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Abstract

The use of complex scientific workflows in cloud computing environments, taking into
account different interdependency criteria, is becoming a key objective for cloud service
providers and for customers. This gives the task scheduling operation a higher priority in
order to improve the quality of services. In this work, we introduce a novel hybrid PPTS-
PSO algorithm based on two efficient algorithms with the goal of improving the
scheduling phase of a set of interdependent tasks that make up scientific workflows in
the cloud-computing platform with the best execution time and cost while staying within
the deadline and budget constraints. An intelligent variant of the PSO algorithm named
neighborhood PSO and the heuristic PPTS algorithm are used. The suggested method can
assign tasks in scientific workflows to the most appropriate cloud virtual machine.
Therefore, our strategy takes into account resource allocation too. The experimental
results show that our solution overcomes different algorithms in the literature with
minimum iterations.

Keywords Scheduling - Cloud computing - PSO - Scientific workflows - Meta-heuristic algorithm

1 Introduction

Cloud computing (CC) has grown as a study topic in recent years, giving a cost-effective
deployment framework for hosting and running workflows. It is considered the leading model
for distributed computing due to its elasticity, speed, and pay-per-use model. The benefits of
CC include scalability, adaptability, and cost effectiveness. Aside from these benefits, it also
has certain disadvantages. One of the most serious concerns is security, as data that is stored

< Adnane Talha
adnane.talha@usmba.ac.ma

Mohammed Ouc¢amah Cherkaoui Malki
oucamah.cherkaoui @usmba.ac.ma

! FSDM, LPAIS Lab, Sidi Mohamed Ben Abdellah University, Fez, Morocco

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14739-w&domain=pdf
mailto:adnane.talha@usmba.ac.ma

33016 Multimedia Tools and Applications (2023) 82:33015-33038

can be accessed by anybody. Other drawbacks include a lack of standards, technical chal-
lenges, and attack vulnerability. The number of cloud service providers (Google, Microsoft
Azure, Amazon, and others) continues to grow, resulting in an increase in the number of cloud
services. Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a
Service (IaaS) are some of the most popular cloud computing services. Infrastructure as a
Service (IaaS) is a well-known cloud service platform that gives consumers access to capable
and adaptable computational resources. Cloud infrastructure is discharged as virtual computers
(VMs). Clients having access to an endless amount of resources for application execution at a
lower cost of use. Users can use services for specific needs at a tariff set by their CSP (Cloud
Service Provider). These services are available at any time. There are massive benefits about
using cloud computing to execute workflows. For starters, it relieves the user of the respon-
sibility of maintaining their own infrastructure. Second, in terms of price, it is reasonable.
Third, it allows access from anywhere. To run scientific applications in the cloud environment
within a certain number of criteria remains a big challenge for researchers. There are massive
benefits about using CC to execute workflows. For starters, it relieves the user of the
responsibility of maintaining their own infrastructure. Second, in terms of price, it is reason-
able. Third, it allows access from anywhere. In the scientific field, there are workflows that are
sensitive to enormous volumes of information, others that are vulnerable to sophisticated
calculations, and still others that are sensitive to multiple criteria concurrently. Therefore, the
deployment and hosting of these workflow applications require a robust infrastructure with
high-performance computing, communication, and storage. Most previous works designed for
grid, cloud or cluster environments consider the fixed amount of resources and focus only on
minimizing the execution time. The above forces scientists to develop WF scheduling
optimization algorithms that strike the right balance between two main qualities of the Service
(QoS) parameters: time and cost. To optimize scientific applications, workflow scheduling
(WFS) is the ideal technique for distributing workflow tasks to computer resources. WFS aims
to manage the execution of interdependent tasks by considering precedence constraints on
resources. This problem is known as NP-complete. This strategy prompted the researchers to
provide a near-optimal solution. The heuristic approach and the meta-heuristic approach are
the two types of scheduling strategies for workflow graphs [33] (Topcuoglu et al., 2002).
Heuristic algorithms are built on simple, fast, and easy-to-implement rules, but they frequently
result in local solutions because they rely on a number of constraints provided by domain
experts. They are better suited to straightforward optimization tasks. In order to efficiently deal
with a bigger search space while designing large-scale applications, meta-heuristic techniques
are presented. Each meta-heuristic method comes with its own set of upsides and downsides.
Meta-heuristics is a random search technique that aims to find a near-optimal solution within a
reasonable time. This implies a relatively longer computation time. Multiple meta-heuristics
methodologies have been proposed, including the gravitational search algorithm (GSA) [11,
28], the ant colony optimization (ACO) algorithm [13], the particle swarm optimization (PSO)
[20], the artificial bee colony (ABC) [19], the dragonfly algorithm (DA) [27] and the genetic
algorithm (GA) [16, 31]. We observed that in the scientific simulation disciplines, there are
workflows that are sensitive to huge amounts of data, others that are sensitive to complex
operations, and still others that are sensitive to multiple criteria at once. Therefore, we have
thought about the way to give a solution aimed at optimizing the processing of these SW1s and
specifically, finding a middle ground between two diametrically opposed quality of service
(QoS) parameters: time and cost. In general, qualitative metrics such as computational time
and cost are used to determine QoS. This inconsistency prompted us to propose a realistic
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solution targeted at reducing processing time while also lowering processing expenses as much
as possible while staying within deadlines and budgetary constraints. The suggested solution’s
fundamental idea is to match tasks to appropriate resources, in order to reduce computational
cost and execution time while keeping the deadline and budget in mind. To achieve this dual
target, we combed the literature for the most widely utilized methodologies that achieve this
goal while also producing good outcomes. We selected to combine the capability and
simplicity of PPTS [12] with the evolutionary algorithm PSO [17]. This mixture allows us
to obtain a hybrid solution aiming at the optimization of the scheduling operation. PSO’s
accuracy can be improved by adding the PPTS generated solution into the initial population of
randomly generated solutions. PPTS was chosen due to its excellent SWf scheduling capabil-
ities. This method tends to speed up the scheduling process in order to produce the best results
in terms of computation time and cost. The main contributions of this work include the
following 2 aspects:

(1) The neighborhood particle swarms strategy is adopted which includes the neighborhood-
learning factor, to overcome the constraints of the simple particle network in order to
increase the opportunities for exploring more potential solutions.

