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Abstract
The conventional audio feature extraction methods employed in the audio analysis are cat-
egorized into time-domain and frequency-domain. Recently, a new audio feature extraction
approach using time-frequency texture image is developed and utilized for different applica-
tions. In this approach, the input audio signal is first converted into a time-frequency image,
and then textural features are extracted from the visual representation. The distinctive two-
dimensional time-frequency visualization textural descriptors can produce better features
for improved audio detection and classification. In this article, a comprehensive review
of state-of-the-art techniques used for audio detection and classification is presented. The
generalized architecture of time-frequency texture feature extraction approaches in audio
classification algorithms is presented first. Based on a review of over 70 papers, the key
contributions in the area of time-frequency representations of various researchers are high-
lighted in addition to the textural features. This survey also compares and analyzes the
existing experimental algorithms proposed for various audio classification tasks. Finally,
the critical challenges and limitations with different visual representations are highlighted,
along with potential future research directions.
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1 Introduction

Various forms of the interactions between machine and human have grown in the last
decade, including smart home appliances, smart stores, automotive industry, security and
mobile phones. The human interaction happens primarily using audio-visual form and ges-
tures. Because of the recent technological advancements in the audio and music field,
an enormous amount of data is available locally or over the network. The data content
search and information retrieval is a demanding task in a variety of applications such
as music mood classification, genre classification, melody identification, acoustic scene
classification and cover song identification [66].

The audio analysis tasks such as audio surveillance, music genre recognition, sound event
classification, acoustic scene classification require robust and most discriminating features.
The conventional audio feature extraction methods are categorized as: (a) time-domain
features and (b) frequency-domain features [66]. Zero-crossing rate (ZCR), signal energy,
maximum amplitude, and auto-correlation based features are the few examples of time-
domain features. The frequency-domain features include fundamental frequency, spectral
centroid, spectral flux, spectral density, spectral roll-off, chroma features, Mel-frequency
cepstral coefficients (MFFC) and linear predictive coding (LPC). More often, these features
are combined to enhance the algorithm performance in various applications.

Recently, a new audio feature extraction approach using time-frequency texture image
is developed and employed for different applications. In this technique, the input audio
signal is first converted into a time-frequency image (such as spectrogram or MFCC or
Cochleagram image) and then textural features are extracted from this visual representation.
The distinctive two-dimensional time-frequency visualization can produce better features
for audio detection and classification tasks. Such texture features are expected to be com-
plementary to the conventional features to construct a robust audio classification system.
Because of the non-uniformity of the textures in the visual image, usually, local feature
feature extraction is considered during the feature construction phase.
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Fig. 1 A graph depicting number of papers published during 2009-2020
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Researchers in 1970s initiated early efforts of understanding and analyzing visual infor-
mation in the form of spectrogram image. Visual information of spectrogram image was
employed in 1970s and 1980s for identifying the phonetic contents [86], continuous speech
recognition [38], multi-speaker continuous speech recognition [22] and stop-consonants
identification from continuous speech [87]. The manual analysis of visual information by
different researchers was limited to spectrogram image and difficult because of the complex
speech structure. More distinctive textural variations are observed in the time-frequency
representation for the short duration audio sample. Different textural descriptors effectively
capture these variations for a variety of audio classification task in the recent past.

A comprehensive survey of time-frequency image texture feature extraction algorithms
in audio applications is presented in this article. To the best of our knowledge, this is the first
attempt to survey different image texture feature extraction techniques for speech, music,
audio and environment sound classification. A total of 77 papers from top-tier journals and
conferences in the last twelve years are collected. All the articles collected are between the
years 2009 to 2020, and year-wise number of papers appeared are illustrated in Fig. 1. This
literature has been categorized based on (a) audio signal, (b) time-frequency representations
and (c) applications.

Based on the audio signal type, different articles are divided in to: (a) speech (b) music
(c) environment/acoustic sound and (d) other applications. Figure 2 depicts the percentage
of papers from each of the audio type. The other category includes audio signals such as
bird sounds, baby cry and bird vocalization identification. From Fig. 2 it is clear that most
algorithms are focused on music and environment/acoustic sound signal analysis and clas-
sification. The second type of categorization is based on the use of time-frequency visual
representation.

Different types of time-frequency images are used in the literature for texture fea-
ture extraction like spectrogram, cochleagram, Constant-Q transforms (CQT) and MFCC.
Figure 3 illustrates the classification of various algorithms according to the time-frequency
image. Spectrogram images are primarily employed for feature extraction by researchers
in different application development. The spectrogram image provides more distinctive
patterns for the classification or identification task compared to other image representations.

The last classification is based on applications of the time-frequency texture image. We
have classified the proposed approaches in five broad application areas: (1) music genre

Fig. 2 Classification of various
articles according to the audio
signal type
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Fig. 3 Classification of various algorithms according to the time-frequency image

identification (2) acoustic scene classification (3) bird and animal species classification (4)
sound event classification and (5) other applications. Figure 4 shows the classification and
percentage of articles in each of the application. The time-frequency texture image features
are first introduced for music genre classification and then extended for other application
areas. Table 1 depicts list of abbreviations used in the article.

Generalized architecture of time-frequency texture feature extraction approaches in
audio classification algorithms: The different audio classification approaches in the litera-
ture based on time-frequency texture image encompasses time-frequency image generation,

Fig. 4 Broad areas of application
development classification of
various algorithms
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Table 1 List of abbreviations

Abbreviation Definition

GLCM Gray-level co-occurrence matrix

LBP Local binary pattern

HOG Histogram of Oriented Gradients

LPQ Local phase quantization

LCP Local configuration pattern

WLD Weber local descriptors

RICLBP Rotation invariant co-occurrence LBP

CoLBP Co-occurrence of adjacent LBP

NTLBP Noise tolerant LBP

RILBP Rotation invariant LBP

LTP Local ternary pattern

HASC Heterogeneous auto-similarities of characteristics

LBPHF LBP Fourier features

MLBP Multiscale LBP

RLBP Rotated LBP

LPC Linear predictive coding

MFCC Mel-frequency cepstral coefficients

CQT Constat-Q transform

SIFT Scale-invariant feature transform

SVM Support vector machine

texture feature extraction and classification model. We have developed the generalized
architecture of time-frequency texture feature extraction algorithms in audio classification
tasks as illustrated in Fig. 5.

Fig. 5 Generalized architecture of time-frequency texture feature extraction approaches in audio classifica-
tion algorithms
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The first step is to generate visual representation such as spectrogram, cochleagram, CQT
image from the input audio signal. In the second step, textural descriptors are extracted from
the audio image. LBP, LTP, LPQ, and RLBP descriptors are commonly used for the feature
extraction task. Due to the non-uniformity of textures in time-frequency image, local feature
extraction is considered by employing zoning during the feature construction stage.

The textural descriptors like LPQ, LPQ and LTP extracted from the time-frequency tex-
ture image produces large dimensional feature vector. To speed-up the computation and
to reduce classification complexity, feature selection is often employed before the classi-
fier stage. Feature selection stage removes redundant and less critical features leaving only
relevant descriptors, hence creating small dimensional final feature set. Finally, classifica-
tion is implemented using a support vector machine, k-nearest neighbor or neural network
classifier. It is observed from the literature that, SVM is most popularly used classification
approach because of its excellent performance even in noisy conditions.

