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Abstract
Stock price prediction is one of the most important aspects of business investment plans,
and has been an attractive research topic for both researchers and financial analysts. Many
previous studies indicated the effectiveness of social media sentiment in stock price
predictions through time series modelling. However, the time series information hidden
in consecutive trading days has not been fully explored. In this paper, we build a stock
price prediction model based on attention-based Long Short Term Memory (ALSTM)
network using price data, technical indicators and sentiment information from social
media. We employed a novel method to feed the deep network with long time series data
to learn the deep sequential information of stock price movement. A fine-tuned BERT
sentiment classification model and a sentiment lexicon are proposed to extract deep
sentiment tendency of social media posts. We conducted experiments on 28 stocks within
three years’ transaction period, and the results show that: (1) evaluated by the indicators
of the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the
accuracy, our proposed method outperforms the baseline models in both validation and
test data sets; (2) models incorporating stock prices, technical indicators and sentiment
features perform better than models that only use partial data source; (3) the fine-tuned
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BERT model performs better in sentiment classification task, and the exploitation of the
sentiment features computed with the use of BERT model also led to higher predicting
accuracy compared with the features calculated using sentiment lexicon; and (4) setting
the input window length to 5-day achieves the best performance in average prediction
accuracy.

Keywords Social media . Sentiment analysis . Fine-tuned BERT . Stock price prediction .

Attention-based LSTM

1 Introduction

Stock price prediction is an important task in the planning of investment activities. However, it
remains a challenging problem to build an effective stock price prediction model, considering
that stock prices are affected by multiple factors. In addition to historical prices and a series of
technical indicators, the current stock price is also affected by social sentiment. The overall
social mood toward a company may be one of the most significant variables affecting its stock
price. Nowadays, with the rapid development of social media, an increasing number of
investor posts are released on social media, making large amounts of sentiment data available.

Many prior studies have confirmed the validity of investor’s sentiments in stock market
predictions [4, 55, 61, 63], even in the Bitcoin exchange market [87]. However, the social
media information comprises texts in loose and unrestricted format which grow in a dynamic
way. Therefore, this study attempts to integrate and make use of as much content as possible in
the social environment of stock market to develop an effective stock prediction method that
fully utilizes time series information.

Other drawbacks of previous studies involve using only snapshots of the dataset at time
point t to predict another time point in the future [12, 83] and using models that were not
tailored for deep sequential information [55]. This ignores the time series relationships among
consecutive trading days before time point t, which is also a significant information hidden in
the historical time series. LSTM network [29] is designed to learn sequential information,
which has been verified to be superior to other models for the task of extracting effective
information from complex financial time series data [35, 58]. Therefore, we believe it will help
to improve the performances of our prediction method.

To address these questions, we employ four approaches that 1) propose a fine-tuned BERT
sentiment classification model and a sentiment lexicon to construct sentiment analysis, 2)
convert sentiment information into novel representation feature as model input, 3) build a
ALSTM-based architecture to learn the deep sequential information via varying input window
length, and 4) conduct experiments on a large scale of social media posts concerning 28 stocks
for a period of three years.

This study makes four contributions, namely: (1) we introduce an ALSTM-based architec-
ture for stock price prediction using stock price data, technical indicators and sentiment
information, which performs better than the baseline models in both validation and test data
sets using three different evaluation metrics; (2) we compare the model performance using
different data source, the real effectiveness of sentiment analysis in stock prediction is
demonstrated; (3) we propose a fine-tuned BERT sentiment classification model which shows
good performance in sentiment classification task, and the exploitation of the sentiment feature
computed with the use of the BERT model also lead to higher predicting accuracy compared
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with the feature calculated using sentiment lexicon; and finally, (4) we compare the predicting
accuracy when using different input window length and found that setting time window to 5-
day can improve the average predicting performance for all proposed models. The highest
average predicting accuracy of 28 stocks is achieved when using sentiment feature calculated
by the fine-tuned BERT model.

The rest of the paper is presented in the following. Section 2 introduces some related works
on stock predictions based on price data and technical indicators, predictions combining
sentiment analysis, and also predictions using long input window length. Section 3 describes
our proposed methodology. Section 4 presents the detailed experimental process and assesses
experimental results. Section 5 presents the discussion and implications. Finally, the last
section concludes our contribution and proposes future works.

2 Related work

This section summarizes studies on (1) Domain 1: Stock predictions based on price data and
technical indicators, (2) Domain 2: Stock predictions based on sentiment analysis, and (3)
Domain 3: Stock predictions based on long input window length. Several research gaps are
concluded through the summary.

2.1 Stock predictions based on price data and technical indicators

Stock market prediction has been an important task in both academics and businesses. Based
on the Efficient Market Hypothesis (EMH) [18], some of the early studies propose that it is
impossible, given the risk it may face, to achieve above-market returns over the long term.
Therefore, the prediction accuracy of the stock market will not exceed 50% [71]. However, the
EMH has been questioned ever since [31, 62], especially with the rapid development of
machine learning models [5, 21, 64, 85]. Prediction accuracy of 56% is generally considered as
satisfying results [73, 77].

Despite Fama’s hypothesis, there are two different philosophies of trading for stock market
prediction [8]: fundamental analysis and technical analysis. The former analysis macroeco-
nomic factors, a company’s financial conditions, while the latter assumes that future perfor-
mance are related to certain historical patterns [75] like time-series prices. Several technical
indicators are defined to represent these patterns including the moving average (MA) [24],
exponential Moving Average (EMA) [37], momentum [43], Bollinger band [23], etc.

Some researchers tried to make stock predictions based on historical prices only [93, 94] or
predict by using a small dataset [22]. Due to the low instance test set, the result may be
insufficient. Stock markets generate large-scale trading data every day, providing large
amounts of training data for deep neural network [47]. Fischer and Krauss [20] applied an
LSTM-based model for financial time series predictions, and the result shows that the LSTM
network performs better than memory-free classification models, i.e., a random forest, a
logistic regression classifier, and a deep neural net.

Studies in Table 1 cover 4 main aspects of work: (a) stock market selection; (b) feature
selection; (c) input window length; and (d) predicting method adoption. Each column corre-
sponds to one aspect. As for selection of stock market, these studies choose a continuous
period of time for training and testing. As for feature selection, it can be classified as price data
(e.g. [28, 86]), or technical indicators (e.g. [93]), or both of them (e.g. [54, 59]). Input window
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length is the length of the input vector (e.g., 3d represents a 3-day time window). Some
abbreviations are used for this field: ‘m’ is minutes and ‘d’ is days. A null value means no
relevant information mentioned. As for predicting method adoption, it can be classified as (1)
reduced-form models, such as ARIMA (e.g. [85]), GARCH (e.g. [25]) or (2) machine learning
models, including Bayesian network (e.g. [94]), SVM (e.g. [5]), SVR (e.g. [88]), or (3) deep
learning models, such as ANN (e.g. [9]), RNN (e.g. [3]), LSTM (e.g. [41, 58, 92]).