(2) We develop a new hybrid method for cloud tasks scheduling, that integrate PPTS with
PSO together to combine the capability and simplicity of PPTS with the evolutionary
algorithm PSO.

The Workflowsim tool, an extension of cloudSim is used to evaluate the performance of our
algorithm for some common workloads in simulated data centers. We show that this approach
exceeds existing strategies for attempting to tackle the WFS problem in cloud environments
depending on the results of our simulation studies. The rest of this paper is organized as follow.
In Section 2, we briefly review a few similar works. In Section 3 we formulates the problem of
scheduling the scientific workflow in CC with the target of decreasing cost and time while
remaining in time and under budget. While in Section 4, we present a hybrid strategy based on
PPTS and PSO. Sections 5 and 6 present the outcomes of the experiments and the conclusion.

2 Related work

Over the years, many studies have tried to offer solutions to the workflow-scheduling problem,
and as previously said, a range of heuristic and meta-heuristic methodologies have been
researched and evaluated. Many enhancements to these algorithms were developed to deal
with limited scheduling conditions. Common heuristic algorithms include Heterogeneous
Earliest Finish Time (HEFT) [33], Critical Path on Processor (CPOP) [33], PEFT [5] and
PPTS [12].

The HEFT [33] and CPOP [33] approaches are two major scheduling methods that try to
deliver the best performances while saving scheduling time for a certain number of heteroge-
neous processors. Using an insertion-based mechanism, the HEFT technique sends the task
with the smallest ascending rank value to the processor with the shortest completion time at
each level. The second algorithm, known as CPOP, prioritizes tasks by adding the bottom-up
and top-down rank values. Another distinction is the processor selection phase, which assigns
critical tasks to the processor with the shortest total execution time. In this paper [5], the
authors utilized a list-based scheduling technique known Predict Earliest Finish Time

@ Springer



33018 Multimedia Tools and Applications (2023) 82:33015-33038

methodologies (PEFT). The process includes a look-ahead function into an optimistic cost
table despite minimizing the computation’s temporal complexity (OCT). The result is an
optimistic cost because processor availability is not taken into consideration in the calculation.
The approach is entirely dependent on the OCT table, which is used to prioritize workloads
and choose processors. The work puplished in [12], introduce the Predict Priority Task
Scheduling (PPTS) methodologies which is a list-based scheduling mechanism, by including
a prediction function into both phases of the PPTS algorithm, the major goal is to shorten the
scheduling length. In [17], the primary idea behind the proposed algorithm GHEFT is to
combine the advantages of genetic and HEFT algorithms while reducing their downsides. The
program assigns priorities to each subtask using the HEFT algorithm, and then searches for a
task-processor mapping solution using a genetic approach.