A systematic methodology to compose a comprehensive record of the state-of-art algo-
rithms focusing on time-frequency image texture features employed in audio applications is
illustrated. The major contributions of the survey article can be summarized as:

– A comprehensive survey of the state-of-art algorithms focusing on time-frequency
image texture features is demonstrated.

– Generalized architecture of time-frequency texture feature extraction approaches in
audio classification algorithms is presented.

– Presents a critical review of different time-frequency representations with their features,
advantages, and limitations employed in audio classification tasks.

– Furnishes a brief review of various textural descriptors with their advantages and
disadvantages utilized for feature extraction.

– Presents limitations and challenges of existing techniques.

The article is organized as follows. Firstly, the published state-of-the art algorithms are
categorized into three different classes. Section 2 describe time-frequency image represen-
tations in detail along with the applications. Different textural features and classification
algorithms are discussed in Sections 3 and 4. Section 5 outlines challenges, advantages
and limitations for implementing various audio applications using time-frequency texture
image. Finally, Section 6 concludes the article.

2 Time-frequency visual representation

In time-frequency texture image based audio feature extraction technique, the input audio
signal is first converted into a time-frequency image such as spectrogram or MFCC or
cochleagram image, and then textural features are extracted from this visual representa-
tion. This section demonstrates different time-frequency visualizations employed for feature
extraction and key aspects are compared.

2.1 Spectrogram

A spectrogram is a two-dimensional visual presentation of signal strength at a different fre-
quency that varies with time. Since spectrogram provides profound attributes, it is popularly
employed in a variety of speech and music processing applications. In a spectrogram, ver-
tical axis illustrates frequency and the horizontal axis represents time and energy content
present are depicted in the form of grayscale level. Recently, spectrogram image texture is
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characterized in various applications in order to capture the relevant details. The various
types of spectrograms can be categorized as log-mel spectrogram [53], IIR-CQT spectro-
gram [14], and linear spectrogram [8, 16, 18, 19, 30]. Moreover, the spectrogram is also
classified as narrowband and wideband based on the analysis window utilized.

To generate a spectrogram time-frequency image, firstly the input speech sample x(i) is
segmented into windows having length N frames. Later, these frames are transformed into
frequency-domain by applying windowed Fourier transform as,

Xt(k) =
N−1∑

i=0

x(i)ω(i)e− 2πi
N

kif ork = 0, . . . , (N − 1) (1)

where, ω(i) = Hamming window, k is frequency, f (k) = kFs/N and Fs is the sampling
frequency. Finally, linear or log power is used to create the spectrogram as,

SLin(k, t) = |Xt(k)|
SLog(k, t) = log SLin(k, t) (2)

Some methods employ normalized grayscale spectrogram intensity image before extracting
textural features [30].

An early attempt of time-frequency texture image feature extraction is presented in
[81]. The proposed approach classifies different musical instruments using minimum-
block matching of energy coefficients as features extracted from spectrogram visual image
with 85% accuracy rate. Music genre classification approach is illustrated based on a
scale-invariant feature transform (SIFT) keypoint features extracted from spectrogram time-
frequency image [31, 43]. Local dynamic details are effectively represented using SIFT
keypoint descriptors and classified using support vector machine (SVM) classifier attain-
ing 82.7% classification rate. A method based on central moment features extracted from
spectrogram image and one-against-one (OAO) multi-class SVM classifier for mismatched
conditions sound event classification is illustrated in [30].

Music genre classification performance enhancement is observed by fusing acoustic and
visual features (central moments) extracted from spectrogram image in [74]. The combined
feature set is classified using SVM resulting in 86.1% average accuracy rate. Grey-level
co-occurrence matrix (GLCM) features and classifier voting mechanism is introduced for
music genre classification with 67.2% average accuracy [26]. 28-D GLCM and 59-D local
binary pattern (LBP) textural descriptors are extracted from each spectrogram image zone
for music genre classification in [25, 27]. Additionally, the effect of individual classifier
assignment to each Mel scale zone and combination of different classifiers are investigated
in [23]. SVM classification fusion rules such as min, max, sum rule are employed for
different zones to increase the classification accuracy.

The performance of sound event classification scheme under noisy mismatched environ-
ment is enhanced in [29]. The method uses sub-band power distribution and spectrogram
image features and classified using SVM resulting over 96% accuracy. Local phase quan-
tization (LPQ) and Gabor filter features are extracted from a spectrogram image for music
genre classification and classified using SVM with 80.78% [24]. It was observed that LPQ
outperforms Gabor features when obtained globally from the spectrogram. Combination
of nonlinear classifiers in addition to the Gabor and LBP features are explored for music
genre classification with 84.9% accuracy rate in [72, 73]. Each music genre has unique
spectrogram signature as illustrated in Fig. 6. A method to classify the music signal input
into instrument and the song is designed using spectrogram visual intensity co-occurrence
descriptors and random sample consensus (RANSAC) classification model [34].
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Fig. 6 Sample music clips shown using spectrogram: (a) classical and (b) disco [72]

Audio surveillance in a noisy environment is analyzed using MFCC and central moment
features extracted from the spectrogram image and multi-class SVM classifier [60]. It was
observed that the linear grayscale descriptors are robust compared to log-grayscale features
in a noisy environment. Music genre classification using ten different descriptors and three
different spectrogram types (linear, global and mel scale zoning) is evaluated in [48]. An
average accuracy of 86.1% is achieved using 45 SVMs trained for every texture features
and combined using sum rule for the final decision.

Spectrogram image local statistics and SVM are utilized for environmental sound clas-
sification in [39] with an impressive accuracy rate of 98.62%. Besides, L2-Hellinger based
feature normalization approach has proved enhanced robustness and added discriminating
power. The codebook is created using the k-means clustering algorithm of LBP feature map
from the spectrogram image and classified using SVM for acoustic context identification
[9]. The bag-of-features (BoF) technique utilized reduces the computational complexity of
the algorithm. Two different LBP variants RIC-LBP andμLBP in addition to LBP and SVM
classifier are employed for music genre classification with 84% accuracy [5].

The amplitude histogram from each frequency band is extracted as subband power
distribution (SPD) features and histogram of gradient (HoG) feature for acoustic scene clas-
sification in [17]. Moreover, earth mover distance is employed to compare histograms, and
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it was found that Sinkhorn kernel improved the classification performance. Prosodic cues in
the language are effectively modeled using LPQ descriptors extracted from the spectrogram
image of language utterance and employed for language identification [45].

The mean and standard deviation of central moments are computed from the linear
grayscale spectrogram image and classified using one-against-all (OAA-SVM) classifier
with an improved classification rate of 98.16% [62, 64]. However, higher training time is
required for the OAA approach compared to other multi-class SVM techniques. In another
approach, the authors used GLCM features and SVM classifier fusion to obtain the accuracy
of 90.20% [63]. The sub-band frequency analysis has produced higher accuracy rate, how-
ever, generates large dimensional feature vector. A method based on entropy, third-order
moments and directionality features and SVM classifier are developed for identification of
ground moving targets [67]. Multilevel feature extraction from spectrogram time-frequency
visual representation is introduced for music genre classification in [75]. A late classifier
fusion of acoustic and visual descriptors is suggested with 88.60% classification accuracy.

