across the entire architecture. At last, there are three fully
connected layers, followed by SoftMax. Out of these 21 layers, only 16 layers are weighted,
therefore named VGG16.

3.2 RESNET-50

ResNet [35] stands for ResidualNetworks,which serve as a foundation for solving a variety of computer
vision problems. Thismodelwon the first prize in ImageNet classification problem in 2015with an error
of 3.57% on the test data. It enables the training of a very deep neural network with 150+ layers without
the gradient disappearing. It is form of convolution neural network with five stages. Each stage has
different blocks; the convolution and identity block and each block comprise three layers of 1 × 1, 3 ×
3, 1 × 1 convolution. EachResNet architecture performs an initial convolution using a 7 × 7 size kernel
and a max-pooling using a 3 × 3 size kernel. 50 in ResNet-50 signifies 50 layers in the network.

3.3 XCEPTION

Xception [29] is an add-on to the inception architecture that adapts the depth-wise separable
convolutions instead of the traditional convolution. The depth-wise separable convolution is the
depth-wise convolution preceded by a point-wise convolution. TheXception architecture consists of
three blocks called entry flow, middle flow, and exit flow. It consists of 36 convolutional layers
which create a feature extraction base of the network, divided into 14 modules with linear residual
connections around them, except for the first and last modules.

Table 2 CNN Models Classifier Configuration for Training on DB2

CNN Models Input
Size

Layers in
Classifier

Name of the Added Layers No of Non-
Trainable Pa-
rameters

No of
Trainable
Parameters

VGG-16 224*224 4 Flatten (25088), Dense (256),
Dropout (256) Dense (1)

14,714,688 6,423,041

DenseNet-121 224*224 6 Dropout (1024), Dense (512),
Activation (512), Dense (256),
Activation (256), Dense (1)

7,037,504 656,385

Inception-v3 224*224 4 GlobalAveragePooling2D (2048),
Dropout (2048), Dense (1024),
Dense (1)

21,802,784 2,099,201

ResNet-50 224*224 4 GlobalAveragePooling2D (2048),
Dropout (2048), Dense (256),
Dense (1)

23,587,712 524,801

Xception 224*224 4 GlobalAveragePooling2D (2048),
Dropout (2048), Dense (256),
Dense (1)

20,861,480 524,801

InceptionResNet-v2 224*224 4 GlobalAveragePooling2D (1536),
Dropout (1536), Dense (256),
Dense (1)

54,336,736 393,729
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3.4 INCEPTION-V3

Inception-v3 [23, 36] is one of the CNN’s architectures that allows several enhancements over
earlier versions such as Inception-v2, which includes factorized 7*7 convolutions, label smoothing,
and batch normalization in auxiliary classifiers. The Inception-v3 network consists of 11modules of
inception. Each module consists of pooling layer and convolutional filters with RLUs as an
activation function. It consists of 42 convolutional layers using a stride of two convolutions instead
of max-pooling between layers.

3.5 INCEPTIONRESNET-V2

Inception and ResNet alloyed Inception-ResNet, which blends the two architectures to boost
the performance of both individuals. It is a mixture of the Inception structure and the Residual
connection with identical computational costs as the inception-v3. In a single block of
Inception-Resnet, the different dimensions of the convolutional filters are coupled with the
residual connections. Residual connection prevents the loss of gradient problems and de-
creases training time. It is 164 layers deep and can classify images in 1000 object categories.

3.6 DENSENET-121

DenseNet [25] stands for Densely Connected Convolutional Networks, which have come into
view due to its many advantages as it minimizes the core problem of gradient decay, makes
full use of the network by feature reuse, reduces the number of parameters and strengthens the
propagation of the features. Each layer in the Densenet is connected in a feed-forward way to
the next layer and has direct access to the gradient from the loss function to the input
image. 121 in DenseNet denotes the depth of the ImageNet models. Feature maps are
connected and serve as input for the next consecutive layer. It consists of four dense blocks
performing 1*1 and 3*3 convolution and pooling operations.

4 Methodology

The practice of this research consists of 5 main phases which comprise: 1) Transfer Learning
2) Database Formation 3) Image Pre-processing 4) Evaluation Metrics 5) Training and Testing
6) Result Analysis. Figure 1 shows that first of all CNN models are prepared by freezing the
Feature Extractor section and attaching the modified Classifier section so that cracks can be
classified. Images of the prepared datasets are pre-processed in the next step and 7 metrics are
measured during and after training. The results of the training and testing are finally analyzed.

4.1 Transfer learning

Because it is difficult to obtain a dataset of sufficient size, most people do not train the entire
convolutional network from scratch with random weights initialization. Instead, it is usual to
employ a pre-trained convolution network that has been trained on large datasets such as
ImageNet, and then reuse a convolutional network for another task, either as a starting point or
as a fixed feature extractor. In our scenario, a convolutional network is used with the Fixed
Feature Extractor mechanism. The Fixed Feature Extractor mechanism of transfer learning [21,
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28], considers a convolutional network trained on a large dataset such as ImageNet, and
removes the network’s top fully connected layer (classifier). It is used to generate 1000 class
scores. The remainder of the convolutional network, in the absence of a classifier, is regarded
as a Fixed Feature Extractor for the new dataset, i.e. the damages dataset. The improved
classifier is then linked to the Fixed Feature Extractor to generate the appropriate classification
result. Furthermore, throughout training, just the classifier portion is re-trained. Figure 1.
depicts the notion of Fixed Feature Extractor-based Transfer Learning in an appealing manner.