The research in [18], proposes a reformed scheduling strategy based on a pre-allocated
energy consumption level for unassigned jobs, as well as an energy consumption limitation
mechanism. The purpose of the study published in [2] is to develop a list scheduling with task
duplication (LSTD) technique for the amount of time needed to accomplish workflow appli-
cations. The LSTD incorporates a task duplication methodology to the list scheduling technique
despite having low total amount of time complexity. In [30], the authors suggest an upgrade to
HEFT in which the heuristic makes locally optimum judgments based on estimations of a single
job, looks ahead in scheduling, and considers information about the influence of the decision on
the children of the allotted work. In addition, the authors in [25] Using only a state-space
clustering method, this work has proposed the optimal task scheduling with task duplication. It
also gives important new definitions of typical boundary parameters in the perspective of
duplication. In the paper [1], by using the modified antlion optimizer algorithm, a new multi-
objective optimization solution for work scheduling difficulties in cloud computing systems
with balanced job configuration/distribution was developed (MALO). Because it mixes the
characteristics of genetic algorithm methodologies (GA) and an evolution strategy, the DE
algorithm was also used in collaboration with a local search strategy and a differential evolution
(DE) mechanism to optimize the ALO’s exploitation search-ability (ES). In [8] the authors
suggested a workflow scheduling method focused on particle swarm methodology. Competi-
tive aspects such as makespan, load balance, resource utilization, and speedup ratio are
reviewed by the fitness function proposed. The particle is modelled so that a complete solution
can be generated while maintaining dependence limitations. In [6], the authors proposes a
hybrid Min-Min (MM) and RoundRobin (RR) strategy named (HMMRR) to improve resource
utilization and system performance by lowering average response time and system latency
while reducing the makespan (execution time) of all virtual machines. In [7], The researchers in
this paper announced HPSOGWO, a new hybrid multi-objective method that combines the
functions of two well-known methodologies, particle swarm optimization algorithm (PSOA)
and grey wolf optimization (GWO). The authors of paper [21] discuss their algorithm named
PSO + LOA, a combined optimization model for scheduling processes in the cloud that merges
particle swarm with the lion’s eye optimization approach (LOA) to improve running time while
preserving within budget constraints. Using spectral division and subdivision of the input task
graph, [32] describes a two-phase hybrid task scheduling technique. G-SP distributes every
portion of the directed graph to a low-power processor to reduce power consumption. In [29]
The suggested approach is a mixture of the recently discovered SMO algorithm and the other
widely used heuristic algorithm BDSD, which is a budget and deadline-constrained algorithm
that aids HSMO in developing a workable program. Additionally, the suggested technique uses
a penalty function to limit the number of solutions that do not meet the QoS restrictions. In [35]
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Offers an alternative list-based scheduling technique to schedule tasks described as a DAG
form. The main purpose of this technique is to schedule jobs to the appropriate processing node
in a fog environment because fog nodes’ computation capacity is limited. The computing cost
and even the node’s completion time must be properly considered when distributing tasks to the
fog node. In paper [23] merges the traditional particle swarm optimization methodology with a
significantly increased ant-lion optimization (ALO) algorithm. During the scheduling phase,
the cloud data is secured using the Data Encryption Standard security mechanism (DES). The
study in [4] propose two hybrid metaheuristic algorithms titled DE-SA and GA-SA that are also
matched with a ravenous approach based on the genetic algorithm (GA), differential evolution
(DE), and simulated annealing (SA). The research in [3] summarizes existing surveys on
scientific workflow management systems and cloud computing scheduling. It includes a
taxonomy of scientific workflow applications as well as their properties. It demonstrates how
established scientific workflow management and scheduling strategies, such as resource sched-
uling, fault-tolerant scheduling, and energy efficient scheduling, function. It goes over numer-
ous performance evaluation factors and platforms that are used to evaluate scientific workflow
management. It identifies evaluation platforms for evaluating scientific workflow management
approaches based on a variety of performance evaluation factors and presents several technical
requirements for presenting new scientific workflow management strategies. The authors of the
study in [22] address the problem that existing cloud schedulers consider only a single resource
(RAM) when co-locating workloads, resulting in SLA violations owing to non-optimal VM
placement. The nova scheduler has been changed to provide a multi-resource based VM
placement technique to increase application performance with respect of CPU utilization and
execution time. The work in [34] investigate a computational paradigm in which each machine
has a bounded capacity to perform a set number of tasks at the same time. Based on the above-
mentioned paradigm, the Extended High to Low Load (ExH2LL) task scheduling heuristic is
presented, which aims to balance workload among accessible computing resources while
enhancing resource usage and minimizing the makespan. ExH2LL determines task-to-
machine assignment automatically based on the current load on all devices.

3 Problem formulation
A.  Workfow model

In this paper, we will deal with scheduling a set of interdependent tasks (workflow) in a cloud-
computing infrastructure to minimize the total execution time (makespan) and the cost while
respecting the constraints of limited execution time and budget. The representation of the
workflow can only be done by using a suitable technique. For this purpose, we choose a
directed graph that has no circuits and whose arcs are directed. A workflow application W =
(T, E) is modelled by a directed acyclic graph (DAG) (Fig. 1), where T is a set of tasks T =
{t1, t... t,,y, m = [T| in the workflow. E is a sequence of directed edges {e; ;|(#;, ;) € E} that
describes the interdependence of data and control between ¢ and #;. The task # in which is said
to be a parent (predecessor) task of #; and ¢ is said to be a child (successor) task of #.. The task ¢
can proceed its execution only if all its ancestors tasks have finished their execution and the
associated data or parameters have been transferred from these tasks to #. The parent task of an
edge is the source task, and the child task is the target task. Succ(#) and pred(#) represent the
successor of 4 and the predecessor of #; respectively. A task without a parent task is called an
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input task, while a task without a child is called an output task. Figure 1 shows an illustration
of a typical workflow DAG scheme.
B. The scheduling problem

In this part, we will present the different axes of the task-scheduling problem. To do this, we
will start with the system, application, and scheduling models. In our study, we focused on
several main components described in Fig. 2. This model includes a broker, datacenters, hosts,
VMs and tasks.

The cloud service provider has a series of data centers modeled according to the operating
systems, CPU architecture, hypervisor, available network bandwidth, usage costs, and virtual
machine allocation policies. In addition, our cloud data center comprises heterogeneous
physical virtual machines. Each VM has a CPU, which can be multi-core and whose perfor-
mance is defined in millions of operations per second (MIPS). In addition, user requests will be
handled in multiple VMs whose resource requirements are measured in MIPS, amount of
RAM, and communication bandwidth. The broker operates as a mediator between the users and
the data centers and provides the appropriate level of quality of service. It enables for the
selection of data centers where the VMs will be deployed and defines how the tasks will be
managed and in which VM will be executed. Each tasks in our model is modeled using several
characteristics such as the size in MIPS, the length of the input and output files exchanged
between the provider and the VMs, the bandwidth, and the size occupied by the task in memory.
The image size, number of CPUs, processing capacity in MIPS, quantity of RAM,bandwidth,
hypervisor types and task scheduling mechanism are all part of the VM’s basic configuration. In
our paradigm, the execution time for every task is a variable depending on the configuration of
the VM, and the execution can be estimated through the profiling system provided by the data
center. Suppose that in distributed systems all processors are identical. In that situation, each
processor’s execution time for a given task is the same. However, in real distributed systems,
processor speed will vary. The heterogeneity model depicts the difference in processing speeds
required to complete a particular task. The processing speed in distributed systems is unpre-
dictable in reality, and the formula below would be used to calculate the degree of imbalance: 4
€[0...1).
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Fig. 1 Sample workflow DAG scheme Task scheduling modeling AND formulation
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Fig. 2 System architecture for PPTSPSO

h+1
degree of imbalance = % (1)

