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Abstract
One of the major application areas of the fractional-order discrete transform (FrDTs) is in
signal and information security, particularly in signal and image/video encryption. Re-
cently, many researchers proposed techniques that implemented not only the fractional
transforms, but also various randomized versions of the FrDTs, which add more security
features to signal’s encryption. In this paper, we propose a new image/video encryption
scheme based on fractional-order discrete Tchebichef transform (FrDTT) using singular
value decomposition. The FrDTTs are derived algebraically using the spectral decompo-
sition of discrete Tchebichef polynomials, then the singular value decomposition tech-
nique in order to build a basic set of orthonormal eigenvectors which help to develop
FrDTTs. Finally, we implement and apply the scheme proposed in this paper for
encrypting test images and video sequences. Moreover, we methodically perform the
security evaluation in terms of brute force and statistical attacks as well as comparisons
with the existing methods in terms of secret key sensitivity and space. The promising
experiment results demonstrate the effectiveness and efficiency of our proposed FrDTTs
based image encryption techniques.
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1 Introduction

With the rapid development of network and multimedia technologies, the acquisition and
transmission of information has become increasingly fast and convenient. Images and videos
are widely distributed on the Internet because of their intuitive and vivid nature and their
wealth of information. However, many images do not want to be acquired by illegal users due
to multiple privacy and interests. Therefore, how to transmit images and videos safely on the
network has become a very important issue. Image and video encryption technology can
encrypt before propagation to hide the original information, which is an effective method to
solve the image security problem. There are various techniques like Steganography,
watermarking, cryptography available for the security of information from the invaders.
Among these techniques, Steganography is used to embed the text into another image for
the protection of text [4]. In watermarking, the original image is applied as watermarked image
on cover image [27]. In cryptography, the whole image is transformed in such a form that is
difficult for the interloper to comprehend it, so used for the protection of images [29] and
videos [40]. Every security technique has its own significance and applications. But, encryp-
tion is one of the best methods used in cryptography for security of images and videos. This
method is performed to create confusion and diffusion in the images and videos (or frames of
videos). Due to presence of chaos in the ciphered information, hacker will consider informa-
tion as random noise. The appearance of encrypted form will protect information from getting
stolen. Further, encryption can be performed with different algorithms to hide actual data from
hackers. The several techniques available for encryption algorithm are chaotic mapping
[14], matrix transformation [1], scrambling [46], compressive sensing [60] and encryp-
tion using wavelet transform [7] etc. At present, image encryption can be performed in
the spatial domain and the transform domain. The spatial domain mainly uses image
scrambling, substitution, and diffusion to complete the encryption operation. The initial
image scrambling is mostly based on Arnold transform, magic square transform, etc. In
recent years, some space-domain image encryption algorithms combined with chaos
theory have been proposed [32, 55]. Due to their strong key sensitivity and scrambling
characteristics, these similar algorithms have high research value and important research
significance. The transform domain encryption algorithm starts from the characteristics
of the image transformation matrix and uses the key to generate a new transformation
matrix to transform the image, thereby transforming the original clearly identifiable
image into random noise information. This encryption method has a higher encryption
efficiency. High, anti-interference characteristics, and easy to achieve compression. The
characteristics of consideration in any encryption systems are perceptual transparency,
capacity, and tamper resistance. Perceptual transparency is the ability to mask the
existence of secret data from human visual system [13, 42, 69]. Capacity is the basic
concern of any encryption algorithm that allows to increase the amount of secret data
hidden into cover video by considering the perceptual transparency. Larger the amount
of data hiding capacity, the algorithm is considered better. An encryption method is
tampered resistant if the receiver gets the secret data exactly in the same way sent by
the sender.
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Different components of information security are (Fig. 1):

(i) Cover Video: Envelope video that holds the secret data.
(ii) Secret data: Important information concealed from the intruder.
(iii) Stego Video: Video after encryption data.
(iv) Encryption and Decryption algorithm: Strategy followed to conceal secret data by sender

and extracted by the receiver.