4.2 Database formation

To classify the multiple types of defects on a concrete surface using CNN models, we need to
train the model on the damage’s dataset. Here we are working on image processing, so the
required dataset is in the form of images. Several images with different forms of defect are
included in the dataset. In this research, we used two separate datasets to evaluate AI-based
crack classification algorithms. Primarily, the selective images of Mendeley Crack Dataset [20,
39] were used in this analysis. The original dataset stores RGB images (227*227) in JPG
format in their respective Positive (cracked) and Negative (non-cracked) directories. Each class
comprises half of a total of 40,000 images. The dataset generated by the method proposed by
Zhang et al. (2016) [39] consisted of 458 high-resolution images (4032*3024 pixel) of various
buildings located in the Middle East Technical University. All images are taken at a distance of
approximately 1 M from the target. A total of 5010 concrete surface images of the size of
227*227 pixels are considered for this test. Out of these images, 80% (3206 + 802 = 4008) of
the randomly selected images were used for the train and validate the CNN models. The
remaining 20% (1002) was used for the testing purposes. All images are pre-processed before

Fig. 1 Convolution Neural Network Architecture with Transfer Learning Technique

Table 3 Datasets Bifurcation for Training and Testing CNN Models

Database Training Validation Test Total

DB1 3206 802 1002 5010
DB2 1295 324 405 2024
Total 4501 1126 1407 7034
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being used for the training, validation, and testing. A detailed overview of Image Pre-
processing is given in the following section. In this article, it is referred to as DB1.

In the same way, another dataset of concrete surface images was constructed by capturing
the different forms of cracks and non-crack surface images of various CSIR-CEERI, Pilani,
laboratory buildings. The dataset includes various cracks types, such as Horizontal Cracks,
Vertical Cracks, Diagonal Cracks and Scaling. Total 2050 images of different walls are
captured and 2024 images of 480*480 pixels are selected from them. These images are then
further divided into “crack” (1000) and “non-crack” (1024) classes for the task of classifica-
tion. The bifurcation of the dataset for the training, validation and testing is shown in Table 3.
The 16-MP Canon (DSLR) camera with a focal length of 4 mm was used to capture images
without zooming. Images were stored in JPG format with an average file size of near 160 KB.
In this article, it is referred to as DB2/Our Dataset/New Dataset. The main characteristics of
our dataset are as follows:

& Surface images (crack & non-crack) of various buildings in CSIR-CEERI, Pilani, are
captured.

& The images are taken from 10 cm to 40 cm away from the surface. Distance is determined
by the Bosch Centimeter Tape.

& The camera was located parallel to the surface being captured.
& The width of 0.1 mm to 12 mm of different forms of surface cracks is considered. The

crack width is measured using Carbon Fiber Composites Digital Caliper.
& Granular surface images of cracks and non-cracks are also included.
& A total of five types (Vertical Cracks, Horizontal Cracks, Diagonal Cracks, Branch Cracks,

Scaling) of damage images are captured.
& Few surfaces are painted white or yellow.
& All the color images are clicked.
& All images are clicked in a similar light during the day.
& On few surfaces’ sunlight is incident.

The sample images of the two datasets are shown in Fig. 2. Moreover, before using the
images of both datasets for training, validation, and testing, they both have to go through the
Image Pre-processing phase. This is discussed in the following section.

4.3 Image pre-processing

The Images consist of an array of pixel values. Grayscale images are a 2D array of pixels,
while color images have different pixel values for each color channel, for example, blue, red,
green. The pixel values are generally unsigned integer and are between 0 and 255. While these
pixel values can be introduced straightforwardly to the neural network in their raw format, this
can bring about difficulties during modelling, for example, being slower than the predicted
model training. Instead, there could be extraordinary advantages in setting image pixel values
before the neural network is fed, for example, scaling, centering, and standardization of pixel
values. Figure 3 indicates the steps that are taken before the images with CNN models are
introduced:
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4.3.1 Image resizing

This is an important step in the field of Computer Vision. Primarily, the cost of computing can
be minimized and the training of machine learning models could be improved if the model is
trained on smaller images. Moreover, many machine learning models which require all images
in the training dataset to be of the same size, while the captured images may be of different
sizes. Image resizing is therefore required. In our case, all images are resized to 224 * 224
pixels.

4.3.2 Global standardization

In order to transform the distribution of pixel values to the Gaussian Distribution that is
centering the pixel value on zero and the normalizing pixel values by dividing them with the
Standard Deviation may benefit the training process. This distribution may be existing globally
or per channel. In the case of Global Standardization, the mean and standard deviation is
calculated across all color channels instead of a single channel. Standardization itself can fulfil
the requirements of the normalization and centering the pixel values. It produces zero centered
and small pixel values. For our case, global standardization per image is used for all training,
validation and testing images [2].

Fig. 2 Sample Images of Prepared Datasets (a: Selective Images of Mendeley Dataset; b: Our Dataset): (1)
Branch Crack (2) Horizontal Crack (3) Vertical Crack (4) Diagonal Crack (5) Intact Surface

Fig. 3 Image Pre-processing Steps
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4.3.3 Clipping and rescaling pixel values

The pixel values after Global Standardization may be positive and negative, roughly lies between −3
to 3,may vary according to the particulars of the dataset. Itmay be important to hold the pixel values in
the positive domain so that the images can be visualized and the selected activation function of the
machine learning algorithms can be facilitated. In our case, first of all, the output values of the Global
Standardization are clipped to the range [−1, 1] and thenmove the clipped values to [0, 1]with amean
of 0.5. Clipping and rescaling the performance values of Global Standardization is generally referred
to as Positive Global Standardization [2].

4.4 Evaluation metrics

The performance of the CNNmodels can be evaluated using the ConfusionMatrix. It returns the total
number of false and accurate predictions made during classification. Various metrics for assessing the
performance ofCNNmodels can be defined by considering these values. In this analysis, 7metrics are
considered to evaluate and compare the damage classification performance of the CNN models,
including Accuracy, Precision, Recall, F1-Score, Error Rate, ROC AUC, and Cohen Kappa scores.
The value of said metrics shall be determined for each class in the models.