Where h is the heterogeneity parameter. If we take # = 0, the degree of imbalance is 1, or if we take
h = 0.5, the degree of imbalance is 3. This indicates that the fastest processor in the distributed
system can complete a task three times faster than the slowest processor. Each task mapped to a
particular VM has an estimated computational cost based on a time interval, which is the unit of
measurement for the cost calculation, we assume in our paper that resources are charged per unit
time of use. The term “quantum” refers to this time interval. The fastest virtual machine should by
definition, be the most expensive. Table 1 shows all symbols used in our paper.
C. Particle swarm optimisation

PSO is ranked among the best optimization algorithms suggested by the two scientists Kennedy
and Eberhart [12] in 1995. Each individual (particle) represents a solution to the situation and is
characterized by a position and a velocity. The algorithm modifies these two values as it goes
along, bringing them closer to the desired results. Each particle is declared in the form of a
vector X (xy, X, ..., X;) representing its position in the space. We record the velocity, position,
and the value of the fitness function it has achieved, which refer to the position in each iteration.
At each particle generation, our algorithm produces the most advantageous global position
named gbest and the best personal position called pbest. Their fitness function values return the
selection of these two elements. During the search method, the following two equations are
employed to measure the particles velocity and position:

Vi(t+1)=w.V;(t)+Cy.r1*(pbest—x;(t) ) +C,.r,*(gbest—x;(t)) (2)

Xi (t+1)=x;(t)+Vi(t) 3)

Equation (2) represents the velocity of the ith particle at iteration t. Where w is the inertia parameter.
C; and C; are constants acceleration factors, ry and r, are randomly initialized between 0 and 1. x;
represents the current position of particle i. pbest is the ideal position of the particles reached in the
past, gbest is the ideal position of the particle swarm. Equation (3) returns the position x of the i-th
particle for the t-th iteration. Figure 3 presents the flowchart of the PSO algorithm.
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Table 1 Shows the different symbols used in our article

Table 2: Symbols definition

N The number of tasks
P The number of VMs.
M The number of particles.
{t1, to, ..., ty} The set of N arrival tasks.
{Vi, V2, ..., Vp} The set of p VMs.
mips; The processing rate of the VM v;
ET; « The execution time that v; needs to process #;
size; is the size of the task ¢
Quantum Discrete unit to calculate the cost of using VM
CCx The computing capacity of v, (MFLOPS)
TTij The data transfer time between t,and
BW Average bandwidth
FT, Is the unit time to release the v, (lease end time)
STy The lease start time as long as the execution of a workflow
TCw The total cost of executing all the tasks.
LPTy The rental price per unit of time for v
~y Is the smallest unit for calculating the cost of using the VM.
D is the time limit to execute all the tasks
B Is the estimated budget.
pbest Personnel best position of a particle.
gbest Global best position of a particle.
best The best position of the particle’s neighborhood
Ci, Gy, Cy Acceleration constants.
Ll 13 Randomozid numbers in [0.1[.
A Inertia weight
x(0) Particle’s position
Vi?) Particle’s velocity
Mw The total time spent to complete the total tasks (Makespan).
EFT(ti, vj) earliest completion time of ti on vj

D. Optimisation by neighborhood particle swarms.

The basic particle swarm optimization technique relies on individual cognition and social
behavior to select the next position, which leads to the problem of all particles migrating to the
optimal overall position. As a result, we will apply the updated particle swarm optimization
[36], which includes the neighborhood-learning factor, to overcome the constraints of the
simple particle network in this paper. Particles adjust their velocity and position in the
neighborhood particle swarm optimization method depending on individual behavior, group
behavior, and the optimum individual experience in the neighborhood. Following the previous
argument, we change the particle swarm’s velocity update formula to:

Vi(t+1)=w.V;(t)+Cj.r1 *(pbest—x;(t))+C;.r,*(gbest—x;(t) )+ Cs.r3*(Nbest—x;(t) ) (4)

X (t4+1)=x;(t)+V;i(t) (5)

With C;, C, Are acceleration factors in the standard optimisation algorithm, while C; is a
neighborhood acceleration factor. 7y, 7, and r; are random values in the range [0.1].

The current position of particle i is represented by x;. pbest is the best particle position
achieved in the past. Gbest is the best particle swarm position and Nbest is the best particle
neighborhood position. The best position, called Nbest(best closest) is chosen based on two
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Initialise paticles with random solutions

Applying fitness function on each particle

Updating position and velocity matrices

Evaluating termination criterion

Terminate algoithm

Fig. 3 Flowchart of PSO algorithm

factors: first, it must be adjacent to the current particle, and second, it must have visited a
position with higher fitness. To do this, we propose to choose as the best neighbor particle of
the current particle i, for each iteration d, the one, which, among all the particles of the swarm,
except the particle i, maximizes the following ratio (Fitness-Distance):

Fitness(P;)—Fitness(X )
|Pia=Xid|

(6)

Where P; and X; are respectively the right position of particle j, and the best position of the
current particle i.

