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Optimized multi-scale affine shape registration based
on an unsupervised Bayesian classification

Khaoula Sakrani1 · Sinda Elghoul1 · Faouzi Ghorbel1

Abstract
Here, we intend to introduce an efficient, robust curve alignment algorithm with respect
to the group of special affine transformations of the plane denoted by SA(2,R). Such a
group of transformations is known to be well model the pose of 3D scene when objects
are far from the visual sensor relatively to their seizes. Its numerical robustness lies in
its multi-scale approach and its precision comes from the automatic and unsupervised
Bayesian selection of the efficient scales in the sens of L2 metric. In this work, We prove its
high alignment performance on the most studied image databases such as MPEG-7, MCD,
Kimia-99, Kimia216, ETH-80, and the Swedish leaf experimentally. The unsupervised
Bayesian classification is based on the well-known multiclass Expectation-Maximization
algorithm.

Keywords Affine transformations · A normalised affine arc-length parametrization · ACM
Algorithm · Multi-scale registrations · Multiclass Expectation Maximisation
(Multiclass-EM) · Unsupervised bayesian classification

1 Introduction

The shape registration process is a fundamental computer vision task with broad applica-
tions in many fields, including robot navigation [82], medical image matching [31], face
recognition [22, 81], Remote Sensing [85], large-scale 3D reconstruction and object track-
ing [41, 95]. Image registration is the alignment process of two or more images of the
same object captured at different times, from different perspectives, or by different imag-
ing machines. As input for the alignment, a reference image (fixed image) and another one
named the target used for the transformation estimation. Mathematically, the shape reg-
istration is to determine the optimal spatial geometric transformations that yield the best
alignment between these two inputs.
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Several registration algorithms were operated to determine the Euclidean transformation,
also known as E(2), presented by a rotation followed by a translation. However, to recon-
struct a three-dimensional object from two of its projections, the transformation assembling
them is frequently modeled by a planar homography [20]. Unfortunately, planar Equi-
projective re-parametrization curves are required for the matching of curves up to a planar
homography, which necessitates at least five numerical derivations [80]. This causes approx-
imation errors equal to the value order of the quantities to estimate. For which, replacing
the homography with the associated affine transformation is frequently proposed.

Consequently, if the object is planar and sufficiently distant from the camera, the pose
can be approximated by a 2D special affine transformation SA(2,R) [11]. In this context, the
ACMA (Affine CurveMatching Algorithm) is developed to estimate the special affine trans-
formation to align 2D shapes [19]. To improve the robustness of this method’s numerical
approximations, we involve adding the multi-scale notion to the ACMAlgorithm. However,
we notice that most of the works have chosen the scale number empirically, which can cause
information loss at a certain level of smoothing. Furthermore, in [64], we suggest apply-
ing the Binary Expectation Maximisation (Binary-EM) [14], which is a statistical method
to adjust this choice. However, despite the improvement obtained through this adjustment
process, the choice of the number of scales is still vast, and the execution time can still be
improved.

This work aims to present a new Affine Multi-Scale Curve Registration (AMSCR) based
on an unsupervised Bayesian classification. This method has two input curves (source
image, target image) normalized sequentially with affine arc-length parametrization and
smoothed. Then, we use the K-means and Elbow method to automate choosing the optimal
class number. After that, we apply Multiclass-EM as a robust probability density estimator
to find the best scales. Finally, the alignment process is still done by the ACM Algorithm.
The AMSCR based on an unsupervised Bayesian classification enhances the registration
process’s complexity and performance.

The rest of the paper is structured as follows: Section 2 introduces the related work
to our approach. Then, we recall the affine curve matching algorithm representing the
affine arc length reparametrization and the pseudo-inverse matrix calculation in Section 3.
Section 4 presents the Optimized Affine Multi-Scale Curve Registration (AMSCR) based
on unsupervised Bayesian classification. In Section 6, we evaluate the accuracy of the pro-
posed approaches in the task of shape retrieval using MPEG-7, MCD, Kimia-99, Kimia216,
ETH-80, and the Swedish leaf database. Finally, the conclusion is presented in the end
section.