Although several techniques are discussed in literature that are used for the security of images
and videos, but in most of the techniques in the spatial domain require a large amount of
computations, so alternative solution is needed. To fulfill this requirement, two different keys
(fractional parameter and random phase code) keys are introduced on each block. By operating
in frequency domain, the amount of computation can be reduced, and more efficient processes
can be used, for example, digitally encrypted processing in the frequency domain using
fractional discrete Tchebichef transform. Secondly, the use of fractional transforms based on
Singular Value Decomposition (SVD) has improved the performance of several applications,
by providing an extra degree of freedom [22, 36, 37, 66]. It attracts security systems, so many
fractional transforms have been implemented for the encryption of images and videos, but still
the use of modified fractional transform (like dual parameter based) is required for more
improvement. Another motivation is to enhance the performance parameters (like PSNR, MSE
etc.) of existing techniques in order to provide better security to the images and videos from
hackers. As, discussed in literature the use of fractional transform and random phase keys in
combination provides better results. In this paper, we present three contributions in the field of
image/video encryption based on FrDTTs. In the first contribution, we develop a new
fractional transform for data security based on FrDTTs and the decomposition (SVD) tech-
nique in order to build a basic set of orthonormal eigenvectors. In the second contribution, we
introduce a new encryption and decryption algorithm for one or various images simultaneously
based on proposed FrDTTs, our algorithm has good encryption effect, larger secret key space,
and high sensitivity to the secret key. In the third contribution, we propose a novel method for
video sequences encryption by introducing a bloc based FrDTTs encryption structure. Finally,
we implement and apply the scheme proposed in this work for the encryption of standard test
images and video sequences. A methodical security evaluation in terms of brute force and
statistical attacks has been followed for each of the proposed scheme. We also verified their
resistance against additive noise and transmission errors in the communication channel. The
simulation results have demonstrated the considerable contribution of the proposed scheme
compared to the existing methods as well as the interest of their uses.

Fig. 1 Layout of steganography
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The rest of this paper is structured as follows: Section 2 introduces a related work.
Section 3, the definition, and properties of the classical DTTs. Section 4 then provides details
of the procedure for deriving FrDTTs. Section 5, an encryption and decryption algorithm for
images and video by the proposed FrDTTs. The results of simulations that prove the efficiency
of the proposed encryption algorithm based FrDTTs in Section 5. Finally, closing remarks of
the paper are available in Section 6.

2 Related work

Information security has become a significant issue for protecting the secret information during
transmission in practical applications in the era of information. In recent years, a raft of
information security schemes has been used in image encryption, researchers have made some
related achievements in the field of image analysis in the encrypted domain. These works can
be roughly categorized into two types.

One category focused on the image/video encryption in the space domain. In the
literature and in image encryption, several algorithms are developed according to the
so-called permutation-diffusion architecture [34, 35, 54]. This architecture includes two
important operations, the permutation and the diffusion, the combination between the
two is also possible. Algorithms based on the parallel computing system [59] and on
piecewise coupled map lattice [53] have shown exceptionally good properties in many
aspects regarding security, complexity, speed, computational overhead, etc. Wang et al.
[50, 51] suggested an image encryption algorithm based on matrix semi-tensor product
theory and the image encryption algorithm based on fractal sorting matrix [64, 65]. The
encryption of digital images by using chaotic system is mainly based on the excellent
randomness of this system, the chaotic system is usually combined with image encryp-
tion methods based on spatial domain. The chaotic system was proposed for data
encryption, Fridrich [14] first proposed image encryption scheme based on chaotic
system. Wang et al. [52], proposed another image encryption method based on full
chaos coupled mapping lattice, then a novel chaotic block image encryption algorithm
based on dynamic random growth technique [57]. This encryption algorithm combined
the dynamic random growth technique and chaotic system to effectively enhance the
key space. Batham, et al. [3], a secure video encryption algorithm which uses an
efficient compression technique called as hybrid video codec and encrypts the com-
pressed video frames bitstreams along with motion vectors of each frames using
indexed based chaotic sequence. A novel chaotic image encryption scheme using
DNA sequence operations was proposed by Xing-Yuan Wang et al. [58].