2.2 Stock predictions based on sentiment analysis

Sentiment analysis, which is mainly designed to understand what others are thinking [57], has
been proved effective in many applications including movie reviews [39, 40, 80], product
reviews [38] and public opinions [70, 81]. Nowadays, sentiment information extracted from
social media for stock market prediction has also been proved to be effective [46, 60]. There
are two main sources for the researchers to merge the information extracted from the text
content into their financial models. In previous studies, the main source was the news [45, 67,
68], and in recent studies, social media sources [48]. Bollen, et al. [6] conducted the most
influential study to gauge specific dimensions of Twitter sentiments in predicting Dow-Jones
index and achieved higher predicting accuracy. Since this seminal study, sentiment extracted
from Twitter [52, 82], Yahoo! Finance [56], Sina Weibo [83], GuBa [48], etc. has been proven
to be highly correlated with the stock market. Xing, et al. [84] mentioned that it is insufficient
for investors to make investments only based on public sentiment and other factors must also
be considered in prediction models.

There are two main perspectives on sentiment analysis of text contents: sentiment lexicon
[15, 30] and natural language processing [1, 32]. Picasso, et al. [61] extracted two distinct sets of
sentiment features from sentiment texts based on the dictionary of Loughran andMcdonald [50]
andAffectiveSpace2 [7] separately. The former is a specific dictionary for financial applications
while the latter is a vector space model which is designed to extract sentiments from structured
content. Their results show that combining sentiments with price technical indicators outper-
forms using price data only. The employment of AffectiveSpace feature as input achieved
higher accuracy, while the use of the features calculated by Loughran andMcDonald dictionary
achieves higher returns.

As shown in Table 2, these studies include 5 main aspects of work: (a) stock market
selection; (b) feature selection; (c) input window length; (d) sentiment analysis method
adoption; and (e) predicting method adoption. As for selection of stock market, these studies
also focus on a continuous period of time. As for feature selection, these studies add sentiment
information into feature set in the form of (1) polar sentiments (e.g. [45], (2) sub-categorical
sentiments (e.g. [61, 69]), or (3) sentiment index (e.g. [31]). As for input window length, these
studies also focused on a fixed input window length (e.g. [6, 48]). As for sentiment analysis
method adoption, it can be classified as sentiment lexicon (e.g. [82]) or natural language
processing (e.g. [56]). As for predicting method adoption, machine learning models, including
SVM (e.g. [47]), SVR (e.g. [52]) and (2) deep learning models, such as LSTM (e.g. [12]), RNN
(e.g. [83]) are commonly used.

2.3 Stock predictions based on long input window length

Stock prediction can be viewed as a time series problem when using long input window length
for model training. Given a univariate or a multivariate time-series, one may treat the entire
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time-series as a sample. There has been a lot of interest in predicting through long input
window length, and it remains an active research area [15, 91].

Nguyen, et al. [55] extract information from two consecutive days for stock movement
prediction. In their study, features of each day are considered to be a parallel relationship and
used for the training of SVM. Shynkevich, et al. [72] employ technical indicators to describe
the information about the past trend of the stock price. In their research, indicators are regarded
as a snapshot of the current situation which also reflect the past behaviour over a certain period
of time. Several machine learning algorithms are proposed to train these input features which
are calculated from price data through different time span. With the rapid development of
computer engineering, deep learning algorithms have been widely used in financial time series
modelling tasks. Instead of using indicators calculated from different input window length,
these studies consider higher-dimensional input data [17, 34], allowing deep learning networks
to learn the hidden sequential information.

As shown in Table 3, the 5 main aspects in these studies include: (a) stock market selection;
(b) feature selection; (c) input window length; (d) input data form; and (e) predicting method
adoption. Stock market selection and feature selection are trivial. As for input window length,
these studies use a relatively long time period (e.g. [49]), or several optional lengths for
comparison (e.g. [53, 89]). As for input data form, it can be categorized as one-dimensional
vector (e.g. [55, 72]) or high dimension vector (e.g. [42]). As for predicting method adoption,
LSTM (e.g. [66, 79]) is most commonly used.

2.4 Summary

Through summarizing and comparing previous researches in above three domains, we iden-
tified three issues that warrant further investigation, which follows here.

The first issue is that many previous studies make prediction barely using stock price
data and several technical indicators. The booming development of social media accelerates
the dissemination of users’ opinions and sentiments [44]. Investors tend to seek for
emotional help [19], leading the impact of sentiment opinions more significant than usual.
Hence, sentiment analysis on social media posts own greater significance in stock predic-
tion task.

The second issue is that the sentiment analysis approaches lack an in-depth understanding
of the sentiment text content. Some of the semantics-based methods use sentiment lexicon to
analysis the sentiment. However, since the sentiment of the whole content is judged by limited
keywords, the deep sentiment in the text may be neglected due to the imperfection of the
sentiment lexicon. In order to extract the deep sentiment, an efficient method should be
developed. Therefore, we utilize BERT [16] in our sentiment analysis process, inasmuch as
it has yielded better results for many NLP tasks including sentiment classification.

The last issue is that the previous studies fail to explore the impact of using long input
window lengths on prediction performance. Although many previous studies consider
taking long input window length for models to learn, the length number is usually fixed
[45, 90], or the input data form lacks time series information [55]. The change of input
window length may also result in variation in prediction performance but is seldom
considered. Hence, it is of vital importance to discuss the difference of using different
input window lengths in prediction.

To settle the three issues, this study build a prediction model based on ALSTM networks
using three data sources as input: price data, technical indicators and sentiment feature. The
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sentiment feature is extracted from social media posts through two different sentiment analysis
methods for comparison. The first one is a manually predefined sentiment polarity lexicon in
the financial field, and the second one is a fine-tuned BERT sentiment classification model.
Different length of input window is organized to feed the ALSTM networks for comparison.
To our knowledge, this paper is one of the earliest attempts to reveal the impact of sentiment
analysis via different window lengths for stock price prediction.

