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Abstract
String Prediction (SP) is a very efficient screen content coding (SCC) tool. In SP, the self-
referencing string plays an important role to improve coding efficiency. But general self-
referencing string has the problem of very low pixel copying throughput and is prohibited
in the non-self-referencing based SP which has been adopted in the third-generation
Audio Video Standard (AVS3). To overcome the problem and bring back the coding gain
of self-referencing string, a line-based self-referencing string (LSRS) enabled SP tech-
nique is proposed. Moreover, to keep the pixel copying throughput and coding complex-
ity of LSRS enabled SP the same as non-self-referencing based SP, an unbroken-line
decomposition algorithm is presented to decompose an LSRS into multiple non-self-
referencing strings. In this way, LSRS can be treated in the same way as a non-self-
referencing string with the best trade-off between coding efficiency and complexity.
Compared with non-self-referencing based SP, using AVS3 reference software HPM,
for twelve SCC common test condition YUV test sequences in text and graphics with
motion category and mixed content category, the proposed LSRS technique achieves the
average Y BD-rate reduction of 0.81% and 0.59% as well as the maximum Y BD-rate
reduction of 2.04% and 1.31% for All Intra and Low Delay configurations, respectively,
with almost no additional encoding and decoding complexity. The proposed LSRS
enabled SP technique has been adopted in AVS3.
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1 Introduction

With applications using the computer screen as an interface for daily remote human-machine
and human-human interactions like online education, teleconferencing, telecommuting and
remote entertainment becoming more and more popular, almost all of recent video coding
standards have included SCC tools. The video coding standards with SCC tools include High
Efficiency Video Coding (HEVC) [13], Versatile Video Coding (VVC) [12], the second-
generation Audio Video Standard (AVS2) [28], the third-generation AVS (AVS3) [20], AV1
[20], Essential Video Coding (EVC) [21].

In various standards, the adopted SCC tools are quite different [20]. In VVC, five main
SCC tools have been adopted [12]: transform skip residual coding, block-based differential
pulse-code modulation (BDPCM), intra block copy (IBC) [21], adaptive color transform
(ACT), and palette [9, 11]. In AVS3, also five main SCC tools have been adopted in the draft
[20]: IBC, frequency-based intra mode coding (FIMC), implicit selection of transform skip
(ISTS), adaptive control of deblocking type (ACDT), and string prediction (SP) [34]. There are
several other SCC techniques [2, 17, 18] developed for HEVC-SCC standard.

Unlike IBC applied to a few fixed rectangular shapes, the major merit of SP is to divide a
coding unit (CU) into multiple strings to take full advantage of matching patterns with a
variety of sizes, shapes, and positions in screen content. SP, also known as string matching
(SM) or intra string copy (ISC), has quite a few early versions including macro-block or
coding tree unit (CTU)-based 1D SM [5, 6, 14], 2D SM [35], Pseudo 2D SM (P2SM) [24, 25,
31] and universal string matching (USM) [26, 32] implemented in HEVC, USP in AVS2
[27–29] and SP in AVS3 [15, 16, 22, 33, 34].

Pixel copying in SP is more flexible than block copying in IBC, but also brings higher hardware
complexity. In SP, all reconstructed pixels of a current string are copied from its reference string.
Therefore, the basic operation of SP is to copy pixels from reference positions to current positions
continuously. To solve the hardware complexity problem of SP, a low complexity implementation
of SP mode is proposed and adopted in AVS3 [16] by introducing a variety of string constraints.
These constraints include 1) only traverse-horizontal scanning direction is allowed, 2) SP has the
same reference range as IBC, 3) the total number of strings in a CU cannot exceed a quarter of the
total number of pixels in the CU, 4) Only stringswhose length is divisible by 4 are allowed, 5) Only
non-self-referencing string (non-SRS) is allowed and self-referencing string (SRS) is prohibited.

SRS plays an important role in SP to improve coding efficiency but has the problem of very
low pixel copying throughput. SRS is a string that at least one pixel of its reference string is
located in the current string itself. Because generally the reference pixels as reconstructed
pixels in the current string must be copied from their reference positions to their current
positions before they are copied again as reference pixels of other pixels, a general string copy
implementation has to copy pixels one by one sequentially, resulting in the lowest throughput
of only one pixel per copying operation and significant difficulty of real-world SP implemen-
tation. Due to the problem, SRS is not allowed in early versions of SP (non-SRS based SP),
thus partial coding gain of SP is lost.