A sound event identification in noisy conditions using LBP and HOG descriptors from
spectrogram images is presented in [42]. Moreover, the global characteristics are exploited
using bag-of-audio words and classified using SVM attaining 69.28% average accuracy.
Music genre classification approach using spectrogram based gradient directional pattern
is formulated using SVM classifier with 84.5% accuracy in [6]. Bird species identification
algorithm using spectrogram based different texture features such as local ternary patterns
(LTP) quantization, auto-similarities and LBP variants are implemented [52]. Combining
textural features with acoustic has improved the classification rate up to 94.5%/.

Music genre classification algorithm combining different descriptors extracted from
Mel-scaled spectrogram image and fusion of heterogeneous classifiers is presented in [50].
The proposed technique is evaluated over LMD, ISMIR 2004 and the GTZAN database
with 84.9% highest classification accuracy. Robotic hearing sound event classification in
noisy conditions using multi-channel band independent LBP textural descriptors is evalu-
ated using RWCP and NTU-SEC database in [57, 70]. The study revealed that Gammatone
spectrogram in the logarithm domain is more appropriate for textural analysis of sound. A
combination of LBP, RLBP and LPQ textural features are constructed from spectrogram
image representation for acoustic scene classification resulting 80.17% accuracy rate evalu-
ated on DCASE2016 database [33]. Additionally, combining the left and right audio channel
for feature extraction increases the classification performance.

Spectrogram texture descriptors using GLCM and SVM classification scheme are uti-
lized for discriminating laryngeal mechanism with an average accuracy rate of 86.16% [40].
A set of texture features are extracted from the spectrogram, rhythm image and gamma-
tonegram images after dividing it into sub-windows and trained SVM classifier in [49]. The
proposed method is evaluated on different databases like GTZAN, ISMIR 2004 and LMD.
An automatic method for bird and whale species identification using three different spec-
trograms and multiple texture descriptors is presented [47]. In addition to visual features,
acoustic features are combined to enhance the identification rate measured using OAA-
SVM. The class imbalance issue in music genre classification is addressed by applying
oversampling and undersampling in [69]. LBP features are extracted after vertical splicing
of spectrogram image and classified using several classifiers.

Bird species identification is investigated using three different textural descriptors
and SVM classification attaining 71% accuracy rate in [85]. The dissimilarity approach
employed in the algorithm performs better even in case of a large number of input classes.
Chinese regional folk-songs recognition approach using auditory features and visual tex-
tural descriptors is formulated in [78]. Ensemble SVM classification evaluated on three
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Fig. 7 Snore sound spectrogram images related to vibration point (a) Velum, (b) Oropharyngeal lateral walls
(c) Tongue and (d) Epiglottis [28]

different Chinese folk-song databases achieved 89.29%. Emotion recognition from speech
signal algorithm using spectrogram visual images LBP texture features and SVM clas-
sification is constructed in [54]. Highest identification rate of 84.5% is achieved using
EMO-DP database. Initially, acoustic events are represented using a Gaussian mixture
model (GMM) energy detection approach and acoustic and visual features are extracted
for bird species identification [82]. Relief feature selection algorithm and SVM classifier
applied on real-world bird species database resulted in 96.7% classification accuracy.

A method to discriminate snore sounds is designed based on HOG and LBP features
from spectrogram visualization and SVM classification resulting in 72.6% accuracy in [28].
Figure 7 depicts various snore sound spectrogram images related to different vibration point
such as velum, oropharyngeal lateral walls, tongue and epiglottis. Speech music classifica-
tion algorithm is developed using major spectral-peak locations and identification of these
sequences and three different classifiers SVM, GMM, and random forest classifier with
98% accuracy rate [10]. The periodicity, the average frequency and statistics of these peak
sequences are finally used as features. The speech and music differences are clearly iden-
tified using the spectrogram shown in Fig. 8. Animal sound recognition approach using
double spectrogram features: (a) projection features and (b) LBP variance features with ran-
dom forest classifier is formulated in [41]. The combined feature set greatly enhances the
classification performance attaining 98.02% accuracy.
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Fig. 8 Spectrograms representation of (a) Speech sample and (b) Music sample [10]

Fig. 9 Spectrogram images of vibration signals of (a) stable and (b) unstable [20]
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Speech emotion recognition technique using bag-of-visual words extracted from spec-
trogram image is developed [68]. The visual vocabulary is constructed and classified using
SVM classification evaluated on four different datasets. Figure 11 illustrates spectrogram
images of various emotions created using EMO-DB database with and without noise.
Chatter detection method using spectrogram time-frequency image and GLCM features is
proposed in [20]. The machine condition using vibration signal analysis is performed by
identifying high-energy dominant frequency bands from the spectrogram image. The vibra-
tion signal spectrograms are different at stable and unstable conditions that is shown in
Fig. 9. A method to identify the motivation of infants’ cry, i.e. because of feeling or pain
is presented in [32] using textural features extracted from spectrogram image. Experiments
are carried at different noise conditions and classifier fusion strategies.

Fig. 10 Spectrogram visualization of various Indian language speech samples. [21]
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Fig. 11 Spectrogram images of various emotions created using EMO-DB database. First row depicts original
audio samples whereas second row shows samples after noise addition [68]

Speech spoofing detection using spectrogram image LBP texture features and SVM
classification is introduced in [55] with 71.67% average accuracy rate. The generalized
Gaussian distribution (GGD) parameters are extracted from a non-subsampled Contourlet
transform (NSCT) sub-bands for speech and music discrimination in [14]. The spectrogram
image is decomposed using NSCT, and estimated parameters are employed for classification
using extreme learning machine (ELM) classifier. The higher-order statistics are encoded
using Fisher vectors from the spectrogram monochrome image and classified using SVM
classifier resulting highest accuracy of 92.27% [46]. Spectrogram texture descriptor based
Indian language identification technique is developed in [21, 35]. Each individual languages
has different spectrogram visualizations as depicted in Fig. 10. CLBP, LBPHF and DWT
texture features are extracted, and artificial neural network (ANN) classifier is used attaining
96.96% average identification rate (Fig. 11).

Acoustic scene classification method using GLCM features extracted from log-mel spec-
trogram and SVM classifier is described in [53]. The dimensionality of the feature vector is
reduced using principal component analysis, and the method achieved 83.2% classification
rate evaluated on DCASE 2016 database. In [83] speech resampling manipulation algorithm
based on spectrogram LBP features is presented. The forensic investigation of resampling
operation is detected using SVM classifier. Tables 2 and 3 depicts summary of different
techniques proposed in the literature based on spectrogram time-frequency visualization.
Recently robust acoustic event recognition using gray scale spectrogram is presented [84].

