Multimedia Tools and Applications (2023) 82:34437-34457
https://doi.org/10.1007/511042-023-14842-y

®

Check for
updates

Online attendance system based on facial
recognition with face mask detection

Muhammad Haikal Mohd Kamil' - Norliza Zaini « Lucyantie Mazalan" -
Afiq Harith Ahamad’

Received: 29 December 2021 /Revised: 15 September 2022 / Accepted: 6 February 2023/
Published online: 7 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

This paper presents an online system for recording attendance based on facial recognition
incorporating facial mask detection. The main objective of this project is to develop an
effective attendance system based on face recognition and face mask detection, and to
provide this service online through a browser interface. This would allow any user to use
this system without the need to install special software. They simply need to open the
interface of this system in a browser through any terminal. Recording attendance infor-
mation online allows data to be easily recorded in a centralized online database. Since
faces are used as biometric signatures in this project, all users registered in the system will
have their profiles loaded with their face-images samples. Initially, before face recogni-
tion can be done, the model training phase based on SVM will be carried out, mainly to
develop a trained model that can perform face recognition. A set of synthetic data will
also be used to train the same model so that it can perform identification for users wearing
face masks. The server application is coded in Python and uses the Open-Source
Computer Vision (OpenCV) library for image processing. For web interfaces and the
database, PHP and MySQL are used. With the integration of Python and PHP scripting
programs, the developed system will be able to perform processing on online servers,
while being accessible to users through a browser from any terminal. According to the
results and analysis, an accuracy of about 81.8% can be achieved based on a pre-trained
model for face recognition and 80% for face mask detection.

Keywords Attendance system - Online - Face recognition - Face mask detection - OpenCV -
Python

>4 Norliza Zaini
nzaini8 15 @gmail.com

School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14842-y&domain=pdf
mailto:nzaini815@gmail.com

34438 Multimedia Tools and Applications (2023) 82:34437-34457

1 Introduction

In any learning program, the full attendance of participants is vital to ensuring that the
objectives of the program are achieved. This is closely related to the teaching process in
educational institutions, where full attendance is very important to ensure that no student is left
behind. Per Jacksi et al., [6], a minimum percentage of class attendance is required in most
institutions. However, such policies are often not complied with due to the various challenges
faced by current attendance recording methods. The conventional process in recording student
attendance is to collect each student’s signature manually. Besides wasting time in getting
signatures, as well as in the process of preparing the form hardcopy, other visible disadvan-
tages include potential loss or damage to the sheets. Numerous systems have been developed
for attendance measuring purpose. The use of clickers and swipe identification cards are
among the methods used in tracking student attendance.

In the same context, many projects have been carried out. Among them is the RFID-
Based Student Attendance Management System [1]. RFID can be used to record student
attendance, the main purpose of which is to reduce the time wasted in recording attendance.
There is also an Android-based smart student attendance system [4], which has proposed as
a mobile online solution to record attendance faster, cheaper, and with automated atten-
dance reports. Another RFID system integrated with face recognition [5] has also been
proposed to track approved and counted students as they enter and leave the classroom. The
system as mentioned above is very useful, taking into account the current trend in which
Android is increasingly deployed. Other Android-based systems have also been introduced
by Sunaryono et al., [14], in which long lines can be avoided in recording previous
automated presence processes.

Referring to the validity of the data collected, the methods described above still have
loopholes which allow abuse to occur. Since a person’s actual presence is very important, an
important method that can be used to detect the actual presence is face recognition. Usually,
this face recognition process [13] is subject to biometric verification when used for security
purposes. Biometric data is unique to each individual and can thus be used to identify each
individual. Face recognition several advantages when compared to traditional card recognition,
fingertips, or iris recognition. Among them is being able to detect authenticity, user-friendli-
ness, and no need for physical contact. From security to education, every field has begun to
adopt biometric technology for identity tracking applications.

Many face recognition applications have been developed, but most must be downloaded
and installed first to the user’s device before they can be used. Therefore, to avoid the burden
of users like this, in this paper we recommend a face recognition system that can be accessed
directly without having to download and install new applications. The idea is to develop an
online application that runs on a web server and is easily accessible through a web browser
from any terminal.