3 Methodology

An overview of the research framework is shown in Fig. 1. First, the sentiment posts are
analysed and sentiment indicator for each transaction day are calculated. Then the sentiment
indicators combining with the time series stock prices and technical indicators are organized as
model input. Through learning the past N days’ features, the closing price of N + 1 day is
predicted. Details of each part are explained in the following subsections.

Sentiment

posts

Prices & 
technical 
indicators

P1 P2 P3 Pn-1 Pn S1 S2 S3 Sn-1 Sn

P1 P2 P3 Pn-1 PnPi+1 Pi+2 Pi+N

S1 S2 S3 Si+1 Si+2 Sn-1 SnSi+N

Attention-LSTM

CN+1 CN+2 CN+3 Cn-1 CnCi+N Ci+N+1 Ci+N+2

Input

Output

Sentiment analysis &

Sentiment indicators construction

Sentiment indicators time seriesPrices & technical indicators time series

Fig. 1 Illustration of research framework
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3.1 Price and technical indicators

In this study, 6 stock price indictors and 8 technical indicators are selected to construct the
indicator set.

The stock price data comprises open, close, high, low price, turnover rata and trading
volume. Technical indicators are wildly used for market states analysis [3]. Therefore, besides
historical prices, we also employ several technical indicators as extra inputs for ALSTM
networks which are shown in Table 4. These indicators can reflect the stock trends from
multiple aspects, which provides rich stock market signals for the ALSTM networks to learn.
However, these technical indicators may not have exact values at every single day due to the
different time configuration. Therefore, transaction days with missing values are removed to
ensure the integrity of the time series data.

3.2 Sentiment analysis

The sentiments analysis module in Fig. 1 classifies sentiment posts into three categories: positive,
negative, and neutral, according to the beliefs or expectations expressed: a positive post means
that the mentioned stock price is supposed to rise in the nearly future, or it shows the poster’s
tendency in buying this stock; a negative post indicates the expectation in price falling or the
tendency of selling this stock; and a neutral post means no obvious expectation or recommenda-
tion shown in the post and poster has no tendency in trading. These user-generated text contents
are processed by two sentiment analysis methods in this study for comparison: a manually
constructed sentiment lexicons and a fine-tuned BERT model for sentiment classification.

3.2.1 Sentiment lexicon

Sentiment dictionaries have been widely used in transforming sentimental contents into
representations. In this experiment, the National Taiwan University Sentiment Dictionary
was used as basic lexicon and extra finance related terms were manually added. These terms
are regarded as rise/fall relevant terms which were summarized from online posts and relevant
studies for making up the lack of relevance between the original lexicon and the stock market.
The new lexicon contains two polar sentiments: positive and negative. Words which are not
exist in our lexicon is regarded as the third sentiment dimension – neutral. Based on the natural
language processing, three steps are employed to process these online posts. The first step is
Chinese word segmentation and unwanted word removal. Unwanted word such as stop words
and special characters (@, #, $ etc.) has no role during classification process. By this step, the
text sequences for each post is obtained. The second step is sentiment word matching. Through

Table 4 Meanings of technical
indicators Names Meanings

PE price-to-earnings ratio
PB Price-to-book ratio
PS Price-to-sales ratio
ROE Return on equity
MA5 5-day moving average
MA10 10-day moving average
EMA5 5-day exponential moving average
EMA10 10-day exponential moving average
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this process, the text sequences are matched with our sentiment lexicon, which mark words
with tags “positive”, “negative” and “neutral”. The third step is post sentiment calculation. The
sentiment polarity of post j is calculated through Eqs. (1)–(4).

PosCount j ¼ ∑
T

i¼1
Pos i; jð Þ ð1Þ

NegCount j ¼ ∑
T

i¼1
Neg i; jð Þ ð2Þ

j represents the number of posts; i represents the ith word in text sequence. The Pos(i, j) or
Neg(i, j) indicates weather the ith word is positive or negative respectively. When the word
appears in the positive part of our lexicon, PosCountj is employed as the total positive number.
When the word appears in the negative part of our lexicon, NegCountj is employed as the total
negative number. In this study, PosCountj and NegCountj are used to represent the extent of
expectation on rise and fall.

Dj ¼ PosCount j−NegCount j ð3Þ

Sent j ¼
Positive if Dj > 0
Neutral if Dj ¼ 0
Negative if Dj < 0

8<: ð4Þ

Through Eqs. (3) and (4), the magnitudes of PosCountj and NegCountj are compared. When
PosCountj is larger than NegCountj, it means the post has more expectation in the rising of the
stock price, and vice versa. Dj is calculated in accordance with PosCountj and NegCountj to
classify the polarity of the post j into positive, negative and neutral. These marks of sentiment
polarity are employed to construct sentiment indicators.

3.2.2 BERT-based sentiment classifier

Besides sentiment lexicon, we also employ BERT, a pre-trained language model based
on deep bidirectional Transformers [78], to perform sentiment classification task. We
also take advantage of fine-tuned BERT for sentence-level sentiment classification as it
has produced state-of-art results for many NLP tasks [26]. The output of this multi-class,
single-label sentiment classifier is the predicted probability of each class, and we get the
final predicted category (positive, negative or neutral) according to the output
probability.

A natural idea for fine-tuning is to further pre-train BERT with target domain data [74]
since BERT was trained in the general domain. In this study, we directly fine-tune the pre-
trained BERT model with task-specific dataset, which is constructed using randomly selected
data from GuBa dataset. The sentiment polarity of each text is manually labelled in the
following process. First, we unified the sentimental annotation guideline in the financial fields.
Second, a group of five coders completes the first round of sentiment annotation. Then another
group of five coders completes the second round of sentiment annotation for the same text
contents. Inconsistencies in annotation are judged by a five-coder verification team under final
discussion. Finally, it was used in the fine tuning process for the specific task. In this way, we
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reduce the limitation of the model performance and endow the model with rich sentiment
knowledge.

