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Abstract
The level set method is a classical method to solve the Chan-Vese model for the binary
image segmentation problem. Some efficient methods such as the convex relaxed methods
and the steep descent methods based on a suitable constraint have been proposed to over-
come the singularity of the LSM. However, the effectiveness of using these schemes is still
limited by the chosen threshold value or the Courant-Friedrichs-Lewy condition. To this
end, this paper, based on the Lagrangian dual scheme from the numerical optimization the-
ory, proposes a novel numerical method to solve the CV model. Specifically, the binary
constraint of the level set function can be transformed into a nonsmooth optimization prob-
lem via the help of the Lagrangian dual scheme. Then the Dual-based Alternating Direction
of Method of Multipliers can be employed to solve this transform form. Numerical experi-
ments show that the average ( std.dev) Segmentation Error (SE) of the proposed method
on two groups of synthetic images are 5.59%( 0.19%) and 5.01%( 3.61%). The Precision,
Segmentation Accuracy (SA) and F1-Score (F1S) of natural gray and natural color image
reach 75.17%( 12.42%), 98.87%( 1.16%), 94.99%( 5.23%) and 81.91%( 14.85%),
98.38%( 0.99%), 86.39%( 11.72%), respectively, which are better than the other three
comparison schemes. Therefore, our proposed method is more robust to initialization, faster
and more accurate than three classical methods to solve the CV model.
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1 Introduction

As a fundamental task in the field of the image processing, the aim of the image segmen-
tation is to separate the image domain into disjoint regions ( 2 3 )
according to some characteristics such as the intensity, the color and the texture
[19, 30, 31]. According to the characteristics of segmentation, it can be divided into data-
driven models and model-driven models. Data-driven models usually require a large amount
of image data and strong model support [18, 27]. However, many difficulties such as
insufficient data, background noise, local intensity variations and complex segmentation
targets render the segmentation problem with the high challenge [23]. When the avail-
able data is too small and the model is imperfect, the model-driven models can perfectly
solve such problems. Among the model-driven models, active contour models are gener-
ally distinguished by a predefined energy functional with the intensity and the gradient
information based on the intrinsic properties of images. According to the nature of con-
straints, active contour models can be roughly categorized into the edge-based models
and the region-based models. The edge-based models such as the snake model and the
geodesic contour model use edge-detection functions and evolve the curves toward sharp
gradients [9, 17]. However, these models are sensitive to the noise. As a comparison,
the region-based models are robust to the noise via incorporating region and boundary
information [11, 12, 26, 32].

Among region-based models, one of the most fundamental schemes is the Chan-Vese
(CV) model [12], which is the simplification of the Mumford-Shah (MS) model [26]. Due
to this simplification, the CV model has been applied to many fields of the image segmenta-
tion. However, this model is nonconvex and nosmooth. So how to solve it is the key for the
actual application. In general, there are two research hotspots such as the Level Set Method
(LSM) and the Convex Relaxation Method (CRM). To the LSM, the level set function (LSF)
needs to be re-initialized to ensure that the LSF is always a signed distance function [7, 21].
However, this scheme has strong computational difficulties and is quite inefficient due to
the complex difference scheme of their PDEs [14, 24]. To the CRM, its objective function is
based on the equivalent description of Euler-Lagrangian equation for the CV model, where
the binary constraint is relaxed into a closed interval [11]. With this transformation, some
efficient numerical methods can be used to solve it [1, 5, 10, 28, 29]. However, the segmen-
tation result depends on the choice of the threshold parameter. Then this method leads to
a gap between the sole segmentation result for the real image and the theoretical analysis
based on the relaxed model [11, 14, 22]. Different to two kinds of aforementioned methods,
this paper tries to propose a new scheme to solve the CV model based on the Lagrangian
dual theory [4]. In the proposed scheme, the CV model is first transformed into an equiv-
alent binary optimization problem and then solve this problem through the Lagrangian
dual strategy and the alternating direction of method of multipliers (ADMM). Especially,
once the value of the dual variable is obtained, the segmentation result can be obtained via
using the signum function. Numerical comparisons illustrates that the proposed scheme can
improve the segmentation accuracy of segmentation compared with other classic numerical
methods.