To overcome the problem and bring back the coding gain of SPS, a line-based self-
referencing string (LSRS) enabled SP technique is proposed in this paper. Detailed analysis
reveals that not only a special type of SRS with the reference string is above the current string
in horizontal scan mode, does not really have the problem of low pixel copying throughput,
but also a majority of SRS coding gain actually comes from this special type of SRS. In this
special type of SRS, string copy can always be performed at least line-by-line instead of pixel-
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by-pixel, thus it is named LSRS. Furthermore, to keep the coding complexity of LSRS the
same as non-SRS based SP, decomposition algorithms are presented to convert an LSRS into
multiple non-SRSs. In this way, LSRS can be simply treated in the same way as non-SRS with
no additional effort and cost.

The major contributions of this paper are as follows.

1) An LSRS-enabled SP technique is proposed to further improve the coding efficiency of
non-SRS based SP.

2) To keep the same low complexity implementation of non-SRS based SP, three decompo-
sition algorithms with the different trade-offs between coding efficiency and complexity
based on the six principles are presented and analyzed.

3) An LSRS-enabled SP with the unbroken-line decomposition algorithm is implemented in
AVS3 and has been adopted in AVS3.

This paper is partially based on AVS documents [15, 33]. The remainder of the paper is
organized as follows. Section 2 describes background and motivation. Section 3 elaborates the
technical details of the line-based self-referencing string prediction. Experimental results are
provided and discussed in Section 4. Compared with the AVS3 reference software HPM
“https://gitlab.com/AVS3_Software/hpm/-/tree/HPM-9.1”, for the sequences from the AVS3
SCC Common Test Condition (CTC) [19], the proposed line-based self-referencing string
prediction technique can achieve a Bjøntegaard delta rate (BD-rate) [1] reduction up to 2.04%
with almost no additional encoding and decoding complexity. Conclusions and future work
are given in Section 5.

2 Background and motivations

In the non-SRS based SP adopted in the AVS3, the encoder searches for the best reference
string in the reference range for a current string. As shown in Fig. 1a, each reference string has
two string copy parameters: a string vector SV = (svX, svY) representing the coordinate offset
between the current string and the reference string and a string length parameter StrLen
representing the number of pixels in the string. If no reference pixel is found for a pixel being
coded, the pixel value is written into the bitstream as an unmatched pixel.

As shown in Fig. 1b, an SRS is a string with the last part of the reference string partially
overlappings the first part of the current string. Consecutive repeated identical patterns occur
frequently in screen content. Thus, SP with SRS enabled can further improve coding efficiency

Fig. 1 Examples of non-SRS and SRS. a An example of a non-SRS. b An example of a pixel-by-pixel copied
SRS
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significantly. However, due to the low throughput hardware implementation problem of SRS, SRS
is not allowed in early versions of SP and partial coding gain of SP is lost. For an SRS, all pixels on
the overlap are both reconstructed pixels of themselves and reference pixels of others. Therefore,
these pixels have to be copied from their reference positions first before they are used as reference
pixels of other pixels to be copied to other positions. To minimize SP hardware implementation
cost, string copy is usually implemented using basic and straightforward n-to-n pixel copying logic
which inputs n pixels from source and outputs the same n pixels to destination in one clock cycle of
operation. Typically, n is at least 4 to achieve pixel copying throughput of at least 4 pixels per
operation. It can be seen that SRS requires 1-to-1 pixel copying logic to handle the worst case
scenario. As illustrated in Fig. 1b, for an SRS with (svX, svY) = (−1, 0) and StrLen = 16, sixteen
pixels of the current string marked by orange solid dots have to be copied one pixel by one pixel
sequentially, resulting in the lowest throughput of only one pixel per copying operation.

To solve the problem and regain the coding gain of SRS, characteristics of SRS are
investigated. In particular, statistical analysis of SRS string vector distribution reveals that
for a majority of SRS in horizontal scan mode, the reference string is in a position above the
current string (i.e. svY < 0).

The experiment in the analysis uses AVS3 SCC common test condition (CTC) [19] in lossy
coding (QP = 27) and All Intra configuration. Twelve AVS3 CTC SCC sequences (see X axis
of Fig. 2 for the abbreviation of the sequence names) are used in the experiment. From Fig. 2,
there are at least the following two findings.