3.2.3 Construction of sentiment indicators

Sentiment indicators are constructed through sentiment indicators construction method in Fig. 1
based on the sentiment classification results. Following [2, 10, 33], we adopt the bullishness
indicator, which is defined as Eq. (5),

Bt ¼ Mpos
t −Mneg

t

Mpos
t þMneg

t
ð5Þ

whereMc
t ¼ ∑i∈D tð Þ wixci is the weighted sum of messages of type c ∈ {pos, neg, neu} in the

time interval D(t). xci is equal to one when post i is type c and zero otherwise, and wi is the
weight of the post. Antweiler and Frank [2] reveal that the alternative weighting schemes make
no difference to conclusions and employ the equal weighting. Therefore, we also regardMc

t as
the number of posts of different categories. Antweiler and Frank [2] propose another bullishness
indicator, which is shown in Eq. (6):

B*
t ¼ ln

1þMpos
t

1þMneg
t

� �
ð6Þ

In order to reflect the number of investors expressing a certain sentiment, they provide an
alternative method of calculation, as shown in Eq. (7):

B*
t ≈ Btln 1þ Mpos

t þMneg
tð Þð Þ ð7Þ

The second measurement of B*
t outperforms the other one in their research. However, neutral

posts are not considered in these bullishness indicators. The neutral posts can also reflect the
investors’ attention on a particular stock even if they do not contain obvious expectations or
beliefs. Considering a more comprehensive investor attention, we propose the following

investor sentiment indicator Ball
t , as is shown in Eq. (8),

Ball
t ¼ Btln 1þMtð Þ ð8Þ

where Mt is the total number of posts at time interval D(t). Mt changes with the investors’
attention and is not influenced by the sentiment classification methods.

3.3 Attention-based LSTM networks

In this study, attention-based LSTM networks are chosen as prediction model. LSTM has
similar architecture with Recurrent Neural Network (RNN). Recurrent neural network is
able to learn temporal patterns from sequential data through internal loops. Weights is
learned by backpropagation which has difficulties in retaining long-term information, and
may confronts the problem of vanishing (or exploding gradients). LSTM models were
proposed to solve these problems [29], and the biggest difference is that there exist three
more gates in LSTM.
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These gates determine whether each data can pass through the gate and enable LSTM
networks to learn long-term dependencies. These three gates are the input gate, forget gate, and
output gate. An input gate indicates whether new information can be added into the LSTM
memory. A forget gate decides what information should be abandon. An output gate controls
whether to output the state. The calculations for the integral process are performed as the
following formulas:

f t ¼ σ W f ht−1; xt½ � þ bf
� � ð9Þ

it ¼ σ Wi ht−1; xt½ � þ bið Þ ð10Þ

eCt ¼ tanh Wc ht−1; xt½ � þ bcð Þ ð11Þ

Ct ¼ f t*Ct−1 þ it*eCt ð12Þ

ot ¼ σ Wo ht−1; xt½ � þ boð Þ ð13Þ

ht ¼ ot*tanh Ctð Þ ð14Þ

where, Wf, Wi, Wc, Wo are weight matrices, bf, bi, bc, bo are bias vectors, ht is the memory cell
value at time t, σ calculates how much data to keep, ft is the value of the forget gate layer, it
shows the values of the input gate, eCt is the total data reserved at time t, Ct indicates the current
cell state, ot is the output gate layer. The LSTM model comprises these memory blocks and is
capable to learn longer temporal patterns.

Attention mechanism is introduced to the LSTM networks, which will adaptively assign
different attention weights to different features. After forming the feature vector H = {h1,
h2, …hT} through the hidden layer, the attention mechanism will look for the attention
weight αi of hi, and the attention mechanism formula is as follows:

ei ¼ tanh Whhi þ bhð Þ; ei∈ −1; 1½ � ð15Þ

αi ¼ exp eið Þ
∑t

i¼1exp eið Þ ;∑
t
i¼1αi ¼ 1 ð16Þ

where Wh is the weight matrix of hi. The output of the attention mechanism can be
obtained as:

h*1; h
*
2;…; h*T

� � ¼ h1; h2;…; hT½ �* α1;α2;…;αT½ � ð17Þ
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where the above ∗ operation is number multiplications componentwise. That is,
h*j ¼ hj*α j; j ¼ 1; 2;…; T .

4 Experiments

4.1 Dataset

Two datasets are employed in stock price prediction process. The first one is the stock prices
and technical indicators dataset, and the second one – the sentiment information dataset. Stock
prices and technical indicators come from the RESET Financial Database (www.resset.com),
while the sentiment information comes from GuBa (http://guba.eastmoney.com).

4.1.1 Stock price and technical indicator dataset

All 28 pharmaceutical stocks in the CSI 300 are chosen to conduct experiment. Stock
historical prices and technical indicators are collected for a period of three years (from
November 18, 2016 to November 18, 2019). Stock codes and company names are shown in
the Table 5.

Table 5 Stock codes and company names

Stock codes Company names

000423.SZ DEEJ
000538.SZ YUNNAN BAIYAO
000661.SZ CHANGCHUN HIGH-TECH
000963.SZ HUADONG MEDICINE
002001.SZ NHU
002007.SZ HUALAN BIO
002044.SZ HEALTH 100
002252.SZ SHANGHAI RAAS
002294.SZ SALUBRIS
002411.SZ BICON
002422.SZ INDUSTRY GROUP
002773.SZ KANGHONG PHARMACEUTICAL
300,003.SZ LEPU MEDICAL
300,015.SZ AIER EYE HOSPITAL
300,122.SZ ZFSW
300,142.SZ WALVAX
600,085.SH Tongrentang Chinese Medicine
600,196.SH FOSUN PHARMA
600,276.SH HENGRUI MEDICINE
600,332.SH BYS
600,436.SH PIEN TZE HUANG
600,535.SH TASLY HOLDING GROUP
600,566.SH JUMPCAN
600,867.SH TONGHUA DONGBAO PHARMACEUTICAL
600,998.SH JOINTOWN PHARMACEUTICAL GROUP
601,607.SH SHANGHAI PHARMA
603,259.SH WuXi AppTec
603,858.SH BUCHANG PHARMA
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There are three reasons for choosing the 28 pharmaceutical stocks in the CSI 300 stocks:

1. Csi 300 stocks have higher capitals comparing with others in the whole A-share market,
which means there are more discussions in the GuBa.

2. Negative news about pharmaceutical and biological companies continues to emerge.
Increasing attention has been drawn from Chinese society, such as the fraud case of
DEEJ and the expired honey case of Tongrentang Chinese Medicine.

3. Choosing stocks in the same industry can reduce the negative impact of the industry
factors on stock price prediction.

4.1.2 GuBa dataset

For sentiment indicators constructing, expectations and beliefs need to be extracted from
online posts. Text contents of the 28 stocks are collected from GuBa during the same
three-year period to build our sentiment information dataset. GuBa is the most represen-
tative internet stock message board in China where investors usually share company
news, stock price movement predictions, facts, and comments (usually with strong
emotional tendencies) on specific company events. Each stock has its own GuBa page
where the stock-related posts can be easily accessed. Two examples of GuBa posts
published by investors during the three-year period are shown in Fig. 2. The first post
shows negative sentiment obviously and the other shows strong optimism about the stock
price future trends.