The rest of the paper is organized as follows. Section 2 first gives some comments of the
Lagrangian dual scheme and then uses this scheme to solve the CV model with the help of
the ADMM. Some numerical comparisons are arranged in Section 3 and conclusions are
given in Section 4.
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2 Dual-based scheme to solve the CVmodel

This section first introduces the Lagrangian dual scheme and an efficient numerical method
is then proposed to solve the CV model.

2.1 Lagrangian dual scheme

Among the various dual program formulations, the Lagrangian dual formulation in particu-
lar lends to a rich understanding of duality theory in optimization research [4, 16]. Its main
motivation is to find a boundary or a solution to the original problem through its dual prob-
lem. More specifically, the solution to the dual problem can provide a bound to the primal
problem or the same optimal solution to the primal problem, which is useful if the pri-
mal problem is harder to be solved than the dual problem. To describe the Lagrangian dual
function, we consider the general model as

min
y

y

s.t. y 0

y 0

(1)

where y y and y are some suitable functions for 1 2 ,
1 2 and . It is obvious that the Lagrangian function of the problem (1) can
be written as

L y y
1

y
1

y (2)

where 0 and are the Lagrange multipliers associated with the inequality constraints
and the equality constraints, respectively. In general, we call problem (1) to be the original
problem. In the following, we give the definition of the dual objective function.

Definition 1 The dual objective function of the original problem (1) is defined by

min
y

L y . (3)

Furthermore, the Lagrangian dual function is given by

max
D

(4)

where D .

Based on above definition, it can be easily deduced that the Lagrangian dual function (4)
is always convex and it consists of maximizing a concave function over a convex feasible
set D.

Lemma 1 Let y be a feasible solution to the primal problem (1) and be a feasible
solution of the dual problem (4), then have

y .

Lemma 1 is called the weak duality theorem which shows that the objective value of any
feasible solution to the dual problem yields a lower bound on the objective value of any
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feasible solution to the primal problem. This theorem also implies the saddle point of the
Lagrangian function as

L y L y L y

where y is the optimal solution of the primal problem (1) and is the optimal solu-
tion of the primal problem (4). A strong duality theorem cannot necessarily be established
for a general nonlinear optimization problem without adding assumptions for regarding the
convexity such as the Slater’s condition [8].

2.2 Convex relaxationmethod to solve the CVmodel

The CV model [12] is the curve evolution implementation of a piecewise-constant case of
the Mumford-Shah model [26] and also is applied in many fields of the image segmentation.
Assume that is the observed image, the CV model can be formally formulated
as

min
1 2 1

x 1
2dx

2

x 2
2dx Length (5)

where 1 2 and 1 2 , 1 and 2 denote the average intensity value of the
segmentation region, is a closed contour dividing into two regions 1 and 2 and is
the regularization parameter.

To solve the CV model (5), the zero level set x x 0 is used to replace
the unknown curve . With this setting, the CV model (5) can be equivalently rewritten in
terms of the level set function 1 as

min
1 2

1
2H 2

2 1 H dx dx (6)

where 2 2, H denotes the Heaviside function and the Dirac
mass, its distributional derivative as

H
1 if 0

0 if 0
and

d

d
H .

In the problem (6), the existence of and the regularity, such as differentiability can be triv-
ially deduced from the proof of existence and regularity for the piecewise constant model in
[25]. In order to solve problem (6), Chan and Vese in [12] proposed to alternately obtain the
curve and the constant values 1 and 2 by solving the following variational formulation

1
H dx

H dx 2
1 H dx

1 H dx

div 1
2

2
2 .

(7)

However, this method requires the time step to be small enough and the solution also tends
to the unique minimizer as the time increasement. Actually, it is slow due to the Courant-
Friedrichs-Lewy (CFL) stability constraint [13], which puts a very tight bound on the time
step when the solution develops flat regions. Furthermore, a local gradient flow is used for
the minimization and so the result is strongly dependent on the initialization. In particular,

1For convenience in the following, the variable in the functions x and x is omitted without any
confusion.
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no optimality guarantee can be deduced. In addition, the level set approach is very costly
due to a gradient descent type minimization.

In order to overcome above drawbacks, Chan et al. in [11] equivalently rewrote the
steady equation equation of the CV model as an optimization problem

min
0 1

dx dx (8)

for 1
2

2
2. The problem (8) is nonconvex due to the binary constraint,

so they furthermore relaxed it into the following convex optimization problem

min
0 1

dx dx. (9)

Since the model (9) is convex and nonsmooth, many operator splitting methods such as the
alternating direction method of multipliers [5, 28, 29] and the primal dual method [1, 10]
can be used to solve it.

