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Abstract
In this paper, a novel asymmetrical double-wing third order hyperchaotic system is humbly 
proposed. The dynamic behavior of the system is greatly abundant after properly analyzing 
the phase diagram, bifurcation diagram, Lyapunov exponents spectrum, Poincare section 
diagram, and complexity. In addition, chaotic attractors under different parameters of the 
system are analyzed. In the dynamic analysis of the new system, it is found that the new 
system has some characteristics, like multi-stability, multi-state transition phenomenon, 
multiple attractors coexist. These features possess the value of in-depth analysis compared 
to previous systems and can make it promising for more applications. It is extraordinary 
attention for this new chaotic system, due to exist on multi-state transition phenomenon. 
The circuit diagram of the system is designed and implemented. Simultaneously, the cir-
cuit of the system is engineered and accomplished by using Multisim circuit simulation 
software. Furthermore, the limited time synchronization for the system is studied and car-
ried out by an appropriate controller. Ultimately, algorithm of image encryption, novel and 
efficient, is designed by combining DNA dynamic encryption. The chaotic sequence of 
the current system is used to encrypt the image, and the key space, encrypted histogram, 
adjacent pixel correlation, robustness and information entropy are analyzed. The excellent 
performance analysis results further indicate that this hyperchaotic system has important 
reference value in the chosen field of chaotic image encryption and synchronization.
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1 Introduction

Over the past three decades, the chaos theory and its application have attracted frequently of  
consideration [25, 36, 42]. It is extremely rapid for chaotic systems, multifarious dissipa-
tive and conservative, to design and come true [28, 29, 44, 53–55]. In 2021, Han Xin-tong 
et al. designed a new fractional order system and implemented it with DSP [21]. Yang Yan 
et al. proposed and designed a multidimensional system with multiple equilibrium points 
[59]. In 2022, Bao Bo-cheng et  al. designed no-argument memristive hyper-jerk system 
and its coexisting chaotic bubbles boosted by initial conditions [5]. Chen Ming-shu et al. 
found a novel memristive chaotic system without any equilibrium point [14]. These works 
have contributed considerably to the aspect of chaos, both in terms of system construction 
methods and applications of the system. However, the dynamical representation of some 
of the systems has remained up until now relatively less in terms of dynamics and lacks 
some properties. This paper refers to some classical systems, like Chen system [11], Lü 
system [39], Sprott system [47], Rucklidge system [62], etc. After understanding a vari-
ety of methods to construct the system, a novel asymmetric two-wing hyperchaotic system 
with multiple attractors is proposed, which contains some basic dynamical manifestations. 
In addition, it has some properties such as multistability, attractor coexistence, multiple 
state transitions.

Since hyperchaotic systems exhibit the following characteristics: autonomous systems 
with at least four-dimensional phase space are dissipative and possess at least two or more 
positive Lyapunov exponents. Therefore, hyperchaotic systems have higher unpredictabil-
ity, greater randomness, more key parameters, and more complex topology and evolutionary 
behavior than low-dimensional chaotic systems [17]. On the other hand, their phase space 
is more difficult in reconstruction due to the existence of multiple positive Lyapunov expo-
nents, and thus they are reliably secure in use for signal encryption, confidential communi-
cation and system synchronization. There is still a little less research on the aspect of hyper-
chaotic systems than chaotic systems, so there is a need for more research on hyperchaotic 
systems. After considering the comparative methods in some literatures [6, 7, 9], this paper 
also compares the systems in much literature. Moreover, the asymmetric double-wing sys-
tem proposed in this paper obtains a hyperchaotic system, which can be studied more.

Chaotic synchronization is one of the considerable fields of chaotic systems. Synchro-
nization methods are principally known in the following categories, for instance, adaptive 
synchronization [37], intermittent feedback synchronization [51], state observer synchroni-
zation [20], chaos observer synchronization [60], projective synchronization [63]. However, 
the aforementioned studies are all involved asymptotic synchronization and infinite conver-
gence time [34]. Sun Jun-wei et al. realized finite time synchronization of two sophisticated 
systems by using sliding mode control method [48]. Shi Lei, Wang Lei-min et al., studied 
the finite time synchronization between multidimensional systems [4, 45, 52]. However, 
there are few related research, so it is of considerable value to further study the synchroni-
zation method of chaotic system. In this paper, the novel hyperchaotic system is combined 
with a finite time synchronization method to realize its finite time synchronization.

Chaotic systems have various real-world applications, like random number generators, 
communication, synchronization, and image encryption [16, 50]. Digital images are charac-
terized by large amount of data and direct correlation between pixels and chaotic system has 
randomness, so it has certain advantages to apply chaotic system to image encryption [35]. 
Cun Qi-qi et al. proposed an innovative alternative method of DNA encryption [15]. Uzair  
Aslam Bhatti has delivered many contributions to image encryption algorithms, such as the  
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hybrid watermarking algorithm using Clifford algebra, Arnold perturbation and chaotic 
encryption [8], and hyperspectral image classification based on spatial and spectral fusion 
of local similarity [10]. Gurpreet Kaur et  al. studied fractional and based color image 
encryption algorithm [31]. Tanveer et  al. discovered and studied 4D chaotic system and 
successfully developed it in the field of image encryption [22]. These works represent 
enormous contributions to chaotic digital image encryption. However, some of them still 
need continuing to optimize their image encryption methods, and some literature does not 
provide a comprehensive analysis of the encrypted images.