Referring to the latest scenario with the emergence of the Covid-19 global pandemic
declared by the WHO [7, 9, 12], there is a serious need for security measures, with face
masks being one of the main efforts to overcome this pandemic. To ensure the safety of the
public within the scope of our focus, plans or strategies must be made so that we can monitor
participants’ compliance with these basic safety principles. As this project is carried out due to
concerns about the methods used by the organizers or lecturers to keep track of attendance to
the program, this proposed system will be implemented to integrate two features, namely face
recognition for attendance recording and face mask detection [8] to check for safety

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34439

compliance. Concerning features for face mask detection, one existing system identified is the
mask detection system [2], which was built based on YOLOV3. This work is very relevant to
what we propose in this study considering the norm of wearing a face mask, which is needed
during this pandemic season to prevent the spread of the Covid-19 virus. In this study, after
taking into account the need to recognize faces and detect masks, as well as the need to
optimize time in recording attendance, the face mask detection process will use the same face-
recognition mechanism, but with some improvements in terms of data pre-processing.

Based on the issues discussed above, as well as some of the aims we want to achieve, the
overall focus of this project is on developing an online attendance recording system based on
face recognition and face mask detection. The face recognition process is required to identify
the user’s identity for recording attendance, while the detection of the face mask is to identify
safety compliance by the user. Incorporating these two features into one system allows the
system to detect a person’s identity, regardless of whether they are exposing their entire face or
wearing a face mask. The system is developed as a web-based application, which can offer
easy access to users via a web browser from any terminal to record their attendance without
having to download or install a specific application.

2 Methodology

In this section, the overall design of the system will be presented, together with the flow of
activities that take place in the system. Overall, the designed system consists of two main
components, as illustrated in Fig. 1, namely the server application and client-side application.
The server application will be presented first in the next subsection, followed by the descrip-
tion of the client-side application in the following subsection.

Step 2: Train the face
recognition and
Stnp 1: Collect data synthetic face mask \/\
Online Attendance
System based on Face
Em— Recognition with Face
Da!asel Rewgmzer Mask Detection web
application

User's face data

OpenCV Python Face
Recognition Script

L J
T
Client Application /

Step 3: Recognition
Synthesized application of
mask

Output of Online
Attendance System based
on Face Recognition with
Face Mask Detection will
be display on the browser

.t

Server Application

Fig. 1 Overall System Architecture

@ Springer



34440 Multimedia Tools and Applications (2023) 82:34437-34457

2.1 Server application based on Python

The first step in the development of this server application is to train a model able to recognize
faces. For this purpose, facial images of all users need to be collected and saved for model
training purposes. Since this system has a special feature for face recognition behind face
masks, two datasets are required. One dataset will contain all the original user faces without
wearing face masks, while another dataset is synthetically processed by applying a face mask
for each sample image available. Thus, for each individual, there will be two sets of sample
images that will be used, namely original face sample images and original images that are
synthetically applied with face masks, respectively (refer to Table 1).

10 to 30 original face images were collected for each individual. All these images are saved
in a specific folder for each individual. This folder is named according to the user’s identity.
For example, a folder named ‘Haikal’ will contain all sample images of an individual named
Haikal. As for the synthetic dataset, another folder called Haikal Mask will contain original
Haikal’s images that have been synthesized with the application of virtual masks.

The objective of collecting sample images in these two different categories is to train the
model for identifying the individuals’ faces with and without face masks. This way, if a user
performs identification using a face mask, then both identity recognition and detection of
mask-wearing will be carried out.

In regard to recognizer model training, a special Python program will be run to carry out the
model training process until it can perform face recognition based on the existing dataset. This
trained model will be invoked by the Python program which will perform face recognition and
provide output in the form of a recognized user’s identity or a label. For each user, two
possible labels can be identified by the model, i.e. Haikal or Haikal Mask. If the identification
is made in the name of Haikal only, it means that the identified user (Haikal) is not wearing a
face mask, while if the label given is Haikal Mask, this means that the identified user (Haikal)
is wearing a mask.

2.2 Client-side application

To use this system, all the user has to do is open the URL of this system through a browser. On
the front page of this site, the user will be able to activate the camera to take a selfie. This web

Table 1 Comparison between an original data sample and the generated synthetic data for facial identification
and face mask detection

Original Data Synthetic Data

Sample Sample

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34441

S

Collect user's face
daks

Store data In @ folder
named Datasat’

1
{ 3

10riginal data samples Synthelic datn

are saved n folder samgpies are saved In
and labelad with folder and labeled
LSS Rame with user's name and
appended with mask
rain onginal samgles Train synthelic data
or idenlity recogrition sampies for delection
procEss of rmask
)

}

Empioy the Irained tace-
recognites model into online
atiendance recording sysiem

}

Deploy and iest e oniine
affendancs sysiem on the
server and measure the

performance
)|

Fig. 2 Face-recognizer model training flow chart

page is created using HTML, JavaScript, and CSS that can capture the selfie image and
subsequently send the image to the server for processing after a click of a button. The server
application that receives the image will activate a Python script that will perform a face
recognition process to determine the identity of the face owner. The two main outputs
produced by this Python script are the name of the identified face owner and also the status
of whether the person is wearing a mask or not. The results will be displayed on the web page
in the form of a processed selfie image printed with output labels.