The other category mainly paid attention to the image/video encryption in the
frequency domain. Image encryption algorithm based on frequency domain encrypts
the frequency coefficients based on the characteristics of human visual system, it can
encrypt important data which is called selective encryption or partial encryption, so that
the amount of encryption data is significantly reduced and the encryption efficiency is
improved. At present, there are many research on digital image encryption algorithms
based on fractional Fourier transform [6, 28, 45, 49]. For example, Unnikrishnan et al.
[49] proposed a double random phase encoding scheme, which uses two independent
random phase masks to encrypt the image Smooth white noise; Joshi et al. [18]
proposed an image encryption algorithm combining Fourier transform and radial Hilbert
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transform; Lang et al. [28] proposed image encryption based on multi-parameter
discrete fractional storage transform and chaos algorithm. Chen et al. [6], proposed an
image encryption algorithm was proposed using singular value decomposition and
Arnold transform.

One of the major limitations of these image encryption algorithms is that the encrypted
image is a complex-valued image, which also contains amplitude and phase information,
which is very unfavorable for transmission and storage. Especially as people have higher and
higher requirements for real-time transmission, it is very necessary to propose an image
encryption technology that meets real-number transformation, high encryption security, strong
noise resistance, and fast calculation speed. The fractional transforms are mostly used for
several purposes such as encryption, compression, noise reduction, filtering, watermarking etc.
Recently, a number of fractional transforms have been exploited for image and video security
in the real domain, such as image encryption based on fractional Fourier transform (FrFT) [28,
31], image/video encryption algorithms based on fractional discrete cosine transform [26, 41,
63], image encryption with fractional sine transform (FrST) [43], image encryption based on
fractional discrete Meixner moments (FrDMM) [22], discrete fractional Krawtchouk transform
and its application in image encryption and watermarking (FrKT) [36, 37], color image
encryption scheme based on fractional Hartley transform (FrHT) [24, 25], fractional Mellin
transform (FrMT) [71, 72], encryption of video main frames in the field of DCT transform [2],
image and video processing using discrete fractional transforms [17] and secure video
steganography using Framelet transform and singular value decomposition [47].

3 Discrete Tchebichef transform

Discrete Tchebichef polynomials were introduced by Pafnuty Chebyshev in [5], and first used
in image analysis by Mukundan et al. [39] as a basis function for image moments. The
classical Tchebichef orthogonal polynomials of order n are defined from the hypergeometric
function 3F2(∙) as follows:

tn xð Þ ¼ ∑
N−1

k¼0
ak;nxk ¼ 1−Nð Þn F 2 −n;−x; 1þ n; 1; 1−N ; 1ð Þ ð1Þ

where 3F2(.) is the hypergeometric function, defined as:

F 2 a; b; c; d; e; zð Þ ¼ ∑
n

k¼0

að Þk bð Þk cð Þk
dð Þk eð Þk

zk

k!
ð2Þ

and (a)kis the Pochhammer symbol given by:

að Þk ¼
Γ aþ kð Þ
Γ að Þ ¼ a aþ 1ð Þ… aþ k−1ð Þ ð3Þ
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The orthogonal Tchebichef polynomial of order n can be written explicitly as follows:

tn xð Þ ¼ n! ∑
n

k¼0
−1ð Þn−k N−1−k

n−k

� �
nþ k
n

� �
x
k

� �
ð4Þ

Tchebichef polynomials satisfy the orthogonality condition with norm squared:

ρ nð Þ ¼ 2nð Þ! N þ n
2nþ 1

� �
; n ¼ 0; 1;⋯;N−1; ð5Þ

with the binomial coefficient noted
n
k

� �
¼ n!

k! n−kð Þ!.