Based on the foregoing considerations, we present a novel asymmetrical double-wing 
third order hyperchaotic system in this paper. There are many special dynamics phenomena 
in this new system, like multi-stability, control of different initial values, high complex-
ity, polymorphic transition. At the same time, this system has multiple equilibrium points, 
which means it has good homogeneous multiple stabilities and multiple attractors. This 
has been unobserved before in other hyperchaotic systems. In addition, the physical circuit 
of the system is designed and implemented. Last but not the least, a new image encryp-
tion algorithm is designed by combining the sequence of hyperchaotic system with DNA 
dynamic coding.

The rest of the paper is organized as follows. In the Section 2, the equation model, phase 
diagram and sequence diagram of the new system are introduced. Section 3 analyzes in 
detail the dynamical properties of the system and the state changes of the attractor of the 
chaotic system. Section 4 implements the physical circuit of the hyperchaotic system. In the 
Section 5, finite-time synchronization of the chaotic system is designed and implemented. 
Section 6 is the complete image encryption algorithm for the new system. Section 7 is the 
performance analysis of the encrypted images and the comparison with other algorithms. 
Finally, the results of the study are summarized, and conclusions are drawn.

2  New hyperchaotic system

The three-dimensional hyperchaotic system is designed in this paper which has good cha-
otic behavior, and its system equation is as follows:

Where x, y and z are system variables, a, b, c, and d are system parameters. The choice of 
parameters is of immense importance for system, and nonlinear systems with independent 
parameters will be in diverse states. To enrich the states of chaotic systems, we combine 
chaotic circuits, phase diagrams, bifurcation diagrams, Lyapunov exponential spectra to 
determine the system parameters in a comprehensive way. The chaotic dynamics of a non-
linear system occur only at some specific parameters. When changing the system param-
eters, the nonlinear system can be in a periodic, quasi-periodic or chaotic state.

When the parameters of the system are a = 4, b = 10, c = 1, d = 1 and the initial value is (1, 
1, 0), complex hyper-chaos exists in the system. The chaotic attractor of the system is shown 
in Fig. 1. It can be discovered that the phase diagram of the system is asymmetric with two 
vortexes, one is tremendous, and the other is small. In addition, the sequence diagram of each 

(1)

⎧
⎪⎨⎪⎩

dx

dt
= −ax + by − yz − c

dy

dt
= dx + y

dz

dt
= x − z + y2
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variable can equally be seen. At the same instant, the system proposed in this paper is com-
pared with other systems in some respects as shown in Table 1, which also demonstrates the 
rich dynamic behavior of the system from the side.

3  Dynamical analysis of hyperchaotic system

3.1  Dissipation of attractor

The divergence (∇V) for the system (1) is obtained from the system eq. (1)

The ∇V< 0, so the system is dissipative and dv
dt

= e−4t converges exponentially. When 
t → ∞, every trajectory of the system shrinks exponentially to zero. At this point, all the 

(2)∇V =
�
·
x

�x
+

�
·
y

�y
+

�
·
z

�z
= −a + 1 − 1 = −4

Fig. 1  Hyperchaotic systems with fixed initial values and parameters. (a) Spatial phase diagram of the sys-
tem. (b) Sequence diagram of chaotic variables

Table 1  Comparison of dynamic behavior of other systems

References The system dimension Circuit structure Dynamic behavior

The literature of [27] 4D chaotic system Complex Chaotic bursting, multiple attractors 
coexist

The literature of [57] 3D chaotic system Simple Chaotic bursting
The literature of [32] 5D chaotic system Complex Extreme multistability
The literature of [40] 4D chaotic system Complex Attractor coexistence, multiple stability
The literature of [2] 5D chaotic system Complex Extreme multistability
The proposed system 4D chaotic system Simple Chaotic bursting, multi-stability, multiple 

attractors coexist, multiple state transitions
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system orbits will ultimately be limited to a set of limit points with zero volume, and its 
progressive dynamic will be stuck on an attractor, which indicates the existence of the 
attractor.

3.2  Equilibrium point

To find the equilibrium point of the system, set system equation equal to zero. The system 
as follows:

When variables for the system are a =  4, b =  10, c =  1, d =  1, the equilibrium set of the 
system are S1=(3.31467, −3.31467,14.3017); S2=(−4.24357, 4.24357, 13.7643); S3= 
(−0.071093, 0.071093, −0.06603). The Jacobian matrix obtained by linearizing the system.

Let det (J − λI) = 0, I is the identity matrix. The eigenvalues of the three equilibrium points 
for the system are obtained respectively, and the specific values are shown in Table  2. 
There is a real eigenvalues λ1 and a pair of complex conjugate characteristic roots λ2, λ3 
in the equilibrium points of S1 and S2. According to Lyapunov stability theory, S1 and S2 
are saddle focal equilibrium points, which are very important for chaotic system. For many 
chaotic systems, such equilibrium points are the prerequisite for the generation of vortex 
motion. In equilibrium point S3, λ1, λ3 are negative and λ2 is positive, so this equilibrium 
point is an unstable saddle point.