The stock market is closed for weekends and holidays. The posts published from
2:40 pm of the previous transaction date to 2:40 pm of the current transaction date are
assigned to the current transaction date. Transaction date over 24 hours are divided by the
number of days it covers. Each stock has transaction dates for a three-year period in our
dataset.

However, as in other sentiment information sources, posts on the GuBa are also
messy. The post content is usually varying in length, riddled with many spelling
mistakes, uncommon expressions, redundant HTML links and irrelevant information.
Table 6 tabulates the statistics of each transaction date concerning the min, median,
mean, max and the total number of the number of posts for each stock after a clean-up
pre-processing. Over this three-year period, we accumulated a total of 1,451,272 pieces
of data.

I don’t regret selling this stock today, and the stock 
price will con�nue to fall tomorrow. The investors 
who should have given up on the stock yesterday 
have already done so.

This stock  may climb by the 10 percent daily limit
today. [worship][handclap][laugh] 

Fig. 2 Two GuBa posts published by investors
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4.2 Baseline setup

In the experiment, Support Vector Regression (SVR) and recurrent neural networks (RNN) are
used as baselines.

4.2.1 Support vector regression

First designed by Cortes and Vapnik [14] as a classifier, SVR is employed to capture nonlinear
relationship and has a global optimum. Previous studies have reported the effectiveness of
SVR in financial time series forecasting problems [27, 64].

In a regression task, given a time-series data set F ¼ xkðf ; ykÞgnk¼1 derived from an
unknown function y = g(x), we need to determine a function y = f(x) based on F and to
minimize the difference between f and the unknown function g. The main idea of SVR is to
build a mapping x → ϕ(x) to a new feature space X′according to the mapping scheme. The
nonlinear relationship is then transformed into a linear relationship between the new feature
ϕ(x) and label y in the new created space. The SVR model can be obtained as

y ¼ f x;α; bð Þ ¼ ∑
k
αkykK xk ; xð Þ þ b ð18Þ

Table 6 Statistics of each transaction date

Stocks The number of posts Total number of posts

Min Media Mean Max

DEEJ 1 45 73 1635 79,487
YUNNAN BAIYAO 1 18 30 1373 32,880
CHANGCHUN HIGH-TECH 1 35 47 875 51,427
HUADONG MEDICINE 1 19 34 904 36,236
NHU 1 31 53 435 56,385
HUALAN BIO 1 20 30 458 32,063
HEALTH 100 1 13 28 1053 29,673
SHANGHAI RAAS 1 22 97 2099 104,854
SALUBRIS 1 11 18 502 18,973
BICON 1 9 24 447 24,539
INDUSTRY GROUP 1 21 31 1123 33,043
KANGHONG PHARMACEUTICAL 1 3 6 214 4941
LEPU MEDICAL 1 20 33 381 35,117
AIER EYE HOSPITAL 1 15 28 3259 29,173
ZFSW 1 16 31 246 6623
WALVAX 1 32 44 249 23,201
Tongrentang Chinese Medicine 1 8 19 1833 10,965
FOSUN PHARMA 1 35 51 1298 55,646
HENGRUI MEDICINE 1 51 67 1337 71,628
BYS 2 114 201 2484 220,086
PIEN TZE HUANG 1 36 47 590 50,772
TASLY HOLDING GROUP 1 20 32 360 34,351
JUMPCAN 1 12 27 423 27,410
TONGHUA DONGBAO PHARMACEUTICAL 1 17 36 970 37,518
JOINTOWN PHARMACEUTICAL GROUP 1 9 15 192 14,717
SHANGHAI PHARMA 1 12 22 242 22,427
WuXi AppTec 2 65 204 5177 119,245
BUCHANG PHARMA 1 102 171 5397 187,892
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Where xk is support vectors in data set F and yk is the corresponding labels. K(xk, x) = ϕ(xk) ·
ϕ(x) is the kernel function and “·” is the inner product in feature space X′. Learning process on
the given data set F is to find the support vectors and determining the parameters α and b.
There requires no need for explicit calculation for the new feature ϕ(x), since a kernel function
is employed in training and forecasting. The most widely used kernel is the radial basis
function (RBF) with a width of σ as shown in Eq. (19):

K x; yð Þ ¼ exp −‖x−y‖=2σ2
� 	

ð19Þ

A grid-search and cross-validation process is employed to get the optimal model, and the
parameter grid consists of penalty C = {0.1, 1, 2, 5, 10} and kernel parameter gamma =
{0.01, 0.1, 0.2, 0.5, 0.8}.

4.2.2 Recurrent neural networks

Recurrent neural networks (RNN) [51] are wildly employed in stock market predictions [11].
RNN is a type of neural network where connections between the calculating units form a
directed circle. Same task is performed for every element in a sequence and the output depends
only on the previous calculation.

In our RNN model, the input value of the tth day xt = (xt, 1, ⋯, xt, m) is iterated over the
following equations,

ht ¼ tanh Uxt þWht−1 þ bð Þ ð20Þ

ot ¼ tanh Vht þ cð Þ ð21Þ

where ht is the hidden state which is calculated based on the previous hidden state ht − 1 and
the input xt at the current time step. ot is the predicted output value which refers to the closing
price in this study. U,W and V are the input-to-hidden, hidden-to-hidden and hidden-to-output
parameters respectively.

A grid-search and cross-validation process is also employed, and the parameter grid
consists of dropout rate d = {0.1, 0.35, 0.5} and batch size b = {10, 100, 200, 400}.

4.3 ALSTM setup

In the experiment, three advanced methods for ALSTM training are applied. First, we
make use of Root mean square prop (RMSprop) [76], a mini-batch version of rprop, as
optimizer since it is “usually a good choice for recurrent neural networks” [13]. The
initial learning rate is set to 0.001 as recommended in the default settings. A higher
initial learning rate can reduce the time required for model optimization at an early stage,
but it will bring more difficulties in achieving optimality and the model performance is
restricted. Accordingly, a lower initial learning rate leads to more training epochs but a
better optimum. Therefore, a decay mechanism is adopted to reduce the learning rate to
half of itself when the loss rate does not decrease in 5 consecutive iterations to obtain the
optimal model.
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Second, early-stop mechanisms are employed to stop the training process automatically
and to further reduce the overfitting risk. Max training epochs is set to 1000. When the
training loss cannot be optimized after several rounds of iterations, the subsequent training
becomes no longer necessary. When the loss does not decrease in 20 consecutive epochs,
the model with the least loss rate is saved and is supposed to own the best generalization
ability.

b=15ptThird, grid-search and cross-validation process are also employed, and the grid
consists of two hyper parameters, each parameter contains several candidate hyper parameter
values:

& Dropout rate = {0.1, 0.35, 0.5}: The dropout rate of dropout layers.
& Batch size = {10, 100, 200, 400}: The number of samples selected for training at a time.