1) For each sequence, the ratio of SRS with svY < 0 over all SRS is very high, ranging from
83.9% to 98.8%. The reason is that the repeated identical patterns with a variety of sizes
and shapes with svY < 0 occur much more frequently than the other offsets [24] for the
screen content.

2) The average ratio is as high as 94.8%.
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Fig. 2 The ratio of SRSs with svY < 0 over all SRSs
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Moreover, SRS with svY < 0 has a special feature: the reference pixels are always at least
one line above the current pixels and can be reconstructed at least one line before reconstruc-
tion of the current pixels. Thus, for SRS with svY < 0, string copy can be properly managed to
have high pixel copying throughput as to be discussed in the next section. Because of the
special feature, SRS with svY < 0 in horizontal scan mode is named line-based self-
referencing string (LSRS).

Motivated by these observations and analysis, it can be expected that LSRS has the
potential to regain most of the coding gain lost by prohibiting SRS and also to achieve high
pixel copying throughput at the same time.

3 Line-based self-referencing string prediction technique

3.1 LSRS-enabled SP coding architecture and subsystem

Figure 3 shows the AVS3 encoding architecture with LSRS-enable SP included.
The encoding architecture consists of an LSRS-enable SP module in orange boxes and

other operational modules such as intra prediction, IBC, FIMC, ISTS, ACDT, inter prediction,
transform, and quantization modules. Modules in yellow boxes are other SCC coding tools in
AVS3. Modules in green boxes are traditional coding tools in AVS3.

As illustrated in Fig. 3, the input CU is fed to the LSRS-enable SP encoding subsystem and
traditional block prediction encoding subsystem including IBC, FIMC, and Intra/Inter modes.
Different modes generate different reconstructed pixels and rate-distortion (RD) costs. Then,
the one with the best RD cost is selected as the CU’s final coding mode by the RD cost-based
CU mode selector. After that, the coded bitstream is put into the output bitstream and the
reconstructed CU pixels are stored in reconstructed YUV 4:2:0 picture buffer, which is shared
by LSRS-enable SP encoding subsystem, and the rest of the encoding system for inter
prediction and IBC. LSRS-enable SP has no residual coding including transform, quantization,
residual coefficient coding and deblocking steps.

Figure 4 illustrates the LSRS-enabled SP coding subsystem including four functional
modules: string prediction module, string copy parameters coding module, string decomposi-
tion module, and string copy module. The main differences between LSRS-enable SP and non-

Fig. 3 AVS3 encoding architecture with LSRS-enable SP included
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SRS based SP are the new line-based self-referencing string prediction in the string prediction
module and the new string decomposition module. Both are marked with yellow bounding
boxes and red texts.

As shown in Fig. 4, for an input CU O, in the string prediction module, if svY < 0, both
LSRS prediction and non-SRS prediction are performed in the encoder, otherwise, only non-
SRS prediction is performed. In the string copy parameters coding module, the string copy
parameters for both non-SRS and LSRS are coded and written into the bitstream using the same
way. In the string decomposition module in both encoder and decoder, an LSRS is decomposed
into multiple non-SRSs as described in subsection B. In the string copy module, only non-SRSs
need to be processed and copied in the same way as in a non-SRS SP coding system.

In LSRS-enabled SP, after decomposition, the total number of non-SRS in a CU cannot
exceed a quarter of the total number of pixels in the CU. The constraint is the same as in non-
SRS SP to keep the hardware complexity of LSRS-enabled SP the same as non-SRS SP.

3.2 Decomposition algorithms

For string copy of LSRS to have the same pixel copying throughput and implementation
complexity as string copy of non-SRS, an LSRS needs to be decomposed into multiple
substrings of non-SRS and the total number of non-SRS after decomposition in a CU must
meet the same constraint as in original non-SRS SP. There are at least three algorithms to
decompose an LSRS into multiple non-SRSs. Figure 5 illustrates how an LSRS with (svX,
svY) = (−3, −2) and StrLen = 20 is decomposed into different N non-SRSs using three
different ways. In Fig. 5, orange solid dots are pixels of current string and green hollow circles
are pixels of the reference string.

1) Minimum decomposition: Each decomposed non-SRS has the maximum length, i.e. if
the length is increased by one, the non-SRS becomes an LSRS. In minimum decompo-
sition, the number of decomposed non-SRSs is minimized.