3.3  Lyapunov exponent, dimension, and bifurcation

Lyapunov index can quantitatively represent the motion state characteristics of the system 
and vividly describe the degree of attraction and repulsion between adjacent trajectories of 
the system, which is the most important physical quantity for describing chaotic systems. 
When the parameters in the system change, the curve in the Lyapunov exponential spectrum 
of the system describes the change of the system’s motion state. When the parameters are set, 
a = 4, b = 10, c = 1, d = 1 in the system, Lyapunov index (LEi) is calculated by MATLAB and 
obtained: LE1=0.7291, LE2=0.3993, LE3=-4.12. The Lyapunov dimension (DL) of the system 
is DL = 2.2738, indicating that the system is in the fractal dimension. At the same time，it can 
also be shown that the system is in hyperchaotic state by the Lyapunov exponent.

(3)

⎧⎪⎨⎪⎩

−ax + by − yz − c = 0

dx + y = 0

x − z + y2 = 0

(4)J =

⎡⎢⎢⎣

−a b − z −y

d 1 0

1 2y −1

⎤⎥⎥⎦

Table 2  Eigenvalues of each equilibrium point

λ λ1 λ2 λ3

S1 −5.0186 0.5093 + 2.199i 0.5093 − 2.199i
S2 −4.1449 0.0725 + 2.7574i 0.0725 − 2.7574i
S3 −5.5269 2.5351 −1.0083
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Bifurcation refers to the phenomenon that the dynamic state of the system will change with 
the change of the system parameters or the initial value of the state variable. Lyapunov 
exponential spectrum and bifurcation diagram of the system change with the change of dif-
ferent parameters. When other parameters of the system remain unchanged, parameter c is 
selected to analyze the dynamic behavior. Figure 2 shows the Lyapunov exponential spec-
trum and bifurcation diagram of the system with c as a variable. The curves in the Fig. 2 
are downward as LE1, LE2 and LE3.

In addition, different periodic bifurcation also appears in the variation of system param-
eter c. The various variations of the chaotic attractor (x-y plane) are shown in Fig. 3. It 
can be seen from the observation of the curves that when c∈(−10,-5.5), the curves LE1 
and 0 are basically in coincidence state, and LE1, LE2 and LE3 are both less than 0. When 
c∈(−5.2,-2.95), the curve LE1 continues to rise, the curve LE2 tends to be flat, but both 
are still greater than 0, LE3 less than 0, the system is hyperchaotic. When c∈[−2.95,-2.9], 
the curve LE1 is still greater than 0, and the curve LE2 drops rapidly and less than 0, LE3 
is less than 0, the system is chaotic. Furthermore, when c∈[1.65,1.7], or c∈ [3.3,3.4), or 
c∈ [6.55,7.05], the system is chaotic. When c = −7.5, the system is in the period state 
(Fig. 3a). When c = −5.5, single wing transient chaotic state (Fig. 3b) is observed in the 
system. When c = −5.3, The system changes from single wing transient chaotic state to 
double wing transient chaotic state (Fig.  3c). When the value of c increases to −1, the 
system becomes double wing hyperchaotic state (Fig. 3d). When c = 3.5, the system is in a 
double wing periodic state (Fig. 3e). When increasing c = 6, single wing periodic oscilla-
tion (Fig. 3f) is observed in the system. When c = 10, single wing periodic state (Fig. 3g) 
appears in the system. Continue to increase parameter c to c = 15, the system evolves into 
quasi-periodic state (Fig. 3h). When c∈[15.1,20], the curve LE1 tends to a flat straight-line 
state, and curve LE2 drops gently. The system gradually enters a limit period state. As the 
parameter c changes, it is found that the system exhibits various chaotic attractors.

(5)DL = j +
1

|||LEj+1
|||

j∑
i=1

LEi = 2 +
LE1 + LE2

LE3

= 2.2738

Fig. 2  System bifurcation diagram and Lyapunov exponential spectrum with parameter c. (a) Bifurcation 
diagram, (b) Lyapunov exponents spectra
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3.4  System complexity

The study of the complexity of chaotic systems is regarded as an important part of sys-
tem dynamics analysis. The complexity algorithm is used to try out the closeness between 
chaotic sequence and random sequence. The higher the complexity, the better the system. 
According to the complexity of correlation algorithm, the more similar it is to a random 
sequence, the higher the complexity of the system. The complexity of chaotic sequences 
can be divided into behavior complexity and structure complexity. Among them, C0 and SE 
algorithms belong to structural complexity, and their results have global statistical signifi-
cance compared with behavior complexity.

In Fig. 4, the system complexity under a single parameter is first tested. On the premise 
that other system parameters remain unchanged, the complexity of C0 and SE of the system 
can be obtained by changing system parameter b, as shown in Fig. 4a and b respectively. As 
can be seen from the figure, when b = 10, the C0 complexity of the system is 0.06410, and 
the SE complexity is 0.397. Similarly, when we change the system parameter c, we can see 
that its complexity is not as high as that of b, but the complexity of C0 is generally above 
0.04, and the complexity of SE fluctuates greatly, but it is also above 0.25. The complexity 
of the system was also tested for different initial values, when the system parameters were 
a = 4, b = 10, c = 1, and d = 1. The test values are shown in Table 3. It is found that no mat-
ter how the initial value of the system changes, the C0 complexity of the system is stable 
above 0.06400. In addition, after comparing the complexity of other literature systems, it 
is found that the complexity of this system is greater than that of other systems, indicating 
that the complexity of other systems is higher.