2.2 Cocheleagram

The cochleogram also known as gammatonegram imitates outer and middle human ear com-
ponents. It relies upon the gammatone warping function which fits empirical observations
of frequency selectivity in the mammalian cochlea, with an impulse response g(t) given by

g(t) = atP−1 cos(2πf ct + φ)e2πbt (3)

where t is time, a is amplitude, P represents the filter order, φ is the phase shift, f c is the
central frequency (in kHz).
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Fig. 12 Different color map representation of a pseudo-color cochleagram of sample sound [65]

In [61], sound signal time-frequency representation based on cochleagram, which uses a
gammatone filter, was found very effectual than spectrogram image. Comprehensive clas-
sification performance is shown using all three equivalent rectangular bandwidth (ERB)
filter models. It is also observed that cochleagram image features at low signal-to-noise
ratios (SNRs) give better results. For feature extraction, the work presented in [65] utilizes

Fig. 13 (a) Time domain normal cough (b) time domain croupy cough (c) spectrogram of normal cough (d)
spectrogram of croupy cough (e) cochleagram of normal cough (f) cochleagram of croupy cough [59]
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pseudo-color cochleagram image of sound signals for robust acoustic event recognition as
illustrated in Fig. 12. For improving characterization from environmental noise, the author
mapped grayscale cochleagram image to higher-dimensional color space. The result shows
notable improvement at low signal to noise ratios.

An automated cough sounds analysis methods to diagnose croup properly is presented
in [59]. In this article, the authors used cochleagram visual representation frequency com-
ponents based on selectivity property of human cochlea, as shown in Fig. 13. The proposed
algorithm results in a sensitivity and selectivity 92.31% and 85.29%, respectively, for croup
and non-croup patient classification. In [44], deep neural network back-end classifiers are
explored using three different 2-D time-frequency features for audio event classification.
Along with the cochleagram, authors utilized spectrogram and CQT based images. Sig-
nificant improvement in the results are achieved, which shows cochleagram image feature
performs well in extreme noise cases of -5dB and -10dB SNR. Indian Language identifica-
tion using cochleagram image texture descriptors and ANN classifier with 95.36% average
accuracy is illustrated in [37]. Cochleagram image-based algorithms and applications are
summarized in Table 4.

2.3 Chromagram

In the chromagram, for the music signal shifting of time window results in a chroma features
sequence. Each pitch content represents spread over 12 chroma bands within time window
[71]. This time-frequency representation is known as Chromagram. A chroma feature vector
is also known as pitch class profile (PCP). This is a well-built tool for analyzing music
whose tuning closes to equal-tempered scale and whose pitches can be meaningfully sorted.
The important property of chroma features is that it can capture harmonic features and
melodic features of music, on the contrary of changes in timbre and instrumentation. The
chromagram feature vector consists of the 12-dimensional short-time energy distribution of
a music signal. These 12 PCPs achieves a frame-wise spectral energy mapping onto spectral
bins which correspond to the twelve semi-tones of the chromatic scales for each analysis
frame.

Chroma vector utilizes an octave invariance principle which states that there is no func-
tional difference between musical notes separated by doubling of frequency. It is computed
with the help of grouping the discrete Fourier transform (DFT) coefficients of a short-term
window into 12 bins. Each bin represents one of the 12 equal-tempered pitch classes of
Western-type music (semi-tone spacing) [58].

Music specific chromagram representation and ULBP textural feature are utilized for
speech/music signal classification in [15]. The use of chromagram representation based
visual and spectral features efficiently extracts melodic and harmonic details of music
signal otherwise absent in speech as depicted in Fig. 14. In this study, the eigenvector cen-
trality feature selection is used that enhances the detection performance. It was observed
24 bin chromagram representation is sufficient to explorer music tonality features for the
speech/music classification.

2.4 Constant-Q Transform (CQT)

The CQT transform provides time-domain to frequency-domain signal transformation pro-
ducing a log-scale frequency resolution similar to perception of auditory delivering fine
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Fig. 14 Chromagram visual representation obtained using 12 bin music and speech signals from Scheirer
and Slaney database [15]

resolution at low frequency [1]. In the constant-Q transform (CQT), the c(k, t) over k

frequency bins of time domain signal s(t) is defined as

c(k, t) =
t+ws/2∑

n=t−ws/2

s(n)ak∗(n − t + ws/2) (4)

where ak∗(n) is the complex conjugate of time–frequency atoms which are defined by
and w(n) a window function over length ws . The major difference between CQT and a
spectrogram is that ws is itself a variable rather than a constant.

The algorithm demonstrated in [80] employs distinct models to use sound textures and
events in acoustic scenes. The framework achieved superior results in real data evaluation.
With the Rouen dataset, the proposed algorithm performed better compared to other existing
approaches. Novel features obtained in [56] by constant Q-transform followed by appropri-
ate pooling. Experimentally it is proved that HOGs computed from constant Q-transform
were useful capturing specific features present in time-frequency (TF) representation. This
HOG based feature proved globally efficient. Novel zoning approach, along with time-
frequency representation (TFR) to improve the classification performance for acoustic scene
classification is described in [1]. The technique achieved accuracy up to 95.2%. Abidin
et al. [2] presented an algorithm which fuses spectral and temporal features for acoustic
scene classification. For the generation of T-F representation, variable Q-transform is used
which improved the classification rate by 5.2%. Figure 15 clearly depicts the difference
between beach and cafe scenes using CQT visual representation.

In [4], audio signal is converted to CQT representations first and later LBP textural
features are extracted from CQT T-F representations. The proposed system achieved an
accuracy of 85% on the DCASE 2016 datatset. Joint T-F image-based feature representa-
tions are found effective in [3]. These joint features produce better results across a wide
range of low and middle frequencies in the audio signal attaining the classification accuracy
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Fig. 15 Constant-Q transform representation for beach sound (left) and cafe sound (right) scenes. [2]

of 83.4%. TFR with zoning technique in combination with image-based features is very
productive and computationally efficient for the ASC. In [76], acoustic and visual feature
are fused with a various set of features for acoustic scene classification. RelieF algorithm,
correlation-based feature (CFS) and principal component analysis (PCA) techniques are
used for feature selection. Use of feature selection improved the algorithm performance and
reduced the feature vector dimensionality. Table 5 shows a summary of different techniques
based on CQT image feature extraction.

2.5 Other time-frequency representations

In this subsection, all remaining time-frequency representation methods are presented.
Mel-frequency cepstral coefficients (MFCCs) is one of the most popularly used feature
extraction schemes for audio analysis. MFCC filter banks mimic human auditory producing
discriminating features in speech processing applications. In [77], the temporal dynamics
present in the audio sample is extracted using subband MFCC time-frequency image and
LBP texture features for acoustic sound classification. The work explores three frequency
bands spanning from 0 to 11 kHz with 23 mseconds of a time window for each frame. The
method developed in [77] achieved an improvement of 8% using a D3C ensemble classifier.

Harmonic and percussion images are produced using harmonic-percussion separation
(HPSS) algorithm and various texture descriptors extracted from these images are employed
for music genre classification in [51]. Application of median filtering across frequency axis
percussive occurrence is highlighted, whereas, across the time-bin application of median
filtering, the harmonic regions are enhanced. In the same work, authors presented scatter-
gram image-based textural features for music genre classification. The ScatNet scattering
framework is employed for generating the scattergram. The speed of the audio can be mea-
sured by tempo in beats per minute. The tempogram based feature set is exploited using the
novelty curve from the input audio signal for speech and non-speech signal classification in
[79]. ThehHighest classification rate of 99.20% is achieved by the proposed approach using
multi-layer perceptron classifier and correlation-based feature selection.