E. PPTS algorithm
PPTS is a new heuristic algorithm for workflow scheduling introduced by djigal et al. [12].

The capacity of PPTS to reduce the complexity and length of the scheduler by looking ahead is
a key advantage. It takes into account the present task’s execution time as well as the execution
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times of all its immediate predecessors in its formula, all without adding to the complexity of
the algorithm when compared to other similar algorithms. The algorithm is based on the
Predictive Cost Matrix (PCM), which is used to calculate the priorities of each task and the
processor selection phase using the look-ahead concept. We will start by defining the main
elements of this algorithm, starting with the PCM matrix, which is a (t X p) matrix, where each
PCM(#, p)) represents the most prominent element of the shortest paths between task #; and the
exit task. The element of PCM is determined by recursively solving the following formula:

PCM (6, v;)= maXy,csuce(t)| min, ep{ POM (i, vy) +ET (ti, vy) +ET (6, vy ) +TTix
(7)

Where TT; ; = 0, if v; = v, for the exit task PCM(Z,y;, vj) = ET(teyi» ). To set the priority of
each task #;, one must first calculate the average of the PCM(;, v;) denoted by PCM (¢;) defined
by (9):

_ XL PCM (ti, v;)

» (8)

PCM (t ,')
After obtaining the priority list, the tasks are ranked in descending order.
F. The allocation of virtual machines (VM):

To allocate tasks to a VM, we need to calculate the value look — Aheadyr for each task t; on a
machine v;, which is the sum of EFT(t;, v;) and PCM(t;, v;) defined by:

Look—Aheadgrr (t,', Vj) = EFT(t,', Vj) + PCNI(!‘;7 Vj) (9)

Such that EFT(t;, v;) represents the earliest time to end of £ on v;. We select the VM that has
the lowest value of Look — Aheadggr to ensure that the successors of the running task finish
carlier.

Algorithm 1 PPTS algorithm

1- Compute the PCM matrix as defined in (7) for each
task

2- Calculate PCM (t;) for each task t; as given in (8) and
arrange them in descending order.

Repeat Step 3-4, until the list is empty.

for all the v; do

3-Calculate EF T(t,—, vl-) value-using insertion based

scheduling policy.

4-Using (9) to compute Look — Aheadgpr(t;, vj)
End for
5 - Allocate task to the VM with minimum Look —
Aheadgpr.
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4 The proposed algorithme

Researchers face a huge issue when it comes to task allocation in cloud systems. In this topic,
several studies and algorithms have been conducted, particularly heuristic algorithms, which
can be classed as efficient solutions to this type of problem (the workflow scheduling). In our
research, we tried to implement a hybrid algorithm in which they used two sophisticated types
of algorithms. The first heuristic algorithm PPTS is used to produce the population of particles
passed to the second meta-heuristic algorithm named PSO. Our study used an optimization
algorithm that manages the initialization phase of the particle population intelligently, unlike
other classical algorithms that randomly generate the population. In this stage, we use a
heuristic algorithm that elaborates a list of tasks. The result of this algorithm is itself an
optimal planning. The major advantage of this technique is that we will get the best optimized
planning with resource allocation. Secondly, the number of repeats has been reduced, which
reduces the execution time of the algorithm. We are looking for a solution in which the best
time/cost trade-off has been applied while respecting certain constraints. Algorithm 1 presents
the different steps to build an initial population to implement our PSO-based solution.

A. Fitness function

In the conduct of our research, we have addressed two main objectives. The first is to minimize
the computational cost, and the second aim is to minimize the execution time of the workflow.
To achieve these goals, we need to clearly define a fitness function that meets this. Our fitness
function returns solutions of such a kind that the best solution means it had a better score while
the worst score represents the worst solutions. The algorithm must satisfy the budget (B) and
deadline (D) constraints. The function is made of two parts, the first one concerns the
makespan execution time and the second one examines the total cost. The function is then
defined using the following formula:

{ minimize (Mw, TCW) ' b rew < B (10)

subject to

Where D is the deadline and B is the estimated budget. The particle with the lowest cost and
the lowest execution time will be chosen.

1. Makespan

Before define the makepan, we must give some definition. The execution time of the task ¢ in
vy, is defined as follows:

ET; = (11)

Where CCj, represents the computational capacity of v, (FLOPS) and size; represents the task’s
size. The communication between two tasks #; and ¢ requires a transfer time from the parent
t; to the child . The transfer time noted 77} is calculated using the following formula:

TT;j=Data (ti, tj)
BW

(12)
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Where Data(#, ) is the size of data that needs to be received from #, £ and BW is network
bandwidth. It should be mentioned that the 77}; is equal to zero if #; and ¢ belong to the same
VM. Therefore, the internal data transfer will be zero, as in most cloud data centers. For #, the
longest input transferring time from all its input files can be denoted as:

IT; = max, . (TT}) (13)

Where ¢ is one of the predecessor tasks of .
The processing time (PT) of % scheduled on vy, is defined as:

PT(ti,vk) =1TT; + ET; (14)

The Start Time (ST) of task # on vy is calculated as:

07 lf ti = tentry
ST(ti,vk) = (15)
MAXt epred( 1) {PT (t,vk) +ST ( tj, vk) }7 otherwise

The Finish Time (FT) of ; on v, can be computed as:

PT ( t, Vk)7 lf t;i = lentry
FT (t;,w) = {maoxt/epred( tl){FT (tj,vk) +PT (tj,vk) }, otherwise (16)

The makespan expresses the entire amount of time it take to execute the workflow, which is
defined as follows:

Mw = Max{ FT (#,w) } i=1,.,n k=1,..m (17)

2. The total cost

For CSP services, pricing rules are defined, with a predetermined price for unit data transmis-
sion between two VMs and a pay-per-use charge for processing time units. The cost of
execution can be defined as follows:

Where LPTy, is the rental price per unit time for vy, FCT; and SCT, are respectively the unit
time to release the v, (end-of-lease time) and the start-of-lease time during the execution of a
workflow. The unit + is the shortest unit for calculating the cost of using the VM.