2.3 Dual-based ADMM to solve the CVmodel

In this subsection, a new scheme is considered to solve the NP hard problem (8) based on
the dual theory. In order to flexibly use the Lagrangian dual scheme, we first set 2 1
and it is obvious that can be equivalently written as sign for 0 1 . Then the
problem (8) can be written as

min dx dx

s.t.
(10)

where is an auxiliary variable and sign denotes the piecewise signum function. In the
following, the average intensity value 1 and 2 in 1 and 2 need to be recomputed due to
the replacement 2 1. Specifically, with the simple computation, it can be obtained
by

1
1 dx

1 dx
and 2

1 dx

1 dx
. (11)

The problem (10) is difficultly solved since there couples the gradient operator into the
1-norm. One efficient numerical method is to use some operator splitting schemes such as

the primal-dual splitting (PDS) [10] and the ADMM [6]. Here focus on the latter to solve
the problem (10). To the ADMM, the basic motivation is to first split the original problem
into several easily solvable subproblems by introducing some auxiliary variables, and then
solves each subproblem separately by employing some efficient numerical methods. To this
end, by introducing two auxiliary variables and z, the problem (10) can be transformed as

min
z

dx z dx

s.t. z and sign
(12)

where z 1 2 and z 2
1

2
2. By introducing three Lagrange multipliers for

three constraints, the problem (12) can be written as a saddle-point problem

min
z

maxL z (13)
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where the augmented Lagrangian function is defined by

L z z dx dx 1

2
2dx

dx z dx 2

2
z 2dx

dx.

Here 1 and 2 are the penalty parameters, , and are the Lagrangian multipliers. Note
there is not the penalty term to deal with the third constraint in (12) since we want to use
the Lagrangian dual scheme to solve it. To solve the problem (13), the ADMM scheme can
be described as

where 1 and 2 are the weighted parameters. In the following we consider to solve several
subproblems (14)–(16).

(1) To the subproblem (14), it can be written as

1 dx 1

2

2
dx

z dx 2

2
z

2
dx.

Its Euler-Lagrange equation is

1I 2
1

1 div 2z

where I is an identity operator. It is a linear equation, the numerical method depends
on the used boundary condition. By assuming to use the periodic boundary condition
of the gradient operator , the solution can be obtained

1 F 1 F 1 div 2z

1F I 2F
(19)

by using the fast Fourier transform, where F denotes the Fourier transform and F 1

denotes the inverse of F .
(2) To the subproblem (15), the following lemma need to be arranged.

Lemma 2 Assume that x 1 2
2 and y 1 2

2, then the closed-
form solution x of

min
x

1

2
x y 2 x (20)
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can be obtained by the following soft-thresholding operator as

x S y max y 0
y
y

. (21)

Proof For the convenience, we set

x
1

2
x y 2 x .

Based on the Fermat theorem [2], the optimization condition of the problem (20)
satisfies that

0 x
1

x y x (22)

where denotes the subgradient 2. Specially, x has the form as

x
x
x if x 0

p if x 0

where p satisfies that p 1. To the case of x 0, the equation (22) implies that

x 1
x

y. (23)

Then, it can be deduced that the vectors x and y have the same direction. That is to
say

x
x

y
y

. (24)

Substituting (24) into (23) deduces that

x y
y
y

. (25)

In addition, the formula (25) also implies that y due to the same direction
between x and y. To the case of x 0, the formula (22) implies that

1
y p. (26)

Using p 1, we have y . As a summarization, above assertion is held.

In order to use Lemma 2, the problem (15) needs to be rearranged as

z 1
z z 2

2
z 1

2

2

dx.

It is the classic 2 1 problem, so its closed-form solution can be directly obtained
by the following soft-thresholding operator

z 1 S 1

2 2
. (27)

2p is a subgradient of a convex function x at x0 dom if x x0 p x x0 for x0 dom .
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(3) To the subproblem (16), we want to use the Lagrangian dual scheme [3, 16]. So it is
rearranged to a compact form as

1 1 1 arg min max (28)

where

1

2
1

1

2

dx dx

and

dx.