2 Related work

Before delving into the specific details of our approach to shape registration, we will take a
quick look at what’s already out there. Shape matching is a topic that has received consider-
able attention in the scientific community. Indeed, there are numerous approaches related to
Euclidean transformations. For example, in [27], the researchers suggest a new technique for
rigid motion estimation based on Nyquist–Shannon theorem and B-spline approximation.
In [35], they use the alignment criterion, Mutual Information (MI), to obtain the optimal
transformation parameters, which defines a theoretical measure of the statistical dependen-
cies between inputs. Another method for shape registration is named shape context invented
by Belongie et al. [4]. The authors in [45] introduce an inner-distance shape context (IDSC)
which is the shortest path between two feature points. In addition, Kang et al. [37] present
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a global registration technique based on a graph for constructing a 2D mosaic from a col-
lection of images. The graph represents temporal and spatial connectivity and demonstrates
that the constructed graph can obtain the global registration by searching for an optimal
path. [59] propose an approach based on Dynamic Programming (DP) for motion estima-
tion where this method handles occluded, noisy, and distorted shapes. Additionally, in [66],
the Analytical Fourier-Mellin Transform (AFMT) is adopted to define a complete family of
invariant descriptors under any planar similarity. The researchers in [33] combine multiscale
description and distance metrics in order to develop global descriptors MDM (multiscale
distance matrix). This technique helps to obtain high efficiency and effectiveness in plant
leaf retrieval. Shu et al. [69] suggested the multi-scale contour flexibility shape signature,
which is a shape descriptor. It represents, however, the deformation characteristics of the
2D shape profile. Moreover, [60] introduce a non-rigid registration method in which motion
estimation is cast into a feature matching problem using Graph Wavelets within the Log-
Demons framework. In [91] present a new descriptor for non-rigid 2D shape matching based
on Triangular Centroid Distances (TCDs). This method treats the occluded shape match-
ing issue. Yang et al. [89] invent an approach named the invariant multi-scale descriptor for
shape alignment. The DIR (distance interior ratio) is presented in [38] as a shape signature
which is the intersection of line segments with the curve and a histogram alignment method.
Yang and Yu [86] develop for shape identification a new method named multiscale Fourier
descriptor based on triangular features. Benkhlifa et al. [5] introduce a new method called
Generalized Curvature Scale Space (GCSS) to improve the almost complete property. In [1]
Adamek et al. present a multi-scale convexity and concavity method for shape matching. A
two-dimensional matrix represents the contour convexities and concavities at different scale
levels. Wang and Gao [78] develop a method named Hierarchical String Cuts (HSCs) to sat-
isfy the curve matching process. In [96] they build a descriptor named a weighted Fourier
and wavelet-like descriptor based on inner distance shape context (IDSC-wFW) for shape
matching. They followed these steps to implement the previously mentioned descriptor; the
first step was rewriting the shape histograms of IDSC descriptors, changing the histogram
of a point to the histogram of a field, and setting the field’s histogram as a one-dimensional
signal. Then transform this one-dimensional signal using a Fourier transform and a Haar
wavelet. Finally, the results of the two transforms are linearly combined to form a new
descriptor. Furthermore, in [97] the researchers present a new MultiScale Fourier Descrip-
tor using Group Features (MSFDGF). Then, they use this descriptor and Shape Histograms
to construct a global descriptor MSFDGF-SH. These prior approaches are only applicable
to shapes up to a Euclidean or similarity transform. In practice, however, a camera cap-
tures the contour in an arbitrary orientation that certain geometric transformations may have
distorted. As mentioned in [44], the affine transformation can simplify and approximate
this distortion. Consequently, several methods for constructing representations of invariant
objects under affine transformation have been developed. In [83] introduce a hybrid shape
descriptor combining three invariants: area invariant, arc length invariant, and central dis-
tance invariant. Due to these three invariants, the description becomes representative and
discriminative. Moreover, Cyganski et al. [12] propose a method for the affine transforma-
tion, where each contour is transformed to its affine invariant parametrization. Then, the
over-determined system minimizes the Euclidean distance between two objects. Cyganski
et al. [11] use the linear signal space decomposition technique for shape correspondence.
In [3] they propose to use the oriented elliptical Gaussian neighborhoods to find the best
correspondence between two curves from images. Pauwels et al. [58], Moons et al. [53]
use the semi- differential invariant to develop affine invariant descriptions to estimate the
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affine transformations. Gope et al. [29] introduce a method for affine shape matching using
the area of mismatch, where this area is gated by aligning the curves optimally based on
the minimum affine distance involving their specific points. The authors in [57] use The
Hu invariant moment to describe a technique for affine global curves matching. Moreover,
in [32] they use the Hungarian method and dynamic programming for points matching
between two curves. Elghoul and Ghorbel [20] develop a fast approach for 2D special affine
transformation based on a complete and stable descriptor. In [54] the researchers suggest an
extended Scale-Invariant Feature Transform SIFT algorithm named Affine SIFT (ASIFT)
for affine invariant matching. Kovalsky et al. [40] propose a technique for estimating the
geometric and radiometric transformations for two objects. Bryner et al. [7] develop a novel
framework for affine invariance based on Riemannian geometry. Afterward, they propose in
[8] a Bayesian active contour with affine invariance. For the affine n-space curve, Liu [46]
defines centro-affine invariant arc length and curvature functions. In [62] authors present
the affine invariant pseudo-metric for surfaces.