The cost is determined by taking into account the costs of data centre, processing capacity,
memory, bandwidth, storage of each VM instance type. The overall cost is calculated by
adding the costs of each task processing.
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B. Hybrid PSO Algorithm
1. Encoding

As seen in Fig. 4, a scheduling solution is represented by each particle in the population.
The location of a particle, is an array reflecting the correlation between tasks and virtual
machines. This array has a dimension equal to the total number of tasks in our workflow.
Each element indicates the index of a VM to execute the corresponding task. For example,
Position [13] = 3 means that task t4 will be performed on VM number 3. However, the
minimum value that can be had in an array is one, while the highest value is p (the number
of VMs). The second array contains the velocity of a particle of the same dimension as the
position array. Each element contains the result of an equation for changing the velocity at
each iteration. Then, the result is used to change the index of the virtual machines that exist
in the first list.
2. Initialisation

In this phase, we will show the different steps followed to generate an initial population.
Algorithm 1 describes the instructions used, which are based on the PPTS heuristic algorithm.

Algorithm 2 Generate an initial population

Input: Empty population with size M

Output: Population of size M particles

1: Generate randomly M particles

2: Integrate the PPTS algorithm into the population
3: generate the population of particles

Population

Position(i] — DAY

>

i=1....l

Updated with the velocity formula

Particle M

Fig. 4 The coding of particles in our population
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3. The proposed algorithm

The different instructions of our hybrid algorithm will be explained in this section. Because
performance and results are depending on the input, initialization is a crucial phase in any
algorithm. The PPTS-PSO algorithm takes a population of particle swarms initialized using the
PPTS program as an argument to take advantage of the strengths of both the PPTS and PSO
heuristic and meta-heuristic approaches. The following section has a complete explanation of
each step:

Algorithm 3 The proposed PPTS-PSO Algorithm

Input: Tasks T, Virtual Machines V

Output: The optimized schedule

Begin
. T[M] // Initialise the first set of swarm using schedule obtained from PPTS algorithm
. For (i=1;i<=M;i++)

1

2

3.

4. x(t) =T[i]// Initialise the position of each particle with the schedule obtained from algorithm 2
5. V(t) € random() / Initialise the velocity randomly

6. Pbest € x;(t) / Initialise Pbest with the initial position of the particle

7. Gbest € better(Pbest) // Initialise Gbest with the best of all Pbest among all particle

8. Nbest € Null // initialize the Nbest

9. }

10. Repeat

12. For(i=1;i<=M; i++) // for each particle in the swarm
(

1

14. F € Fitness_value() //calculate the fitness value for each particle position using equation (10)
15. If F(Pi) >F(Pbest) then // if the actual value is bigger than Pbest then

16. Pbest € x;(t) / update the value of the particle with the current value.
17. End If

18. . If F(Pi) >F(Gbest) then // if the present value is higher than Gbest

19. Gbest € x;(t)// change the particle's value with the current value

20. End If

21. Nbest is chosen by maximizing the formula (6)

22. V(t+1) = V(t) // Update particle velocity using Equation (5).

22. x(t+1) =x(t) // Update particle position using Equation (4).

23. }// end for

24. Until (result converge) // end repeat

25. End

The fitness value will be compared to Pbest and then Gbest at each iteration. If the new
values produce superior results, Pbest and Gbest will be adjusted to reflect the new values. The
Nbest is chosen by maximizing the formula (6). The schedule generated by algorithm 2 and the
number of tasks are inputs to our algorithm. The number of tasks in the process determines the
population’s size. The tasks in the scientific workflow will be represented by the particles, and
the position will be the virtual machine determined. The for loop from lines 2 to 9 will do the
needed initialization. At line 4, the particles position is initialized with the position from the
algorithm 2. The virtual machine assignment determined by the algorithm 2 is used to initialize
the particles. At line 5, the velocity is randomly initialized. The particle’s Pbest is initialized
with the initial particle’s position at line 6. The Gbest is initialized at line 7. The Gbest is
established up in a manner that the better position of the whole particles is chosen. The Nbest
is initialized too using the null value. Lines 10-26 will be executed for each iterations of the
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swarm search. Line 15 calculates the fitness value for each particle. In line 1618, the fitness
value is compared with the Pbest. If a better result is obtained in the search, then the Pbest is
updated. Lines 19-21, likewise, look for an enhancement of the Gbest. If a new improve-
ment is discovered, the Gbest will be updated to reflect it. In lines 22, the Nbest is
determined through maximization of the formula (6), the velocity and the positions are
updated. Using the knowledge gathered in the current iteration, the particles will go in the
correct direction. The until loop will be repeated until the Mw and TCw objective values
converge.

The time complexity of algorithm 2 is O(p.n?). Here n is the number of tasks in the
workflow W and p is the number of VMs. The first for loop at line 2 iterates only for the
number of particles M, which is always equal to n2. On the other hand, The do—until loop
starting at line 10 will be executed for °q’ times. The q value set in the experiment is 25.
On an average case, the results converged within 17 iterations for smaller workflows, 19
for medium workflows and around 20 for larger workflows. The for loop starting at line
12 will be iterated for M times. Hence, the time complexity of our algorithm is O((q +
p).n%). Fig. 5 explains all the main elements of the hierarchical architecture used in this
paper, which is based on the PSO algorithm. Users must submit their service requests to
the cloud provider.

The latter must determine the most effective way of task scheduling. This solution
outlines the job sequence and the virtual machines (VM) that execute them at the best
possible time and cost. The experiments and simulations used to construct our technique for
tackling task-scheduling challenges in the cloud environment are presented in the following
part.

5 Performance evaluation

In this section, we present the experimental settings including materials and evaluation metrics
used to evaluate the performance and the effectiveness of our algorithm.