Two-dimensional neurogram is generated using physiological computation model of the
auditory periphery for phoneme classification and voice activity detection. DCT coeffi-
cients from a neurogram image are extracted as features and classified using multi-layer

36166 Multimedia Tools and Applications (2023) 82:36143–36177



Ta
bl
e
5

Su
m
m
ar
y
of

di
ff
er
en
ta
lg
or
ith

m
s
ba
se
d
on

C
on
st
an
t-
Q
tr
an
sf
or
m

tim
e-
fr
eq
ue
nc
y
vi
su
al
re
pr
es
en
ta
tio

n

M
et
ho
d

Y
ea
r

A
pp
lic
at
io
n

Fe
at
ur
es

Fe
at
ur
e
se
le
ct
io
n

FV
di
m
en
si
on

D
at
ab
as
e

C
la
ss
if
ie
rs

A
cc
ur
ac
y
(%

)
C
om

m
en
ts

Y
e
et
al
.[
80
]

20
15

A
co
us
tic

Sc
en
e

C
la
ss
if
ic
at
io
n

L
B
P,
H
O
G

30
4

L
iti
s
R
ou
en

SV
M

96
.0
8

Tw
o-
ch
an
ne
l
in
fo
rm

a-
tio

n
is

in
co
rp
or
at
ed

to
im

pr
ov
e
sc
en
e
cl
as
si
fi
-

ca
tio

n
pe
rf
or
m
an
ce
.

R
ak
ot
om

am
on
jy

an
d
G
as
so

[5
6]

20
15

A
ud
io

Sc
en
e

C
la
ss
if
ic
at
io
n

H
O
G

10
24

to
35
84

L
iti
s
R
ou
en

&
D
-C

as
e

C
ha
lle
ng
e

SV
M

89
H
oG

fe
at
ur
es

ef
fi
ci
en
tly

en
co
de
s
th
e
lo
ca
l
va
ri
a-

tio
n
of

po
w
er

sp
ec
tr
um

w
hi
ch

is
no
t

po
ss
ib
le

us
in
g
M
FC

C
.

A
bi
di
n
et
al
.[
1]

20
17

A
co
us
tic

Sc
en
e

C
la
ss
if
ic
at
io
n

L
B
P,
H
O
G

15
36

L
IT
IS

R
ou
en

SV
M

95
.2

H
oG

pe
rf
or
m
an
ce

is
be
t-

te
r
co
m
pa
re
d
to

L
B
P.

A
bi
di
n
et
al
.[
2]

20
18

A
co
us
tic

Sc
en
e

C
la
ss
if
ic
at
io
n

L
B
P

–
D
C
A
SE

20
16

SV
M

83
.4

Sc
or
e

le
ve
l

fu
si
on

of
th
e

C
Q
T

an
d

M
el
-

sp
ec
tr
um

im
ag
e-
ba
se
d

fe
at
ur
es

im
pr
ov
ed

th
e

cl
as
si
fi
ca
tio

n
ac
cu
ra
cy
.

A
bi
di
n
et
al
.[
4]

20
18

A
co
us
tic

Sc
en
e

C
la
ss
if
ic
at
io
n

L
B
P,
H
O
G

R
an
do
m

fo
re
st

15
00

D
C
A
SE

20
16

SV
M

85
T
he

ra
nd
om

fo
re
st
of
fe
rs

fl
ex
ib
le

co
nt
ro
l
on

th
e

fe
at
ur
e
di
m
en
si
on

se
le
c-

tio
n

to
pr
ov
id
e

ro
bu
st

an
d
co
m
pa
ct
fe
at
ur
es
.

A
bi
di
n
et
al
.[
3]

20
18

A
co
us
tic

Sc
en
e

C
la
ss
if
ic
at
io
n

E
C
L
B
P

27
00

D
C
A
SE

20
16

SV
M

85
.5

T
he

us
e

of
va
ri
ab
le
-Q

tr
an
sf
or
m

pr
ov
id
es

fi
ne
r

co
nt
ro
l
ov
er

th
e
re
so
lu
-

tio
n
co
m
pa
re
d
to

C
Q
T.

X
ie
an
d
Z
hu

[7
6]

20
19

A
co
us
tic

Sc
en
e

C
la
ss
if
ic
at
io
n

L
B
P,

H
oG

,
M
om

en
ts

R
el
ie
f-
F,

C
FS

,P
C
A

32
70

T
U
T

A
co
us
tic

sc
en
es

20
16

K
N
N
,

SV
M
,

R
F,

N
N
,E

L
M
,

K
E
L
M

87
.4
4

E
nh
an
ce
m
en
ti
n
th
e
ac
cu
-

ra
cy

by
co
m
bi
ni
ng

ac
ou
s-

tic
an
d
vi
su
al

fe
at
ur
es

is
ob
se
rv
ed
.

36167Multimedia Tools and Applications (2023) 82:36143–36177



perceptron for voice activity detection in [36]. A new phoneme classification technique
based on discrete Radon transform features is illustrated in [7]. The method exhibited better
performance evaluated under noisy conditions compared to other conventional techniques
(Table 6).

3 Texture descriptors

Textural descriptors can extract the presence of prominent visual content in time-frequency
image. Texture analysis is a process of distinguishing different textures into separate
classes by identifying key features. Discerning an effective texture feature is a crucial
step for enhancing the algorithm performance. Several texture descriptors such as LBP,
LPQ, GLCM, HOG, Gabor filters, central moments, and other LBP variants are used in
the literature for an audio classification task. This section briefly summarizes most widely
descriptors.

3.1 Local Binary Pattern (LBP) and LBP variants

Local Binary Pattern (LBP) is the most widely texture encoding scheme use in literature.
LBP imparts remarkable performance in all audio application algorithms, including music
genre recognition, bird species classification, and acoustic scene classification [51, 77]. LBP
operates on the local neighbourhood of a central pixel to find a local binary pattern. This
is important because of the non-uniformity of the textures in a visual image; usually, local
feature extraction is considered during the feature construction phase. The feature vector
which describes the textural content of the image corresponds to the histogram of local
binary patterns found in all pixels of the image. Two parameters are important during the
LBP feature extraction: the first one is the number of neighbouring pixels that will be taken
into account for the central pixel (P ), the second one is related to the distance between the
central pixel and its neighbours (R) [2, 76].

Local binary pattern (LBP) is used in [1, 2, 5, 23, 25, 27, 28, 32, 33, 42, 47–49, 51, 51, 52,
55, 57, 69, 73, 76–78, 80, 83, 85] attaining better performance in various applications. Dif-
ferent LBP variants are also used such as RICLBP, CoALBP, and NTLBP [47–51], RLBP
[32, 33, 47, 49, 51, 85], ULP [82], LBPHF [21, 82], ECLBP [3], CLBP [21, 37, 51], and
μLBP and RILBP [5, 51].

3.2 Grey-Level Co-occurrence Matrix (GLCM)

The spatial relationship among local pixels is examined in grey-level co-occurrence matrix
(GLCM) textural descriptor. This is also known as the gray-level spatial dependence matrix.
The GLCM specifies the texture of an image by computing pairs of pixel and characteriz-
ing spatial relationship present in an image. Different statistical measures include energy,
correlation, energy and homogeneity. GLCM is widely used feature extraction scheme after
LBP and HOG in different algorithms [20, 26, 27, 34, 37, 40, 53, 54, 63, 79, 82].