In the saddle point (28), if we can define the primal problem as

1 1 arg min (29)

its dual problem can be defined by

1 arg max 1 1 . (30)

To the primal problem (29), the alternating direction of method used in [16] can be
employed to solve it as

1 arg min (31)

1 arg min . (32)

To the subproblem (31), its solution can be written

1 1

1
(33)

based on the optimization condition.
In the following, we mainly discuss the solution of the subproblem (32).

Theorem 1 The optimization value of the subproblem (32) can be obtained by

1 dx. (34)

Proof : To the problem

min dx (35)

it is obvious that the solution is not unique. However, it is worth noticing that the mini-
mizer can be obtained by setting . That is to say

. Then the assertion is held.
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By using Theorem 1, the dual problem (32) can be solved by

1 arg max 1 1

arg max
1

2 1

2
dx dx

arg min
1

2 1

2
dx dx

max 1 0 (36)

where 1
1 . Once 1 is obtained, 1 1 can be set.

Furthermore, a binary solution to the problem (12) is obtained as

1 1 . (37)

Based on above discussion, the dual-based ADMM to solve the problem (10) can be
summarized as the following framework.

Algorithm 1 Dual-based ADMM to solve the problem (10).

3 Numerical method

This section mainly arranges some numerical comparisons between our proposed Algorithm
1 (called DADMM) and other classic numerical methods to solve the CV model. These
methods include the variable level set method (VLSM) used in [12], the alternating direction
method of multipliers for the relaxed formation (ADMM) used in [20] and the primal dual
method (PDM) [10]. To the segmentation models and algorithms, there include two kinds
of parameters as the model-based parameter and the algorithm-based parameters. To the
former, the chosen rule is based on the trial-and-error method in order to obtain the satisfied
segmentation result. To the latter, we set 1 2 1.01 and 1 2 3 in Algorithm
1 and the threshold value is 0.5 to the ADMM used in [20]. The initial contour of the
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segmentation method are randomly chosen. The stopping criterions of all of algorithms
depend on the segmentation images. All of the numerical methods are implemented with
MATLAB(2020a) in Core2 with 3.5GHz and 64G RAM by rescaling testing images in the
range [0,1].

3.1 Synthetic images

To illustrate the ability of the DADMM with the different noise level, it is first tested on
two-phase synthetic images as shown in Fig. 1. The Fig. 1(A) includes some simpler geo-
metrical structures, but the Fig. 1(B) includes more complicated geometrical structures.
Since Fig. 1(A) and Fig. 1(B) can be regarded as the accurate segmentation image, the
Segmentation Error (SE)

SE
Number of uncorrectly classified pixels

Total number of pixels
100%

can be used to evaluate the effectiveness of the segmentation scheme. To the noisy images
(A1)-(A3) and (B1)-(B3) in Fig. 1, the Matalb function ”imnoise” is used to add the white
Gaussian noise with different variances as 0.1, 0.25 and 0.5. The related parameters and
segmentation data are shown in Table 1. It is obvious that the DADMM slightly outperforms
other methods in terms of the segmentation accuracy.
In order to more deeply understand these numerical methods, the number of iteration is
fixed at 20 and then plot the SE curves as shown in Fig. 2 when segmenting the images
(A2) and (B2) to be the examples. It can be easily seen that ADMM-based methods con-
verge much faster than other approaches. In other words, the ADMM-based methods evolve
more rapidly to the targeted binary value images. To get a more intuitive visualization, the
segmentation results after 3, 10 and 20 iterations are shown in Fig. 3. From this, it can
be inferred that the ADMM-based methods produce better segmentation results than other
approaches when using fewer iterations.

To furthermore illustrate the capability of the DADMM, we consider to segmentation
three images with a little bias field and the noise with a variance of 0.05 as shown in the

Fig. 1 Synthetic images and the original noisy images with three different noisy level. Here denotes the
noisy variance
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Table 1 Related data used in segmenting images shown in Fig. 1

Method ADMM VLSM PDM DADMM

Images SE SE SE SE

A1 0.5 0.0539 1.6 0.0533 0.5 0.0534 0.83 0.0533

A2 1.4993 0.0541 2.7 0.0543 0.6 0.0541 1.2 0.0540

A3 1.4499 0.0556 2 0.0556 0.61 0.0556 1.3 0.0554

B1 1.4017 0.0569 1.5 0.0568 0.5 0.0568 0.5 0.0568

B2 1.9 0.0576 1.5 0.0575 0.44 0.0575 0.6 0.0574

B3 2.6 0.0590 1.45 0.0588 0.4 0.0590 0.72 0.0587

Average 0.0562 0.0561 0.0561 0.0559

Fig. 2 Convergence curve of the SE to segment images (A2) and (B2) in Fig. 1 when fixing the iteration to
be 20