Moreover, two system parameters are selected to calculate the complexity of the system. 
In the Fig. 5, the darker the color, the more complex the system. In addition, C0 complexity 
and SE complexity have good consistency in the same parameter variation. In the Fig. 5a 
and b, when the system parameters c∈(8, 10) and d∈(8, 9), the highly complex region is 
mainly on c∈(8, 9.8), d∈(8.1, 9). According to the multivariable complex chaos diagram, 
the change of the system can be seen more concretely. When other parameters remain 
unchanged and system parameters b and c are changed, the complexity of C0 and SE of the 
system is shown in Fig. 5c and d. It can be observed that the complexity graph of system 
parameters b and c is darker than that of parameters c and d, indicating that the complexity 
of b and c is higher.

4  Circuit design and realization

After the theoretical analysis and numerical simulation, the circuit design is typically 
started in this completed the section to further observe the dynamic behavior of the com-
plex system. When properly designing the independent circuit, the system eq. (1) is firstly 
transformed by proportional compression. Set RX → X, RY → Y, RZ → Z, R is the variable 
proportional compression factor. Correctly assuming R = 0.5, the changed equation in com-
mon is eq. (6).

(6)

⎧⎪⎨⎪⎩

dX

dt
= −ax + by − eyz − c

dY

dt
= dx + y

dZ

dt
= x − z + fy2
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The system parameters are a = 4, b = 10, c = 1, d = 1, e = 2, f = 2, respectively. Time scale trans-
formation is performed on eq. (6), let T = τ0t and �0 =

1

R5C1

=
1

R11C2

=
1

R18C3

 , where τ0 is the 
time scale change factor. The transformed equation and schematic diagram are obtained.

Set C1 = C2 = C3 = 33nF, the following parameter values, R5 = R11 = R18 = 50KΩ, 
R3 = R6 = R7 = 10KΩ, R12 = R13 = R19 = R20 = 10KΩ and R4 = R8 = R9 = R10 = R21 = 100KΩ, 
R15 = R16 = R17 = 100KΩ and R1 = 25KΩ, R2 = R14 = 5KΩ, can be obtained by comparing eqs. 
(6) and (7).

(7)

⎧⎪⎪⎨⎪⎪⎩

dX

dT
=

1

R5C1

⋅

R7

R6

�
−

R4

R1

X +
R4

R3

Y − 0.1
R4

R2

Y ⋅ Z − 1 ⋅
R4

R21

�

dY

dT
=

1

R11C2

⋅

R13

R12

�
R10

R8

X +
R10

R9

Y
�

dZ

dT
=

1

R18C3

⋅

R20

R19

�
R17

R16

X −
R17

R15

Z + 0.1
R17

R14

Y ⋅ Y
�

Fig. 3  System attractor diagram with parameter c. (a) Single-wing period state attractor for c = −7.5, (b) 
Single-wing transient chaos state attractor for c = −5.5, (c) Transient transition attractor for c = −5.3, (d) 
Hyperchaotic attractor for c = −1, (e) Double-wing periodic state attractor for c = 3.5, (f) Single-wing peri-
odic attractor for c = 6, (g) Periodic attractor for c = 10, (h) Quasi-periodic state attractor for c = 15

▸

Fig. 4  System complexity. (a) The C0 complexity of parameter b. (b) SE complexity with b. (c) C0 com-
plexity with c. (d) SE complexity with c 
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Through simulation verification on circuit simulation software Multisim, the phase dia-
gram of the system is sufficiently shown in Fig. 6. The theoretical attractor is similar to the 
circuit attractor by carefully comparing the Fig. 1 and the Fig. 6. Therefore, the possible exist-
ence of attractors is confirmed by numerical analysis and experimental study.

5  Synchronization implementation

In this section, system (8) is taken as the drive system and system (9) as the response system, 
a finite time synchronization mode of the system is realized. The model parameters in system 

Table 3  C0 complexity of initial-
controlled chaotic sequences

The initial conditions C0

(1,1,0) 0.06410
(−1,0,0) 0.06653
(−1, −1,0) 0.07346
(−1, −1, −1) 0.06753
The literature of [46] 0.02937
The literature of [12] 0.01460
The literature of [19] 0.04820
The literature of [58] 0.03210

Fig. 5  System complexity. (a) C0 complexity, c∈(8,10), d∈(8,9). (b) SE complexity, c∈(8,10), d∈(8,9). (c) 
C0 complexity, b∈(0,10), c∈(0,2). (d) SE complexity, b∈(0,10), c∈(0,2)
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(9) are the same as those in system (8), and U1, U2 and U3 are the control inputs. The specific 
synchronization method is as instantly follows:

In this synchronization, the error is defined as ei = yi − xi(i = 1, 2, 3), and the error dynamic sys-
tem is system (10)

(8)

⎧
⎪⎨⎪⎩

·
x1 = −ax1 + bx2 − x2x3 − c
·
x2 = dx1 + x2
·
x3 = x1 − x3 + x2

2

(9)

⎧⎪⎨⎪⎩

·
y1 = −ay1 + by2 − y2y3 − c + u1
·
y2 = dy1 + y2 + u2
·
y3 = y1 − y3 + y2

2 + u3

(10)

⎧⎪⎨⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

Fig. 6  System circuit schematic diagram and simulation diagram
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The controller design is as follows:

k1, k2 is a constant, 0 < μ < 1. sgn is the step function, if the parameters satisfy k1 ≥ max {a, 0}, 
k2 > 0, then the finite time synchronization can be fulfilled for the system through the con-
troller. Now, using the Lyapunov function and eq. (11), its derivative can be obtained.