3.3 Histogram of Oriented Gradients (HOG)

Histogram of oriented gradients (HOG) effectively extracts shape and appearance from an
image using edge directions or intensity distribution. Similar to LBP. HOG is obtained
by dividing input image into small regions and concatenation histogram. HOG descriptors
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are popularly used after LBP features. Several algorithms in which HOG descriptors are
employed includes [1, 4, 17, 28, 42, 48, 50, 54, 56, 76, 80].

3.4 Local Phase Quantization (LPQ)

A robust symmetric blur descriptor is developed by estimating the phase angles of Fourier
transform at different frequencies [24, 45]. LPQ feature extraction approach effectively
characterizes underlying textural variations existing in an image. In the literature, various
techniques based on LPQ descriptors are [24, 32, 33, 37, 45, 47, 49, 51, 85].

3.5 Other texture features

In addition to the textural features described above, few other descriptors are employed by
different researchers. Mostly these features are combined to the LBP, LPQ, GLCM and
HOG before the classification. Enhanced algorithm performance is attained by fusing these
textural descriptors. These feature are: Block energy [43], Central moments [30, 59–62, 67,
76], Gabor features [47, 49, 73–75, 82], LTP and HASC [52], and WLD: [50].

4 Classifiers

The suitable choice of a classifier is one of the dominant factors in classification. Most
widely methodologies used for classification found in various works are support vector
machine (SVM), linear discriminant analysis(LDA), artificial neural network (ANN), k-
nearest neighbor (KNN) and random forest (RF). This section briefly summarizes the
different classification algorithms used.

Support vector machine (SVM) is one of the most widely supervised machine learning
algorithms in audio classification goal. The SVM technique is the most common among lin-
ear separation algorithms since it is virtually parameter free and has shown that it can have
the same or better performance than other more complex algorithms. Variety of kernel func-
tions are employed in SVM such as, linear, polynomial, Gaussian and RBF kernels. SVM
implementation using Libsvm is a popular choice of various researchers [32, 83]. However,
LibLinear package is also employed in some studies as illustrated in [28]. Almost over 70%
algorithms employed SVM as a classification algorithm. For real-world recognition tasks,
SVM based multi-class classification method appears to be very appropriate. Various works
that employed SVM are [5, 9, 17, 20, 24–30, 32, 39–43, 45, 47, 48, 52, 53, 55, 57, 59,
61–63, 65, 67, 68, 74, 75, 78, 82, 83, 85].

K-nearest neighbors (KNN) is a simple non-parametric algorithm used in pattern recog-
nition. In the KNN algorithm, the training instances of the dataset are extracted as data
points in the feature space and divided into several separate classes. To predict the class of
a new instance point, initially, it is evaluated in the proposed feature space. KNN is utilized
by different researchers in [60, 62, 63, 65, 69, 76, 81].

Artificial neural networks (ANN) are motivated by the functioning of the excitatory or
inhibitory neuron connections in the human brain. Multilayer perceptron (MLP) is a feed-
forward network, with an input layer, an output layer, and one or more hidden layers.
Usually, this network uses the backpropagation technique for training, where the error of
prediction is propagated from the output layer to the input layer, modifying interconnec-
tion weights trained their models. ANN classifier is used in [21, 36, 37, 69, 76, 79]. Few
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authors also presented their experiential evaluation using extreme learning machine (ELM)
classification [14, 76].

Random forest (RF) is a fast, highly precise, noise resistant ensemble classification algo-
rithm. Random forest classification is utilized in [4, 10, 41, 69, 76]. Additionally, authors
used Gaussian mixture model (GMM) [10], linear discriminant analysis (LDA) [73], and
RANSAC [34] for audio classification task.

5 Discussions

The survey presents a systematic methodology to compose a comprehensive record of cur-
rent research dynamics and algorithms focusing on time-frequency image texture features
employed in audio applications. Initial attempts in the filed of time-frequency texture image
algorithm development were primarily focused on spectrogram based music genre classi-
fication [5, 23–27, 43, 73, 74] and acoustic event classification. [9, 29, 30, 39]. Later, this
trend is extended for the development of bird and animal sound detection techniques [41,
47, 52, 82, 85]. In addition to this, the application area spans different audio applications
like language identification [21, 45], Chinese folk song recognition [78], speech emotion
recognition [54], snore sound discrimination [28], speech-music classification [10, 14] and
identification of infants cry [32]. Overall, the new time-frequency visualization and texture
feature approach is found suitable and efficient in speech, music and audio applications.

Spectrogram image textures are most widely used (almost more than 70%) by the
researchers for algorithm development (Fig. 3). Spectrogram representation efficiently
characterizes and provides profound attributes present in an audio sample. Moreover, spec-
trogram image texture is identified in various applications in order to capture the relevant
details. Apart from the spectrogram, CQT and cochleagram visualization are also utilized
widely. It is also found that CQT representation is better suited for acoustic scene classifica-
tion as evident from the Table 5. This might be because the CQT image is able to learn the
sound texture from acoustic sound efficiently compared to other representations. Whereas,
chromagram image texture descriptors are effective in music applications [15, 58].

Texture features play an important role in the classification. From the literature, it is
found that, the local binary pattern is the most widely used descriptors for feature extraction
from the time-frequency image. It is also evident from the studies that combining different
textural descriptors attained superior classification performance as compared to individual
feature. For example, GLCM and LBP [27], Gabor and LBP [73], HOG, LPQ, LBP, HARA,
LCP, DENSE, WLD, RICLBP, CoALBP, NTLBP [48], LBP, μLBP and RILBP [5], LBP
and HoG [42], LBP, LTP and HASC [52], LBP variants, LCP, DENSE, HOG, WLD [50],
LBP, LPQ, RICLBP, LBPHF, MLPQ, HASC, ELHF, GABOR [49], and LBP, RLBP and
LPQ [85] .

Use of classification algorithm is dominated by support vector machine classifier in dif-
ferent audio application areas (Section 4). Although, some of the works presented evaluation
utilizing an artificial neural network, random forest, and K-nearest neighbors classifiers
[11–13]. Ensemble classifiers are also explored in [23, 77]. SVM showed good potential
even in a noisy environment because of its robustness against such conditions.

It is important to note that, local feature extraction approach attained exceptional per-
formance as compared to global extraction scheme. To accomplish this zoning technique is
employed in which the time-frequency image is divided into different regions and then from
each region descriptors are extracted [25, 47–50].
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The major issue with all the algorithms is feature vector dimensionality. Different tex-
ture descriptors such as LBP, LPQ, and their variants generate large dimension vector. This
hugely impacts of the training and testing times of the classifier in addition to the classi-
fication performance. However, feature selection is rarely addressed in the literature like
PCA [46, 57], coefficient of variance [78], ReliefF [82], chaotic crow search algorithm [14],
and GWO [21]. In future, it is worthy of exploring the effect of feature selection when a
combination of textural descriptors are employed in the application development.