As shown in Fig. 5b, the original LSRS is decomposed into two non-SRSs by the minimum
decomposition algorithm. The first non-SRS has (svX, svY) = (−3, −2) and StrLen = 11.
Obviously, if the length of the first non-SRS is increased by one, the first non-SRS becomes an
LSRS because the last pixel of the extended reference string is located in the current string itself.
Actually, the last pixel of the extended reference string and the first pixel of the current string are at
the same location. The second non-SRS has (svX, svY) = (−3, −2) and StrLen = 9.

Let (svX, svY), StrLen, and H be the string vector, length, and height (i.e. number of lines
in the string) of the original LSRS, respectively. |svY| and H always satisfy |svY| ≤ H.

Fig. 4 Line-based self-referencing string prediction coding subsystem
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In minimum decomposition, the length of the first non-SRS is given by StrLen1 =
StrLen1a + StrLen1b, where StrLen1a is the number of pixel in the first |svY| lines of the
original LSRS and StrLen1b is the number of pixels located on the (|svY| + 1)-th line (i.e. the
line following the first |svY| lines) of the reference string of the original LSRS but not located
on the first line of the current string of the original LSRS.

After obtaining the first non-SRS and its length, the same method of obtaining the first non-
SRS and its length can be applied to the remaining part of the original LSRS to obtain the next
non-SRS and its length recursively until the remaining part of the original LSRS is a non-SRS.
An extensive case study reveals that among all possible decomposition, the minimum of the
total number of decomposed non-SRSs Nmin is given by

Fig. 5 Three self-referencing string decomposition algorithms. a an example of LSRS, b minimum decompo-
sition, c unbroken-line decomposition, d single-line decomposition
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Nmin ¼ ceil H=jSvY jð Þ�1: ð1Þ

where ceil(x) is the smallest integer greater than or equal to x.
In Fig. 5b), Nmin is equals to ceil(5 / 2) – 1 = 3–1 = 2.

2) Unbroken-line decomposition: In minimum decomposition, a line in the original LSRS
may be broken into two segments separately located in two decomposed non-SRSs. Any
broken line will reduce pixel copying throughput and should be avoided. Unbroken-line
decomposition can fix the problem. In unbroken-line decomposition, each decomposed
non-SRS starts at the beginning of a line except the first non-SRS, ends at the end of a line
except the last non-SRS, and has |svY| lines except the last non-SRS.

As shown in Fig. 5c, the original LSRS is decomposed into three non-SRSs by unbroken-line
decomposition algorithm. The first and the second non-SRSs have (svX, svY) = (−3, −2) and
StrLen = 8. The third non-SRS has (svX, svY) = (−3, −2) and StrLen = 4.

The total number of decomposed non-SRSs Nunbroken-line is given by

Nunbroken−line ¼ ceil H=jSvY jð Þ: ð2Þ
In Fig. 5c Nunbroken-line is equals to ceil(5 / 2) = ceil(2.5) = 3.

3) Single-line decomposition: Each decomposed non-SRS is exactly one line except the first
and last decomposed non-SRSs which may be equal to or less than one line.

As shown in Fig. 5d, the original LSRS is decomposed into five non-SRSs by single-line
decomposition algorithm. Each non-SRS has (svX, svY) = (−3, −2) and StrLen = 4.

In single-line decomposition, the total number of decomposed non-SRSs Nsingle-line is equal
to the height (i.e. the number of lines) of the original LSRS and is given by

Nsingle−line ¼ H : ð3Þ
To evaluate the decomposition algorithms, at least six principles should be considered when an
LSRS is decomposed into N non-SRSs.

1) principle 1, SV invariant principle: The SV of an LSRS and SVs of N non-SRSs after
decomposition are invariant.

2) principle 2, Length sum principle: The sum of the length of N non-SRSs is equal to the
length of the original LSRS.

3) principle 3, String constraints invariant principle: The string constraints are the same as
the string constraints of non-SRS based SP after decomposition.

4) principle 4, Minimizing N principle: The less the N is, the higher the coding gain gets and
the better the decomposition algorithm is.

5) principle 5, Maximizing pixel copying throughput principle: The higher throughput the
decomposition algorithm results in, the more favorable the decomposition algorithm is.

6) principle 6, Simple decomposition principle: The simpler the decomposition algorithm is,
the more attractive the decomposition algorithm is.