Figure 2 illustrates, in general, the process of how a face recognizer model is trained.
Initially, a set of data samples was collected for each individual, which included 10-30 facial
images without a face mask. Then, a new collection of synthetic data samples is generated for
the same individual by virtually applying a mask on each of the original images. The original
data samples are saved in a folder and labeled with the individual’s name, while another folder
storing the synthetic data samples is named with the individual’s name and appended with a

@ Springer



34442 Multimedia Tools and Applications (2023) 82:34437-34457

Fig. 3 The overall flow of
activities

Captuse an imags
Lsing webcam from
wel SOl Caton

+

Thé Capbure Fmags
will be Sisplay' on o
rame on beorwser

+

Upioad the caphuee
image to Te server
using PHP apolcaion

B

Gat Input Imags feom
e server

!

REcogrize and oeect
face mask of The inpul
Images
using Open CV Python

Once system recognine and
detect tace maak of 1he Input
images it will map it 1o the
WBEr's Names Tal ad Deen
fran

¥

Display both outpen
images ol recogriton and
face makk CRMaCTon
process in the browse:

mask label at the end. Both of the data samples for each individual will be used to train the
model to recognize the individual’s face and whether he or she is wearing a mask or not. Once
ready, this trained model will be used by a Python script that performs facial recognition to

produce the outputs in the form of the identified individual name and status (wearing a mask or
not).

Figure 3 illustrates the flow of activities that occur when a user begins to open the system’s
main URL in a browser. To record attendance, the user will initially take a selfie via webcam

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34443

and ensure that his or her face is taken in full. Then the user will click a button to upload the
captured image to the server for processing.

The application server that gets the image will then activate a Python script that can
recognize the face from the image. The Python script will return the output in the form of
an individual name identified through the images, as well as mask-wearing status. This
information will be used to record attendance in the database. The final result on the webpage
that will be displayed to the user is in the form of a selfie picture that has been labeled with face
recognition information and mask-wearing status.

2.3 Python’s codes for model training and facial recognition

This online attendance system performs face recognition with face mask detection driven by a
Python program. For the overall process, three stages of Python codes [10] will be run so that
the recognition process can take place. The extract embeddings code will be run first followed
by the train model code and lastly the recognition code. Each of these codes will be elaborated
on in the subsection below.

2.3.1 Extract embeddings Python code

Figure 4 shows the codes used for creating a 128-D vector representing a face using a deep
learning function extractor [10]. To construct embeddings, all faces of a user in the dataset will
be transferred through the neural network. The ‘imagePaths’ variable contains the path to each
image in the dataset. Then, the embeddings and corresponding names will be held in two lists
which are known as ‘knownEmbeddings’ and ‘knownNames’. The variable called ‘total’
explains how many faces had been processed.

# grab the paths to the input images in our dataset
print ("] 1 image dataset..")
imagePaths = list(paths.list images(args["dataset"]))

# initialize our lists of extracted facial embeddings and
# corresponding people names

knownEmbeddings = []

knownNames = []

# initialize the total number of faces processed
total = 0

# loop over the image paths

for (i, imagePath) in enumerate (imagePaths):
# extract the person name from the image path
name = imagePath.split(os.path.sep) [-2]

# load the image, resize it to have a width of 600 pixels (while
# maintaining the aspect ratio), and then grab the image

# dimensions

image = cv2.imread (imagePath)

image = imutils.resize(image, width=600)

(h, w) = image.shapel[:2]

Fig. 4 A snippet of codes to extract embeddings [10]

@ Springer



34444 Multimedia Tools and Applications (2023) 82:34437-34457

# load the face embeddings

print ("Loading face embeddings of the dataset")

data = pickle.loads (open(args["embeddings"], "rb").read())
# encode the labels

print ("Encoding image labels")

le = LabelEncoder ()

labels = le.fit_transform(data["names"])

# train the model used to accept the 128-d embeddings of the face and
# then produce the actual face recognition

print("Training the model usng SVM...")