4.4.1 Accuracy

Classification accuracy refers to the ratio of correctly predicted crack and non-crack images to
the total number of predictions made for the input images [6].

Accuracy ¼ TP þ TN
TP þ FPþ TN þ FN

Where True Positive (TP) and True Negative (TN) mean correctly classified crack and non-
crack images, respectively. Similarly, False Positive (FP) and False Negative (FN) are
incorrectly labeled crack and non-crack images. Moreover, for the imbalanced dataset (where
crack and non-crack classes have different number of image samples) the accuracy calculation
might not be sufficient. The rationale behind this is that too many image samples of the
majority class (or classes) would dominate the image samples of the minority class, and as a
result, the poor model will achieve higher accuracy. Precision and Recall metrics are therefore
required along with Accuracy.

4.4.2 Precision

In the case of an imbalanced binary classification problem, the Precision can be determined as
the number of correctly predicted crack image samples divided by the total crack image
samples predicted by the trained model. Similarly, it can be calculated for another class. The
formula for the calculation of Precision for both classes is given as [6]:

Precision ¼ TP
TP þ FP

Or
TN

TN þ FN

The Precision value is lies between 0.0 and 1.0. The value of 1.0 is known to be absolute
Precision.
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4.4.3 Recall

In the case of an imbalanced binary classification problem, the Recall can be calculated as the
number of correctly predicted crack image samples divided by the total number of cracked
image samples. It can also be measured for another class. The formula for the calculation of the
Recall for both classes is given as [6]:

Recall ¼ TP
TP þ FN

Or
TN

TN þ FP

The value of the Recall is lies between 0.0 and 1.0. The value 1.0 is considered as the perfect Recall.

4.4.4 F1 score

It captures both Precision and Recall properties and generates a single measure to evaluate
model performance. It is a better measure than the accuracy. Once the Precision and Recall are
determined for the binary classification, the F1 Score can be computed as follows [6]:

F1¼ 2*
Precision*Recall
Precisionþ Recall

The value of F1 Score can only be 1 when Recall and Precision are 1. The high value of the F1
Score can only be reached both Recall and Precision remain high. The F1 Score is the
harmonic mean of Recall and Precision.

4.4.5 Error rate

It can be easily determined by inverting the value of classification accuracy. It is often referred
to as the rate of misclassification.

Error ¼ 1−
TP þ TN

TP þ FP þ TN þ FN

4.4.6 Roc AUC

It uses prediction scores to compute Area Under the Receiver Operating Characteristics Curve
(ROC AUC). It requires the true binary value and the positive class probability scores. Once
the area has been computed under the ROC curve. It returns the single floating number that
represents the area of the curve.

4.4.7 Cohen KAPPA score

It is ametric used to calculate the agreement between annotators. This function generates a single value
for the classification problem that reflects the degree of agreement between the 2 annotators [6].

k ¼ p0 − peð Þ
1− pe
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Where p0 signifies the empirical likelihood of agreement of the label, that designates to any
instance, and pe is the anticipated agreement when the two annotators randomly assign the
labels. The Cohen Kappa function returns the float value between the −1 and 1. The value 1 is
the complete agreement and the value below 1 or 0 is the chance agreement.

4.4.8 Confusion matrix

It helps to obtain the classification accuracy of the machine learning algorithm. It also briefs
the performance of a classification algorithm. By calculating the confusion matrix, one can see
how well the classification algorithm is doing. It displays the amount of incorrect and correct
predictions made during classification by assigning to each class. Moreover, in the binary
classification, the cells of confusion matrix CM are defined as follows: CM0, 0 is the count for
true negative, CM1, 0 is the count for false negative, CM1, 1 serve as count for true positive and
CM0, 1 is the count for False positive.

4.5 Training and testing

Training of all CNN models on both datasets is conducted on Google Colab with more than
12 GB of RAM, 32 GB of disk space and on a personal computer with the following
configuration: CPU: Intel(R) Core (TM) i7–6700, RAM: 16 GB, GPU: NVIDIA Titan X
(12 GB). Moreover, supporting libraries such as CUDA toolkit with the cuDNN, and
OpenCV, are introduced on the Windows 10 (64 bit) operating system. Also, image pre-
processing and CNN models were programmed and performed in Python3 using Colab
Notebook and PyCharm IDE. The training set was designed by randomly selecting images
from both datasets, holding an approximate equal number of images in both classes to train the
model efficiently. The bifurcation of the datasets for training, testing and validation images is
shown in Table 3.

Prior to starting the training of models through transfer learning, it is necessary to determine
the value of the hyperparameters that includes: learning rate, momentum, batch size, number of
epochs, and steps per epoch. These parameters have an effect on training outcomes and
training time. The number of epochs is characterized as the number of times the dataset is
fed to the training algorithm. If the value of this parameter is huge, it can lead to an overfitted
model and high training period. Conversely, the small value of the epoch leaves the model
untrained. Another essential parameter is the batch size that is characterized as the number of
images given to the model at each step of the learning epoch. The value of batch size must be
carefully chosen because the high value of the batch size requires high processing power. In
this research, according to the volume of the datasets and specifications of Colab and personal
computer, all models are trained at 50 epochs with 51 and 21 steps per epoch for DB1 and
DB2 respectively, under the specified base learning rate (Tables 4 and 5). The value of the
steps per epoch depends on the size of the batch and the large value of the steps may leave the
model overfitted. The value of the batch size, i.e. 64, remains the same for both datasets. The
value of the remaining parameters before training all models of CNN can be seen in Tables 4
and 5. Different cracked and non-cracked concrete images are provided as input for model
training. Various deep learning layers, such as convolution, pooling, activation, and dropout,
are applied in each model to improve the accuracy of the model; dense layers are updated
according to the needs of the different model. The modified classifier of all CNN models can
be seen in Tables 1, and 2. Also, during training, the model is validated for each epoch. The
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results of CNN models training on both datasets using Google Colab are shown in Figs. 4
and 5.