Cloud Provider

the scheduler

Compute

schedule The new algorithm

23
25
O o
Sy
o

Optimized Schedule

108

Users Requirements Scheduling Allocating VMs

Fig. 5 The architecture of the PPTS-PSO algorithm
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Table 2 Configuration setup

Datacenter VMs parameters Cost parameters PSO parameters
parameters
Number of VMs 5 RAM (MB) 512 Processing 3.0 number of 25
usage cost particles
Number of cloud 1 MIPS Random{500,1000,2000, Memory usage  0.05 inertia weight 0.9
users 3000,4000,5000} cost
BW 1000 Storage usage 0.1 C1,C2,C3 2
cost
Pes Number 1 BW usage cost 0.1

A. Simulation setup

Synthetic workflow data was prepared using the Pegasus workflow repository [26]. Table 2
lists the simulation parameters that we used to test the proposed scheduling algorithm’s
performance.

B. Framework simulation environment:

We used the WorkflowSim Framework [9], which is built on CloudSim, to analyze our
suggested solution. An open-source simulator provides a level of workflow management. A
workflow planner create a list of tasks that are first given as an XML file in its raw form. The
workflow parser module prepares this task list. If necessary, the clustering engine can combine
tasks into a set of jobs. The workflow engine must then order these tasks based on the
dependence criteria. Before processors run ordered tasks, the workflow scheduler gets in-
volved to match them to available VMs. Montage, Cybershake, Inspiral, and Ligo are four
scientific applications families that model real-life data flows. Figure 6 these applications were
chosen because of their versatility in terms of application areas and resource needs. Several of
these workflows are given to the science establishment through the Pegasus Workflow
Mangers platform tools [26], which become scalable and flexible (Pegasus Workflow Man-
agement platform 2015). The DAX is an XML-formatted description of an abstract workflow
that serves as the model’s principal input. It includes a list of all referenced files and all task
dependencies, as well as a specification of all jobs. Let o« be the unit of time. If the user uses
the leased VM partially. It will be considered as a full time use. For example, if « = 100 min,

000000000
%

(] > ] kY

T 000000000
v ¥

o (,l‘y P

3 p ¢ ‘ . ' “ ' ® Q. \‘\,f!:/’, w
j g

"

@) (b) © (d)

Fig. 6 The structure of workflows: (a) Montage; (b) CyberShake; (¢) Epigenomics; (d) LIGO and Inspiral
Analysis
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and the VM is used 101 min then the user will pay 2 periods. i.e. 200 min. The inertia weight
value « was adjusted between 0.1 and 1, and it was found that the best results could be
obtained when the inertia is set at 0.7-0.9. Our approach converged in 18 iterations for small
size tasks (50), 21 iterations for medium size tasks (100), and 24 iterations for big size tasks
(1000). The requirement for additional iterations comes from the need to eliminate local
minima. Table 3 shows a comparison between these applications in terms of system intensity.

6 Implementation and results
We conducted a set of experiments with existing heuristic algorithms like:

* FCFS [15]

*  MinMin [10]

*  MaxMin [14]

*  RoundRobin [24]

« HEFT [33]
«  PPTS[12]
« PSO [20]

The suggested algorithm is developed in Java and runs on the Eclipse platform. The tests have
been carried on a workstation with a window OS and 2.5 GHz Intel Core i5 processor and 4GB
of RAM. The proposed PPTS-PSO approach is based on a population of 25 particles, which is
sufficient to achieve reasonable convergence rate. Tables 4, 5, 6 et 7 show the results of a

Table 3 Comparison between the scientific applications

Scientific WF application Domain System intensiveness
Montage Astronomy Data-intensive
CyberShake Earthquake science Data/memory-intensive
Inspiral gravitational physics CPU-intensive

Ligo gravitational physics CPU-intensive

Table 4 Experimental results for assembly data sets of Montage 50(small), 100(medium) and 1000(large) tasks

Scheduling Makespan Cost
algorithm

Montage 50 Montage 100 Montage 1000 Montage 50 Montage 100 Montage 1000

FCFS 129,77 256,79 2555,62 1627,44 3427,53 36,003,19
MinMin 132,59 269,97 2555,54 1627,16 342781 36,007,12
MaxMin 129,51 256,74 2556,49 1627,96 3429,09 36,009,32
RoundRobin 129,51 256,65 2555,54 1628 3427,99 36,007,12
HEFT 129,28 256,69 2555,99 1627,65 3428,07 36,002,25
PPTS 130,05 257,01 2555,87 1628,11 3428,12 36,005,33
PSO 129,9 256,88 2556,03 1627,66 3429,22 36,008,45
PPTS-PSO 129,2 256,98 2554,25 1627,12 342737 36,001,01
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Table 5 Experimental results for assembly data sets of cybershake 50(small), 100(medium) and 1000(large)
tasks

Scheduling Makespan Cost
algorithm
cybershake  cybershake cybershake cybershake  cybershake  cybershake
50 _100 1000 _50 _100 _1000
FCFS 372,21 728,99 4618,74 38,316,28 76,698,49 127,841,06
MinMin 389,96 859,15 4634,59 38,31549  76,697,57 127,837,23
MaxMin 363,07 713,39 4616,18 38,318,36  76,694,85 127,844,3
RoundRobin 378,02 848,78 4642,08 38,315,01 76,701 127,837,85
HEFT 365 726,95 4622,94 38,316,36  76,693,12 127,840,64
PPTS 367 799,56 4625,03 38,317,36  76,691,54 127,841,65
PSO 3652 745,74 4622,79 38,315,25 76,673,09 127,836
PPTS-PSO 364,84 724,53 4613,77 38,297,91 76,664,48 127,811,51

Table 6 Experimental results for assembly data sets of Inspiral 50(small), 100(medium) and 1000(large) tasks

