
https://doi.org/10.1007/s11042-023-14825-z

An efficient indexing technique for billion-scale
nearest neighbor search

Kaixiang Yang1,2,3 ·HongyaWang1,2,3 ·Ming Du1 ·ZhizhengWang1 ·
Zongyuan Tan1 · Jie Zhang4 ·Yingyuan Xiao5

Received: 19 October 2021 / Revised: 8 August 2022 / Accepted: 6 February 2023 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Approximate nearest neighbor search is an indispensable component in many computer
vision applications. To index more data, such as images, on one commercial server, Douze
et al. introduced L&C that works on operating points considering 64–128 bytes per vector.
While the idea is inspiring, we observe that L&C still suffers the accuracy saturation prob-
lem, which it is aimed to solve. To this end, we propose a simple yet effective two-layer
graph index structure, together with dual residual encoding, to attain higher accuracy. Par-
ticularly, we partition vectors into multiple clusters and build the top-layer graph using the
corresponding centroids. For each cluster, a subgraph is created with compact codes of the
first-level vector residuals. Such an index structure provides better graph search precision
as well as saves quite a few bytes for compression. We employ the second-level residual
quantization to re-rank the candidates obtained through graph traversal, which is more effi-
cient than regression-from-neighbors adopted by L&C. Comprehensive experiments show
that our proposal obtains over 10% and 30% higher recall@1 than the state-of-the-arts, and
achieves up to 7.7x and 6.1x speedup over L&C on Deep1B and Sift1B, respectively. Our
proposal also attains 90%+ recall@10 and recall@100 on two billion-sized datasets at the
cost of 10ms per query.

Keywords Approximate nearest neighbor search · Hierarchical navigable small world graph ·
Product quantization · Re-rank

Portions of this work were presented at the 29th Pacific Conference on Computer Graphics
and Applications

� Hongya Wang
hywang@dhu.edu.cn

1 School of Computer Science and Technology, Donghua University, Shanghai, China
2 State Key Laboratory of Computer Architecture, ICT, CAS, Beijing, China
3 Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, China
4 Institute of Artificial Intelligence, Donghua University, Shanghai, China
5 School of CSE, Tianjin University of Technology, Tianjin, China

Published online: 23 March 2023

Multimedia Tools and Applications (2023) 82:31673–31689

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14825-z&domain=pdf
mailto: hywang@dhu.edu.cn


1 Introduction

Nearest neighbor search is a fundamental problem in many computer science domains such
as computer vision, massive data processing and information retrieval [9, 13, 21, 27, 29,
33, 34, 39–41]. For example, it is a key component of large-scale image search [34], and
classification tasks with a large number of classes [18, 23]. In high-dimensional spaces, the
exact nearest neighbor search performs even worse than a linear scan due to the curse of
dimensionality, and thus approximate nearest neighbor search is often solicited by trading
answer quality for efficiency [3, 22, 26, 42, 43].

In the last few years, two promising indexing paradigms for similarity search have drawn
much attention in both academic and industry fields. The first one focuses on compact
codes based on various quantization methods, by which image descriptors consisting of
a few hundred or even thousand components are compressed employing only 8-32 bytes
per descriptor. Typical methods include product quantization (PQ) [24], optimized PQ
[20], additive quantization [4], and other PQ extensions [1, 5, 7, 28, 32, 37, 44]. Compact
representation reduces memory footprint for indexing, and thus is capable of supporting
billion-scale image sets.

In contrast, the graph-based similarity search paradigm offers high accuracy and effi-
ciency, paying little attention to the memory constraint. For example, the successful
approach hierarchical navigable small worlds (HNSW) by Malkov et al. [35] can easily
achieve 95% recall with an order of magnitude speedup over other search methods [10].
Such outstanding performance, however, does not come for free – it needs both the original
vectors and a full graph structure to be stored in the main memory, which severely limits
the scalability. To the best of our knowledge, none of this class of approaches scaled up to a
billion vectors on one commercial server [19].

Douze et al. take the first step to conciliate these two trends by proposing Link&Code
(L&C) [17], which represents vectors in the compressed domain and builds a search graph
using only the compact codes of vectors. In this way, L&C tries to strike a balance between
the two extreme sides of the spectrum of operating points. By consuming around one hun-
dred bytes per vector1, it scales to a billion vectors in one commercial server with better
accuracy/speed trade-off.

Our preliminary experiments indicate that L&C still suffers the accuracy saturation prob-
lem. For instance, the performance saturates at around 65% and 51% recall (rank@1) for
Deep1B and Sift1B respectively, i.e., the accuracy grows very slowly as the increase of
search time. The in-depth analysis shows that the reasons are two folds: 1) the link number
is too small with respect to the cardinality of billion-scale datasets, which is detrimental to
the search accuracy of graph-based methods, and 2) the quantization error is over large even
with the help of quantized regression from neighbors invented by L&C.

A naive way to tackle this problem is allocating more bytes per vector. This, however,
contradicts with the original purpose of L&C and may jeopardize the scalability. To address
this issue, we propose a simple yet effective solution that fulfills all design goals of L&C
and offers much higher accuracy and efficiency. Specifically, we employ a two-layer graph
structure, instead of a single giant one, to organize all vectors. The top-layer graph is com-
posed of centroids obtained by partitioning the whole dataset into multiple clusters via the
standard K-means algorithm. The bottom-layer consists of a set of subgraphs, each of which
corresponds to a cluster as illustrated in Fig. 1. Such a hierarchical structure improves the

1Both vectors and the search graph are considered.

31674 Multimedia Tools and Applications (2023) 82:31673–31689



...

subgraph1

Top Layer

Bottom Layer
first-level

PQ codebook

subgraph2 subgraphk

Fig. 1 Overview of the two-layer graph structure of HiL&C

graph search accuracy significantly using the same number of links as L&C. The other ben-
efit of this design is that we only need 2 bytes to keep track of one link identifier if the sizes
of all clusters are limited to 216, which is easy to enforce. Considering that L&C requires 4
bytes for one link, it saves us quite a few bytes for the compact representation of vectors.