For reasons of numerical stability and limited dynamic range, normalized Tchebichef
polynomials are introduced by Mukundan [39], as follows:

etn x;Nð Þ ¼ tn x;Nð Þ
ρ nð Þ ð6Þ

where ρ(n) is an appropriate constant independent of x that serves as a scaling factor, such that Nn.
The scaled Discrete Tchebichef polynomials obey a general three-term recursive relation [9]:

tn xð Þ ¼ Axþ Bð Þ
n

tn−1 xð Þ þ C
n
tn−2 xð Þ ð7Þ

with

A ¼ 2

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2−1
N 2−n2

s
;B ¼ 1−N

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2−1
N 2−n2

s
;

C ¼ 1−n
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2n−3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2− n−1ð Þ2
N2−n2

s ð8Þ

t0 xð Þ ¼ 1ffiffiffiffi
N

p ; t1 xð Þ ¼ 2xþ 1−N
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

N N2−1
� �

s
ð9Þ

where n, x = 2, 3, …, N − 1,
For a digital image f(x, y) its DTT can be defined as

Tnm ¼ ∑
N−1

x¼0
∑
N−1

y¼0
tn xð Þtm yð Þ f x; yð Þn;m ¼ 0; 1; :…N−1 ð10Þ

The corresponding discrete Tchebichef transform (iDTTs, inverse DTTs) is

f x; yð Þ ¼ ∑
N−1

n¼0
∑
N−1

m¼0
tn xð Þtm yð ÞTnm ð11Þ

In practical applications, the DTTs of an image can be expressed as a matrix:

T ¼ CT fC ð12Þ

where T ¼ Tnmf gn¼N−1;m¼N−1
n¼0;m¼0 , C ¼ tn xð Þf gn¼N−1;x¼N−1

n¼0;x¼0 and f ¼ f x; yð Þf gx;y¼N−1
x;y¼0 .
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Similarly, the inverse moment transform can be represented using the matrix as follows [10]:

f ¼ CTCT ð13Þ
The DTTs introduced into the literature are calculated for integer orders. In the following
sections, we propose the calculation of the DTTs for fractional order (real) in order to
generalize their calculation and to benefit other properties for non-integer orders.

4 Proposed fractional-order discrete Tchebichef transform

In this section, we provide a framework for deriving FrDTTs by the decomposition the
properties of the eigenvalues and eigenvectors of the DTTs matrix which help to develop
the new fractional discrete Tchebichef polynomials. In the following subsections, analysis
regarding the decomposition of the polynomial’s matrices and important properties of FrDTTs
are provided.

4.1 Eigenvalues and eigenvectors of the discrete Tchebichef polynomials

For a DTTs matrix C ¼ tn xð Þf gn;x¼N−1
n;x¼0 of the order N will be noted C in the following. The

matrix C checks the following properties [8]:

Property (i): It is real matrix.
Property (ii): It is unitary, i.e., CHC = CCH = I, where CH is the transposed matrix of C
and I is the identity matrix.
Property (iii): It is orthogonal,
Property (iv): It is symmetrical, so C = CT.
Property (v): It has the following two eigenvalues: λk = (−1)kk = 0, 1.
The proof of property (v) is given in Appendix A.

The characteristic of the unitary matrix makes the eigenvalues of C, λk distributed on the unit
circle, that is, λk ¼ e jφk (φk is a real number). Perform eigenvalue decomposition on the DTT
matrix to obtain the corresponding eigenvalue matrix D and eigenvector matrix V, satisfying

C ¼ VDVH ¼ ∑
N

n¼1
Une− jφn ¼ ∑

N

n¼1
Unλn ð14Þ

where, V is the unitary matrix, which is composed of N eigenvectors nu of C, VH is the
conjugate transpose matrix of V, satisfying Un≜unuHn , D is the diagonal matrix whose diagonal
is the eigenvalue λk.