4.4 BERT setup

In this study, the pre-trained language model BERT-base, which contains 12 Transformer
blocks, 12 self-attention heads and the hidden size of 768, is employed as the encoder. The
input sequence is output as a sequence representation through BERT. A special token
[CLS] which contains the classification embedding is always placed at the sentence
beginning. In sentiment classification tasks, the whole sequence is represented by the final
hidden state h of the first token. A softmax layer is employed to predict the output
probability of label c:

p cjhð Þ ¼ softmax Whð Þ ð22Þ

where W means the task-specific parameter matrix. Parameters are fine-tuned by maximiz-
ing the probability of the correct label.

The parameters are randomly initialized, most of them remaining unchanged as in pre-
training, except for the batch size and learning rate. To avoid overfitting, the dropout rate
was always kept at 0.1 to the dense layer. For model training, we used the Adam [36]
optimizer and the number of epochs is set to 3. Max sequence length is set to 32 in the
training process. The optimal parameter values are usually task-specific, and therefore we
employ the grid-search process to find the optimal parameters. The following possible
candidate values are found to work well across all tasks:

Batch size = {16, 32}
Learning rata = {5e-5, 3e-5, 2e-5}

In this study, 100,000 GuBa posts are selected for fine tuning of the model, 90% of them for
fine-tuning to find the best parameter set and the rest of them for evaluation.

4.5 Experiment setup

We conduct a large amount of comparative experiments on 28 selected stocks based on the
ALSTM networks to evaluate the predicting performance, SVR and RNN are used as baseline
models. The time span of the dataset is within the range from 18 November 2016 to 18
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November 2019. The data form 18 November 2016 to 1 June 2019 (about 85% of the data) is
used for training to conduct cross-validation to select optimal hyper parameters, and the data
from 1 June 2019 to 18 November 2019 (last 15% of the data) is used for testing to evaluate
the out-of-sample performances.

Following Ratto, et al. [65], we also adopt the “walk forward testing” method in cross-
validation process. To maximally utilize the available data, an increasing-window was de-
signed to run a 5-fold time split cross-validation. The first k folds of the time series data is used
for training and the k + 1th fold for validation. The cross-validation process is shown in Fig. 3.

For analysing the performance of each model, RMSE, MAE and accuracy are used as
evaluation metrics. The RMSE and MAE, which provide an excellent error metric, are widely
used in model valuation. The accuracy is employed to evaluate the consistency of the price
movement in directions between the real and predicted values.

Given a set of time series observation values and the corresponding predictions, RMSE and
MAE are defined as follows,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

t¼1
rtþ1−brtþ1

� 	2
s

ð23Þ

MAE ¼ 1

N
∑
N

t¼1
jrtþ1−brtþ1j ð24Þ

where rt + 1 and brtþ1 denotes the actual closing price and the predicted one at time t + 1
respectively. RMSE is used as the evaluation metric to find the best parameter set for each
model. Each transaction date was marked a label (up, down) through comparing the closing

TRAIN & VALIDATION DATA 

TRAIN VALIDATION 

TRAIN VALIDATION 

TRAIN VALIDATION 

TRAIN VALIDATION 

TRAIN VALIDATION 

1 FOLD

2 FOLD

3 FOLD

4 FOLD

5 FOLD

Fig. 3 Cross-validation process of 5-fold time series splitting method
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price of two consecutive days. Accuracy is calculated by comparing the real trend with the
predicted trend, which is defined as follows,

accuracy ¼ tuþ td
tuþ td þ fuþ fd

ð25Þ

where:

tu: the number of samples correctly classified as uptrend.
td: the number of samples correctly classified as downtrend.
fu: the number of samples incorrectly classified as uptrend.
fd: the number of samples incorrectly classified as downtrend.

The purpose of this study is to employ stock prices, technical indicators and GuBa sentiments
of day t to predict the closing price of day t + 1. For the RNN and the ALSTM models, we
also combine the past N days’ features for training where N represents 3, 5, 7, 10, 15 and 30.
This series of comparative experiments were designed to learn the sequential information and
discover the best input window length for stock price prediction. We use the form of matrix
and space vector to represent the input data, which is defined as:

X ¼
X1 ¼ X1;1;X1;2;…… X1;n

� �
⋮

XN ¼ XN;1;XN;2;…… XN;n

� �
0BB@

1CCA ð26Þ

The meaning of this matrix is that there are N days’ stock data for each training input, and each
day consists n features. The timing information of the historical N trading days’ sequence data
are modelled, and is used for input as a vector. As shown in Fig. 4, a sliding time window is
applied to get the features and labels. This window moves forward by one step until the end of
the time series. Finally, by learning the historical data of the previous N days, the closing price
of the N + 1 day is predicted.

Fig. 4 Structure of one-step-ahead sliding time windows
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4.6 Experiment results

The comparison of sentiment classification accuracy between sentiment lexicon and fine-tuned
BERT is shown in Table 7 where we calculate the overall accuracy and the accuracy in
predicting positive, negative and neutral posts. It can be observed that our BERT based
sentiment classification method achieved better performance in predicting all three sentiment
tendency on test set. The accuracy in sentiment classification reaches 85.9% on test set, 22.0%
higher than sentiment lexicon method.