Soon after CNN models are validated on the test data. In the first case, the CNN models
trained on the DB1 are checked on the 1002 new images taken from the Mendeley dataset
(DB1). In the second case, CNN models trained on the DB2 are tested on the 405 new images
from our dataset (DB2). The image from the test set is given as an input to the classifier, and
after processing the input image, the model classifies the damage within a few seconds. Model
has been trained to classify crack and non-crack images. During the testing, the models are
evaluated against the following metrics: Accuracy Score, Precision, Recall, F1-Score, Cohen
Kappa, ROC AUC, and Error Rate. The test results for both test sets are shown separately in
Tables 6 and 7.

Fig. 4 Training Results of CNN Models on DB1: (a, b) Accuracy and Loss Curve of VGG-16 (c, d) Accuracy
and Loss Curve of DenseNet-121 (e, f) Accuracy and Loss Curve of Inception-v3 (g, h) Accuracy and Loss
Curve of ResNet-50 (i, j) Accuracy and Loss Curve of Xception (k, l) Accuracy and Loss Curve of
InceptionResNet-v2
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5 Result analysis

In this research, 6 CNN models are employed with transfer learning to develop classifier
models based on the 2 prepared datasets. The Result Analysis section is divided into two parts.
First of all, the evaluation result of CNN models after training and testing on DB1 obtained by
picking selective images of the Mendeley dataset is presented. In the second part, CNN models
are again assessed using DB2 which is obtained by capturing the surface images of the
different buildings of CSIR-CEERI, Pilani and their results are discussed.

In addition to the performance evaluation metrics of the machine learning models, the
training and testing speed of the model also plays an important role in choosing an effective
pre-trained model for the concrete crack classification. The speed information for CNNmodels
on DB1 is shown in Table 8. The comparison plot of training time could also be seen in Fig. 6.

Fig. 5 Training Results of CNN Models on DB2: (a, b) Accuracy and Loss Curve of VGG-16 (c, d) Accuracy
and Loss Curve of DenseNet-121 (e, f) Accuracy and Loss Curve of Inception-v3 (g, h) Accuracy and Loss
Curve of ResNet-50 (i, j) Accuracy and Loss Curve of Xception (k, l) Accuracy and Loss Curve of
InceptionResNet-v2
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Table 6 Performance Metrics of CNN Models Based on Indices Given by Confusion Matrix for Each Class in a
Model for DB1

CNN Models Class Precision Recall F1 ROC AUC KAPPA Accuracy Error Rate

VGG-16 0 0.952029 0.998065 0.974503 0.996945 0.945967 0.973053 0.026947
1 0.997826 0.946391 0.971428

DenseNet-121 0 0.969981 1.000000 0.984761 0.998098 0.967999 0.984031 0.015969
1 1.000000 0.967010 0.983228

Inception-v3 0 0.973584 0.998065 0.985672 0.998500 0.970004 0.985029 0.014971
1 0.997881 0.971134 0.984325

ResNet-50 0 0.917710 0.992263 0.953531 0.993113 0.899829 0.950099 0.049901
1 0.990970 0.905154 0.946120

Xception 0 0.986615 0.998065 0.992306 0.997595 0.984010 0.992015 0.007985
1 0.997912 0.985567 0.991701

InceptionResNet-v2 0 0.968164 1.000000 0.983824 0.997938 0.965996 0.983033 0.016967
1 1.000000 0.964948 0.982161

Table 7 Performance Metrics of CNN Models Based on Indices Given by Confusion Matrix for Each Class in a
Model for DB2

CNN Models Class Precision Recall F1 ROC AUC KAPPA Accuracy Error Rate

VGG-16 0 0.990000 0.980198 0.985074 0.998049 0.970369 0.985185 0.014815
1 0.980487 0.990147 0.985293

DenseNet-121 0 0.782945 1.000000 0.878260 0.998781 0.723644 0.861728 0.138272
1 1.000000 0.724137 0.839999

Inception-v3 0 0.926605 1.000000 0.961904 0.998390 0.921003 0.960493 0.039507
1 1.000000 0.921182 0.958974

ResNet-50 0 0.791164 0.975247 0.873613 0.969858 0.718678 0.859259 0.140741
1 0.967948 0.743842 0.841225

Xception 0 0.893805 1.000000 0.943925 0.994074 0.881515 0.940740 0.059260
1 1.000000 0.881773 0.937172

InceptionResNet-v2 0 0.975845 1.000000 0.987774 0.998610 0.975310 0.987654 0.012346
1 1.000000 0.975369 0.987530

Table 8 Training and Testing Time of CNN Models on DB1

CNN Models Training Time Training Time for
Each Image (avg.)

Testing Time Testing Time for
Each Image (avg.)