There is also a large body of research work for iterative approaches proposed to improve
the performance of point set registration. One of the most widely used point set matching
algorithms is Iterative Closest Point (ICP) [6, 63]. In [61] the authors develop a multiview
registration method for aligning a large data set. Also, in [48] the researchers propose an
iterative method to estimate the transformation between two-point sets. First, they use a
feature descriptor such as shape context to establish correspondence. Then the geometric
transformation is done using a robust estimator L 2E. The Expectation-Maximization (EM)
algorithm is an iterative, statistical, and probabilistic technique used to estimate the trans-
formation between two-point sets. For this, Jian et al. [36] propose a framework for the rigid
and non-rigid point sets registration problems. First, they describe the two input point sets
using Gaussian mixture models. Then they align these two obtained Gaussian mixtures. In
[56], Myronenko and Song suggest a probabilistic algorithm for rigid and non-rigid point
sets registration named Coherent Point Drift (CPD). Moreover, [30] propose Multi-scale
EM-ICP for an iterative point set mapping. Similarly, in [9] They use mixture models to
represent the registration problem as maximum likelihood or Bayesian maximum a poste-
riori estimation problems. For this reason, they develop an EM-like technique to estimate
transformations between the two mixture models. Chui et al. [10] model a feature-based
registration algorithm called TPS–RPM (Thin-plate splines (TPS), Robust point matching
(RPM)) to determine the correspondence between non-rigid point sets. Wang and Chen
[77] propose fuzzy correspondences guided Gaussian mixture model for matching. In [47]
the authors propose a novel technique that combines the shape context and Expectation-
Maximization (EM) method to determine the geometric transformation parameters. Yang et
al. [92] use a popular probability model, which is the Gaussian mixture model, to preserve
the global structure of the point set. And they use the expectation-maximization algorithm
to update model parameters. Lastly, Matuk et al. [51] build a Bayesian framework for shape
alignment and transformation estimation.

3 Recall of affine curvematching algorithm

The affine curve matching algorithm (ACMA) [20] is a partial 2D affine curve alignment
method based on a pseudo-inverse calculation. In the following part, we will recall the
main steps of this technique. Starting with the shape normalization, which is done by the
affine arc length re-parametrization [72] where enough points represent the input curves.
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The number of result equations is higher than the unknown variables. Then, the computation
of the pseudo-inversive matrix that allows the minimization of L2 distance and obtains an
affine part-to-part registration curve.

3.1 Affine arc length re-parametrization

Generally, curves extracted from the different images of the same object are parameterized
differently. Thus, to compare these two curves, they must have the same parametriza-
tion (same speed). It is obvious that a curve can be represented with several different
parametrizations: For example, the ellipse can be represented by the two following
parametrizations;

f1(t) = (x1 = a cos t; y1 = b sin t)t∈[0,2π]
f2(t) = (x2(u) = a cos logU ; y2(u) = b sin logU)U∈[1,e2π ] (1)

with a , b positive real number, these two parametrizations describe the same ellipse curve
(a and b are the minor axis and the major axis respectively). Therefore, we re-sample the
contours with the normalized affine arc length function l(t) defined by [12]:

l(t) = 1

L

∫ t

0
‖ det(ḟ (u), f̈ (u))‖ 1

3 du (2)

Let denote f (t) as the original parametrization of one of the two curves. L the affine totale
length of the curve. det represents the determinant operator. ḟ and f̈ are respectively the
first and second derivatives of f . Then, the relationship obtained between the two curves f

and h after the normalization step is defined by:

h(l) = Af (l + l0) + B (3)

It is well known that simple planar curves can be classified into open and closed ones. In the
first case, the starting point can be chosen from one of the two curve extremities. By fixing
a given orientation in the plane, l0 defined in the formula (2) can be reduced to 0. For the
second case, the curvature functions of each closed curve are estimated after maximization
of the correlation between curvatures; it also becomes possible to make for l0 the zero value.
Therefore, we will use the following relation:

h(l) = Af (l) + B (4)

In Fig. 1, there are some examples of affine arc length re-parametrization with N= 100. The
condition to find the best number of normalization points is studied in [21]. So we based
the sampling choice on that work.

Fig. 1 Examples of affine arc length re-parametrization with N = 100
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3.2 Recall of pseudo-inverse Affinematrix calculation

To estimate the apparent movement bettween curves we calculate the pair A and B wehere
A the special linear transformation and B the translation vector. The re-sampling of two
curves by the normalized affine arc length provides 2N equations and 6 unknown variables
to the following rectangular system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hx(l1) = f x(l1)a11 + f y(l1)a12 + Bx

hy(l1) = f x(l1)a21 + f y(l1)a22 + By

....
hx(lN ) = f x(lN )a11 + f y(lN )a12 + Bx

hy(lN ) = f x(lN )a21 + f y(lN )a22 + By

(5)

with f x(la), f
y(la) and hx(la), h

y(la) (a=1..N) are the two re-sampling cures related to the
input shapes f (t) and h(t ′), A = (aij )i,j=1,2 and B = (Bx, By). We attempt to minimize
the error between these two shapes, by calculating the pair A and B using:

min
(A,B)

= ‖Af (la) + B − h (la)‖2 ≈ e (6)

The system (3) can be written in matrix notation as follows:

H = DU (7)

Where: H = [
hlx1

h
y
l1
hx

l2
h

y
l2
...hx

lN
h

y
lN

]
; U = [a11a12a21a22BxBy]t and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f x(l1) f y(l1) 0 0 1 0
0 0 f x(l1) f y(l1) 0 1

f x(l2) f y(l2) 0 0 1 0
0 0 f x(l2) f y(l2) 0 1
. . . . . .

f x(lN ) f y(lN ) 0 0 1 0
0 0 f x(lN ) f y(lN ) 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

This rectangular system can be solved by the pseudo-inverse calculation of the matrix D.
The following formula determines the unknown vector U .