6 Conclusion

In this survey, a comprehensive overview of state-of-the-art research works on time-
frequency texture image features in audio classification algorithms is presented. Firstly, we
identified salient characteristics from the existing literature, and a generalized architecture
of time-frequency texture feature extraction approach in audio classification algorithms is
presented which we believe helps to new researchers in this area to comprehend overall
composition. Later, key characteristics and categories of time-frequency visual represen-
tations are identified along with dominant texture feature extraction algorithms. Various
time-frequency visualization algorithms in diverse audio applications are categorized and
compared using their key aspects. A brief discussion of feature selection approaches uti-
lized in several applications are also explored. Finally, some open research challenges and
future trends in these fields are outlined.
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54. Özseven T (2018) Investigation of the effect of spectrogram images and different texture analysis
methods on speech emotion recognition. Appl Acoust 142:70–77. https://doi.org/10.1016/j.apacoust.
2018.08.003

55. Rahmeni R, Ben Aicha A, Ben Ayed Y (2019) On the contribution of the voice texture for speech spoof-
ing detection. In: 2019 19th International conference on sciences and techniques of automatic control
and computer engineering (STA), pp 501–505

56. Rakotomamonjy A, Gasso G (2015) Histogram of gradients of time-frequency representations for audio
scene classification. IEEE/ACM Trans Audio Speech Lang Process 23(1):142–153. https://doi.org/
10.1109/TASLP.2014.2375575

57. Ren J, Jiang X, Yuan J, Magnenat-Thalmann N (2017) Sound-event classification using robust tex-
ture features for robot hearing. IEEE Trans Multimed 19(3):447–458. https://doi.org/10.1109/TMM.
2016.2618218

58. Sell G, Clark P (2014) Music tonality features for speech/music discrimination. 2014. In: 2014
IEEE international conference on acoustics, speech and signal processing (ICASSP) pp 2489–2493.
https://doi.org/10.1109/ICASSP.2014.6854048

59. Sharan RV, Abeyratne UR, Swarnkar VR, Porter P (2019) Automatic croup diagnosis using cough sound
recognition. IEEE Trans Biomed Eng 66(2):485–495. https://doi.org/10.1109/TBME.2018.2849502

60. Sharan RV, Moir TJ (2014) Audio surveillance under noisy conditions using time-frequency
image feature. In: 2014 19th International conference on digital signal processing, pp 130–135.
https://doi.org/10.1109/ICDSP.2014.6900815

61. Sharan RV, Moir TJ (2015) Cochleagram image feature for improved robustness in sound recog-
nition. In: 2015 IEEE international conference on digital signal processing (DSP), pp 441–444.
https://doi.org/10.1109/ICDSP.2015.7251910

62. Sharan RV, Moir TJ (2015) Noise robust audio surveillance using reduced spectrogram image feature
and one-against-all SVM. Neurocomputing 158:90–99. https://doi.org/10.1016/j.neucom.2015.02.001

63. Sharan RV, Moir TJ (2015) Robust audio surveillance using spectrogram image texture feature. In: 2015
IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1956–1960.
https://doi.org/10.1109/ICASSP.2015.7178312

64. Sharan RV, Moir TJ (2015) Subband spectral histogram feature for improved sound recognition in low
SNR conditions. In: 2015 IEEE international conference on digital signal processing (DSP), pp 432–435.
https://doi.org/10.1109/ICDSP.2015.7251908

65. Sharan RV, Moir TJ (2018) Pseudo-color cochleagram image feature and sequential feature selec-
tion for robust acoustic event recognition. Appl Acoust 140:198–204. https://doi.org/10.1016/j.apacoust.
2018.05.030

66. Sharma G, Umapathy K, Krishnan S (2020) Trends in audio signal feature extraction methods. Appl
Acoust 158:107020. https://doi.org/10.1016/j.apacoust.2019.107020

67. Shi X, Zhou F, Liu L, Zhao B, Zhang Z (2015) Textural feature extraction based on time-frequency spec-
trograms of humans and vehicles. IET Radar Sonar Navig 9(9):1251–1259. https://doi.org/10.1049/iet-
rsn.2014.0432

68. Spyrou E, Nikopoulou R, Vernikos I, Mylonas P (2019) Emotion recognition from speech using the bag-
of-visual words on audio segment spectrograms. Technologies, vol 7(1). https://doi.org/10.3390/tech-
nologies7010020

69. Valerio VD, Pereira RM, Costa YMG, Bertolini D, Silla CN (2018) A resampling approach for imbal-
anceness on music genre classification using spectrograms. In: Thirty-first international florida artificial
intelligence research society conference (FLAIRS), pp 500–505

70. Vyas S, Patil MD, Birajdar GK (2021) Classification of heart sound signals using time-frequency image
texture features, Chapter 5, Wiley, pp 81–101. https://doi.org/10.1002/9781119818717.ch5

36175Multimedia Tools and Applications (2023) 82:36143–36177

https://doi.org/10.1016/j.eswa.2015.09.018
https://doi.org/10.1080/09298215.2018.1438476
https://doi.org/10.1080/09298215.2018.1438476
https://doi.org/10.1109/ICTAI.2016.0067
https://doi.org/10.1007/978-3-030-24344-9-11
https://doi.org/10.1007/978-3-030-24344-9-11
https://doi.org/10.1016/j.apacoust.2018.08.003
https://doi.org/10.1016/j.apacoust.2018.08.003
https://doi.org/10.1109/TASLP.2014.2375575
https://doi.org/10.1109/TASLP.2014.2375575
https://doi.org/10.1109/TMM.2016.2618218
https://doi.org/10.1109/TMM.2016.2618218
https://doi.org/10.1109/ICASSP.2014.6854048
https://doi.org/10.1109/TBME.2018.2849502
https://doi.org/10.1109/ICDSP.2014.6900815
https://doi.org/10.1109/ICDSP.2015.7251910
https://doi.org/10.1016/j.neucom.2015.02.001
https://doi.org/10.1109/ICASSP.2015.7178312
https://doi.org/10.1109/ICDSP.2015.7251908
https://doi.org/10.1016/j.apacoust.2018.05.030
https://doi.org/10.1016/j.apacoust.2018.05.030
https://doi.org/10.1016/j.apacoust.2019.107020
https://doi.org/10.1049/iet-rsn.2014.0432
https://doi.org/10.1049/iet-rsn.2014.0432
https://doi.org/10.3390/technologies7010020
https://doi.org/10.3390/technologies7010020
https://doi.org/10.1002/9781119818717.ch5


71. Wakefield GH (1999) Mathematical representation of joint time-chroma distributions. pp 3807–3807-9.
https://doi.org/10.1117/12.367679

72. Wu H, Zhang M (2012) Gabor-lbp features and combined classifiers for music genre classification. In:
Proceedings of the 2012 2nd international conference on computer and information application (ICCIA
2012), pp 419–423. Atlantis Press. https://doi.org/10.2991/iccia.2012.101

73. Wu HQ, Zhang M (2013) Gabor-lbp features and combined classifiers for music genre classification. In:
Information technology applications in industry, computer engineering and materials science, advanced
materials research, vol 756, pp 4407-4411. Trans Tech Publications Ltd. https://doi.org/10.4028/www.
scientific.net/AMR.756-759.4407

74. Wu M, Chen Z, Jang JR, Ren J, Li Y, Lu C (2011) Combining visual and acoustic features for music
genre classification. In: 2011 10th International conference on machine learning and applications and
workshops, vol 2, pp 124–129. https://doi.org/10.1109/ICMLA.2011.48