Plug U1, U2 and U3 into eq. (13), get

Here, two lemmas are introduced as follows [51]:

Lemma 1

If there is a constantt1 > 0, such thatlim
t→t1

||ei|| = 0 and whent ≥ t1, |ei| ≡ 0(i = 1, 2, 3), finite time 
synchronization is implemented.

If there is a positive definite differential function V(t) that satisfies eq. (15):

Where ε and θ are constants, in addition ε > 0, 0 < θ < 1, then the function ∀t satisfies.

and when ∀t ≥ t1,

(11)

⎧
⎪⎨⎪⎩

·
e1 = −ae1 + be2 − y2y3 + x2x3 + u1
·
e2 = de1 + e2 + u2
·
e3 = e1 − e3 + y2

2 − x2
2 + u3

(12)

⎧
⎪⎨⎪⎩

u1 = −k1e1 − k2 sgn
�
e1
���e1��� +

�
y2y3 − x2x3

�
u2 = −k1e2 − k2 sgn

�
e2
���e2��� − (d + b)e1

u3 = −k1e3 − k2 sgn
�
e3
���e3��� +

�
x2

2 − y2
2 − e1

�

(13)

v =
1

2

3∑
i=1

ei
2

·
v = e1

·
e1 + e2

·
e2 + e3

·
e3

= e1
�
−ae1 + be2 − y2y3 + x2x3 + u1

�
+ e2

�
de1 + e2 + u2

�
+ e3

�
e1 − e3 + y2

2 − x2
2 + u3

�
= e1

�
−ae1 + be2 − y2y3 + x2x3

�
+ e2

�
de1 + e2

�
+

e3
�
e1 − e3 + y2

2 − x2
2
�
+ e1u1 + e2u2 + e3u3

(14)

·
v = −ae1

2 + be1e2 − y2y3e1 + x2x3e1+

de1e2 + e2
2 + e1e3 − e3

2 + e3y2
2 − e3x2

2+[
−k1e1

2 + e1y2y3 − e1x2x3 − e1k2 sgn
(
e1
)||e1||�

]
+
[
−k1e2

2 − (d + b)e1e2 − e2k2 sgn
(
e2
)||e2||�

]
+[

−k1e3
2 + x2

2e3 − y2
2e3 − e1e3 − e3k2 sgn

(
e3
)||e3||�

]]

= −(k + a)e1
2 + (1 − k)e2

2 − (1 + k)e3
2−

k2

(||e1||�+1 + ||e2||�+1 + ||e3||�+1
)

(15)
·

V(t) ≤ �V�(t),∀t≥0,V
(
t0
)
≥ 0

(16)V1−�(t) ≤ V1−�
(
t0
)
− �(1 − �)

(
t − t0

)
, t0 ≤ t ≤ t1
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Lemma 2

For any real numbers τ1, …, τn and 0 < α < 1, there are the following inequalities

According to Lemma 1 and 2

then

then

Based on the lemma above, the system can achieve finite synchronization. If constants 
(x1, x2, x3) = (1, 1, 0), (y1, y2, y3) = (35, 20, −1), � =

1

2
 , k1 = 4, k2 =

1

4
 are set, the synchro-

nization time of the system is calculated as t≤21.714 according to eq. (22). It can be 
perceived from Fig. 7 that the error state converges to zero in finite time, so finite time 
synchronization, the driving system (8) and the response system (9), can be achieved.

6  System image encryption

As shown in Fig.  8, the image encryption algorithm is mainly divided into three key 
parts in this paper: generating initial chaotic values related to chosen plaintext and gen-
erating pseudo-random sequences; Local Graph Structure (LGS) algorithm is intention-
ally used to select the region of the explicit image; and then finally, DNA encryption 
and secondary scrambling.

V(t) ≡ 0,

(18)t1 ≤ t0 +
V1−�

(
t0
)

�(1 − �)
.

(19)
n∑
i=1

||�i||�+1 ≥
(

n∑
i=1

||�i||2
) �+1

2

(20)
·
v ≤ −k2

(||e1||�+1 + ||e2||�+1 + ||e3||�+1
)

(21)

(||e1||𝜇+1 + ||e2||𝜇+1 + ||e3||𝜇+1
)
≥

(||e1||2 + ||e2||2 + ||e3||2
) 𝜇+1

2

v̇ ≤ −k2

(||e1||2 + ||e2||2 + ||e3||2
) 𝜇+1

2

≤ −k2(2v)
𝜇+1

2

≤ −2
𝜇+1

2 k2v
𝜇+1

2

(22)
t1 ≤

�
v
�
t0
�� 1−�

2

2
�−1

2 k2(1 − �)
≤

�
1

2

3∑
i=1

ei
2(0)

� 1−�

2

2
�−1

2 k2(1 − �)

(17)
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6.1  LGS selection algorithm

LGS image selection was proposed by Eimad Abdu Abusham [1], and the specific formula 
is as follows:

Where (xd,yd) represents any two adjacent pixel values in the picture. Since more image details 
can be preserved by the algorithm and there are exactly 8 binary sequences. The principle of the 
LGS algorithm is described below. In Fig. 9a, When the pixel value is 125, the consecutiveness 

(23)

⎧⎪⎪⎨⎪⎪⎩

LGS
�
𝜒d, yd

�
=

0∑
k=0

s
�
gd+1+p − gd+p

�
27−p

s(x) =
�
1, x ≥ 0

0, x < 0

p = 7,… , 0

Fig. 7  System finite-time synchronization errors e1, e2, e3

Fig. 8  Image encryption flowchart
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begins along the red arrow path in the upper left corner. As it moves along, if the next value 
is greater than the current value, zero is going to represent it, otherwise one will represent it. 
Finally, a binary sequence is obtained, and it became decimal by converting. In addition, we 
set the threshold for image selection as 128. In the image selection, if last decimal value is 
equivalent or greater than the set value, the initial information of the image is preserved. The 
binary sequence ‘10101011’ is generated at pixel 125 in Fig. 9b. It is converted to decimal to 
171 greater than the threshold of 128 for this article. In this manner, the pixel value for this 
point should be retained. The binary sequence selected by LGS algorithm for pixel value 90 is 
‘00101001’, and the final decimal is 41. Since it is less than 128, zero is set to be the value at 
this point. This manipulation is repeated, resulting in a vivid text image of the selected region.

6.2  Full encryption algorithm

Step1: According to the original image, the plaintext matrix is obtained and then converted 
into the corresponding plaintext sequence.
Step 2: Ode45 algorithm is used to calculate the initial value of the chaotic system and iterate 
the chaotic system. For better randomness, the first 1500 terms were removed, resulting in 
three chaotic sequences{xi, yi, zi}.
Step 3: Because 0–255 is the pixel value of the image, therefore the pseudo-random sequence 
{xi, yi, zi} are converted to 0–255 values. Sequence Zi can be applied in DNA encryption oper-
ations, Ziis converted to 1–3. The expression is shown below.

Where floor() stands for taking the whole function.
Step 4: LGS algorithm and the above formula are used to process the plaintext image, which is 
converted into binary and then into decimal, and a matrix H of M × N is obtained.
Step 5: Eq. (25) determines the formation of H matrix. The matrix contains selected areas and 
unselected areas of the image.

(24)

⎧⎪⎨⎪⎩

Xi = mod
�
f loor

��
50 + a sin

�
xi
�
∕�

�
× 65536

�
, 256

�
Yi = mod

�
f loor

��
50 + a sin

�
yi
�
∕�

�
× 65536

�
, 256

�
Zi = mod

�
f loor

��
50 + a sin

�
zi
�
∕�

�
× 65536

�
, 3
�
+ 1

(25)p(i, j) =

{
H(i, j),H(i, j) ≥ 128

0,H(i, j) < 128

Fig. 9  LGS algorithm selection process
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Step 6: The matrix H is preprocessed with pseudo random sequence Yi, and the two-dimen-
sional matrix E is output. Then, formula (25), (26) and (27) are used to encode the DNA of the 
selected region and sequence Xi.

Where code _ number ≠ code _ number’, but it’s all part of the eight ways DNA codes.
Step 7: Sequence Zi is used for DNA manipulation of selected regions and sequenceXi.

The addition, subtraction, XOR and other operations are determined by sequence Zi in DNA 
encryption. Tables 4, 5, 6, and 7 show the detailed operation rules.
Step 8: Decode according to the decoding number decode _ number.

Where decode _ number also belongs to the eight encoding methods of DNA, butde-
code _ number ≠ code _ number, decode _ number ≠ code _ number’. This step is equivalent to 
encrypting the image for the selected region again.
Step 9: The two-dimensional matrix R of M × N is obtained by transforming the sequence Zi. 
Then perform XOR operations on E3 and the matrix Zi.

Step 10: Finally, the whole image is scrambled without repetition to obtain the encrypted 
image H. For encryption algorithm, its reverse process is decryption algorithm.

(26)E1(i, j) =

{
DNA_code(E(i, j), code_number),P(i, j) ≠ 0

E(i, j),P(i, j) = 0

(27)Xi
�(k) = DNA_code

(
Xi(k), code_number

�

(28)E2(i, j) =

{
DNA_operation

(
E1(i, j),Xi(k),Zi

)
,P(i, j) ≠ 0

E(i, j),P(i, j) = 0

(29)E3(i, j) =

{
DNA_decode

(
E2(i, j), decode_number

)
,P(i, j) ≠ 0

E(i, j), p(i, j) = 0

(30)E4(i, j) = E3(i, j)⊕ R(i, j)

Table 4  DNA coding rules
Base 0 1 2 3 4 5 6 7

A 11 00 00 01 01 10 10 11
C 10 01 10 00 11 00 11 01
G 01 10 01 11 00 11 00 10
T 00 11 11 10 10 01 01 00

Table 5  DNA addition rule + A G C T

A A G C T
G G C T A
C C T A G
T T A G C
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Specific standard 256 × 256 Lena, Baboon and familiar Peppers images are ordinarily 
used in the image encryption experiment. The encrypted image is shown in Fig. 10. Accu-
rately compared with the original image, no image features are invariably found.