U = (DtD)−1DtH (9)

4 Optimized AMSCR based on unsupervised Bayesian classification

We noticed in [64] that we solved the problem of levels’ choice by developing the adjusted
AMSCR method using Binary-EM. In contrast, this method has a high computational cost,
incredibly time-consuming. For this reason, we create an efficient unsupervised Bayesian
approach to select the optimized smoothing levels by applying Multiclass-EM. For the
choice of the Multiclass-EM class, we use the K-means and Elbow method to automate
this choice (class number). This unsupervised 2D shape registration technique is developed
according to the shape complexity. As a result, we obtain a shorter equation system that
minimizes the errors. Figure 2 summarizes its workflow. Furthermore, this pipeline intro-
duces how we choose the optimal scales using the Affine Multi-scale Curve Registration
(AMSCR) based on unsupervised Bayesian classification. This method is divided into two
parts; the first one presents the AMSCR process where it has as input pairs of source and
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Fig. 2 AMSCR based on unsupervised Bayesian classification

target 2D shapes, and the output is a vector S = {minL2
σi (1≤i≤p)

}. However, the second part
presents the unsupervised Bayesian classification process.

4.1 Part A: AMSCR process

The affine Multi-Scale Curve Registration (AMSCR) procedure is summarized in the
following steps.

• A-1: re-sampling each input shape f and h with affine arc-length parameterization.
• A-2: filter each component of the two re-sampling curves f x

σk
, f y

σk
and hx

σk
, hy

σk
with a

Gaussian function gσk
at different levels of the scale (σk)(1≤k≤p). Where p represents

the number of smoothing levels. Hence, the resulting components related to the curve
fσk

is represented by:

f x
σ (l, σ ) = f x ∗ g(l, σ ) f y

σ (l, σ ) = f y ∗ g(l, σ ) (10)

g(l, σk) = 1

2πσ 2
k

e−(
l2

)
/2σ 2

k (11)

With ∗ denoting the convolution operation. The same process is adopted for the second
curve hσk

.
• A-3: the retrieved p systems at each level (σk)(1≤k≤p) formed by the following 2N

linear equations.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hσ1(l1) = Âσ1fσ1(l1) + B̂σ1

hσ1(l2) = Âσ1fσ1(l2) + B̂σ1

...
hσ1(lN−1) = Âσ1fσ1(lN−1) + B̂σ1

hσ1(lN ) = Âσ1fσ1(lN ) + B̂σ1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hσ2(l1) = Âσ2fσ2(l1) + B̂σ2

hσ2(l2) = Âσ2fσ2(l2) + B̂σ2

...
hσ2(lN−1) = Âσ2fσ2(lN−1) + B̂σ2

hσ2(lN ) = Âσ2fσ2(lN ) + B̂σ2

...

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hσp (l1) = Âσpfσp (l1) + B̂σp

hσp (l2) = Âσpfσp (l2) + B̂σp

...
hσp (lN−1) = Âσpfσp (lN−1) + B̂σp

hσp (lN ) = Âσpfσp (lN ) + B̂σp

(12)
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Fig. 3 Pipeline of Step 4,5

• A-4: by applying the ACM Algorithm [21] to each system indexed by k, we obtain the
pair Âσk

and B̂σk
, which are the elements of Special Affine group SA(2, R).

• A-5: we use the pair Âσk
and B̂σk

to compute the L2 distance (Euclidean distance)
between the normalized input shape (source and target curves in step 1), then we obtain
a vector where it storge all σk and the corresponding L2

σk
, which is denoted by:

L2
σk

= min
(Âσk

,B̂σk
)

=
∥∥∥Âσk

f (la) + B̂σk
− h (la)

∥∥∥2 ≈ e (13)

The workflow of Steps 4,5 is depicted in comprehensive detail in Fig. 3.

Figure 4 illustrates the acquired set S of distances with a minimum value of minL2
σk
. For

each different shape, each subfigure represents the minimum minL2
σk

that can be achieved
depending on the value of σk . However, when we smooth the normalized input contours
using a Gaussian kernel with an increasing standard deviation, the shape starts to lose infor-
mation at a certain level (becomes an ellipse). This leads us to select the sigma that has a
smaller minL2

σk
distances.

4.2 Part B: unsupervised Bayesian classification

Part B describes the process of unsupervised Bayesian classification to choose the optimal
scale levels for the registration. In the following, we detail each step separately.
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Fig. 4 minL2
σk

distance variation depending on σk

Algorithm 1 K-means.