recognizer = SVC(C=1.0, kernel="linear", probability=True)
recognizer.fit(data["embeddings"], labels)

# write the actual face recognition model to disk
f = open(args["recognizer"], "wb")

f.write (pickle.dumps (recognizer))

f.close()

# write the label encoder to disk
f = open(args["1le"], "wb")
f.write (pickle.dumps (le))
f.close()

Fig. 5 Codes used in training face recognizer model [10]
2.3.2 Train model Python code

Upon completion, based on the extracted face embeddings from the dataset, the face recog-
nition model training will commence by running the Python codes [10] as shown in Fig. 5. The
training process starts where the SVM model will be initialized and the model training will
begin. This model is then exported and the encoder will be labeled to disks as pickle files after
training the model. The entire process will allow the trained model to be applied in recognizer
codes to process input images for facial recognition.

# load the image, resize it to have a width of 600 pixels (while
# maintaining the aspect ratio), and then grab the image dimensions
image = cv2.imread(args["image"])
image2 = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
image3 = cv2.cvtColor(image2, cv2.COLOR GRAY2RGB)
image = imutils.resize(image, width=600)
image3 = imutils.resize(image3, width=600)
(h, w) image.shape[:2]
# construct a blob from the image
TimageBlob = cv2.dnn.blobFromImage (

cv2.resize(image, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)
# apply OpenCV's deep learning-based face detector to localize
# faces in the input image
detector.setInput (imageBlob)
detections = detector.forward()

Fig. 6 A snippet of codes to recognize a face

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34445

# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it

face = image[startY:endY, startX:endX]

face = cv2.cvtColor (face, cv2.COLOR BGR2RGB)

face = cv2.resize(face, (224, 224))

face = img_to_array(face)

face = preprocess_input (face)

face = np.expand dims(face, axis=0)

# pass the face through the model to determine if the face
# has a mask or not
(mask, withoutMask) = model.predict (face) [0]

# determine the class label and color we'll use to draw
# the bounding box and text

label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)

# include the probablllty in the label
label = "{}: :.2f)%".format (label, max(mask, withoutMask) * 100)

Fig. 7 A snippet of codes to detect facial mask [11] (in the first approach)
2.3.3 Facial recognizer codes

Code for facial recognition [10] through input images has been employed. Generally, this code
includes the process of detecting faces, extracting embeddings, and querying the SVM model
so that it can determine who is in the image. Figure 6 shows a snippet of the modified code,
where the input image is processed to perform the face recognition process. Since the original
input image is in RGB format, it must first be converted to a grayscale form. This is to reduce
information unnecessary for face recognition, such as color and light effects. In this context, an
analysis has been made to compare when face data is trained in RGB and grayscale forms. For
RGB image recognition, accuracy is around 10% to 50%, while for face recognition through
grayscale images, accuracy is around 20% to 70%. This proves that the percentage of
recognition accuracy in grayscale form is better than face recognition based on RGB image.

2.3.4 Facial mask detection

We have explored two methods for the additional process of detecting face masks. The first
approach is to employ a separate code from face recognition, namely a “face mask detector”
code from Rosebrock, [11]. A code snippet is shown in Fig. 7. In this first approach, the facial
recognition and mask detection processes are carried out by two different programs.

For the second approach, we employ the same facial recognition program from Rosebrock,
[10] to also detect face masks by generating an additional synthetic dataset before model
training. This synthetic dataset is generated by adding a virtual face mask layer on every
sample image of each individual as a new mask dataset for that individual. With the mask
dataset for each individual, the trained model will also be able to recognize the owner’s face,
even when wearing a face mask. Using face recognition, face mask detection can also be
achieved.

These two methods are compared especially in the measurement of time required to
produce both outputs, namely face recognition and face mask detection.

@ Springer



34446 Multimedia Tools and Applications (2023) 82:34437-34457

2.4 Online web scripting
2.4.1 Interface to capture input image through a browser

To allow input images to be captured from the camera through a browser, HTML and
JavaScript and CSS have been coded as the front page of the system. This script will
activate the locally attached camera every time the page is opened from the browser.
Once the camera is activated, the user can view the live feed from the camera and
when ready can press the ‘Take snapshot’ button to snap a picture. The user can first
examine the picture taken and if it is acceptable, then the user can proceed to send
this picture to the server for processing. Figure 8 shows the HTML and JavaScript
written for the front page of this system.