To minimize the reconstruction error, we introduce dual residual encoding to represent
vectors in the compressed domain. Particularly, the compact codes of the first-level residuals
are used to construct all subgraphs in the bottom-layer, and we employ those of the second-
level residuals to re-rank the candidate list obtained through graph search. Preliminary study
shows that dual residual quantization provides smaller reconstruction error than L&C even
if using the same length of codes.

To sum up, the contributions of this paper are:

• Through preliminary experiments we show that a hierarchical structure of small graphs
provides better accuracy than a single giant one. Interestingly, it takes only 1/2 of the
space cost required by L&C for storing link identifiers and saves quite a number of
bytes for compression.

• We demonstrate that the dual residual encoding scheme offers much less reconstruc-
tion error, suggesting better approximation of original vectors is attained than the
regression-from-neighbors strategy adopted by L&C.

• We introduce a hierarchical graph-based similarity search method with dual residual
quantization (HiL&C), which takes full advantage of the precious memory budget.
Extensive experiments show that our proposal achieves the state-of-the-art perfor-
mance. To be specific, HiL&C attains 90%+ 1-recall@10 and 1-recall@100 on two
billion-sized benchmarks at the cost of 10ms per query in the single thread setting.

31675Multimedia Tools and Applications (2023) 82:31673–31689



The chapters are organized as follows. In Section 2 introduces the related work and
preparatory knowledge, Section 3 compares the different design alternatives, Section 4
details our approach and Section 5 performs detailed comparative experiments and
conclude.

2 Related work

SupposeX = {x1, · · · , xn} ⊂ R
d is a dataset containing n vectors. The goal of approximate

nearest neighbor search is to find the nearest neighbor NX (y) ⊂ X of the query vector
y ∈ R

d by minimizing d(y, x). For distance calculation d : Rd × R
d → R, We use the

most commonly used distance calculation function in ANNS - d = �2.
For high-dimensional Euclidian space, the majority of research effort turns to the approx-

imate nearest neighbor search because of the difficulty in finding exact results [12, 14]. For
instance, locality sensitive hashing (LSH) schemes exploit the hashing properties resulting
from the Johnson-Lindenstrauss lemma to provide c-approximate nearest neighbors with
constant probability by trading accuracy for efficiency [15]. Due to space limitation, we
mainly present a brief review of the quantization-based and graph-based nearest neighbor
search methods next.

Quantization-basedmethods Product Quantization (PQ) [24] partitions the original high-
dimensional vectors x ∈ R

d into m d
m
-dimensional subvectors x = [

x1, . . . , xm
]
. Then PQ

encodes these m d
m
-dimensional subvectors using m different subquantizers qi(x), each of

which is associated with a codebook ci . Therefore the final codebook C is the Cartesian
product of the m sub-codebooks

C = c1 × ... × cm

Each codebook includes s codewords (centroids), where s is typically set to 256 in order
to fit a codeword into 1 byte. Thus, a compressed vector occupies only m log (s) bits. To
process a query, all vectors are reproduced on-the-fly by consulting the codebooks and their
distances to the query are evaluated to get the best answers.

The idea of re-rank with source coding is proposed in [25] to refine the hypotheses
of a query with an imprecise post-verification scheme, i.e., After quantizing the vectors
using the first-level quantizer, the residuals are quantized using the second-layer quantizer.
In this way, we avoid the costly post-verification scheme adopted in most state-of-the-art
approximate search techniques [15, 38].

The inverted-file indexing(IVF) method [5, 25] goes one step further to solve the problem
that the PQ method requires a brute force search for all vectors. The IVF method also builds
a two layers structure, and the first layer uses a clustering method to cluster and assign the
dataset vectors to the nearest inverted list, thus avoiding sequential searching. Only a small
number of inverted lists, of which the centroid are close enough to the query, are examined.
Interested readers are referred to [36] for a comprehensive survey of quantization-based
methods.

Graph-based methods Graph-based methods are currently the most efficient similarity
search method, not considering the main memory constraint. Malkov et al. [35] intro-
duced an hierarchical navigable small world graphs (HNSW), one of the most accomplished
graph-based search algorithms. The main idea of HNSW is distributing vectors into multi-
ple layers and introducing the long-range links to speedup the search procedure. Empirical

31676 Multimedia Tools and Applications (2023) 82:31673–31689



study shows that HNSW exhibits O(log n) search complexity, which is rather appealing in
practice. A recent proposal named NSG outperforms HNSW by constructing the so-called
monotonic relative neighbor graph [19]. Quite a number of graph-based algorithms are pro-
posed in the last few years and we would like to refer readers to [2, 11, 22, 30, 31, 45] for
more details.

Link&Code HNSW requires to store both the original vectors and the graph index in main
memory, which jeopardize the scalability. In contrast, PQ-based methods supports billion-
scale datasets but suffer the accuracy saturation problem.

L&C encodes the vectors using PQ-based methods and organizes them with a single
HNSW graph. It is demonstrated that L&C beats the state-of-the-art on operating points
considering 64-128 bytes per vectors.

3 Motivations

This section describes our original idea and experimental arguments for Section 4. First, we
focus on how the size of dataset affects the performance when the number of neighbors per
vector on the base layer of HNSW are fixed and relatively small. Then we demonstrate the
superiority of the hierarchical graph structure consisting of a number of small subgraphs
over L&C. Finally, we present a detailed comparison with other methods to demonstrate the
superiority of our approach. This leads us to favor dual residual quantization over quantized
regression method adopted by L&C.