75. Wu MJ, Jang JSR (2015) Combining acoustic and multilevel visual features for music genre classifica-
tion. ACM Trans Multimed Comput Commun Appl, vol 12(1). https://doi.org/10.1145/2801127

76. Xie J, Zhu M (2019) Investigation of acoustic and visual features for acoustic scene classification. Expert
Syst Appl 126:20–29. https://doi.org/10.1016/j.eswa.2019.01.085

77. Yang W, Krishnan S, Yang W, Krishnan S (2017) Combining temporal features by local binary pat-
tern for acoustic scene classification. IEEE/ACM Trans Audio Speech Lang Proc 25(6):1315–1321.
https://doi.org/10.1109/TASLP.2017.2690558

78. Yang X, Luo J, Wang Y, Zhao X, Li J (2018) Combining auditory perception and visual features for
regional recognition of chinese folk songs. In: Proceedings of the 2018 10th international conference on
computer and automation engineering, ICCAE 2018. Association for computing machinery, New York,
NY, USA, pp 75–81. https://doi.org/10.1145/3192975.3193006

79. Yasmin G, Das AK (2019) Speech and non-speech audio files discrimination extracting textural and
acoustic features. In: Bhattacharyya S, Mukherjee A, Bhaumik H, Das S, Yoshida K (eds) Recent trends
in signal and image processing. Springer Singapore, Singapore, pp 197–206. https://doi.org/10.1007/
978-981-10-8863-6 20

80. Ye J, Kobayashi T, MurakawaM, Higuchi T (2015) Acoustic scene classification based on sound textures
and events. In: Proceedings of the 23rd ACM international conference on multimedia. Association for
computing machinery, New York, NY, USA, pp 1291–1294. https://doi.org/10.1145/2733373.2806389

81. Yu G, Slotine JJE (2009) Audio classification from time-frequency texture. In: 2009 IEEE international
conference on acoustics, speech and signal processing pp 1677–1680. https://doi.org/10.1109/ICASSP.
2009.4959924

82. Zhang S, Zhao Z, Xu Z, Bellisario K, Pijanowski BC (2018) Automatic bird vocalization identification
based on fusion of spectral pattern and texture features. In: 2018 IEEE international conference on acous-
tics, speech and signal processing (ICASSP), pp 271–275. https://doi.org/10.1109/ICASSP.2018.8462
156

83. Zhang Y, Dai S, Song W, Zhang L, Li D (2020) Exposing speech resampling manipulation by local tex-
ture analysis on spectrogram images. Electronics 9(1):1–23. https://doi.org/10.3390/electronics9010023

84. Zhang Y, Zhang K, Wang J, Su Y (2021) Robust acoustic event recognition using AVMD-PWVD time-
frequency image. Appl Acoust 178:107970. https://doi.org/10.1016/j.apacoust.2021.107970

85. Zottesso RH, Costa Y, Bertolini D, Oliveira L (2018) Bird species identification using spectrogram and
dissimilarity approach. Ecol Inform 48:187–197. https://doi.org/10.1109/ICASSP.1979.1170735

86. Zue V, Cole R (1979) Experiments on spectrogram reading. In: ICASSP ’79. IEEE international con-
ference on acoustics, speech, and signal processing, vol 4, pp 116–119. https://doi.org/10.1109/ICASSP.
1979.1170735

87. Zue V, Lamel L (1986) An expert spectrogram reader: a knowledge-based approach to speech recogni-
tion. In: ICASSP ’86. IEEE international conference on acoustics, speech, and signal processing, vol 11,
pp 1197–1200. https://doi.org/10.1109/ICASSP.1986.1168798

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

36176 Multimedia Tools and Applications (2023) 82:36143–36177

https://doi.org/10.1117/12.367679
https://doi.org/10.2991/iccia.2012.101
https://doi.org/10.4028/www.scientific.net/AMR.756-759.4407
https://doi.org/10.4028/www.scientific.net/AMR.756-759.4407
https://doi.org/10.1109/ICMLA.2011.48
https://doi.org/10.1145/2801127
https://doi.org/10.1016/j.eswa.2019.01.085
https://doi.org/10.1109/TASLP.2017.2690558
https://doi.org/10.1145/3192975.3193006
https://doi.org/10.1007/978-981-10-8863-6_20
https://doi.org/10.1007/978-981-10-8863-6_20
https://doi.org/10.1145/2733373.2806389
https://doi.org/10.1109/ICASSP.2009.4959924
https://doi.org/10.1109/ICASSP.2009.4959924
https://doi.org/10.1109/ICASSP.2018.8462156
https://doi.org/10.1109/ICASSP.2018.8462156
https://doi.org/10.3390/electronics9010023
https://doi.org/10.1016/j.apacoust.2021.107970
https://doi.org/10.1109/ICASSP.1979.1170735
https://doi.org/10.1109/ICASSP.1979.1170735
https://doi.org/10.1109/ICASSP.1979.1170735
https://doi.org/10.1109/ICASSP.1986.1168798


Yogita D. Mistry She received B.E. degree in Electronics & Telecommunication Engineering from Govt.
College of Engineering, Pune in 2002 and ME in Electronics Engineering from Prof. Ram Meghe Insti-
tute of Technology & Research Badnera in 2010 and completed Ph.D. in Electronics & Telecommunication
Engineering from Amravati University in 2018. Currently she is the Associate Professor in the department
of Electronics Engineering in Ramrao Adik Institute of Technology, Nerul in Mumbai, India. Her current
research interests include CBIR, image processing, signal processing and image compression. She is a Life
Member of the Indian Society for Technical Education (ISTE).

Gajanan K. Birajdar obtained his M. Tech. (Electronics and Telecommunication Engineering) from Dr.
Babasaheb Ambedkar Technological University, Maharashtra, India, in 2004 and Ph. D. in the area of blind
image forensics fromNagpur University, India, in 2018. He is working in the Department of Electronics Engi-
neering, Ramrao Adik Institute of Technology Nerul, Navi Mumbai, University of Mumbai. He has published
over 25-refereed papers and several copyrights/patents, most in the areas of signal and image processing. He
has served on the program committees of various conferences/workshops and member of several prestigious
professional bodies. His current research interests are multimedia, speech processing and soft computing.

Archana M. Khodke is presently working as Assistant Professor in Ramrao Adik Institute Of Technology,
Nerul, Navi Mumbai since 2014. She also worked as Assistant Professor in Padmabhushan Vasantdada Patil
Pratisthan’s College of Engineering, Sion, Mumbai for nine years from July 2005 to July 2014. She has teach-
ing experience of 16 years. She has completed her B.E in Electronics Engineering from Nagpur University
and M.E in Electronics Engineering from Mumbai University.

36177Multimedia Tools and Applications (2023) 82:36143–36177


	Time-frequency visual representation and texture features for audio applications: a comprehensive review, recent trends, and challenges
	Abstract
	Introduction
	Time-frequency visual representation
	Spectrogram
	Cocheleagram
	Chromagram
	Constant-Q Transform (CQT)
	Other time-frequency representations

	Texture descriptors
	Local Binary Pattern (LBP) and LBP variants
	Grey-Level Co-occurrence Matrix (GLCM)
	Histogram of Oriented Gradients (HOG)
	Local Phase Quantization (LPQ)
	Other texture features

	Classifiers
	Discussions
	Conclusion
	Declarations
	References