Table 8 tabulates the cross-validation results for based on different sentiment classification
methods. The smallest RMSE score is marked in bold font. The result shows that the ALSTM
model using different sentiment classification methods has the best performance in most cases.
Among all 28 stocks, RNN obtains the best fitting results for only 1 stock using fine-tuned

Table 8 RMSE of models on validation sets

Stock Fine-tuned BERT Sentiment lexicon

SVR RNN ALSTM SVR RNN ALSTM

DEEJ 0.0392 0.0246 0.0218 0.0678 0.0198 0.0243
YUNNAN BAIYAO 0.0441 0.0379 0.0378 0.1043 0.0507 0.0399
CHANGCHUN HIGH-TECH 0.0421 0.0161 0.0157 0.0785 0.0574 0.0170
HUADONG MEDICINE 0.0518 0.0349 0.0348 0.1009 0.0103 0.0345
NHU 0.0552 0.0404 0.0333 0.1205 0.0159 0.0325
HUALAN BIO 0.0459 0.0359 0.0334 0.1287 0.0733 0.0356
HEALTH 100 0.0458 0.0260 0.0219 0.0870 0.0290 0.0273
SHANGHAI RAAS 0.0510 0.0314 0.0167 0.1545 0.0165 0.0160
SALUBRIS 0.0442 0.0272 0.0268 0.0847 0.0260 0.0251
BICON 0.0409 0.0363 0.0289 0.0912 0.0161 0.0280
INDUSTRY GROUP 0.0496 0.0317 0.0305 0.0789 0.0330 0.0302
KANGHONG PHARMACEUTICAL 0.0423 0.0350 0.0333 0.1257 0.0206 0.0340
LEPU MEDICAL 0.0509 0.0318 0.0246 0.0897 0.0300 0.0289
AIER EYE HOSPITAL 0.0476 0.0374 0.0355 0.1330 0.0408 0.0379
ZFSW 0.0627 0.0645 0.0438 0.1841 0.0538 0.0513
WALVAX 0.0466 0.0239 0.0251 0.1163 0.0444 0.0332
Tongrentang Chinese Medicine 0.0467 0.0463 0.0179 0.1274 0.0188 0.0367
FOSUN PHARMA 0.0424 0.0335 0.0198 0.0808 0.0222 0.0209
HENGRUI MEDICINE 0.0440 0.0316 0.0288 0.1163 0.0297 0.0276
BYS 0.0473 0.0413 0.0296 0.1004 0.0670 0.0364
PIEN TZE HUANG 0.0468 0.0256 0.0229 0.0919 0.0246 0.0224
TASLY HOLDING GROUP 0.0446 0.0272 0.0222 0.1466 0.0147 0.0273
JUMPCAN 0.0429 0.0359 0.0319 0.0636 0.0204 0.0400
TONGHUA DONGBAO PHARMACEUTICAL 0.0432 0.0290 0.0189 0.0863 0.0218 0.0210
JOINTOWN PHARMACEUTICAL GROUP 0.0376 0.0358 0.0208 0.0885 0.0252 0.0237
SHANGHAI PHARMA 0.0397 0.0316 0.0189 0.1198 0.0253 0.0237
WuXi AppTec 0.0452 0.0362 0.0303 0.1145 0.0387 0.0327
BUCHANG PHARMA 0.0441 0.0256 0.0105 0.1470 0.0103 0.0129

The smallest RMSE score is marked in bold font

Table 7 Accuracy of sentiment classification of GuBa posts on test set

model Acc Accpos Accneg Accneu

Sentiment lexicon 0.704 0.687 0.637 0.787
Fine-tuned BERT 0.859 0.809 0.792 0.975
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BERT sentiment classification and 9 stocks using sentiment lexicon. SVR obtains the worst
performance among all three models.

The results of the test set are shown in Table 9 for fine-tuned BERT and Table 10 for
sentiment lexicon respectively. The smallest MAE and RMSE scores for each stock are
marked in bold font, and the highest accuracy score is underlined.

Based on fine-tuned BERT (Table 9), the ALSTM model outperforms the baselines on
21 stocks under the MAE, 20 stocks under the RMSE and 23 stocks under the accuracy.
The RNN has the best performance on 7 stocks under the MAE, 8 stocks under the
RMSE and 4 stocks under the accuracy. The SVR has the best performance on 1 stocks
under the accuracy. It is clear that the ALSTM model outperforms the RNN and the SVR
(64:15:1). Based on sentiment lexicon (Table 10), the ALSTM outperforms the baselines
on 20 stocks under the MAE, 19 stocks under the RMSE and 21 stocks under the
accuracy. The RNN has the best performance on 8 stocks under the MAE, 9 stocks under
the RMSE and 1 stocks under the accuracy. The SVR has the best performance on 6
stocks under the accuracy. In summary, the ALSTM outperforms the RNN and the SVR
(60:18:6). By comparing the results based on different sentiment classification methods,
it is clear that the ALSTM obtains the best performance, the RNN obtains the second
best results, while SVR has the worst results.

The average accuracy of 28 stocks using different input window length is calculated in
Table 11 for easy comparison. It can be concluded that when setting the input window length
to 5-day, the ALSTM model using fine-tuned BERT sentiment classification method achieves
the highest accuracy. The average accuracy of 28 stocks reaches 61.24%.

4.7 Discussions on experimental results

4.7.1 The effectiveness of integrating sentiments

We use Δs to represent changes in accuracy between the results with and without sentiment
feature to assess the effectiveness of integrating sentiments into stock predictions. Δs is
calculated by,

Δs ¼ Accall−Accp
Accp

ð27Þ

where Accall represents the accuracy of the ALSTMmodel using both price and sentiments and
Accp the accuracy using price data only. The improvements between two sentiment classifi-
cation methods are shown in Fig. 5. It is clear that combining price data and sentiments for
stock predicting outperforms using exclusively price data for most stocks. Through further
comparison, most of the improvements brought by sentiment lexicon are under 15%. The fine-
tuned BERT method significantly improves the prediction accuracy to a greater extent, with
some of the improvements exceeding 15%.

4.7.2 The effectiveness of using multiple information sources

To verify whether multiple information sources can improve predicting performance or the
sentiment information is enough for prediction and other additional statistical measures are
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unnecessary. Thus, we use Δp to evaluate the difference in accuracy between the ALSTM
models with and without price data. Δp is calculated by,

Δp ¼ Accall−Accs
Accs

ð28Þ

where Accs represents the predicting accuracy based on sentiment feature only. The results of
Δp are shown in Table 12. It is clear that using multiple information sources outperforms using
sentiment source only in all cases.