3.1 The impact of dataset size on accuracy

Due to the limited memory budget, L&C can only use a relatively small number of links
pointing to the corresponding approximate neighbors for each point. We first examine the
impact of dataset cardinality on the performance of L&C for a fixed number of links, which
is set to 7 by default on the base layer of graph structure. All these evaluations are performed
on Sift10K, Sift1M, Sift10M and Sift100M datasets, where Sift10K consists of the first 10K
descriptors of Sift1B dataset, and so on and so forth.

We select standard parameter settings for vector quantization and regression coefficient
encoding, where OPQ32 (32 bytes) is used for the first-level vector approximation and the
regression coefficient takes 8 bytes per descriptor. Figure 2 reports the recall and search
time for different datasets. The plot shows that 1) the accuracy increases as more search
time is taken but tends to saturate because of the existence of reconstruction error; 2) smaller
the dataset is, higher the accuracy will be. Since the memory footprint for quantization is

Fig. 2 Accuracy vs. search time.
10K means the first 10 kilo
descriptors of SIFT1B dataset,
and so on and so forth

0 1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

(re
ca

ll
1@

1)

search time(ms per query)

10K
1M
10M
100M

31677Multimedia Tools and Applications (2023) 82:31673–31689



identical for all evaluations, one can see that the accuracy is negatively correlated with the
size of datasets for a fix number of links per vector. This motivates us to consider a set of
small subgraphs rather than a big one.

The other benefit of using small subgraphs is that we could reduce the memory cost for
storing graph links. In the original implementation of L&C, each neighbor identifier occu-
pies 4 bytes to support billion-sized address space. Suppose we somehow could partition
the big dataset into a set of small ones, of which the cardinality is less than 216. Then, only
2 bytes are enough to store each neighbor identifier, reducing the space cost by half. This
saves us quite a few bytes for longer compact representation of vectors given the limited
memory budget.

3.2 A big graph or a set of small subgraphs?

The previous experiment shows that using a set of small graphs might be promising in
improving the accuracy and reducing the memory occupation for graph links. Inspired by
IVFPQ [25], we design a hierarchical structure as illustrated in Fig. 1. The top layer is a
standard HNSW graph, of which vertices are the centroids obtained by employing the K-
means algorithm over the whole dataset. Please note that these centroids are not quantized,
i.e., the original centroid vectors are used to build the top layer graph.

Suppose we have K clusters in hand, then we use L&C to index vectors in each cluster
and all these K L&C graphs constitute the bottom layer. A pointer is associated with each
centroid in the top layer, following which one can visit its corresponding L&C graph. We
call such an index structure the hierarchical link and code graph (HiL&C).

We use Sift100M to evaluate the performance of the standard L&C and HiL&C. Par-
ticularly, a single big graph is constructed following the L&C index building strategy. For
HiL&C, we first use K-means to partition Sift100M into 5000 clusters, enforcing the size
of each cluster is less than 216. A HNSW graph is built using these 5000 centroids, and then
L&C is applied for each clusters to build 5000 L&C subgraphs. For both L&C and HiL&C
the parameter settings are identical, where the numbers of links are set to 7 and OPQ32 (32
bytes) is used for vector approximation.

To answer a query, L&C traverses the graph, evaluates the distances between query y and
reconstructed vectors in the candidate set, and outputs the best results after the refinement
stage. Since HiL&C owns a two-layer index structure, it starts the search procedure by
traversing the top-layer HNSW graph first, and identify k∗ centroids that are closest to y.
Then, the corresponding k∗ L&C subgraphs are searched and the results from each subgraph
are merged into a temporary candidate set, in which the closest vectors to y are chosen and
output as the final answers.

Fig. 3 L&C vs. HiL&C on
SIFT100M: accuracy as a
function of the search time

1 100.5 2 5
0.30

0.35

0.40

0.45

0.50

ac
cu

ra
cy

(re
ca

ll
1@

1)

search time(ms per query)

L&C
HiL&C

31678 Multimedia Tools and Applications (2023) 82:31673–31689



We adjust the number of visited L&C subgraphs, i.e., k∗, to make the search times are
identical for both L&C and HiL&C. Figure 3 reports the accuracy as a function of search
time for both methods. As one can see, HiL&C provides much higher accuracy than L&C
with the same time cost. The reasons are 1) the k∗ clusters already cover most nearest
neighbors of y, and 2) recall increases as the dataset cardinality decreases for a fixed number
of links as discussed in Section 3.1.

3.3 Regression from neighbors or dual residual encoding?

In this section, we evaluate two kind of candidate refinement strategies given a memory
budget, i.e., the method of L&C and dual residual encoding in our proposal.

Regression from neighbors L&C employs OPQ for the first approximation of vectors
plus refinement stage using regression coefficients (also stored in the compact code form)
learned during the index construction phase. L&C adopts a two-stage search strategy. Dur-
ing the first stage, the first approximation induced by the quantizer is used to select a
short-list of potential neighbor candidates. The indexed vectors are reconstructed on-the-
fly from their compact codes. The second stage solicits compressed regression coefficients
and applied only them on this short-list to re-rank the candidates, which will be discussed
briefly next.

Assuming that we have reconstructed the best regression coefficients β̂ from their
compact representation, and k nearest neighbors of x stored in matrix form as N(x) =
[n̂1, n̂2, ..., n̂k], L&C estimates x as the weighted average

x̂ = β̂ (x)� N(x) (1)

then computes the exact �2 distance between x̂ and query y to re-rank the potential neighbor
candidates.