• B-1: Applying K-means: It is commonly known that the K-means algorithm [49]
requires a large initial set to start clustering. As a result, the K-means approach is pre-
ferred for many clustering tasks, especially those involving small datasets. On the other
hand, the unsupervised clustering process of K-Means needs fewer iterations and is
therefore quicker. In addition, the k-means algorithm has undergone several changes to
increase its performance. Algorithm 1 implements K-means unsupervised clustering.

Calculating the SSE distance:
The Sum of Squared Errors (SSE) is the sum of the average Euclidean Distance of

each point from the centroid.

SSE =
n∑

i=1

d2 (14)

d: is the distance between the data and the cluster center
• B-2: Visualization of the Elbow graph: The elbow method [74] is presented to explain

and evaluate the consistency of clustering analysis to assist in choosing the correct
number of clusters that should be present in the data set. This technique is referred to as
an optimal clustering technique. In order to initiate the Binary-EM, we have decided to
use this illustrated method in order to find the ideal amount of classes to use. Figure 5
demonstrates the use of the Elbow method in the Brid class of shapes.

• B-3: Choosing the best classes ‘K’: The graph is used to determine the class number.
A class is actually represented by each Elbow. The optimal K class number is then the
graph-derived number.
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Fig. 5 Example of Elbow method visualization for Brid class of shapes

• B-4: Applying the Multiclass-EM: The algorithm employs an iterative process to deter-
mine the probability distribution parameters with the highest likelihood of its attributes.
We use EM based on Gaussian mixture models (GMM) for this approach.

– The input parameters of Multiclass-EM are the set S of all values of
{minL2

σi (1≤i≤p)
}.

– K is the number of clusters estimated by the Elbowmethod. (optimally chosen
from Elbow plot)

– The output is presented in Fig. 6.

• B-5: Bayes Classification: The new threshold s0 is deduced after the applica-
tion of the Bayesian rule, as shown in Fig. 6. Thus we obtain S∗ = {σk =
argminL2

σk(1≤k≤p)/L
2
σk

≤ s0}, let denoted q = Card(S∗).

• B-6: we select only the scale levels belonging to S∗, which we are denoted by σj(1≤j≤q)
.

• B-7: The registration is done with our new approach Affine Multi-scale Curve
Registration (AMSCR) based on unsupervised Bayesian classification.

The procedure of our Affine Multi-scale Curve Registration (AMSCR) based on
unsupervised Bayesian classification is described in Algorithm 2.
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Fig. 6 Calculate the new threshold s′
0 using Bayesian Rule

Algorithm 2 AMSCR based on unsupervised Bayesian classification.

Figure 7 presents a comparison of the resulting registration using different approaches.
Hence, in the first column, the registration is done by the Affine Multi-scale Curve Regis-
tration (AMSCR) [64], in the second column, the alignment is achieved using the adjusted
Affine Multi-scale Curve Registration (AMSCR) with Binary-EM [64]. Finally, we use
the optimized AMSCR based on Multiclass-EM to do the registration in the third one. As
we constat, the optimized AMSCR algorithm Multiclass-EM gives us the best alignment
compared to the two other registered shapes.

5 Experiments

The proposed method is tested on well-known datasets such as MPEG-7, Multiview Curve
Dataset (MCD), Kimia-99, Kimia-216, ETH-80, and the Swedish leaf dataset. So, we test
the performance of the optimized AMSCR based on unsupervised Bayesian Classification.
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Fig. 7 a,d,g,j: registration using AMSCR method [64]; b,e,h,k: registration using AMSCR with Binary-EM
[64]; c,f,i,l: registration using AMSCR optimized with Multiclass-EM

The comparison is made to the existing shape alignment methods in the stat-of-art. The
outcomes of the various methods for these datasets are derived from their respective articles.
Furthermore, the evaluation is conducted under the same conditions as the other methods.
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MATLABwas used to implement the entire algorithm. And for the resampling conditioning,
we use the parameterization according to the study done in [19].

Fig. 8 MPEG7 Dataset
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5.1 MPEG-7 Image database retrieval

The MPEG-7 shape database [42] is divided into two categories based on shape variations:
Set-A and Set-B. The MPEG-7 set-A contains rigid objects with some transformations such
as rotations or scale invariance, defined by 840 shapes from 140 classes. The MPEG-7
set-B, represented by 1400 shapes classified into 70 classes, is used for similarity-based
retrieval and shape descriptor robustness under various arbitrary shape distortions. Set-B
is divided into two parts, Set-B1 and Set-B2, for articulations and missing or altered con-
tour portions, respectively. Figure 8 depicts some examples from each category. To put the
proposed approaches to the test in the shape retrieval task, we compute the bull’s eye rates
defined in [4, 78, 91]. The first step is to compare each curve to the whole dataset curves
and recover the number of the same class contour in the middle of the 2Nc most similar,
with Nc being the sample number per class. Then, we calculate the ratio of the number of
correct results and the highest possible number of right results [24].