4.7.3 The effectiveness of using long input window length

To investigate whether the increase of the input window length can help the models to extract
more time series information and improve the predicting performance, we employ ΔT to
represent the changes of the accuracy between N time steps and 1 time step where N represents
3, 5, 7, 10, 15 and 30. ΔT is calculated by,

ΔT ¼ AccN−Acc1
Acc1

ð29Þ

Fig. 5 The Δs of each stock, where x axis represents stock codes

Table 11 Average accuracy of different models using different input window length

Model Input window length

N=1 N=3 N=5 N=7 N=10 N=15 N=30

RNN 0.5062 0.5012 0.5223 0.5208 0.5018 0.4956 0.5106
RNN+lexicon 0.5017 0.5234 0.5428 0.5186 0.5062 0.5145 0.5118
RNN+BERT 0.5241 0.5315 0.5486 0.5360 0.5108 0.5338 0.5266
ALSTM 0.5084 0.5216 0.5388 0.5410 0.5122 0.5081 0.5122
ALSTM+lexicon 0.5355 0.5288 0.5520 0.5326 0.5102 0.5208 0.5189
ALSTM+BERT 0.5614 0.5772 0.6124 0.5810 0.5436 0.5425 0.5365
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where AccN is the average accuracy of 28 stocks when the input window length is set to N and
Acc1 is the average accuracy when N = 1. The changes are shown in Table 13. It can be
observed that using the 5-day time series data as model input can improve the performance for
all proposed models in average accuracy.

Table 12 The prediction of the ALSTM model using different data sources

Stocks Fine-tuned BERT Sentiment lexicon

Accs Accall Δp Accs Accall Δp

DEEJ 0.5046 0.5872 0.1637 0.4954 0.5413 0.0927
YUNNAN BAIYAO 0.4639 0.5464 0.1778 0.4433 0.4948 0.1162
CHANGCHUN HIGH-TECH 0.5093 0.5741 0.1272 0.4907 0.5185 0.0567
HUADONG MEDICINE 0.4954 0.5321 0.0741 0.5046 0.5229 0.0363
NHU 0.4907 0.5741 0.1700 0.4722 0.5463 0.1569
HUALAN BIO 0.5138 0.5963 0.1606 0.5046 0.5596 0.1090
HEALTH 100 0.5000 0.5278 0.0556 0.4722 0.5370 0.1372
SHANGHAI RAAS 0.4762 0.5238 0.1000 0.4444 0.5556 0.2502
SALUBRIS 0.4954 0.5229 0.0555 0.4587 0.5138 0.1201
BICON 0.4318 0.5568 0.2895 0.4091 0.5000 0.2222
INDUSTRY GROUP 0.4862 0.5229 0.0755 0.4587 0.5138 0.1201
KANGHONG PHARMACEUTICAL 0.4404 0.6055 0.3749 0.4220 0.5780 0.3697
LEPU MEDICAL 0.4630 0.5648 0.2199 0.4907 0.6019 0.2266
AIER EYE HOSPITAL 0.5047 0.5888 0.1666 0.4953 0.5888 0.1888
ZFSW 0.5000 0.5313 0.0626 0.4375 0.5313 0.2144
WALVAX 0.5321 0.5963 0.1207 0.4954 0.5321 0.0741
Tongrentang Chinese Medicine 0.4746 0.5932 0.2499 0.4746 0.6102 0.2857
FOSUN PHARMA 0.5046 0.5413 0.0727 0.4679 0.5505 0.1765
HENGRUI MEDICINE 0.4679 0.6514 0.3922 0.4587 0.5780 0.2601
BYS 0.4902 0.5872 0.1979 0.4804 0.5196 0.0816
PIEN TZE HUANG 0.4954 0.5780 0.1667 0.4954 0.5229 0.0555
TASLY HOLDING GROUP 0.4679 0.5229 0.1175 0.4862 0.5321 0.0944
JUMPCAN 0.4404 0.5229 0.1873 0.4312 0.5138 0.1916
TONGHUA DONGBAO PHARMACEUTICAL 0.5421 0.6355 0.1723 0.5047 0.5421 0.0741
JOINTOWN PHARMACEUTICAL GROUP 0.4537 0.4907 0.0816 0.4907 0.5000 0.0190
SHANGHAI PHARMA 0.5229 0.6055 0.1580 0.4587 0.4954 0.0800
WuXi AppTec 0.5000 0.5357 0.0714 0.4643 0.5179 0.1154
BUCHANG PHARMA 0.5000 0.5046 0.0092 0.4273 0.4771 0.1165

Table 13 The ΔT of each model based on different input window length

Model Input window length

N=3 N=5 N=7 N=10 N=15 N=30

RNN −0.0099 0.0318 0.0288 −0.0087 −0.0209 0.0087
RNN+Lexicon 0.0433 0.0819 0.0337 0.0090 0.0255 0.0201
RNN+BERT 0.0141 0.0467 0.0227 −0.0254 0.0185 0.0048
ALSTM 0.0260 0.0598 0.0641 0.0075 −0.0006 0.0075
ALSTM + Lexicon −0.0125 0.0308 −0.0054 −0.0472 −0.0275 −0.0310
ALSTM + BERT 0.0281 0.0908 0.0349 −0.0317 −0.0337 −0.0444

27444 Multimedia Tools and Applications (2023) 82:27415–27449



5 Conclusions and future work

Stock price prediction is an important aspect of formulating a low-risk and high-return investment.
This study focuses on an increasingly significant aspect of financial market research, namely: how to
integrate investor sentiments from social media, and make model more qualified to learn time series
information. To address the problem, we take the GuBa dataset of 28 stocks from November 18,
2016 to November 18, 2019 for efficient stock price movement prediction using SVR, RNN and
ALSTM models. In this work, we propose a fine-tuned BERT sentiment classification model for
sentiment analysis and a sentiment lexicon based on NTUSD for comparison. MAE, RMSE and
accuracy are employed to evaluate the predictive accuracy. Furthermore, we evaluate the improve-
ments bring by using different input window length. Results show that,

1. Based on multiple information sources, the ALSTM model performs better than the SVR
and the RNN under the MAE, RMSE and accuracy.

2. Based on ALSTM, using multiple information sources improves the prediction accuracy
than using either stock price data or sentiments.

3. The fine-tuned BERT model achieves higher accuracy in sentiment classification task, and
the exploitation of the sentiment feature computed by the fine-tuned BERT model also led
to better predicting performance.

4. Combining the 5-day features as a long time series sequential input for models to learn
achieves the best predicting accuracy.

Furthermore, there are several future avenues available for this study. Sentiments from social media
are the only sentiment resource considered in this study. However, the news data is also widely used
in stock price predictions, as it is an important information source about the situation of the country.
Moreover, only the historical prices, technical indicators and social media sentiments are employed
in this study. Considering the complex and volatile stockmarket environment, we can further design
another prediction model to extract information from other useful sources to make more compre-
hensive prediction. For example, the company’s financial conditions, which can be concluded from
the company’s financial statements and balance sheet. Finally, a more advanced hyper-parameters
selection scheme can also be employed in future experiments.
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