<hl style="color:LightGreen" cla "text-center">
Online Attendance System Based On Face Recognition with Face Mask Detection

</hl>
<form method="POST" action="storeImage.php">
<div cla row'">
<div cla "col-md-6">
<div id="my_ camera"></div>
<bxr/>
<input type= value="Take Snapshot" onClick="take_snapshot()">
<input type="hidden" name="image" clas 'image-tag">
</div>
<div class="col-md-6">
<div id="results'">Your captured image will appear here...</div>
</div>
<div class="col-md-12 text-center">
<br/>
<button class="btn btn-success">Submit</button>
</div>
</div>
</form>
</div>

<!-- Configure a few settings and attach camera -->
<script language="JavaScript">

Webcam. set ({
width: 490,
height: 390,
image_format: 'jpeg',
jpeg_quality: 90

N

Webcam.attach( '#my amera' );

function take snapshot () {
Webcam.sngp( function(data_uri) {
$(".imag tag").val(data_uri);
document.getElementById('results').innerHTML = '<img src="'+data_ uri+'"/>';
1)
}

</script>

Fig. 8 HTML and JavaScript of the front page

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34447

$img = $ POST['im

$folderPath = "up s

Simage parts = explode (";bas $img) ;

$image type aux = explode ("ims $image parts[0]);
$image_type = $image type aux[l];

Simage base64 = base64_decode ($image parts[l]);

$fileName = uniqid() . '.png';
$file = $folderPath . $fileName;
file put contents($file, $image base64);

print ('Successfully save the
print_r($fileName) ;
chmod ($folderPath . $fileName, )2

if (isset ($_POST['image']))
{

exec ("python recognize.py --image " . $folderPath . $fileName) ;

}

Fig. 9 PHP script to handle uploaded image
2.4.2 PHP script for processing images and displaying output

A PHP script has been written to process pictures sent by users through browsers. First of all,
this script will save the received picture file by remembering the name of the file. Then, this
script will activate the Python program to run the face recognition process. The name of the
received image file will be specified for the Python program as the image input to be
processed. Figure 9 shows the PHP script written for this purpose.

As soon as the called Python program finishes running, the PHP script will redirect the user
to the next web page that will display the generated output from the Python’s face recognition
process, along with the output for mask detection (see Fig. 10).

2.5 Hardware requirement

The hardware required for this project is a computer used as a server to train the model and run
the application server. Another computer is needed as a client device that needs to be equipped
with a camera to take pictures for face detection. The last requirement is an internet connection
to allow the user to access the server through a browser from the client terminal.

$outputfile = get output ($fileName) ;
$username = get username ($fileName);

$mask status = get mask status($fileName);
$time now = get time now();

print (" g '$outputfile’'><br/>");
print ("« >="background-color:yellow'>$username<br/>$mask status<br/>");
print("Seen / Check in at $time now</span>");

record data($time now, S$username, Smasic_status); // save to database

Fig. 10 PHP script to display the output

@ Springer



34448 Multimedia Tools and Applications (2023) 82:34437-34457

Online Attendance System Based On Face Recognition with
Face Mask Detection

{ R e il

Fig. 11 The main front-end webpage accessible from the server
3 Results and discussion

This section will present the implementation of this project in the form of a server application,
as well as the results obtained and an analysis of the results.

3.1 Main web Interface

Figure 11 shows the main web page of this system created based on HTML, JavaScript and
PHP. Once opened, this page will automatically try to activate the camera on the client
terminal. The user needs to click on the approval button for the use of the camera and then
take selfies. This captured image will be used as an input image to be uploaded to the online
attendance system server for facial recognition purposes, as well as face mask detection.
Figure 12 shows an example in which the user has successfully taken their selfie and the
image is displayed on this web page. To capture a selfie photo, the user just needs to press the

Online Attendance System Based On Face Recognition with
Face Mask Detection

Fig. 12 Output result once the user has taken a selfie image through a webcam

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34449

-!'r"! -P4—'--l"“ ] dimir = am

M SR .

Sy B = '; LS B 5 R RS .

ndnfa B * vl isis - a

Fig. 13 All uploaded images are stored in one folder

“Take Snapshot’ button and the captured image will appear in the right image frame on this
page. The user is allowed to re-take pictures if the captured image is not acceptable. If the
captured image is acceptable, then the user can press the submit button to upload it to the
server for the face recognition process.

3.2 Image processing on the server

Figure 13 shows a temporary image repository on the server showing selfie images that have
been successfully uploaded to the server after the submit button is pressed. All selfie images
are saved as PNG files.