Table 1 lists the comparisons of three decomposition algorithms based on the six principles.
N1, N2 and N3 represent the decomposition number for the minimum decomposition, the
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unbroken-line decomposition and the single-line decomposition algorithm, respectively. T1, T2
and T3 represent the pixel copying throughput for the minimum decomposition, the unbroken-
line decomposition and the single-line decomposition algorithm, respectively.

Based on the six principles, all three decomposition algorithms satisfy the first second
principles, only the last four principles need to be considered in evaluating the decomposition
algorithms. Among the three decomposition algorithms, the unbroken-line decomposition
algorithm is the best trade-off due to the following reasons.

1) Although the minimum decomposition algorithm may get the minimum decomposition
number N1 of non-SRSs and has the highest coding gain, it may have a broken line thus
have the minimum pixel copying throughput T1 and has a quite complex decomposition
procedure. What’s more, since the string length is not always divisible by 4 after
decomposition, thus the string constraints are not the same as the string constraints of
non-SRS based SP after the minimum decomposition.

2) The unbroken-line decomposition algorithm is able to avoid the broken line to achieve
higher pixel copying throughput than the minimum decomposition algorithm and also has
a simple decomposition procedure. In particular, according to formulas (1), (2), in most
cases its total number of decomposed non-SRSs is equal to the minimum decomposition
algorithm and only in very limited cases the total number of decomposed non-SRSs is one
more than the minimum decomposition, thus it has coding gain very close to the
minimum decomposition algorithm.

3) Both single-line decomposition algorithm and unbroken-line decomposition algorithm
have similar and very simple decomposition procedures. Both have no broken line and
provide similar pixel copying throughput. It is obvious that Nunbroken-line is much smaller
than Nsingle-line for |SvY| > 1 or equal to Nsingle-line for |SvY| = 1, thus the unbroken-line
decomposition algorithm can achieve higher coding gain than the single-line decompo-
sition algorithm.

Overall, the unbroken-line decomposition algorithm is the best trade-off and is discussed in
more details in the rest of the paper and used in the experiments section.

The pseudocode for the unbroken-line decomposition algorithm is described in Table 2. Let
cuWidth be the width of a CU. For an LSRS in a CU, let (svX, svY) be the SV of the string,
SRSLen be the length of the string, xStartPos, yStartPos be the x, y position of the first pixel of
the string relative to the top-left position of the CU. nonSRSLen[N] stores the length for each
of N non-SRSs. Since the traverse-horizontal scanning direction (neighboring rows have
opposite direction) is used, the length of the first non-SRS depends on the parity (even or
odd number) of yStartPos. The first non-SRS can be divided into three parts: the first line, the
middle abs(svY) – 2 lines and the final line. If yStartPos is in the odd line of the CU (yStartPos
& 0 × 1 is true), the length of the first line (lengthF) for an LSRS is xStartPos + 1, otherwise
the length of the first line of an LSRS is cuWidth – xStartPos. The length of the middle lines

Table 1 Comparisons of three decomposition algorithms based on the six principles

Principle 1 Principle 2 Principle 3 Principle 4 Principle5 Principle 6

Minimum decomposition satisfy satisfy not satisfy N1≤N2≤N3 T1<T2≈T3 complex
unbroken-line decomposition satisfy satisfy satisfy N2≤N3 T2≈T3 simple
Single-line decomposition satisfy satisfy satisfy N3 T3 simple
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(lengthM) for an LSRS is always equal to cuWidth* (abs(svY) – 2). The length of the final line
for an LSRS is min(cuWidth, RemainingStrLen- lengthF- lengthM). Thus, the sum of the
length for the three parts is nonSRSLen [13] given in Table 2. The length of the next N-2 non-
SRSs is always abs(svY)*cuWidth. The length of the last non-SRS is the final
RemainingStrLen that is less than or equal to abs(svY)*cuWidth. After decomposition, the
string copy operation of LSRS can be performed at least line-by-line.

3.3 Performance analysis

The proposed LSRS-enabled SP technique can further improve the coding efficiency with
almost no additional encoding and decoding complexity as analyzed below.