According to the above properties of C, the eigenvalue multiplicities of the matrix C can be
given by the following Table 1:

Table 1 Multiplicities of the eigenvalues for matrix C

N 2N0 (Even) 2N0+1 (Odd)

Multiplicity of λ0 N
2

Nþ1
2

Multiplicity of λ1 N
2

N−1
2
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where N is the size of Discrete Tchebichef polynomial matrix.
According to the spectral theorem [61]:

C ¼ ∑
1

k¼0
λkPk ¼ λ0P0 þ λ1P1 ð15Þ

where Pk denotes the spectral projector for Cassociated with the eigenvalueλk. Also, for any
integerm, has the following spectral decomposition [61]:

Cm ¼ λm
0 P0 þ λm

1 P1 ð16Þ
wewrite the equation above form = 0, 1 on the matrix form, to obtain the twomatrices P0 and P1.

I
C

� �
¼ ∑

1

k¼0
λm
k

P0
P1

� �
¼ H

P0
P1

� �
with H ¼ I I

λ0I λ1I

� �
ð17Þ

Using the Eq. (17), the expression HHH = 2I, to prove the relation between the inverse of H
and transpose of H we find H−1 = 0.5HT.

By multiplying the H−1 = 0.5HT relation of the two left sides of Eq. (17), we obtain the
following expressions for the projection matrices P0 and P1:

P0 ¼ 0:5 Iþ Cð Þ and P1 ¼ 0:5 I−Cð Þ ð18Þ
In the following, we will study the eigenvalues and the eigenvectors of the two spectral
projector matrices P0 and P1., then we will present their properties.

From Eq. (18), we can get some properties of P0 and P1:

Property (a): PTi ¼ Pi and P2i ¼ Pi; i ¼ 0; 1.
Property (b): P0P1 = 0, where 0 denotes the zero matrix.
Property (c): The eigenvalues of a projection matrix P0 and P1 are only 0 and 1 [44].
The multiplicity of eigenvalue 1 for P0 is equal to the multiplicity of eigenvalue 1 of C.
The multiplicity of eigenvalue 1 for P1 is equal to the multiplicity of eigenvalue −1 of C.

The proof of properties (a)-(b) and (c) is given in Appendix B.

Lemma 1 The eigenvectors of P0 are orthogonal to those of P1, for the non-zero eigenvalues.

Lemma 2 For the non-zero eigenvalues: the eigenvectors of P0 and P1 are the eigenvectors of
C, corresponding to eigenvalues λ0 = 1, λ1 = − 1 of C, respectively.

The proofs of both Lemmas 1 and 2 are given in Appendix C.
In the following, by performing the SVD decomposition of P0 and P1, we have derive a set

of orthonormal eigenvectors of C by using the decomposition SVD of its orthogonal projection
matrices on its eigenspaces [16, 44].

SVD of its orthogonal projection matrices on its eigenspaces [16, 44].
The SVD decomposition of P0 and P1, are given as:

P0 ¼ U0S0V
T
0 and P1 ¼ U1S1V

T
1 ð19Þ

where Ui and Vi, (i = 1, 2) are unitary matrices and Si a diagonal matrix with real and positive
coefficient. Since the singular values of P0 and P1 are square root of non-negative eigenvalues
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of P0PT0 and P1PT1 , respectively, using properties (a), (b) and (c), we can easily rewrite the
Eqs. (19) as follows:

P0 ¼ PT0 P0 ¼ V0S0V
T
0 ; P1 ¼ PT1 P1 ¼ V1S1V

T
1 ð20Þ

It can be observed from Eqs. (20) that:

P0V0 ¼ V0S0; P1V1 ¼ V1S1 ð21Þ

The above equation shows that V0 and V1 are a set of orthonormal eigenvectors of P0 and P1,
respectively.