VGG-16 844 0.2632 6 0.0059
DenseNet-121 558 0.1740 3 0.0029
Inception-v3 427 0.1331 2 0.0019
ResNet-50 600 0.1871 3 0.0029
Xception 884 0.2757 4 0.0039
InceptionResNet-v2 1093 0.3409 6 0.0059
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Figure 6 clearly indicate that Inception-v3, DenseNet-121, and ResNet-50 are much faster
than others. The probable reason for being faster is that these models are less complex than
other models. As a result, Inception-v3 is the fastest model in this research and
InceptionResNet-v2 is the slowest. It can also be seen in Table 8 that Inception-v3 takes the
lowest time to produce output, i.e. 2 seconds. Furthermore, the performance metrics of the
models mentioned in the Section 4 for the classification of concrete surface cracks are
evaluated using a confusion matrix. First of all, the classification probabilities obtained from
the test data of DB1 are labelled as crack if the value of the classification probabilities exceeds
the set threshold, i.e. 0.8, and rest of the probabilities are marked as non-crack. Thereafter,
confusion matrix presents the performance indices for each class (Fig. 7). In this analysis, 7
metrics (Accuracy, Precision, Recall, F1- Score, Cohen Kappa Score, ROC AUC, Error Rate)
are calculated for each class in the models and shown in Table 6.

Fig. 6 Time Consumed by CNN Models During Training on DB1

Fig. 7 Confusion Matrixes Obtained After Converting Predicted Probabilities on Testset of DB1 into Concrete
Classes: (a) VGG-16 (b) DenseNet-121 (c) Inception-v3 (d) ResNet-50 (e) Xception (f) InceptionResNet-v2
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It is clearly depicted in Table 6 and Fig. 8; the overall accuracy score is between 0.95 and 1
for 6 CNN models. After comparing the accuracy score of all CNN models, it was determined
that the Xception and Inception-v3 models demonstrated good performances compared to the
rest of the models with 0.992015 and 0.985029 accuracy values, respectively. While ResNet-
50 could have obtained the lowest accuracy value i.e. 0.950099.

The Recall value of the crack class in the trained models is between 0.90 and 0.99, and the non-
crack class has the recall value across all models in the range of 0.99–1.0. The Xception and
Inception-v3 have the highest Recall value for crack class i.e. 0.985567 and 0.971134, respectively.
While DenseNet-121 and InceptionResnet-v2 have the same highest value for non-crack class i.e.
1.0. The ResNet-50 has received the lowest value of the Recall for both classes.

Table 6 also reveals that the precision of the crack class is higher than the non-crack class
across all the models. It implies that, whenever the result of the classifier model is cracked, the
outcome can be acknowledged with more confidence. As far as precision is concerned,
DenseNet-121 and InceptionResNet-v2 have the best presentation for crack classification with
1.0 precision for both models.

The next metric, i.e. F1 generate a balance score by giving equal privilege to both Precision
and Recall. Table 6 illustrate that the non-crack class has the most elevated F1-score in the
entirety of the models with a range of 0.95 to 1.0. The best performance of the classification of
concrete cracks is observed in the Xception model with an F1-Score estimate of 0.991701 and
0.992306 for crack and non-crack class respectively. The most remarkably awful performance
is also associated with ResNet-50.

Two more metrics, i.e. Cohen Kappa and ROC AUC are determined on the basis of the
complete predicted results. When calculating the ROC AUC, the ground truth test values and
the predicted probabilities on the test data are passed to the function, whereas ground truth test
values and the predicted concrete class values obtained after converting the predicted proba-
bilities by setting probabilities values greater than 0.8 to 1 (crack) and rest to 0 (non-crack) are
passed to the Cohen Kappa function. It is evident from Table 6 that the best ROC AUC and
Cohen Kappa score are obtained by Inception-v3 and Xception, for example, 0.998500 and
0.984010 respectively.

Fig. 8 Accuracy of CNN Models on Both Datasets
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The performance assessment of the CNN models on DB2 that is built by collecting the
concrete surface images (Crack & Non-Crack) of different campus buildings of CSIR-CEERI,
Pilani, is presented below. The model’s training and testing speed based on the DB2 can be
seen in Table 9. The comparison plot of training time can also be seen in Fig. 9. Figure 9
clearly indicate that DenseNet-121, Inception-v3, and ResNet-50 are much faster than others.
The training performance of CNN models on DB2 is almost same as DB1. It is also noticeable
in Table 9, that all models have the same test time, i.e. 1 second except InceptionResNet-v2,
which takes 2 seconds to produce the output.

Moreover, the classification probabilities obtained from the test data of DB2 are labelled as
crack if the value of the classification probabilities exceeds the set threshold i.e. 0.8 and rest of
the probabilities are marked as non-crack. Soon after the confusion matrix has been obtained
and all the metrics discussed in Section 4 are calculated by the performance indices provided
by the confusion matrix for each class in the models (Fig. 10). InceptionResNet-v2 outper-
forms the rest of the CNN variants with an accuracy of 0.987654. The accuracy value clearly
depicts that InceptionResNet-v2 correctly classifies the damage images. F1 Score is also at the
top in support of Accuracy score with 0.987774 for non-crack class and 0.987530 for crack
class. Moreover, the ROC AUC and Cohen Kappa values of InceptionResNet-v2 lead the rest
of the models except DenseNet-121 that showed slightly higher ROC AUC value. All of the
evaluated metrics after training and testing models on DB2 could be seen in Table 7 and Fig. 8.

Table 9 Training and Testing Time of CNN Models on DB2

CNN Models Training Time Training Time for
Each Image (avg.)

Testing Time Testing Time for
Each Image (avg.)