Coding efficiency analysis In the LSRS-enabled SP coding system, the string copy param-
eters of one LSRS rather than multiple non-SRS are coded and written into the bitstream. For
example, as shown in Fig. 5, if an LSRS with SV = (−3, −2) and StrLen =20 is found in the
encoder, only one SV and one StrLen will be coded and written into the bitstream for twenty
pixels. But in the non-SRS SP coding system, LSRS is not allowed, thus the encoder will
generate two or more non-SRSs to code the same twenty pixels. Obviously, two or more SV
and two or more StrLen with other string copy parameter coding overhead such as
match_type_flag for each non-SRS have to be coded and written into the bitstream. For
example, the encoder may search and find the following three strings: two with SV = (−3,
−2) and StrLen = 8 and one with SV = (−3, −2) and StrLen = 4, resulting in a lot more bits to
be coded and written into the bitstream. It is obvious that with LSRS, much fewer string copy
parameters are coded and written into the bitstream and the coding efficiency is much
improved.

Coding complexity analysis In the LSRS-enabled SP coding system, any LSRS is
decomposed into multiple non-SRSs and the total number of non-SRSs in a CU has the same
constraint as in the traditional non-SRS SP coding system. Therefore, the LSRS-enabled SP
coding system has the same string copying throughput and coding complexity as the traditional
non-SRS SP coding system. The only additional function needed by the LSRS-enabled SP

Table 2 The unbroken-line decomposition algorithm
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coding system is the LSRS-to-non-SRS decomposition function. As shown in Table I, the
unbroken-line decomposition function is very simple, straightforward, and easy to be imple-
mented with little logic and cost.

As a result, the LSRS technique can notably improve coding efficiency with almost no
additional coding complexity.

4 Experiments

4.1 Description of test images

Fourteen AVS3 SCC CTC [19] sequences shown in Table 3 are used in the experiment. CTC
sequences can be classified into four categories: Text and Graphics with Motion (TGM),
Mixed Content (MC), Gaming (G), and Camera Captured (CC). All test sequences are in YUV
4:2:0 format. Four of CTC sequences, sc_desktop, sc_console, BitstreamAnalyzer,
program_vidyo are partially shown in Fig. 6a, b, c, d, respectively.

4.2 Experimental settings

The experiments evaluate and compare the coding efficiency and coding complexity of LSRSP
using the following two CODECs.

1) HPM, the AVS3 reference software HPM9.1 “https://gitlab.com/AVS3_Software/hpm/-/
tree/HPM-9.1”.

2) HPM-LSRSP, the proposed line-based self-referencing string prediction technique imple-
mented on HPM9.1.

All experimental results are generated under the CTC and configurations defined in [19] for
AVS3 SCC. To evaluate overall coding efficiency improvement, the BD-rate metric [1] is used.
Fourteen YUV 4:2:0 test sequences classified into Text and Graphics with Motion (TGM),
Mixed Content (MC), Gaming (G), and Camera Captured (CC) categories are used. For each

Table 3 Fourteen AVS3-SCC CTC images used in the experiment

Resolution Sequence name Abbreviation Category fps No. of frames

1920×1080 sc_flyingGraphics FLYG TGM 60 600
sc_desktop DSK TGM 60 600
sc_console CNS TGM 60 600
ChineseDocumentEditing CDE TGM 30 300
EnglishDocumentEditing EDE TGM 30 300
Spreadsheet SPS TGM 30 300
BitstreamAnalyzer BSA TGM 30 300
CircuitLayoutPresentation CLP TGM 30 300
program PRG TGM 60 600
web_en WEBB TGM 60 600
word_excel WDEC TGM 60 600
program_vidyo PRGV MC 60 600
ArenaOfValor AOV A 60 600
BQTerrace BQT CC 60 600
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sequence, BD-rate reduction is calculated separately for Y, U, and V color components. Four
QPs of 27, 32, 38, and 45 and two configurations of AI and LDB are tested. To evaluate encoder
and decoder complexity, encoding and decoding software runtimes are also compared.

4.3 Experimental results and conclusions

To evaluate the coding efficiency of LSPSP, the coding efficiency comparisons between HPM
and HPM-LSPS for AI and LDB configurations are shown in Table 4. The PSNR-bps curves
and BD-rate reduction percentage of CNS for AI configuration are shown in Fig. 7. The
encoding runtime ratio and decoding runtime ratio between HPM and HPM-LSRSP are shown
in Table 4.

The experimental results can be summarized as follows.