On the server, a PHP script will handle the process after the selfie image is uploaded. This
PHP script will activate the python program that will run the process of face recognition and
facial mask detection. As for the output generated by the Python program, the same PHP file
will also display the results that have been obtained to the user through the browser.

Fig. 14 The output file in the form
of an image annotated with the
recognized identity

@ Springer



34450 Multimedia Tools and Applications (2023) 82:34437-34457

Table 2 Comparison of processing time for both methods

Approach Processing Time Recorded for Processing Time Recorded for
Method 1 Method 2
Capturing user without the face 24 seconds 6 seconds
mask (see Fig. 15) (see Fig. 16)
Capturing user with face mask 21 seconds 5 seconds
(see Fig. 17) (see Fig. 18)

Figure 14 shows the output file, which was generated after the Python recognition script
was run. Such a file will be displayed to the user to show successful face recognition. A
bounding box will be drawn to map with the face area, along with an identification label and
recognition accuracy value written on the bounding box.

3.3 Comparison between two approaches for face mask detection

At the beginning of this study, the face recognition and facial masks detection processes were
implemented by two different Python scripts. The first Python script [10] will be activated by
PHP to detect the user’s identity through the submitted facial image, while the second Python
script [11] is activated specifically to detect whether the user is wearing a mask or not, also
based on the same input image. However, the processing of these two scripts takes a long time
on the server. Therefore, another approach has been proposed to achieve a more optimized
processing time.

The second method is to rely on one Python script only; that is, the face recognition Python
script based on the pre-trained model [10]. However, some improvements have been made to
this method to allow it to also detect the use of face masks. One of the important improvements
that has been made is to use synthetic data as a dataset that represents all user’s faces with the
application of virtual face masks. This synthetic dataset is also used in the model training
process, so that the generated pre-trained model can recognize not only identity, but also to
recognize whether the individual is wearing the face mask or not.

Before this second approach was adopted, a few analyses were performed to compare the
processing time taken by both of these two different methods. As we can see in Table 2, the
approach taken for method 2 is much faster which takes about 5 to 6 seconds to produce the
face recognition and face mask detection outputs. The approach taken in method 1 requires

Fig. 15 The first method capturing user without the mask

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34451

Fig. 16 The second method
capturing user without the mask

Fig. 17 The first method capturing user with a mask

Fig. 18 The second method
capturing user with a mask

@ Springer



34452 Multimedia Tools and Applications (2023) 82:34437-34457

(b)

Fig. 19 a The result of the face recognition system with 40.67% similarity of the first subject not wearing a mask
b The result of the face recognition system with 48% similarity of the first subject wearing a mask

more time (around 20 to 24 seconds) to produce the same outputs. From here, we can conclude
that method 2 is a more optimized option in terms of time usage. Although this method relies
on a single Python script, it has successfully performed both face recognition and face mask
detection with a shorter processing time.

3.4 Analysis of the similarity of facial recognition and face mask detection results

This section will demonstrate the analysis used to observe the effectiveness of this program in
performing face recognition and detection of face masks. Figures. 19, 20, 21 show the output
obtained based on several facial samples based on the second approach in face recognition and
mask detection.

Syahm
fearing Maskj
[Seen / Check in at 08-01-2021 00:41:10

(b)

Fig. 20 a. The result of the face recognition system with 29.44% similarity of the second subject not wearing a
mask b. The result of the face recognition system with 32.50% similarity of the second subject wearing a mask

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34453

(b)

Fig. 21 a. The result of the face recognition system with 33.07% similarity of the third subject not wearing a
mask b. The result of the face recognition system with 15.38% similarity of the third subject wearing a mask

3.4.1 The equation for accuracy, sensitivity and precision [3]

To measure the accuracy of facial recognition, the accuracy equation is used as in [1].
TP + TN

A = 1
CuraY =P  IN + FP + EN) M
To measure the sensitivity of facial recognition, the sensitivity equation is used as in [2].
P
Sensitivity = ——— 2
ensitivity (TP 1 FN) ()
To measure the precision of facial recognition, the precision equation is used as in [3].
P
Precision = m (3)

Where TP is TRUE POSITIVES, FN is FALSE NEGATIVES, FP is FALSE POSITIVES and
finally, TN represents TRUE NEGATIVES.

3.4.2 Facial recognition accuracy analysis

From the 10 datasets of facial image samples collected, the accuracy of the face recognition
process has been calculated as shown in Tables 3 and 4 using Eq. (1).