Dual residual encoding Recall that HiL&C adopts a hierarchical graph structure to
organize vectors. At the top layer, the whole dataset is divided into K clusters Cc =
{c1, · · · , cK}, which can be viewed as a coarse quantizer qc. Each vector x is mapped to its
nearest cluster centroid by

qc (x) = argmin
c∈Cc

‖x − c‖2 (2)

Quantization error occurs through the coarse quantization progress, between the original
vector and its approximation. We can decompose x into the coarse quantization centroid
and the first-level residual vector r1(x)

r1(x) = x − qc(x) (3)

The energy of r1(x) is reduced significantly compared with x itself, which limits the
impact of residuals on distance estimation. Inspired by IVFPQ, we use PQ to quantize and
encode r1(x)

qr1 (r1 (x)) = arg min
c∈Cr1

‖r1 (x) − c‖2 (4)

Similar to L&C, we also adopt a two-stage search strategy. In the first stage, we use the
estimation of x, i.e., x̂ = qc (x) + qr1 (r1 (x)), to select a short-list of potential neighbor
candidates. In order to obtain more precise results, we re-rank the candidates in the short-
list using compact code of the second-level residual of each candidate. The second-level
residual r2(x) is computed as

r2(x) = x − qc(x) − qr1 (r1 (x)) (5)

31679Multimedia Tools and Applications (2023) 82:31673–31689



Table 1 Quantization error comparison on Deep100M

Methods Codec Bytes per vector Quantization error

L&C L13&OPQ32 M=8 92 1,329,721

HiL&C L13&OPQ32 R2=8 68 980,459

HiL&C L13&OPQ48 R2=16 92 123,533

In the similar vein, we use PQ to quantize and encode r2(x)

qr2 (r2 (x)) = arg min
c∈Cr2

‖r2 (x) − c‖2 (6)

Table 1 compares the quantization error, i.e.,
∑

x∈X ‖x − x̂‖2, for estimators obtained
using regression-from-neighbors and dual residual encoding over Deep100M dataset2. To
identify unambiguously the parameter setting, we adopt a notation of the form L13&OPQ32
following [17]. L13 means that each vector stores only 13 neighbor IDs, and OPQ32 means
that we use a 32 bytes OPQ method for PQ encoding. For L&C, M = 8 suggests that
the regression-from-neighbors is enabled, allocating 8 bytes per vector. For our proposal,
R2 = 8 means that 8 types is used to compress the second-level residuals.

The immediate observation drawn from Table 1 is that the total square loss of dual resid-
ual encoding is smaller than that of regression from neighbors under the same length of
codewords, i.e., OPQ32 M = 8 vs. OPQ32 R2 = 8. This suggests that dual residual encod-
ing alone can beat the regression method in L&C, which is more complicated and time
consuming.

Recall that each link occupies only two bytes in HiL&C, enabling us to allocate more
bytes spared from links to codec and represent the vectors more accurately. As a quick
example, the quantization error in the case of L13&OPQ48 R2 = 16 is an order of magni-
tude smaller than that of L&C, where the same amount of memory per vector (96 bytes) is
used for both methods.

To sum up, dual residual encoding is far more effective, along with the hierarchical graph
structure, than L&C in reducing the reconstruction loss. This translates to higher recall as
will be discussed shortly.

4 Hierarchical link and code with dual residual encoding

In this section, we introduce our approach named hierarchical link and code with dual
residual encoding (HiL&C). It uses a hierarchical graph structure and two-level residual
quantization to build an index that scales to billion-sized datasets for efficient similarity
search. We then describe the architecture of our indexing and searching method, we present
the detailed indexing and search algorithms of HiL&C. Finally, we conclude by describing
our tradeoffs in links and refinements structure in terms of bytes.

4.1 Overview of the index structure

Hierarchical graph-based structure Motivated by the discussion in Section 3.2, we
employ a two-layer HNSW index structure as illustrated in Fig. 1, and we adapt the HNSW

2The first 100M vectors in Deep1B.

31680 Multimedia Tools and Applications (2023) 82:31673–31689



index structure to fit our data partitioning and dual residual encoding strategies. To be spe-
cific, we use PQ encoding to save storage space so that ADC can be used on the HNSW
structure. Since the construction complexity of HNSW scales as O(Log(N)), so the search
complexity of HiL&C scales as O(log(N)).

Vector approximation All vectors are first partitioned into K clusters via the K-means
algorithm, and the K corresponding centroids are inserted into the top-layer graph and
stored in the original vector format. Please note that the number of clusters is rather small
compared with the dataset cardinality, and thus is not a dominating factor of the index
size. After subtracting each vector from its corresponding centroid, all first-level residuals
are compressed with a coding method independent of the structure. Formally, it is a quan-
tizer, which maps any vector x ∈ R

d �→ q(x) ∈ C, where C is a finite set subset of Rd

meaning that q(x) is stored as a code. Although vector residuals are assigned to different
bottom-layer subgraphs, they share the same first-level codebook for coding and decoding.

Candidate refinement Recall that HiL&C adopts a two-stage search strategy similar to
[17, 25]. To re-rank a short-list of potential neighbor candidates, we compute the second-
level residual for each vector and compress them using the other quantizer. To answer a
query more precisely, the short-list of candidates are re-ranked using the vector estimation
reconstructed on-the-fly from their second-level compact code. This trades a little extra
computation per vector for better accuracy.

It is worth noting that HiL&C is a more generalized indexing framework for similarity
search than L&C. Actually, if we set K = 1 and replace the second-level residual encoding
with the regression method for candidate refinement, HiL&C will reduce to L&C.

4.2 Algorithm description

This subsection presents the details of the indexing and query processing algorithms of
HiL&C.

The algorithm for building a HiL&C index

1. Learning K clusters on a training dataset using K-Means and insert all centroids into
the top-layer HNSW graph. The value of K is chosen judiciously to make the sizes of
all clusters are smaller than 216. For example, K is set to around 40000 for the billion-
scale datasets in our experiment setup. Each x ∈ X is assigned to its closest centroid
qc(x).