Table 1 covers the Bull’s Eye scores of the proposed algorithms with the existing meth-
ods. We note that the ACM algorithm [21] 91.55% outperformed the other registration
methods proposed in the literature in terms of bull’s eye score, such as Fast and non-rigid
global registration [20] 82.42%, Multiscale Fourier descriptor [86] 83.94%, AICD [24]
84.26%, MSFDGF-SH [97] 87.76%, IDSC + AspectNorm + SR [73] 88.39%, Invariant
multi-scale [84] 91.25% and IMTF [87] 91.26%. Whereas, IDSC + LCDP [88] 93.32%,
IDSC + Affine Normlization [28] 93.67%, and Invariant multi-scale + LP [84] 94.51%
achieve a high retrival performance scores compared to the ACM algorithm. For this,

Table 1 Retrieval results on the
entire MPEG-7 set B dataset Algorithm Bull’s eye score

Multi-scale contour flexibility shape signature [69] 67.57%

Shape Contexts [4] 76.51%

GCSS [5] 78.84%

SMR by data-driven EM [76] 80.03%

Affine CSS [52] 81.12%

CSS-SW [50] 81.33%

Fast and non-rigid global registration [20] 82.42%

AICD [24] 84.26%

Multiscale Representation [1] 84.93%

IDSC + AspectNorm + SR [73] 88.39%

Multiscale Fourier descriptor [86] 83.94%

MSFDGF-SH [97] 87.76%

Invariant multi-scale [84] 91.25%

IMTF [87] 91.26%

ACMA[19] 91.55%

IDSC + LCDP [88] 93.32%

AMSCR [64] 93.61%

IDSC + Affine Normlization [28] 93.67%

AMSCR using Binary-EM [64] 94.36%

AMSCR based on Multiclass-EM 94.49%

Invariant multi-scale + LP [84] 94.51%
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Fig. 9 Different shape images from the MCD dataset, two images from each class

we implemented several steps to enhance these results in this paper, starting with Affine
Multi-Scale Curve Registration (AMSCR), which improves the ACMA bull’s eye score

Table 2 Retrieval results on the
entire MCD dataset Methods Average

Arber [2] 41%

SC [55] 56.29%

Huang [34] 71%

Rube [16] 79%

Mai [50] 89%

Fast and non-rigid global registration [20] 92.8%

ACMA [19] 94%

Partial Contour Matching Based on ACSS [21] 95.98%

AMSCR [64] 96.36%

AMSCR with Binary-EM [64] 96.58%

AMSCR with Multiclass-EM 96.61%
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by 2.06%. Then, the result becomes even better when we adjusted the Affine Multi-Scale
Curve Registration (AMSCR) with Binary-EM, which improves the AMSCR algorithm
score by 0.75%. Moreover, when we optimize the proposed AMSCR with Multiclass-EM,
the results become more competitive, where this one outperformed AMSCR with Binary-
EM by 0.12%. On the other hand, the method Invariant multi-scale + LP [84] remains more
efficient then our suggested AMSCR with Multiclass-EM by 0.03%.

5.2 MCD image database retrieval

Shape registration is one of the most significant applications of the algorithm proposed.
Thus, we are going to test the Affine Multi-Scale Curve Registration (AMSCR) [64] and the
optimized AMSCR based on Multiclass-EM on the Multiview Curve Dataset (MCD) [98]
which is composed of 40 shape classes taken from the MPEG-7 database. Each category
contains 14 sample curves that match the distortion of the original curve from a differ-
ent perspective Fig. 9. Table 2 compares our proposed methods and some existing work in
state-of-the-art. First, we noticed that the Affine Multi-Scale Curve Registration (AMSCR)

Fig. 10 Computation of the Euclidian Distance between two shapes: the blue curve represents theL2 distance
using the adjusted AMSCRwith Binary-EM. The red one describes the sameL2 using the optimized AMSCR
based on Multiclass-EM
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96.36% exceeds the other registration techniques such as the methods Partial Contour
Matching Based on ACSS [52] 95.98%, ACMA [19] 94%, Fast and non-rigid global regis-
tration [20] 92.8%, Mai [50] 89% and Rube [16] 79%. Then the result becomes better when
we adjust the AMSCR with Binary-EM [64], and we obtain 96.58% as a rate. Moreover,
the optimized AMSCR based on Multiclass-EM performs substantially more than the other
techniques with a 96.61% rate.

5.3 Euclidian distance (L2) Computation

Figure 10 shows some graphics obtained from the Euclidian Distance (L2) computation.
From the MCD database, we take shape as a query and register it with another shape that
belongs to the same class of shapes. Then we calculate the L2 distance between them using
the two approaches, the AMSCR adjusted with Binary-EM and the optimized AMSCR
based on Multiclass-EM. The first subfigure (a) compares the Butterfly’s L2 distance, done
with the AMSCR with Binary-EM and the AMSC based on Multiclass-EM. However, we
note that the AMSCR based on Multiclass-EM improves the Euclidian Distance in most
cases. In the second subfigure (b), we can see that using the optimized AMSCR based
on Multiclass-EM improves the computation of L2 distance for a Brid form significantly.
Finally, the new optimized AMSCR based on Multiclass-EM performs well with the Spider
shape in the majority of cases.