VGG-16 347 0.2679 1 0.0024
DenseNet-121 151 0.1166 1 0.0024
Inception-v3 154 0.1189 1 0.0024
ResNet-50 230 0.1776 1 0.0024
Xception 350 0.2702 1 0.0024
InceptionResNet-v2 405 0.3127 2 0.0049

Fig. 9 Time Consumed by CNN Models During Training on DB2
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In summary, after going through all of the performance metrics, it can be perceived that,
apart from the number of trainable parameters, the training speed of the CNN models also
depends on the different settings for hyperparameters such as learning rate, momentum, size of
dataset, etc. If the learning rate value is high, it takes less time for the algorithm to converge,
while in the case of low learning rate, the algorithm takes more time to converge. High
momentum value helps speed up the training of CNN models. In addition, the large volume of
data makes model training costly and time consuming. Moreover, it can be believed that even
the problem is the same (cracks classification), but different models can be suited to different
datasets. The most probable explanation may be that the applicability of the model depends on
the characteristics of the dataset, such as the size of dataset, the distribution of the data, patterns
in data, etc. The outcome of the models depends significantly on how well they learn the
distribution of data. If the data feed to the models is changed, the results of the model will also
be changed. Therefore, the performance comparison of models can only be made with the
same dataset.

6 Conclusion

Classification and detection of concrete surface cracks is one of the most challenging tasks and
core concern of Structural Health Monitoring. In this paper, a comparative study of Automated
Structural Health Monitoring based on models of deep Convolution Neural Network (CNN)
was proposed to preserve and update records of the strength and resilience of concrete
structures. CNNs are a specific category of deep neural networks that have been applied for
various tasks, such as extraction of features, prediction, classification, and so forth. The
proposed study contributes to the automated classification of cracks on the concrete surface
by training the deep learning models with cracked and non-cracked areas. Cracks of less than
12 mm and more than 0.1 mm are effectively classified by our trained models. For crack
classification, different models of deep CNN, such as VGG-16, Inception-v3,

Fig. 10 Confusion Matrixes Obtained After Converting Predicted Probabilities on Testset of DB2 into Concrete
Classes: (a) VGG-16 (b) DenseNet-121 (c) Inception-v3 (d) ResNet-50 (e) Xception (f) InceptionResNet-v2
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InceptionResNet-v2, ResNet-50, Xception, and DenseNet-121, have been re-trained by the
transfer learning technique, which is tuned for two categories, i.e. cracked and non-cracked.
Each model has been deployed on two separate image datasets. The first dataset is Mendeley
dataset (this dataset is easily accessible on the internet consisting of different types of defect
images) and the subsequent one is our dataset, which is created by collecting different types of
cracks and non-cracks images by wandering within the CSIR-CEERI campus in Pilani. Before
introducing the images of these datasets to the CNN models, all images are pre-processed,
thereby minimizing training time and other modelling difficulties. The performance of CNN
models was assessed by training time, testing time, and crack classification performance. In
view of training and testing time, Inception-v3, and DenseNet-121 have showed decent
performance over other models on both datasets. In this examination, seven performance
metrics were used to evaluate and analyze the effectiveness of crack classification models,
including Accuracy Score, Precision, Recall, F1-Score, Cohen Kappa, Error Rate, and ROC
AUC. As indicated by performance metrics, Xception and InceptionResNet-v2 have, for the
most part, improved performance compared to the others on DB1 and DB2 respectively.

Moreover, the accuracy of each model is compared on the same dataset, and the most
accurate model of each dataset is compared to each other (Fig. 8). When different models have
been validated and tested on the first dataset i.e. Mendeley dataset, the recorded accuracy of
VGG-16 is 0.97, Inception-v3 is 0.98, InceptionResNet-v2 is 0.98, ResNet-50 is 0.95,
Xception is 0.99, and DenseNet-121 is 0.98. The classifier yielding highest accuracy is
Xception with an accuracy score of 99%. Similarly, when applied to a second dataset, i.e.
our dataset VGG-16 and InceptionResnet-v2 shows the superiority at an accuracy level of
98%. When the overall results are compared with each other Xception is proved to be the best
model with an accuracy of 99% for the concrete image classification in our research, which can
classify cracks on the concrete surface precisely. However, the overall comparison cannot be
made since the both problems are different in terms of the characteristics of dataset. In
addition, the findings have shown that re-training CNN models using transfer learning is an
effective strategy for concrete crack classification with an accuracy range of 0.85 to 0.99 in the
overall models’ performance on both the datasets. Future research should concentrate on
checking the applicability of superior models to concrete wall images taken using drones
instead of taking pictures manually. Moreover, the most reliable model can be programmed
into portable hardware or as a mobile device application.

Acknowledgements The work of Prashant Kumar was supported in part by the All India Council of Technical
Education, New Delhi, India, and in part by the Indian National Academy of Engineering (INAE), Gurgaon,
India.

Funding This project does not have any funding.

Data availability DB1: https://data.mendeley.com/datasets/5y9wdsg2zt/2 DOI: https://doi.org/10.17632/
5y9wdsg2zt.2

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

38272 Multimedia Tools and Applications (2023) 82:38249–38274

https://data.mendeley.com/datasets/5y9wdsg2zt/2
https://doi.org/10.17632/5y9wdsg2zt.2
https://doi.org/10.17632/5y9wdsg2zt.2


References

1. Athanasiou A, Ebrahimkhanlou A, Zaborac J, Hrynyk T, Salamone S (2020) A machine learning approach
based on multifractal features for crack assessment of reinforced concrete shells. Comput Civ Infrastruct
Eng 35(6):565–578. https://doi.org/10.1111/mice.12509

2. Brownlee J (2019) How to Manually Scale Image Pixel Data for Deep Learning, Machine LearningMastery
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/#:~:text=
Pixel.values are often unsigned,expected training of the model

3. Cho S, Kim B, Kim G (2019) Application of deep learning-based crack assessment technique to civil
structures, Fifth conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures
(SMAR-2019), pp. 1–8

4. Christian Koch PF, Georgieva K, Kasireddy V, Akinci B (2015) A review on computer vision based defect
detection and condition assessment of concrete and asphalt civil infrastructure. Adv Eng Inform 29(2):196–
210. https://doi.org/10.1016/j.aei.2015.01.008