Fig. 3 Segmentation results by using various methods. The 1st–3rd rows represent the segmentation output
by using the different iterations as 3, 10 and 20. The 1st–4th columns and the 5th–8th columns represent the
segmentation results by using the VLSM, the PDM, the ADMM and the DADMM

first column and the ground truths are shown in the second column of Fig. 4. The related
parameters and segmentation data are shown in Table 2. It is obvious that the DADMM still
has a slight advantage in segmentation accuracy. From three test images in Fig. 4, it can be
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Fig. 4 The 1st–2nd columns represent the original degraded images and ground truth, the 3rd–6th columns
represent the segmentation results by using the VLSM, the PDM, the ADMM and the DADMM

seen that the PDM and the ADMM have the incorrect segmentation phenomenon of stained
points both inside and outside the segmentation target. In particular, the inner corners of the
image (Y4,Y5) pentagram are not accurately segmented. Therefore, it still illustrates that
the dual-based ADMM has better segmentation performance than other methods.

3.2 Gray images

Here some numerical comparisons are arranged on the segmentation evaluation dataset
http://www.wisdom.weizmann.ac.il/ vision/Seg Evaluation DB/dl.html, where the dataset
contains 200 gray level images and the corresponding ground truth of the segmentation
results. For convenience, seven representative gray images are selected as the testing images.
The segmentation accuracy is measured by three indicators: Precision, Segmentation
Accuracy (SA) and F1-Score (F1S) as

Precision
TP

TP FP
SA

TP TN

TP FN FP TN
andF1S

2PR

P R

where P TP
TP FP R TP

TP FN and True Positive (TP), False Negative (FN), False Pos-
itive (FP) and True Negative (TN). From the results listed in the Table 3, the evaluation
indicators based on the DADMM obviously outperforms other three methods in most cases.
These facts can be also observed via the segmentation results from Fig. 5. To more specific,

Table 2 Related data for segmenting the images in Fig. 4

Method ADMM VLSM PDM DADMM

Images SE SE SE SE

X1 0.7143 0.0329 0.95 0.0329 0.6 0.0329 0.74 0.0328

Y1 1 0.0172 0.66 0.0171 0.75 0.0171 0.7 0.0171

Z1 0.4 0.1004 0.42 0.1004 0.1 0.1005 0.5 0.1004

Average 0.0502 0.0502 0.0502 0.0501
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Table 3 Related data used in segmenting the gray images shown in Fig. 5