2. For all vectors, the first-level residuals r1(x) are computed by (3). After learning the
first-level PQ quantizer qr1(·) with a sample set of r1(x), we insert r1(x) into its cor-
responding HNSW subgraph, where r1(x) is stored in the compact form of qr1(r1(x)).
Please note that we uses the internal ID of x rather than the global one to store the
neighbor identifier in the subgraph. This design saves two bytes per link. To map an
internal ID to a global one during query processing, we maintain a lookup table for each
subgraph, which occupies extra 4 bytes per vector.

3. To re-rank the short-list of potential candidates, we learn a second-level PQ quantizer
qr2(·) with a sample of second-level residuals r2, which is computed by (5). Similarly,
the codebook is shared by all r2(x).

31681Multimedia Tools and Applications (2023) 82:31673–31689



The algorithm for similarity search

1. To get the nearest neighbors of a query vector y, HiL&C starts the search by traversing
the top-layer HNSW graph and return k∗ closest centroids to y. The residual r1(y) =
q − qc(y) is computed for each of the k∗ subgraphs. k∗ is an important parameter by
tuning which we can trade speed for accuracy.

2. For each of the k∗ subgraphs, we perform the graph-based similarity search using r1(y)

and get t best answers. The first-level residuals r1(x) of the results are reconstructed
on-the-fly by first consulting the lookup table to map the internal ID into the global
one, and then approximated using the corresponding compact code.

3. The short-list of potential candidates consists of all k∗ ∗ t results obtained in Step 2.
The second-level residual r2(x) are used to re-rank these candidates. Specifically, the
distance between y and x in the short-list is computed as d (x, y) = ‖y − qc (x) −
qr1 (r1 (x)) − qr2 (r2 (x))‖. We select the best results based on d (x, y) as the final
answers.

4.3 Memory allocation trade-offs

In this subsection, we analyze HiL&C when imposing a fixed memory budget per vector.
Four factors contributes to the marginal memory fingerprint: (a) the number of graph links
per vector (2 bytes per link); (b) the code used for the first-level residual approximation, for
instance OPQ32 (32 bytes); (c) the R2 bytes used by the refinement method to re-rank the
short-list of candidates; (d) the lookup table mapping internal ID to the global ID (4 bytes
per vector).

Since the memory occupation for the lookup table is fixed, we only focus on the
compromise among the first three factors next.

Linking vs Coding We first study the impact of the number of links on the performance of
HiL&C. Note that increasing the number of links means one has to reduce the number of
bytes allocated to the compression codec. Figure 4 illustrates the trade-off using a simple
example on Deep1M with R2 = 0. t is set to 150 by default.

HNSW has an obvious drawback that when the number of links is low, HNSW cannot
provide a high recall because the graph structure is too sparse.

Examining more subgraphs shifts the curves upwards, meaning improved accuracy at the
cost of more time consumption.

Fig. 4 Performance on Deep1M
by varying the number of links
for a fixed memory budget
of 64 bytes

0 8 16 24 32 40 48 56 64

28 24 20 16 12 8 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of graph links per vector

ac
cu

ra
cy

(re
ca

ll
1@

1)

code length (bytes)

k*=1
k*=5
k*=8
k*=10

31682 Multimedia Tools and Applications (2023) 82:31673–31689



Table 2 Trade-offs for allocating bytes to quantizers for the first-level and second-level residuals on SIFT1M

Bytes/vector R1 R2 recall@1 @10 @100

16
16 0 0.416 0.834 0.887

8 8 0.408 0.735 0.833

32
32 0 0.593 0.886 0.891

16 16 0.624 0.874 0.886

64
64 0 0.749 0.897 0.897

32 32 0.783 0.890 0.891

First-level approximation vs refinement codec We now fix the number of links to 6
and consider the compromise between the number of bytes allocated to the first-level and
second-level residuals under fixed memory constraint. Recall that the first-level residual is
used to generate a short-list of potential candidates and the second-level quantization is used
for the re-rank procedure. We denote the number of bytes allocated for them by R1 and R2,
respectively. The number of subgraphs examined are fixed to 5.

Table 2 shows that the effectiveness of refinement procedure depends heavily on the
amount of memory budget. When the total number of bytes per vector is very small, say
16, allocating bytes to the second-level residual codec hurts recall at all ranks listed, i.e.,
recall@1, @10 and @100. We have investigated the reason for this observation, and dis-
covered that 1) 16 bytes are essentially not enough to obtain precise approximation of the
first-level residuals, considering the size of the dataset; 2) the reconstruction error of the
first approximation increases dramatically when decreasing R1 from 16 to 8.

The picture is totally different if the memory budget is more sufficient, which is the
operating point we are interested in. For example, in the case of 64 bytes per vector, allo-
cating these bytes evenly to the two-level residual codecs improves recall@1 significantly
but hardly affects recall@10 and @100, compared with R2 = 0.

5 Experiments and analysis

In this section we present the experimental comparison of HiL&C with several state-of-
the-art algorithms. All experiments are carried out on a server with E5-2620 v4@2.10GHz
CPU, 256GB memory and 2T mechanical hard drive. Following the methodology in [17],
the search time is obtained with a single thread and given in milliseconds per query.

5.1 Baselines and algorithm implementation

We choose Inverted Multi-Index [5] (IMI) and L&C as two baseline methods because most
recent works on large-scale indexing build upon IMI [6, 8, 16, 28], and L&C outperforms
IMI for most operating points as reported in [17]. We use the implementation of Faiss3

(in CPU mode) as the IMI and L&C baselines. All results are obtained using the optimal
parameters selected by automatic hyperparmeter tuning for them. HiL&C is implemented
using the same code base of Faiss as L&C. OPQ is used to facilitate the encoding in both
levels. By default, we set K = 40000 and t = 150 for billion-sized datasets.