Fig. 11 Kimia-99 database, where each row shows a different class
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5.4 KIMIA-99 image database retrieval

In shape registration and retrieval, the Kimia-99 dataset [65] is commonly used for eval-
uation. There are 99 shapes in 9 classes, with 11 in each category (Fig. 11). This dataset
contains certain occlusions and articulations. Table 3 displays various well-known methods
as a retrieval rate of the top-1 to top-10 alignment shapes. For each of them, the best possi-
ble result is 99. The results show that the Affine Multi-Scale Curve Registration (AMSCR)
[64] outperforms other approaches. However, the adjusted AMSCR with Binary-EM [64]
and the optimized AMSCR based on Multiclass-EM perform very similarly and give com-
petitive results comper to the most existing methods such as Generative model[75], HF [79],
IDSC+LBP [67], ACMA [19], and SMR by data-driven EM [76].

5.5 KIMIA-216 image database retrieval

The Kimia-216 dataset [65] is made up of 216 curves divided into 18 classes, each one with
12 shapes. Figure 12 illustrates all 216 forms in this database, each in a column belonging to
a class. Columns depict birds, bones, bricks, camels, cars, children, classic cars, elephants,
faces, forks, fountains, glass, hammers, hearts, keys, misks, rays, and turtles from left to
right. The Affine Multi-Scale Curve Registration (AMSCR) [64] is tested first, followed by
the AMSCR adjusted with Binary-EM [64] and the optimized AMSCR based onMulticlass-
EM. The outcomes demonstrate that the proposed algorithm exceed other techniques such

Table 3 Top 10 closest matching shapes for Kimia-99 dataset

Algorithm Top1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10

Shape context [4] 97 91 88 85 84 77 75 66 56 37

CPDH+EMD(eucl) [68] 96 94 94 87 88 82 80 70 62 55

CPDH+EMD(shift) [68] 98 94 95 92 90 88 85 84 71 52

Generative model [75] 99 97 99 98 96 96 94 83 75 48

PS+LBP [25] 99 97 97 88 88 86 86 90 80 77

Shock graphs [65] 99 99 99 98 98 97 96 95 93 82

MDS+SC+DP [45] 99 98 98 98 97 99 97 96 97 85

IDSC+DP [45] 99 99 99 98 98 97 97 98 94 79

Shock Edit [65] 99 99 99 98 98 98 96 95 94 86

Shape-tree [23] 99 99 99 99 99 99 99 97 93 86

GM [15] 99 99 99 99 99 99 99 97 93 86

Symbolic rep [13] 99 99 99 99 96 96 99 95 93 88

IMC [89] 99 99 99 99 98 97 95 94 90 83

HF [79] 99 99 99 99 98 99 99 96 95 88

IDSC+LBP [67] 99 99 99 99 98 97 97 98 98 96

ACMA [19] 99 99 99 99 99 99 98 98 97 95

SMR by data-driven EM [76] 99 97 99 98 96 96 94 83 75 48

AMSCR [64] 99 99 99 99 99 99 98 98 97 96

AMSCR with Binary-EM [64] 99 99 99 99 99 99 96 98 98 96

AMSCR based on Multiclass-EM 99 99 99 99 99 99 98 97 98 97
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Fig. 12 Example of curves in Kimia-216 database. One object for each one of the 18 categories is shown

as CPDH+EMD(eucl) [68], CPDH+EMD(shift) [68], PS+LBP [26], IDSC+LBP [79], even
the ACMA [19] method (Table 4).

5.6 ETH-80 image database retrieval

ETH-80 benchmark contains 3280 images. It is divided into eight classes. Each class
includes ten objects containing 41 images obtained from various poses. Figure 13 depicts
some examples from the ETH-80 dataset [43]. To classify the different categories in the
experiment, we use the 1-nearest neighbor algorithm. Each image is compared to the other
79 images in the same category to determine the recognition rate. Table 3 shows the accu-
racy of the proposed approaches with other existing methods. We notice that the Affine
Multi-Scale Curve Registration (AMSCR) [64] has a rate equal to 88.98%. However, when
we adjusted AMSCR with Binary-EM [64], the accuracy increased by 0.25%. The result
improved by 89.45% when the AMSCR has optimized with Multiclass-EM. Our approach
gives better accuracy compared to other existing techniques such as Multiscale Fourier
descriptor [86] (86.91%), EGCSS [5](87.5%), Fast and non-rigid global registration [20]
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Table 4 Top 11 closest matching shapes for Kimia-216 dataset

Algorithm Top1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10 Top11

Shape context [4] 214 209 205 197 191 178 161 144 131 101 78

CPDH+EMD(eucl) [68] 214 215 209 204 200 193 187 180 168 146 114

CPDH+EMD(shift) [68] 215 215 213 205 203 204 190 180 168 154 123

PS+LBP [26] 216 209 205 195 195 197 188 180 179 163 152

HF [79] 216 216 216 215 215 212 211 204 200 194 179

IDSC+LBP [79] 216 215 216 214 213 215 215 213 210 207 204

ACMA [19] 216 216 216 216 215 216 214 213 212 206 206

AMSCR [64] 216 216 216 216 215 216 213 213 212 206 204

AMSCR with [64] 216 216 216 216 214 216 214 213 210 207 206

Binary-EM

AMSCR based on 216 216 216 216 215 216 215 214 212 207 207

Multiclass-EM

(87.95%) and Height function [79] (88.72%). However, our method’s accuracy is inferior
to that of the deep learning method for hierarchical features based on CNN [39] (95.80%)
(Table 5).