Table 6  DNA subtraction rule – A C T G

A A C G T
C C A T G
T T G A C
G G T C A

Table 7  DNA XOR rule XOR A C G T

A G A C T
G A G T C
T C T G A
C T C A G

Fig. 10  Image encryption effect. (a), (d), (g) is the original image. (b), (e), (h) is encryption image. (c), (f), 
i is decrypted image
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7  Image security performance analysis

7.1  Key space analysis

Key space refers to the set of all legitimate keys. When the key space is large enough, 
exhaustive attack can be effectively resisted. Generally speaking, when the key space is 
larger than  2100, the security and adequate reliability of the encryption system will be guar-
anteed [61]. In this encryption system, the private key is the initial value of the hypercha-
otic system (X0, Y0, Z0), and the size for the calculated key space is 2 × 1060, which is far 
larger than the above requirements.

7.2  Sensitivity analysis

Whether the encryption algorithm is sensitive to the key is also one of the good perfor-
mances. According to the encryption algorithm in this paper, the key parameter is 
(X0, Y0, Z0). On the premise of keeping two of them unchanged, the original image can be 
decrypted when Y0 becomes Y0 + 10−16. But when Y0 changes to Y0 + 10−15 and is denoted as 
Y0

’, the plaintext image cannot be decrypted. In the same way, when Z0 becomes Z0 + 10−15, 
is called Z0

’, the original image can’t be decrypted. The results are presented Fig. 11, and 
similar results occur when the remaining key parameters are tested. The consequences show 
that the proposed image encryption algorithm includes extraordinary key sensitivity.

7.3  Image histogram analysis

It is a dominant statistical feature for the image. The histogram of the plaintext image 
is evenly undistributed, which shows the statistical features of the pixel. On the direct 
contrary, the histogram distribution of ciphertext image is more uniform. Figure 12 of 
this system also conforms to the above characteristics.

7.4  Correlation coefficient calculation and analysis

Correlation between images is equally significant for encryption algorithms. Principally, 
plaintext image has strong correlation between adjacent pixels in horizontal, vertical, and 
diagonal directions, while ciphertext image should have no correlation between adjacent 
pixels. The calculation formula remain as follows.

Fig. 11  Images decrypted with the wrong key and the right key respectively. (a) Decryption image of error 
key Y0

’, (b) Decryption image of error keyZ0
’. (c) Decryption image of the correct key
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Where Uand V stand for the values of any two adjacent pixels, E(U) and D(U)show the 
expectation and variance respectively. The previous Lena images before and after encryp-
tion are selected for correlation coefficient calculation, and the correlation coefficient dia-
gram of the images before and after encryption is shown in Fig. 13. The plaintext images 
provide obvious correlation, while the corresponding ciphertext images are evenly distrib-
uted. The correlation coefficients of the image in horizontal, vertical, and diagonal direc-
tions before and after encryption were calculated. As shown in Table 8, the archetypal image 

(31)

⎧⎪⎪⎨⎪⎪⎩

� =
cov(u,v)√
D(u)

√
D(v)

cov(u, v) =
1

N

∑N

i=1

�
ui − E(u)

��
vi − E(v)

�
D(u) =

1

N

∑N

i=1

�
ui − E(u)

�2
E(u) =

1

N

∑N

i=1

�
ui
�

Fig. 12  Histogram of image. (a) Raw Lena image, (b) Encrypted Lena image

Fig. 13  Correlation coefficient of image. (a) Plaintext horizontal, (b) Plaintext vertical direction, (c) Plaintext 
is diagonal, (d) Clear opposition to angular direction, (e) Ciphertext horizontal direction, (f) Ciphertext vertical 
direction, (g) The ciphertext is in the diagonal direction, (h) Ciphertext is opposed to angular direction
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has a strong correlation close to one in three directions, while the corresponding ciphertext 
image has uniformly distributed pixels and its correlation coefficient is close to zero.

7.5  Difference analysis

A secure image encryption algorithm is exceptionally sensitive to any minor change in 
the plaintext image. That is, any change in a single pixel of the plaintext image will 
produce a completely different ciphertext image. Broadly, the sensitivity of encryp-
tion algorithm to plaintext information is measured by two indexes: pixel change rate 
(NPCR) and average change intensity of normalized pixel value (UACI). The calcula-
tion formula of NPCR and UACI is described as follows:

Where, C(i, j) and C(i, j) respectively represent the pixel gray values of the two ciphertext 
images at coordinates (i, j); M and N represent the height and width of the image, respec-
tively. D(i, j) is defined as follows: if C(i, j) = C(i, j), D(i, j) = 1; Otherwise, D(i, j) = 0.

The ciphertext image can be obtained by encrypting the image with the key in the 
algorithm. Subsequently arbitrarily select a pixel in the plaintext image, change its pixel 
value and get a new plaintext image. The similar key is used to encrypt the changed 
plaintext image to obtain another ciphertext image. According to eq. (32) and eq. (33), a 
set of NPCR and UACI values can be obtained by calculating the above two ciphertext 
images, and the results are shown in Table  9. After performing the previous method 
several times, the average value of NPCR and UACI can be obtained. The outstand-
ing value of NPCR and UACI obtained by using the proposed algorithm is 99.62% and 
33.43%, which is very close to the ideal expected value of NPCR and UACI.