3https://github.com/facebookresearch/faiss

31683Multimedia Tools and Applications (2023) 82:31673–31689

https://github.com/facebookresearch/faiss


The indexing cost is an important factor for real applications. It takes much less time for
HiL&C to build the index compared with L&C (20 vs. 28 hours on SIFT1B and 28 vs. 34
hours on DEEP1B). The main reason is that building multiple small graphs is cheaper than
constructing a giant one.

5.2 Empirical evaluation on billion-sized image sets

We perform all the experiments on the two publicly available billion-scale datasets, which
are widely adopted by the computer vision community:

1. SIFT1B [25] contains 1 billion 128-dimensional SIFT vectors, where each vector
requires 512 bytes to store.

Fig. 5 Performance comparison
of HiL&C, L&C and IMI on
Deep1B

1 100.5 2 5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
ee

p1
B

ac
cu

ra
cy

(re
ca

ll
1@

1)

search time(ms per query)

IMI(2x14,PQ96)
L13&C2x14+PQ40 M=8
HiL18+PQ48 R2=0
HiL18+PQ48 R2=16

(a) The performance on Deep1B for recall@1

1 100.5 2 5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
ee

p1
B

ac
cu

ra
cy

(re
ca

ll
1@

10
)

search time(ms per query)

IMI(2x14,PQ96)
L13&C2x14+PQ40 M=8
HiL18+PQ48 R2=0
HiL18+PQ48 R2=16

(b) The performance on Deep1B for recall@10

1 100.5 2 5

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
EE

P1
B

ac
cu

ra
cy

(re
ca

ll
1@

10
0)

search time(ms per query)

IMI(2x14,PQ96)
L13&C2x14+PQ40 M=8
HiL18+PQ48 RM=0
HiL18+PQ48 RM=16

(c) The performance on Deep1B for recall@100

31684 Multimedia Tools and Applications (2023) 82:31673–31689



2. DEEP1B [8] consists of 1 billion 96-dimensional feature vectors extracted by a CNN,
where each vector occupies 384 bytes.

For encoding, all three methods use 104 bytes per vector for Deep1B and 72 bytes per vector
for SIFT1B. Please note HiL&C requires only two bytes for each link, and maintains an
additional lookup table (4 bytes per vector) for ID mapping.

Figure 5 compares the performance in terms of search time vs accuracy for different
algorithms. As depicted in Fig. 5(a), HiL&C is much faster than L&C and IMI for almost
all operating points. For example, HiL&C achieves 6.1x and 3.1x speedup at 65% recall@1
compared with L&C and IMI, respectively. Moreover, HiL&C attains much higher accuracy,
e.g., it provides around 85% recall@1 using 10ms per query whereas L&C has already
saturated at 65%, indicating a 30%+ gain in accuracy.

Fig. 6 Performance comparison
of HiL&C, L&C and IMI on
Sift1B

1 100.5 2 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Si

ft1
B

ac
cu

ra
cy

(re
ca

ll
1@

1)

search time(ms per query)

IMI(2x14,PQ64)
L7&C2x14+PQ32 M=8
HiL10+PQ40 R2=0
HiL10+PQ40 R2=8

(a) The performance on Sift1B for recall@1

1 100.5 2 5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Si
ft1

B
ac

cu
ra

cy
(re

ca
ll

1@
10

)

search time(ms per query)

IMI(2x14,PQ64)
L7&C2x14+PQ32 M=8
HiL10+PQ40 R2=0
HiL10+PQ40 R2=8

(b) The performance on Sift1B for recall@10

1 100.5 2 5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SI
FT

1B
ac

cu
ra

cy
(re

ca
ll

1@
10

0)

search time(ms per query)

IMI(2x14,PQ64)
L7&C2x14+PQ32 M=8
HiL10+PQ40 RM=0
HiL10+PQ40 RM=8

(c) The performance on Sift1B for recall@100

31685Multimedia Tools and Applications (2023) 82:31673–31689



Recall@10 is an important metric to evaluate if one would like to pay extra random
access to the original data stored on the external memory. As shown Fig. 5(b), HiL&C is
slightly worse than L&C at the low precision region while outperforms it after reaching the
high precision region (above recall@10 of 80%), which is of great interest in real applica-
tions. IMI is inferior to the other two algorithms due to its low selectivity as discussed in
[17]. Figure 5(c) shows that recall@100 exhibits the similar trends as recall@10.

Figure 6 compares three algorithms on Sift1B. For most operating points, HiL&C deliv-
ers much higher accuracy than L&C and IMI. To be specific, HiL&C is 7.7x and 1.12x
faster than L&C and IMI to attain a recall@1 of 51% (the saturation point of L&C), respec-
tively. Around 39% improvement in recall@1 is achieved by HiL&C compared with L&C
at the operating point of 10ms per query. For recall@10 and recall@100, HiL&C also
demonstrates the superiority over the others.

5.3 Comparison with other competing algorithms

Table 3 shows the comparison between HiL&C and other methods, although HiL&C uses
more bytes, since the design goal of both methods is reducing space occupation and increas-
ing recall. When one needs a higher recall@1, HiL&C is far more attractive than the other
methods.

The design philosophy of PQ-like paradigm is to trade approximation accuracy for mem-
ory consumption. Thus, it is difficult for them to achieve high Recall@1 unless a large
proportion of the dataset is examined. In contrast, HiL&C and L&C are aimed at obtain-
ing high Recall@1 by only visiting a small number of points in the dataset. This is why
Recall@10 and Recall@100 of HiL&C are inferior to other baselines. Please note that
Recall@10 and Recall@100 are only meaningful unless we evaluate the exact distances
between the original vectors and the query, which will incur more memory access and com-
putation time. Considering the popularity of computers with large main memory, we believe
that it is affordable to trade memory for more precise vector approximation and higher
Recall@1.