5. de Lucena DS, da Silva WRL (2018) “Concrete cracks detection based on deep learning image classifica-
tion,” MDPI Proc, https://doi.org/10.3390/ICEM18-05387

6. Developers S-L (2020) Metrics and scoring: quantifying the quality of predictions,” Scikit Learn, https://
scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics

7. Dorafshan S, Thomas RJ, Maguire M (2018) Comparison of deep convolutional neural networks and edge
detectors for image-based crack detection in concrete. Constr Build Mater 186:1031–1045. https://doi.org/
10.1016/j.conbuildmat.2018.08.011

8. Dung CV, Anh LD (2019) Autonomous concrete crack detection using deep fully convolutional neural
network. Autom Constr 99:52–58. https://doi.org/10.1016/j.autcon.2018.11.028

9. Gao Y, Mosalam KM (2018) Deep transfer learning for image-based structural damage recognition.
Comput Civ Infrastruct Eng 33(9):748–768. https://doi.org/10.1111/mice.12363

10. Hoang N-D (2018) Image processing-based recognition of wall defects using machine learning approaches
and steerable filters. Comput Intell Neurosci 2018:1–18. https://doi.org/10.1155/2018/7913952

11. Huang H, Li Q, Zhang D (2018) Deep learning based image recognition for crack and leakage defects of
metro shield tunnel. Tunn Undergr Sp Technol 77:166–176. https://doi.org/10.1016/j.tust.2018.04.002

12. IslamMMM, Kim J-M (2019) Vision-based autonomous crack detection of concrete structures using a fully
convolutional encoder–decoder network. Sensors 19:1–12. https://doi.org/10.3390/s19194251

13. Jung NLWM, Naveed F, Hu B, Wang J (2019) Exploitation of deep learning in the automatic detection of
cracks on paved roads, Geomatica

14. Kim B, Cho S (2018) Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep
Learning Technique. Sensors 18(10):3452. https://doi.org/10.3390/s18103452

15. Kim A-R, Byun Y-S, Chun C, Kim D, Lee S-W (2019) Automated concrete crack detection and using deep
leaning and image processing method, Adv Struct Eng Mech

16. Kim H, Ahn E, Shin M, Sim S-H (2019) Crack and noncrack classification from concrete surface images
using machine learning. Struct Health Monit 18(3):725–738. https://doi.org/10.1177/1475921718768747

17. Li S, Zhao X (2019) Image-based concrete crack detection using convolutional neural network and
exhaustive search technique. Adv Civ Eng 2019:1–12. https://doi.org/10.1155/2019/6520620

18. Liu H, Zhang Y (2019) Image-driven structural steel damage condition assessment method using deep
learning algorithm. Measurement 133:168–181. https://doi.org/10.1016/j.measurement.2018.09.081

19. Moon H-G, Kim J-H (2011) Inteligent Crack Detecting Algorithm on the Concrete Crack Image Using
Neural Network, in 28th International Symposium on Automation and Robotics in Construction, pp. 1461–
1467. https://doi.org/10.22260/ISARC2011/0279

20. Özgenel ÇF, Sorguç AG (2018) Performance comparison of pretrained convolutional neural networks on
crack detection in buildings. In: Proceedings of the International Symposium on Automation and Robotics
in Construction (IAARC). https://doi.org/10.22260/isarc2018/0094

21. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359.
https://doi.org/10.1007/978-981-15-5971-6_83

22. Perez H, Tah JHM, Mosavi A (2019) Deep Learning for Detecting Building Defects Using Convolutional
Neural Networks. Sensors 19(16):3556. https://doi.org/10.3390/s19163556

23. Qian Y et al. (2019) Fresh Tea Leaves Classification Using Inception-V3, 2019 2nd IEEE Int. Conf Inf
Commun Signal Process ICICSP 2019, pp. 415–419, https://doi.org/10.1109/ICICSP48821.2019.8958529.

24. Qu Z, Chen Y-X, Liu L, Xie Y, Zhou Q (2019) The algorithm of concrete surface crack detection based on
the genetic programming and percolation model. IEEE Access 7:57592–57603. https://doi.org/10.1109/
ACCESS.2019.2914259

25. Raj APSS, Vajravelu SK (2019) DDLA: dual deep learning architecture for classification of plant species.
IET Image Process 13(12):2176–2182. https://doi.org/10.1049/iet-ipr.2019.0346

38273Multimedia Tools and Applications (2023) 82:38249–38274

https://doi.org/10.1111/mice.12509
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/%23:~:text=Pixel.values%20are%20often%20unsigned,expected%20training%20of%20the%20model
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/%23:~:text=Pixel.values%20are%20often%20unsigned,expected%20training%20of%20the%20model
https://doi.org/10.1016/j.aei.2015.01.008
https://doi.org/10.3390/ICEM18-05387
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://doi.org/10.1016/j.conbuildmat.2018.08.011
https://doi.org/10.1016/j.conbuildmat.2018.08.011
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1111/mice.12363
https://doi.org/10.1155/2018/7913952
https://doi.org/10.1016/j.tust.2018.04.002
https://doi.org/10.3390/s19194251
https://doi.org/10.3390/s18103452
https://doi.org/10.1177/1475921718768747
https://doi.org/10.1155/2019/6520620
https://doi.org/10.1016/j.measurement.2018.09.081
https://doi.org/10.22260/ISARC2011/0279
https://doi.org/10.22260/isarc2018/0094
https://doi.org/10.1007/978-981-15-5971-6_83
https://doi.org/10.3390/s19163556
https://doi.org/10.1109/ICICSP48821.2019.8958529
https://doi.org/10.1109/ACCESS.2019.2914259
https://doi.org/10.1109/ACCESS.2019.2914259
https://doi.org/10.1049/iet-ipr.2019.0346