7.6  Robustness analysis

Robustness analysis is the most essential criterion to measure the anti-interference capability 
of an encryption algorithm. In this paper, Lena image is selected for experimental analysis, and  

(32)NPCR =
1

M × N

M∑
i=1

N∑
j=1

D(i, j) × 100%

(33)UACI =
1

M × N

M∑
i=1

N∑
j=1

∣ C�(i, j) − C(i, j) ∣

255
× 100%

Table 8  Correlation coefficient comparison

algorithm horizontal vertical Positive diagonal Negative diagonal

Lena image 0.98691 0.96872 0.96065 0.97033
Text encrypted image 0.00131 0.00075 0.00146 −0.00117
The literature of [43] 0.01511 0.00101 0.00403 −0.00124
The literature of [3] 0.00190 0.00180 0.00340 −0.00121
The literature of [33] 0.01022 0.02141 0.00562 −0.00132
The literature of [38] 0.00120 0.01530 0.00450 −0.00122
The literature of [41] 0.00270 0.01520 0.00711 −0.00181
The literature of [18] 0.00291 0.00412 0.00190 −0.00194
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noise attack and shear attack are used to test the robustness of the algorithm. 0.2 time 
and 0.05 time of salt and pepper noise were applied to the encrypted image respec-
tively, and the decrypted image was shown in Fig.  14b and d. The decryption results 
of one-eighth and one-fourth encrypted images are shown in Fig. 14f and h. Compared 
with the experimental consequences, the encryption algorithm in this paper can still 
recover most of the original image information. It shows the algorithm can resist noise 
and shear attacks to a certain extent and has good robustness.

7.7  The information entropy

The uncertainty of image is usually known by information entropy. The greater the 
entropy of information, the more information, the less visual information. The calcula-
tion formula of information entropy is as follows.

Where,  2n shows all states for the pixel value in the image, and p(si) is the possibility of the 
pixel value in the whole image. If there are  2n states of information, the entropy of information 
is n. For a standard image with 256 states, 8 would be ideal for its entropy of information. The 
encrypted image entropy of the system is 7.9986, which is very close to the theoretical value 8.

(34)H = −
∑2n−1

i=0
p
(
si
)
log2p

(
si
)

Table 9  NPCR and UACI test 
results

algorithm NPCR UACI

Proposed 99.6220 33.4359
The literature of [23] 99.5991 33.4650
The literature of [13] 99.5956 33.3900
The literature of [26] 94.2800 34.2700
The literature of [56] 99.6074 33.4570

Fig. 14  Robustness analysis of image. (a) Apply 0.2 times salt and pepper noise, (b) Decrypted image, (c) 
Apply 0.05 times salt and pepper noise, (d) Decrypted image, (e) Crop 1/8 of the encrypted image, (f) 
Decrypted image, (g) Crop a quarter of the encrypted image, (h) Decrypted image
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7.8  Comparison of different algorithms

To compare the performance of different literature algorithms, Table 8 shows the comparison 
of correlation coefficients of different literature algorithms. After comparison, it is discovered 
that the correlation coefficient of this algorithm is better than that of most literature algo-
rithms. Table 9 shows the comparison of the results of NPCR and UACI. The NPCR of this 
algorithm is the highest and the value of UACI is only lower than the UACI of the literature 
[23, 56]. The information entropy of this algorithm is the highest after comparing the infor-
mation entropy of other literature in Table 10. Therefore, the algorithm in this paper boasts an 
intense comprehensive performance compared with other algorithms in the literature.

8  Conclusion

In this paper, a current hyperchaotic system of third order non-autonomous is constructed. 
The dynamic behavior of the system is analyzed by the spatial phase diagram, bifurcation 
diagram, Lyapunov exponential spectrum, Poincare cross section diagram and complex-
ity. It is uncovered that the system has abundant dynamic behaviors and good topologi-
cal structure. In addition, the system additionally accepts the extraordinary circumstances 
which asymmetrical double wing is converted to single wing, but it is affected by changes 
in system initialization and system parameters. When analyzing the influence of nonlinear 
term c, we observe several phenomena of chaotic attractors. For instance, from chaos to 
chaos, or from chaos to period. And tested the C0 and SE complexity of the system with 
different initial values and parameters. Compared with the complexity of other systems, 
the complexity of this system is relatively high. Furthermore, the system circuit is designed 
and verified in Multisim circuit simulation software. At the same instant, finite time syn-
chronization of the system is achieved by selecting the appropriate controller. Moreover, 
a new image encryption algorithm is designed based on the system, DNA encryption and 
LGS image selection. By comparing it with most of the other algorithms, this one can 
select and encrypt each region of the image accurately. At the last moment, the security 
performance of encrypted image is analyzed, and it is found that it has good encryption 
effect and can be widely used in the field of image encryption in the future. In future work, 
we plan to apply the hyperbolic sine function to this hyperchaotic system. In the circuit 
design of the novel chaotic system, the circuit structure is optimized, and some circuit ele-
ments are reduced. In addition, it is expected that the system can be successfully applied to 
the field of signal detection.

Table 10  Information entropy 
comparison

algorithm The information entropy

Lena image 7.0211
Text encrypted image 7.9986
The literature of [61] 7.9979
The literature of [43] 7.9983
The literature of [41] 7.9973
The literature of [49] 7.9860
The literature of [30] 7.9970
The literature of [24] 7.9978
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