Table 3 Performance evaluation on two billion-sized datasets

SIFT1B

R@1 R@10 R@100 tims(ms) bytes

Multi-LOPQ [28] 0.430 0.761 0.782 8 16

OMulti-D-OADC-L [5] 0.421 0.755 0.782 7 16

FBPQ [6] 0.179 0.523 0.757 1.9 16

0.186 0.556 0.894 9.7 16

PolySemous [16] 0.330 / 0.856 2.77 16

Link&Code [17] 0.461 0.608 0.613 2.10 72

HiL&C 0.542 0.694 0.697 2.06 72

Deep1B

R@1 R@10 R@100 tims(ms) bytes

GNO-IMI [8] 0.450 0.8 / 20 16

Polysemous [16] 0.456 / / 3.66 20

Link&Code [17] 0.668 0.826 0.830 3.50 104

HiL&C 0.767 0.832 0.833 3.69 104

31686 Multimedia Tools and Applications (2023) 82:31673–31689



Considering the increasing popularity of servers with 256G+main memory, our approach
offers an competitive effects for most real-life computer vision applications.

6 Conclusion

In this paper, we introduced a simple yet effective approach for efficient approximate
nearest search on billion-scale datasets on one commercial server. The proposed method,
HiL&C, adopts the hierarchical graph index structure and dual residual encoding to take
full advantage of the limited memory budget. The search efficiency and quantization error
are both improved thanks to the delicate design choices. Empirical study shows that HiL&C
outperforms the state-of-the-arts significantly.

Acknowledgements The work reported in this paper is partially supported by NSF of Shanghai under
grant number 22ZR1402000, the Fundamental Research Funds for the Central Universities under grant num-
ber 2232021A-08, State Key Laboratory of Computer Architecture (ICT,CAS) under Grant No. CARCHB
202118, Information Development Project of Shanghai Economic and Information Commission (202002009)
and National Natural Science Foundation of China (No.61906035).

Author Contributions K.Y. performed the experiments and manuscript preparation.
K.Y., H.W., conceived the conception of the study and wrote the manuscript.
M.D., Z.W., Z.T. performed the data analysis.
J.Z., Y.X. disscussed with constructive discussions.

Funding The work reported in this paper is partially supported by NSF of Shanghai under grant num-
ber 22ZR1402000, the Fundamental Research Funds for the Central Universities under grant number
2232021A-08, State Key Laboratory of Computer Architecture (ICT,CAS) under Grant No. CARCHB
202118, Information Development Project of Shanghai Economic and Information Commission (202002009)
and National Natural Science Foundation of China (No.61906035).

Data Availability All data generated or analysed during this study are included in this published article (and
its supplementary information files)

Materials Availability SIFT1B:http://corpus-texmex.irisa.fr/
DEEP1B:http://sites.skoltech.ru/compvision/noimi/

Declarations

Conflict of Interests No

References

1. André F, Kermarrec A, Scouarnec N. L (2018) Quicker ADC unlocking the hidden potential of product
quantization with SIMD. CoRR arXiv:1812.09162

2. Aoyama K, Saito K, Sawada H, Ueda N (2011) Fast approximate similarity search based on degree-
reduced neighborhood graphs. In: SIGKDD, pp 1055–1063

3. Arya S, Mount DM (1993) Approximate nearest neighbor queries in fixed dimensions. In: SODA, vol 93,
pp 271–280

4. Babenko A, Lempitsky V (2014) Additive quantization for extreme vector compression. In: CVPR,
pp 931–938

5. Babenko A, Lempitsky V (2014) The inverted multi-index. IEEE Trans Pattern Anal Mach Intell
37(6):1247–1260

6. Babenko A, Lempitsky V (2014) Improving bilayer product quantization for billion-scale approximate
nearest neighbors in high dimensions. arXiv:1404.1831

7. Babenko A, Lempitsky V (2015) Tree quantization for large-scale similarity search and classification.
In: CVPR, pp 4240–4248

31687Multimedia Tools and Applications (2023) 82:31673–31689

http://corpus-texmex.irisa.fr/
http://sites.skoltech.ru/compvision/noimi/
http://arxiv.org/abs/1812.09162
http://arxiv.org/abs/1404.1831


8. Babenko A, Lempitsky V (2016) Efficient indexing of billion-scale datasets of deep descriptors. In:
CVPR, pp 2055–2063

9. Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2018) Local neighborhood inten-
sity pattern-a new texture feature descriptor for image retrieval. Expert Syst Appl 113:100–115.
https://doi.org/10.1016/j.eswa.2018.06.044

10. Baranchuk D, Persiyanov D, Sinitsin A, Babenko A (2019) Learning to route in similarity graphs. In:
ICML, vol 97, pp 475–484

11. Beis JS, Lowe DG (1997) Shape indexing using approximate nearest-neighbour search in high-
dimensional spaces. In: CVPR, pp 1000–1006. IEEE

12. Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is nearest neighbor meaningful? In: ICDT,
pp 217–235. Springer

13. Bhunia AK, Bhattacharyya A, Banerjee P, Roy PP, Murala S (2020) A novel feature descriptor for
image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture
pattern. Pattern Anal Appl 23(2):703–723. https://doi.org/10.1007/s10044-019-00827-x

14. Böhm C, Berchtold S, Keim DA (2001) Searching in high-dimensional spaces: index structures for
improving the performance of multimedia databases. ACM Computing Surveys (CSUR) 33(3):322–373

15. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-
stable distributions. In: SoCG, pp 253–262

16. Douze M, Jégou H, Perronnin F (2016) Polysemous codes. In: ECCV, pp 785–801. Springer
17. Douze M, Sablayrolles A, Jégou H (2018) Link and code: fast indexing with graphs and compact

regression codes. In: CVPR, pp 3646–3654
18. Douze M, Szlam A, Hariharan B, Jégou H (2018) Low-shot learning with large-scale diffusion. In:

CVPR, pp 3349–3358
19. Fu C, Xiang C, Wang C, Cai D (2019) Fast approximate nearest neighbor search with the navigating

spreading-out graph. VLDB 12(5):461–474
20. Ge T, He K, Ke Q, Sun J (2013) Optimized product quantization. IEEE Trans Pattern Anal Mach Intell

36(4):744–755
21. Gupta S, Roy PP, Dogra DP, Kim B (2020) Retrieval of colour and texture images using local

directional peak valley binary pattern. Pattern Anal Appl 23(4):1569–1585. https://doi.org/10.1007/
s10044-020-00879-4

22. Harwood B, Drummond T (2016) Fanng: fast approximate nearest neighbour graphs. In: CVPR,
pp 5713–5722

23. He R, Cai Y, Tan T, Davis LS (2015) Learning predictable binary codes for face indexing. Pattern
Recogn 48(10):3160–3168

24. Jegou H, Douze M, Schmid C (2010) Product quantization for nearest neighbor search. IEEE Trans
Pattern Anal Mach Intell 33(1):117–128

25. Jégou H, Tavenard R, Douze M, Amsaleg L (2011) Searching in one billion vectors: re-rank with source
coding. In: ICASSP, pp 861–864. IEEE

26. Jiang Z, Xie L, Deng X, Xu W, Wang J (2016) Fast nearest neighbor search in the hamming space. In:
International conference on multimedia modeling, pp 325–336. Springer

27. Jin L, Li Z, Tang J (2020) Deep semantic multimodal hashing network for scalable image-text
and video-text retrievals. IEEE Transactions on Neural Networks and Learning Systems, pp 1–14.
https://doi.org/10.1109/TNNLS.2020.2997020

28. Kalantidis Y, Avrithis Y (2014) Locally optimized product quantization for approximate nearest
neighbor search. In: CVPR, pp 2321–2328

29. Li Z, Tang J, Zhang L, Yang J (2020) Weakly-supervised semantic guided hashing for social image
retrieval. Int J Comput Vis 128(8):2265–2278. https://doi.org/10.1007/s11263-020-01331-0

30. Li W, Zhang Y, Sun Y, Wang W, Li M, Zhang W, Lin X (2020) Approximate nearest neighbor search
on high dimensional data - experiments, analyses, and improvement. IEEE Trans Knowl Data Eng
32(8):1475–1488

31. Lin P, Zhao W (2019) A comparative study on hierarchical navigable small world graphs. CoRR
arXiv:1904.02077

32. Liu Y, Cheng H, Cui J (2017) PQBF: i/o-efficient approximate nearest neighbor search by product
quantization. In: CIKM, pp 667–676

33. Liu S, Shao J, Lu H (2017) Generalized residual vector quantization and aggregating tree for large scale
search. IEEE Trans Multimedia PP(8):1–1

34. Lv Q, Charikar M, Li K (2004) Image similarity search with compact data structures. In: CIKM, pp 208–
217

31688 Multimedia Tools and Applications (2023) 82:31673–31689

https://doi.org/10.1016/j.eswa.2018.06.044
https://doi.org/10.1007/s10044-019-00827-x
https://doi.org/10.1007/s10044-020-00879-4
https://doi.org/10.1007/s10044-020-00879-4
https://doi.org/10.1109/TNNLS.2020.2997020
https://doi.org/10.1007/s11263-020-01331-0
http://arxiv.org/abs/1904.02077


35. Malkov YA, Yashunin DA (2018) Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs IEEE. Transactions on Pattern Analysis and Machine
Intelligence

36. Matsui Y, Uchida Y, Jégou H, Satoh S (2018) A survey of product quantization. ITE Transactions on
Media Technology & Applications

37. Matsui Y, Yamasaki T, Aizawa K (2018) Pqtable: Nonexhaustive fast search for product-quantized codes
using hash tables. IEEE Trans Multim 20(7):1809–1822

38. Muja M, Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm configuration.
In: VISAPP, pp 331–340

39. Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and
fast spatial matching. In: CVPR

40. Shakhnarovich G, Darrell T, Indyk P (2006) Nearest-neighbor methods in learning and vision: theory
and practice (neural Information Processing). The MIT press

41. Sivic Z (2003) Video google: a text retrieval approach to object matching in videos. In: ICCV
42. Teodoro G, Valle E, Mariano N, Torres R, Meira W, Saltz JH (2014) Approximate similarity search for

online multimedia services on distributed cpu–gpu platforms. VLDB J 23(3):427–448
43. Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search

methods in high-dimensional spaces. In: VLDB, vol 98, pp 194–205
44. Zhang T, Du C, Wang J (2014) Composite quantization for approximate nearest neighbor search. In:

ICML, vol 2, p 3
45. Zhao K, Pan P, Zheng Y, Zhang Y, Wang C, Zhang Y, Xu Y, Jin R (2019) Large-scale visual search

with binary distributed graph at Alibaba. In: CIKM, pp 2567–2575

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

31689Multimedia Tools and Applications (2023) 82:31673–31689


	An efficient indexing technique for billion-scale nearest neighbor search
	Abstract
	Introduction
	Related work
	Quantization-based methods
	Graph-based methods
	Link&Code



	Motivations
	The impact of dataset size on accuracy
	A big graph or a set of small subgraphs?
	Regression from neighbors or dual residual encoding?
	Regression from neighbors
	Dual residual encoding



	Hierarchical link and code with dual residual encoding
	Overview of the index structure
	Hierarchical graph-based structure
	Vector approximation
	Candidate refinement


	Algorithm description
	The algorithm for building a HiL&C index
	The algorithm for similarity search


	Memory allocation trade-offs
	Linking vs Coding
	First-level approximation vs refinement codec



	Experiments and analysis
	Baselines and algorithm implementation
	Empirical evaluation on billion-sized image sets
	Comparison with other competing algorithms

	Conclusion
	Declarations
	References