Table 3 Analysis of facial recognition accuracy

Label Description Occurrence Count
TP Correct user’s name based on the user’s samples 9
FN Incorrect predicted user’s name based on train user’s samples 1
FP Correct predicted user’s name based on untrain user’s samples 1
TN Incorrect name and untrained user’s face samples 0

@ Springer



34454 Multimedia Tools and Applications (2023) 82:34437-34457

Table 4 Calculation on facial recognition analysis for Eq. (1) only

Accuracy 7 X 100% 81.8%

940
OF 14170

3.4.3 Mask detection accuracy analysis

From the 24 samples of synthetic datasets of face mask detection samples collected, the
accuracy of the mask detection process has been calculated as shown in Tables 5 and 6, based
on Egs. (1), (2) and (3).

Based on the testing and analysis, the accuracy of the system is calculated at
81.8% for face recognition and 80% for face mask detection same as the value in
sensitivity for face mask detection. While the value for precision for face mask
detection is 100%, which is a very decent level of accuracy, based on the calculation
that had been done earlier. More data and synthetic data may be required to feed the
recognizer to improve the accuracy, sensitivity and precision so that the face and face
mask detection can be performed with greater accuracy.

3.5 Recording attendance information into the database

The main purpose of this system is to record the presence or attendance of users online through
a browser by recognizing the faces captured through a webcam. For this record-keeping, a
database was built to store all the data captured. This includes the time a user submitted the
picture, the identified user’s username and the status of whether the user is wearing a mask or
not. Since this is an early prototype, the interface for this database was quickly developed (see
Fig. 22).

Table 5 Analysis of face mask detection accuracy

Label Description Occurrence Count
TP Correct face mask detection based on the synthetic dataset 24

FN Incorrect face mask detection based on the synthetic dataset 6

FP Untrained synthetic dataset 0

N Incorrect face mask detection and untrained synthetic dataset 0

Table 6 Calculation on face mask detection analysis for Eq. (1), (2) and (3)

Accuracy % x 100% 80%
Sensitivity Targ X 100% 80%
Precision =24~ % 100% 100%

(24+0)

@ Springer



Multimedia Tools and Applications (2023) 82:34437-34457 34455

DATE TIME USERNAME STATUS ACTION
2021-01-15 00:18:57 || Aqilah Wearing Mask [ DELETE |
2021-01-15 00:18:23 || Agilah Not Wearing a Mask || [ DELETE |
2021-01-15 00:18:00 || Agilah Not Wearing a Mask ||| DELETE |
2021-01-15 00:17:11 || Agilah Not Wearing a Mask || [ DELETE |
2021-01-15 00:16:41 || Haikal Not Wearing a Mask || [ DELETE |
2021-01-15 00:16:18 || Haikal Wearing Mask [ DELETE |
2021-01-15 00:14:09 || Amirul Not Wearing a Mask || [ DELETE |
2021-01-15 00:13:30 || Amirul Wearing Mask [ DELETE |
2021-01-15 00:11:51 || Basyirah Not Wearing a Mask || [ DELETE |
2021-01-15 00:11:02 || Basyirah Wearing Mask [ DELETE |
2021-01-15 00:10:07 || Athanasius Not Wearing a Mask || [ DELETE |
2021-01-15 00:09:42 || Athanasius Not Wearing a Mask || [ DELETE |
2021-01-15 00:08:49 || Haikal Wearing Mask [ DELETE |

Fig. 22 Attendance information is recorded in the MySQL database on the server

4 Conclusion

This project has achieved its targeted objectives. First of all, a prototype system was success-
fully built to capture online attendance records, in which user identities are recognized based
on facial biometrics. This system is a web-based application and so users can access the system
interface from any browser regardless of terminal. Thus, the user is not burdened by the need
to install special applications for this purpose.

In addition to the server interface script, the server application consists of a Python program
used for the face recognition process, which will process each selfie image uploaded by the
user to identify the user identity. This Python program requires a trained model for face
recognition. One of the purposes of this system is to allow users who wear or do not wear
masks to be recognized. Therefore, in the process of training the face recognition model, the
sample data set used consisted of original images of the user’s face, as well as the synthetically
generated images for the virtual face mask application. More than 200 user face data points
were successfully obtained for testing and analysis purposes.

Some limitations of this system have been identified. For example, when the sample
of user face data is insufficient, this will reduce the accuracy of face recognition and face
mask detection process. Therefore, to get better accuracy, more samples of user face data
are needed. Overall, the project successfully produced a system that could be used take
attendance more easily and quickly, as well as monitor public safety by performing mask
detection to stop the spread of the Covid-19 virus.