Index Images Precision SA F1S

ADMM C1 0.0847 0.6026 0.9927 0.9866

D1 100 0.7005 0.9731 0.9267

E1 0.9091 0.7633 0.9861 0.9494

F1 0.1176 0.5929 0.9982 0.9968

G1 1.7857 0.9029 0.9838 0.8416

H1 4.3478 0.7362 0.9627 0.8804

I1 0.625 0.9394 0.9972 0.9553

Average 0.7483 0.9848 0.9338

VLSM C1 0.2 0.6025 0.9922 0.9857

D1 1.1 0.7155 0.9857 0.9584

E1 80 0.7705 0.9916 0.9681

F1 0.1 0.5929 0.9981 0.9966

G1 0.01 0.9035 0.9856 0.8580

H1 0.05 0.7355 0.9622 0.8791

I1 0.02 0.9411 0.9993 0.9889

Average 0.7516 0.9878 0.9478

PDM C1 0.24 0.6027 0.9926 0.9864

D1 0.271 0.7171 0.9876 0.9637

E1 25 0.7670 0.9880 0.9553

F1 0.01 0.5929 0.9982 0.9968

G1 0.003 0.9030 0.9855 0.8577

H1 15 0.7343 0.9624 0.8806

I1 9 0.9401 0.9983 0.9732

Average 0.7510 0.9875 0.9448

DADMM C1 0.2 0.6030 0.9922 0.9857

D1 0.595 0.7157 0.9888 0.9675

E1 0.527 0.7685 0.9949 0.9808

F1 0.1 0.5927 0.9982 0.9968

G1 0.038 0.9038 0.9857 0.8584

H1 0.85 0.7377 0.9625 0.8787

I1 0.02 0.9407 0.9989 0.9813

Average 0.7517 0.9887 0.9499

from the images (D1,E1,H1) in Fig. 5, the DADMM accurately extracts the object contours,
whereas the other methods produce over-segmentation or under-segmentation. Especially,
the DADMM can avoid unnecessary ”island-like” segmentation from the observation from
the images (C1,F1,G1), while the other methods have redundant star segmentation. In addi-
tion, the DADMM has a good processing of the segmentation details such as the beaks of
birds and geese in the images (G1,I1).
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Fig. 5 The 1st–2nd columns represent the original gray images and ground truth segmentation separately,
the 3rd–6th columns represent the segmentation results by using the VLSM, the PDM, the ADMM and the
DADMM

3.3 Color images

To evaluate the performance on natural color images, the database [15] are still used to test
our proposed method. Several representative natural color images are randomly selected for
the experimentation comparisons. The final segmentation results are given in Fig. 6 and
detailed experimental results are shown in Table 4. From Fig. 6, the DADMM obtains good
segmentation results. Taking the image J1 as an example, it can be seen that the DADMM
is better than other three methods due to their incorrect segmentation in the interior of the
target object. From the images (K1,M1,O1), it can be observed that the object contours of
the DADMM are very suitable for the results of the truth value. In addition, some over-
segmentations generated by other methods can be observed compared to the DADMM in
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Fig. 6 The 1st–2nd columns represent the original color images and ground truth segmentation separately,
the 3rd–6th columns represent the segmentation results by using the VLSM, the PDM, the ADMM and the
DADMM

the image (L1,P1). As a summarization, the conclusions obtained here are very close to
those got from testing on gray images.

4 Conclusion

This paper arranged a new numerical method to solve the CV model. Different to some
classic methods such as the PDE-based method depending on the Courant-Friedrichs-Lewy
condition and the convex relaxation method depending on the threshold value, our proposed
method used the dual scheme to equivalently transform the CV model into a saddle point
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Table 4 Related data used in segmenting the color images shown in Fig. 6

Index Images Precision SA F1S

ADMM J1 0.1852 0.5154 0.9765 0.9715

K1 0.2222 0.9254 0.9984 0.9788

L1 125 0.7382 0.9472 0.8332

M1 28.818 0.9569 0.9885 0.7390

P1 0.1316 0.8092 0.9703 0.8609

O1 0.1316 0.9766 0.9917 0.6477

R1 0.2778 0.7966 0.9859 0.9385

Average 0.8190 0.9798 0.8528

VLSM J1 17.4 0.5131 0.9677 0.9613

K1 0.1 0.9261 0.9985 0.9799

L1 4 0.7435 0.9696 0.8993

M1 0.04 0.9574 0.9890 0.7467

P1 28.5 0.8123 0.9728 0.8700

O1 1 0.9799 0.9925 0.6283

R1 0.76 0.7952 0.9835 0.9287

Average 0.7046 0.9819 0.8592

PDM J1 0.439 0.5163 0.9777 0.9727

K1 0.02 0.9255 0.9983 0.9780

L1 0.08 0.7430 0.9660 0.8878

M1 2.5 0.8520 0.9885 0.7649

P1 1.5 0.8086 0.9699 0.8592

O1 0.2 0.9768 0.9920 0.6606

R1 0.415 0.7975 0.9859 0.9381

Average 0.8171 0.9826 0.7554

DADMM J1 0.75 0.5148 0.9798 0.9755

K1 0.1 0.9252 0.9983 0.9775

L1 0.56 0.7415 0.9670 0.8917

M1 0.1 0.9545 0.9888 0.7597

P1 0.627 0.8200 0.9748 0.8739

O1 0.1 0.9796 0.9924 0.6321

R1 0.52 0.7984 0.9857 0.9372

Average 0.8191 0.9838 0.8639

problem and then the solution can be obtained by using the dual-based ADMM. The numer-
ical results showed the superiority of our proposed method in terms of the segmentation
accuracy compared with other classic numerical methods. In the future, we want to extend
the proposed method to deal with the multiphase image segmentation problem.
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