26. Rajeshwari M, Rathika K (2018) Detection of roof holes and wall crack using shape-based method. SSRG
Int J Comput Sci Eng 5(5):6–10. https://doi.org/10.14445/23488387/IJCSE-V5I5P102

27. Sagar RV (2019) Support vector machine procedure and Gaussian mixture modelling of acoustic emission
signals to study crack classification in reinforced concrete structures

28. Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural
Networks Learn Syst 26(5):1019–1034. https://doi.org/10.1109/TNNLS.2014.2330900

29. Shi C, Xia R, Wang L (2020) A novel multi-Branch Channel expansion network for garbage image
classification. IEEE Access 8:154436–154452. https://doi.org/10.1109/ACCESS.2020.3016116

30. Simler C, Trostmann E, Berndt D (2019) Automatic crack detection on concrete floor images, in Photonics
and Education in Measurement Science 2019, p. 41. https://doi.org/10.1117/12.2531951.

31. Sitara RGS, Kavitha NS (2018) Review and analysis of crack detection and classification techniques based
on crack types. Int J Appl Eng Res 13(8):6056–6062

32. Słoński M (2019) A comparison of deep convolutional neural networksfor image-based detection of
concrete surface cracks. Comput Assist Methods Eng Sci 26:105–112. https://doi.org/10.24423/cames.267

33. Wang S, Yang F, Cheng Y, Yang Y, Wang Y (2018) Adaboost-based Crack Detection Method for
Pavement. IOP Conf Ser: Earth Environ Sci 189:022005. https://doi.org/10.1088/1755-1315/189/2/022005

34. Wang B, Li Y, Zhao W, Zhang Z, Zhang Y, Wang Z (2019) Effective Crack Damage Detection Using
Multilayer Sparse Feature Representation and Incremental Extreme Learning Machine. Appl Sci 9(3):614.
https://doi.org/10.3390/app9030614

35. Wu X, Xu H, Wei X, Wu Q, Zhang W, Han X (2020) Damage identification of low emissivity coating
based on convolution neural network. IEEE Access 8:156792–156800. https://doi.org/10.1109/ACCESS.
2020.3019484

36. Xia X, Xu C, Nan B (2017) “Inception-v3 for flower classification,” 2017 2nd Int. Conf. Image, Vis.
Comput. ICIVC 2017, pp. 783–787, https://doi.org/10.1109/ICIVC.2017.7984661.

37. Xu H, Su X, Wang Y, Cai H, Cui K, Chen X (2019) Automatic Bridge Crack Detection Using a
Convolutional Neural Network. Appl Sci 9(14):2867. https://doi.org/10.3390/app9142867

38. Xu G, Shen X, Chen S, Zong Y, Zhang C, Yue H, Liu M, Chen F, Che W (2019) A deep transfer
convolutional neural network framework for EEG signal classification. IEEE Access 7:112767–112776.
https://doi.org/10.1109/access.2019.2930958

39. Zhang L, Yang F, Daniel Zhang Y, Zhu YJ (2016) Road crack detection using deep convolutional neural
network, in 2016 IEEE International Conference on Image Processing (ICIP), pp. 3708–3712. https://doi.
org/10.1109/ICIP.2016.7533052.

40. Zhang K, Zhang Y, Cheng H-D (2019) CrackGAN: pavement crack detection using partially accurate
ground truths based on generative adversarial learning, IEEE Trans Intell Transp Syst, https://doi.org/10.
1109/TITS.2020.2990703

41. Zhang J, Lu C, Wang J, Wang L, Yue X-G (2019) Concrete Cracks Detection Based on FCN with Dilated
Convolution. Appl Sci 9(13):2686. https://doi.org/10.3390/app9132686

42. Zhu J, Zhang C, Qi H, Lu Z (2020) Vision-based defects detection for bridges using transfer learning and
convolutional neural networks. Struct Infrastruct Eng 16(7):1037–1049. https://doi.org/10.1080/15732479.
2019.1680709

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

38274 Multimedia Tools and Applications (2023) 82:38249–38274

https://doi.org/10.14445/23488387/IJCSE-V5I5P102
https://doi.org/10.1109/TNNLS.2014.2330900
https://doi.org/10.1109/ACCESS.2020.3016116
https://doi.org/10.1117/12.2531951
https://doi.org/10.24423/cames.267
https://doi.org/10.1088/1755-1315/189/2/022005
https://doi.org/10.3390/app9030614
https://doi.org/10.1109/ACCESS.2020.3019484
https://doi.org/10.1109/ACCESS.2020.3019484
https://doi.org/10.1109/ICIVC.2017.7984661
https://doi.org/10.3390/app9142867
https://doi.org/10.1109/access.2019.2930958
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1109/TITS.2020.2990703
https://doi.org/10.1109/TITS.2020.2990703
https://doi.org/10.3390/app9132686
https://doi.org/10.1080/15732479.2019.1680709
https://doi.org/10.1080/15732479.2019.1680709

	Feasibility analysis of convolution neural network models for classification of concrete cracks in Smart City structures
	Abstract
	Introduction
	Literature review
	CNN models
	VGG-16
	RESNET-50
	XCEPTION
	INCEPTION-V3
	INCEPTIONRESNET-V2
	DENSENET-121

	Methodology
	Transfer learning
	Database formation
	Image pre-processing
	Image resizing
	Global standardization
	Clipping and rescaling pixel values

	Evaluation metrics
	Accuracy
	Precision
	Recall
	F1 score
	Error rate
	Roc AUC
	Cohen KAPPA score
	Confusion matrix

	Training and testing

	Result analysis
	Conclusion
	References