@ Springer



34456 Multimedia Tools and Applications (2023) 82:34437-34457

Acknowledgements We would like to extend our acknowledgment to those who have directly and indirectly
contributed to our project. This research is funded by Universiti Teknologi MARA (UiTM) via the Lestari Covid-
19 Research Grant registered as 600-RMC/LESTARI COVID/5/3 (008/2020).

Funding No fund received for this project.

Data Availability All the data is collected from the simulation reports of the software and tools used by the
authors. Authors are working on implementing the same using real world data with appropriate permissions.

Declarations
Conflict of interest The authors declare that they have no conflict of interest.

Ethical Approval and Human Participation No ethics approval is required.

References

1. Arulogun OT, Olatunbosun A, Fakolujo OA, Olaniyi OM (2013) RFID-based students attendance man-
agement system. Int J Eng Sci Res 4(2)

2. Bhuiyan, MM, Khushbu, SA, Islam, MO (2020) A deep learning based assistive system to classify COVID-
19 face mask for Human safety with YOLOv3. 2020 11th international conference on computing,
communication and networking technologies ICCCNT), 1-5

3. Confusion Matrix (2019) Data science and machine learning. https://manisha-sirsat.blogspot.com/2019/04/
confusion-matrix.html. Accessed 29 Apr 2019

4. Hameed MAJ (2017) Android-based smart student attendance system. Int Res J Eng Technol 12:2395-2356

5. Hussain SS, Farooq SM, Ustun TS (2019) Implementation of blockchain technology for energy trading with
smart meters. In: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). IEEE, vol
I, pp 1I-5

6. Jacksi K, Ibrahim F, Zebari S (2018) Student Attendance Management System. Scholars J Eng Technol 6:
49-53. https://doi.org/10.21276/sjet.2018.6.2.1

7. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR (2020) Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J
Antimicrob Agents 55(3):105924. https://doi.org/10.1016/j.jjantimicag.2020.105924

8. Lippert, P, Bergner, B, Ahmed, A, Ali, R, Adeel, S, Shahriar, MDH, Mojumder, MD (2020) Face Mask
Detector. https:/doi.org/10.13140/RG.2.2.32147.50725

9. Lu H, Stratton C, Tang Y (2020) Outbreak of pneumonia of unknown etiology in Wuhan, China: the
mystery and the miracle. J Med Virol 92(4):401-402. https://doi.org/10.1002/jmv.25678

10. Rosebrock, A (2018) OpenCV face recognition. pyimagesearch. https://www.pyimagesearch.com/2018/09/
24/opencv-face-recognition/. Accessed 18 Jun 2018

11. Rosebrock, A (2020) COVID-19: face mask detector with OpenCV, Keras/TensorFlow, and deep learning.
PyImageSearch. https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-
keras-tensorflow-and-deep-learning/. Accessed 4 May 2020

12. Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19)
outbreak. J Autoimmun 109:102433. https://doi.org/10.1016/j.jaut.2020.102433

@ Springer


https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html
https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html
https://doi.org/10.21276/sjet.2018.6.2.1
https://doi.org/10.1016/j.ijantimicag.2020.105924
https://doi.org/10.13140/RG.2.2.32147.50725
https://doi.org/10.1002/jmv.25678
https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/
https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/
https://doi.org/10.1016/j.jaut.2020.102433

Multimedia Tools and Applications (2023) 82:34437-34457 34457

13. Sajid M, Hussain R, Usman M (2014) A conceptual model for automated attendance marking system using
facial recognition. In: Ninth international conference on digital information management (ICDIM
2014). IEEE, pp 7-10

14. Sunaryono D, Siswantoro J, Anggoro R (2021) An android based course attendance system using face
recognition. J King Saud Univ Comput Inf Sci 33:304-312

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer



	Online attendance system based on facial recognition with face mask detection
	Abstract
	Introduction
	Methodology
	Server application based on Python
	Client-side application
	Python’s codes for model training and facial recognition
	Extract embeddings Python code
	Train model Python code
	Facial recognizer codes
	Facial mask detection

	Online web scripting
	Interface to capture input image through a browser
	PHP script for processing images and displaying output

	Hardware requirement

	Results and discussion
	Main web Interface
	Image processing on the server
	Comparison between two approaches for face mask detection
	Analysis of the similarity of facial recognition and face mask detection results
	The equation for accuracy, sensitivity and precision [3]
	Facial recognition accuracy analysis
	Mask detection accuracy analysis

	Recording attendance information into the database

	Conclusion
	References