5.7 Swedish leaf dataset

This section evaluates our proposed method in the Swedish leaf dataset. This benchmark
contains 1125 objects from 15 different leaf categories. As illustrated in Fig. 14, each class

Fig. 13 ETH-80 database
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Table 5 Retrieval rates on the
entire ETH-80 dataset Methods Score

Combined perimeter area function FD [94] 75.52%

Normalized complex coordinate FD [71] 76.34%

PCA gray [34] 82.99%

MDS+SC+DP [45] 86.80%

Multiscale Fourier descriptor [86] 86.91%

EGCSS [5] 87.50%

Fast and non-rigid global registration [20] 87.95%

IDSC+DP [45] 88.11%

Height function [79] 88.72%

AMSCR [64] 88.98%

AMSCR with Binary-EM [64] 89.13%

AMSCR based on Multiclass-EM 89.45%

Hierarchical feature using CNN [39] 95.80%

Fig. 14 Swedish leaf dataset
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Table 6 Retrieval rates on the
entire Swedish leaf dataset Methods Score

Normalized complex coordinate FD [71] 94.53%

MSFDGF-SH-DS+MD [97] 95.47%

Multiscale Fourier descriptor [86] 86.91%

Fast and non-rigid global registration [20] 95.61%

Shape tree [23] 96.28%

AMSCR [64] 96.3%

EGCSS [5] 97.07%

AMSCR with Binary-EM [64] 96.51%

AMSCR based on Multiclass-EM 96.73%

HSC [78] 96.91 %

IMTF [87] 97.87%

includes 75 forms. This dataset contains forms of the same category with significant vari-
ability and shapes belonging to a diverse category that can be very similar. We evaluate the
performances in the same state indicated in [70] to compare the proposed method with state-
of-the-art. We choose 25 learning objects randomly from each category, and the remaining
objects serve as a test. The sample object is then aligned with the training objects. The shape
will be classified using the 1-nearest neighbor and the distance L2 following registration.
Table 6 summarizes the accuracy rates. The method Affine Multi-Scale Curve Registration
(AMSCR) [64] gives us a score equal to 96.3% which is better than several other techniques
such as Multiscale Fourier descriptor [86] (86.91%), Fast and non-rigid global registration
[20] (95.61%). Moreover, the adjusted AMSCR with Binary-EM [64] enhance the result by
96.51%, and the score is better when the AMSCR optimized by Multiclass-EM (96.73%).
Contrariwise, there are some other methods in the state of the art that give better rates such
as HSC [78] (96.91%) and IMTF [87] (97.87%).

Table 7 Efficiency of different
methods on the MPEG-7 dataset Methods Time (s)

Combined perimeter area function FD [94] 601

Invariant curvature-based Fourier shape descriptors [18] 547

Triangle centroid area FD [93] 25

Centroid distance FD [94] 25

Farthest point distance FD [17] 28

Normalized complex coordinate FD [71] 26

ACMA [19] 29

MFD [86] 33

Fast and non-rigid global registration [20] 30

Height function MTCD [90] 39

AMSCR based on Multiclass-EM 31

Invariant curvature-based [79] 17,139

IDSC+DP [45] 10,929
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6 Analysis of time consumption

The effectiveness of our proposed approach is compared with those of other methods. Shape
smoothing and normalization time are not considered while estimating time consumption.
According to [86], the suggested method’s time consumption is identical to that of the other
approaches. Table 7 shows that for MPEG-7 datasets, the proposed process takes 31 s,
encouraging the use of our method in real-time applications.

7 Conclusion

In this paper, we have proposed an optimized Affine Multi-Scale Curve Registration
(AMSCR) based on the multiclass-EM algorithm. This method’s main idea is to automat-
ically select the best set of smoothing parameters in the sense of the minimum of the
Euclidean distance between the target and the source curves.

Thus, we have obtained a global rectangular linear system corresponding to this selected
set of their smoothed parameters. The number of the class is founded by the application of
the k-means and Elbow method. The registration process is achieved by the application of
the pseudo-inverse algorithm.

Based on several experiments on MPEG-7, MCD, Kimia-99, Kimia216, ETH-80, and
the Swedish leaf benchmarks, we have proven that the proposed method gives one of the
best scores in the mean of precision. We aim, in future works, to study the stability and
the complexity of our registration system. And we intend to improve the gigantic stitching
mosaic done for the virtual Tunisian Bardo Museum.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.
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