1) For CTC sequences, the overall coding performance of HPM-LSRSP is notably improved.
For TGM and MC category, as shown in Table 4, HPM-LSRSP can achieve an average
Y-BD-rate of −0.81%, −0.59% for AI and LDB. In particular, for CNS sequence, HPM-
LSRSP can achieve YUV BD-rate of −2.04%, −2.04%, −1.75% for AI. As shown in
Fig.7a, from the Y-PSNR-bps curves of CNS for AI configuration and QP of 22, the
bitrate and Y-PSNR are improved from 35,989.5 kbps and 51.5 dB in HPM to
35,423.7 kbps and 51.6 dB in HPM-LSRSP. Figure 7b shows the U-PSNR-bps curves
and BD-rate reduction percentage of CNS for AI configuration. For the CLP sequence,
HPM-LSRSP can achieve a Y-BD-rate of −1.31% for LDB.

2) The coding performance improvement by HPM-LSRSP depends on the contents. As
shown in Table 4, HPM-LSRSP has good BD-rate reduction for almost all the sequences

Fig. 6 Examples of AVS3 SCC test sequence. a a part of sc_desktop. b a part of sc_console. c a part of
BitstreamAnalyzer. d a part of program_vidyo
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of TGM and M categories in all configurations, except the PRG sequence in the LDB
configuration. The PRG LDB issue probably means that the optimal string selection
method based on RD cost may not work as expected in this particular case and have room
for further optimization. No coding performance improvement for CC and A categories
because string prediction is disabled by picture-level early termination as the original SP
in HPM does.

3) As shown in Table 5, the encoding runtime and decoding runtime of HPM-LSRSP are
almost the same as HPM.

Table 4 Lossy coding performance comparison (BD-rate %) between HPM and HPM-LSPSP

Test sequences AI LDB

Category Abbreviation Y U V Y U V

HPM vs. HPM-LSRSP TGM FLYG −0.37 −0.53 −0.49 −0.18 −0.07 −0.28
TGM DSK −1.22 −1.17 −1.19 −0.91 −0.64 −0.44
TGM CNS −2.04 −2.04 −1.75 −0.86 −1.03 −1.12
TGM CDE −0.31 −0.20 −0.43 −1.23 −1.07 −1.38
TGM EDE −0.22 −0.55 −0.65 −0.31 0.11 −0.09
TGM SPS −0.77 −0.66 −0.09 −0.25 −0.13 0.18
TGM BSA −1.02 −0.88 −1.04 −0.77 −0.35 −0.15
TGM CLP −0.93 −1.04 −1.12 −1.31 −1.12 −1.65
TGM PRG −0.65 −0.65 −0.91 0.45 0.09 1.07
TGM WEBB −0.68 −0.74 −0.71 −0.86 −1.05 −1.14
TGM WDEC −0.47 −0.79 −0.82 −0.23 0.88 0.00
MC PRGV −1.09 −1.31 −1.07 −0.68 −1.39 −1.33
G AOV 0.0 0.0 0.0 0.0 0.0 0.0
CC BQT 0.0 0.0 0.0 0.0 0.0 0.0
Average of TGM and MC −0.81 −0.88 −0.86 −0.59 −0.48 −0.53
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Fig. 7 The PSNR-bps curves and BD-rate reduction percentage of CNS for AI configuration. a Y-PSNR-bps
curves, b U-PSNR-bps curves
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5 Conclusion and future work

Self-referencing strings play an important role in SP but are prohibited in early versions of SP to
avoid very low pixel copying throughput problems. Statistical analysis shows that a majority of self-
referencing strings are line-based self-referencing strings (LSRS). LSRS really does not have the low
pixel copying throughput problem because it can always be decomposed into non-SRSs. Thus, an
LSRS-enabled SP coding system is proposed. An LSRS is decomposed into multiple non-SRS to
perform at least line-by-line string copy operations. Three decomposition algorithms are compared
and the best trade-off is the unbroken-line decomposition algorithm. Finally, theoretical analysis and
experimental results show that LSRS-enabled SP can notably improve coding efficiencywith almost
no additional encoding and decoding complexity.

Future work includes 1) Improving encoder RD cost-based optimal string selection algo-
rithm, in particular, for LDB configuration; 2) Exploring other string prediction techniques
with a better trade-off between coding efficiency and coding complexity; 3) Applying SP to
the lossless or near-lossless coding for screen content [23], alpha channel images [30] and key-
point sequences [7, 8]; 4) Applying deep learning and neural network approaches [7] to video
analysis [8, 10], video processing [3, 4] and SP based video coding.
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