Scheduling algorithm Makespan Cost

ligo_50 ligo_100 ligo _1000 ligo _50 ligo_100 ligo _1000
FCFS 2715,77 4444.6 45,610,89 35,468,16 63,427,22 685,498,43
MinMin 309591 4598,11 45,795,51 35,468,5 63,427,13 685,495,84
MaxMin 2833,29 4403,09 45,588,97 35,467,97 63,426,57 685,493,23
RoundRobin 2838,68 4470,82 45,610,39 35,468,17 63,426,84 685,496,95
HEFT 2695,84 4390,54 45,464,99 35,467,79 63,426,08 685,496,61
PPTS 2689,26 4530,65 45,420,43 35,467,85 63,426,23 685,497,65
PSO 2698,02 4420,87 45,546,69 35,468,06 63,427,12 685,496,75
PPTS-PSO 2801,64 4370,07 45,103,43 35,467,89 63,425,83 685,491,22

series of studies using Montage workflow, Cybershake workflow, Ligo workflow, and inspiral
process to compute the makespan and cost, accordingly.
A. Performance analysis of real workflows based on makespan and cost

The experiments presented in Figs. 7, 8, 9, 10, 11 and 12 show that the suggested PPTS-PSO

method outperforms current algorithms like PSO, PPTS, HEFT, FCFS, MAXMIN, MINMIN,
and ROUNDROBIN in terms of makespan and cost. We considered applications graphs with

Table 7 Experimental results for assembly data sets of Ligo 50(small), 100(medium) and 1000(large) tasks

Scheduling algorithm Makespan Cost

Inspiral 50 Inspiral 100 Inspiral 1000 Inspiral 50 Inspiral 100 Inspiral 1000

FCFS 2715,717 44446 45,693,99 35,468,16  63,427,22 686,720,76
MinMin 309591 4598,11 45,774,57 35,468.5 63,427,13 686,719,56
MaxMin 2833,29 4403,09 45,674,34 35,467,97  63,426,57 686,717,56
RoundRobin 2838,68 4470,82 45,873,33 35,468,17  63,426,84 686,719,98
HEFT 2695,84 4390,54 45,716,48 35,467,79  63,426,08 686,719,86
PPTS 2811,12 4396,55 45,711,02 35,469 63,428,86 686,718,36
PSO 2800,46 4399,15 45,588,29 35,4682 63,4272 686,720,01
PPTS-PSO 2816,96 4395,98 45,577,07 35,467,06  63,426,94 686,715,33
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Fig. 7 Simulation results plot of the makespan for 50 tasks and 5 VMs

50(small size), 100 (medium size) and 1000 tasks (large size). For Montage, we discovered
that our approach performs better on tasks with a size greater than 50 (Small size). In
comparison to HEFT, which executes them in good execution time but with greater cost.
PPTS-PSO achieves an execution time of 256,98 and a cost of 3427,37 for a WF of 100 tasks.
Our technique outperforms all existing algorithms for WFs with 1000 jobs, with execution
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times and costs of 2554.25 and 36,002.01, respectively. For cybershake WFs with 50 tasks,
our solution has an execution time and cost were (364.84, 38,297.91), which is a better result
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Fig. 10 Simulation results plot of the cost for 50 tasks and 5 VMs
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than HEFT, PPTS, PSO and MAXMIN, which were (365, 38,316.36), (367, 38,317.36),
(365.2, 38,315.25), (363.07, 38,318.36) respectively. When it comes to WFs with 100 and
1000, our algorithm outperforms the other heuristic schemes in terms of execution time and
cost.

In contrast to Cybershake and Montage, Ligo produced (2808.64, 35,467.89) for WF with
50 tasks in comparison with HEFT whish had good result (2695.84, 35,467.79) and with PPTS
which had (2689,26, 35,467,85). for the others sizes 100 and 1000 in terms of both execution
time and cost, our solution outcomes the six other approaches with (4370.07, 45,103.43) and
(63,426.03, 685,493.22) respectively. The results obtained with Inspiral, for 50 tasks and in
comparison with HEFT which has (2695.84, 35,467.79), our solution had the value of time and
cost equal to (2816.96, 35,467.06) which is still a better result. For task sizes 100 and 1000 our
algorithm has acceptable results (4395.98, 63,426.94) and (45,577.07, 686,715.33) compared
to other solutions. On an average and for the makspan, the PPTSPSO algorithm gives 5%
improvement with respect to HEFT algorithm, 7% improvement with respect to PSO algorithm
and 11.5% improvement with respect to PPTS algorithm. Similarly, for the cost, the algorithm
gives 15.6% improvement with respect to HEFT algorithm, 25.5% improvement with respect to
PSO algorithm and 17.3% improvement with respect to PSO algorithm. This proves the
efficiency of our proposed PPTSPSO algorithm. Finally, we can see that our algorithm
produces efficient results for all types of scientific applications tested in our experiments,
especially for Ligo and Inspiral applications with sizes of 100 and 1000 tasks, when compared
to other solutions that consider the two critical criteria of execution time and cost.

7 Conclusion

This work proposes the PPTS-PSO technique for scheduling tasks from scientific applications
in a cloud-computing environment. Our solution beats conventional techniques in terms of
overall performance, according to simulation testing utilizing four well-known scientific
workflows. The future directions of the proposed solution, is to optimize our algorithm to
minimize execution time, increase resource utilization, load balancing and decrease power
consumption. We want to address the issue of power consumption in each data center while
developing cloud workflows, as well as simulate the Workflows Scheduling in heterogeneous
cloud environments that are globally distributed, emphasizing the importance of factoring in
data transmission time and cost across data centers. We will concentrate on optimizing more
objectives for numerous workflows with different charge models in hybrid cloud environ-
ments, as well as refining our PPTSPSO to speed up its convergence speed, particularly when
dealing with large-scale and complicated applications.
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