According to Table 1 and propriety (c), the multiplicities of the non-zero eigenvalues for P0
and P1 are summarized for an N × N transform as follows:

According to the Table 2 and Lemma 2, we are now ready to derive a set of orthonormal
eigenvectors of C.

Taking ui and vj be the ith and jth column of V0 and V1,respectively, a set of orthonormal
eigenvectors V of C can be written as follows:

V ¼
u1; u2; :…; uN

2
; v1; v2; :…; vN

2

h i
; if Nis even

u1; u2; :…; uN−1
2
; uNþ1

2
; v1; v2; :…; vN−1

2

h i
; if Nisodd

8<
: ð22Þ

4.2 Definition of fractional-order discrete Tchebichef polynomials

In this section, traditional DTTs are extended to FrDTTs in order to effectively improve their
performance in image reconstruction. Such extension mainly involves the modification of
Fractional-order Discrete Tchebichef Polynomials (FrDTPs) matrix that also satisfies the
properties of the polynomial matrices in the DTTs, these polynomials replace the eigenvalues

Table 3 Main mathematical properties of FrDTPs

For α=0 It is obvious C0 reduces to the identity matrix C0=VD0VH=VVH=I.

For α=1 It is obvious then the FrDTPs is reduced to the traditional
discrete Tchebichef polynomials C1=VD1VH=C.

where C is the classical DTTs matrix
Additivity property CαCβ=(VDαVH)(VDβVH)=VDα+βVH=Cα+β

Unitary property of FrDTPs CαC−α=(VDαVT)(VD−αVT)=VD(α−α)VT=I

Table 2 Multiplicities of the non-zero eigenvalues for P0 and P1

N P0 P1

2N0 (Even) N
2

N
2

2N0+1 (Odd) Nþ1
2

N−1
2
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λk ¼ e jφk with its αth power αR on the basis of matrix eigen-decomposition, that is The
diagonal matrix D is replaced by its power of α, so that the definition of FrDTPs matrix Cα is:

Cα ¼ VDαVH ¼ ∑
N−1

k¼0
λα
k vkv

H
k ; k ¼ 0;⋯;N−1 ð23Þ

where V = [v0, v1, .………, vN − 1] with vk (k = 0, 1, ………, N − 1) is the C eigenvector
obtained from (Eq. 15), and Dα is defined as:

Dα ¼ Diag 1; e−jα; e− j2α;………; e− j N−1ð Þα
n o

ð24Þ

The main mathematical properties of FrDTPs are shown in Table 3 [22, 36, 38]. In addition,
we will show in detail the steps of this proposed algorithm to calculate the coefficients of the
matrix of fractional discrete Tchebichef polynomials. Algorithm 1 summarizes the steps for
calculating the FrDTPs matrix.

It should be noted that the eigenvalue decomposition of the Tchebichef transformation
matrix will be used to define the discrete FrDTPs. The eigenvalues and vectors of FrDTPs are
derived and some properties of FrDTPs are also studied. However, the proposed algorithm
satisfies exactly the property of orthogonality up to the last order of FrDTPs (n = 4000) which
shows the numerical stability of the values of FrDTPs calculated by the algorithm proposed.
Therefore, the orthogonality of the FrDTPs polynomial matrix can be destroyed due to a
numerical approximation in the calculation process. Indeed, the following Fig. 2 shows the
distribution of the polynomial coefficients of the FrDTPs up to the order n = 4000. We can see

Fig. 2 a 2D plot of FrDTPs, b 3D plot of FrDTPs and c all polynomial curves of FrDTPs using algorithm 1 with
α = 1
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that the FrDTPs values are well calculated, stable and verified all properties ((iii) end (iv)) of
orthogonality and symmetry. It is important to also note that the proposed stability condition
can be easily adapted for the stabilization of computation of other types of discrete orthogonal
polynomials of high orders.

Algorithm 1 Computation of the Fractional Discrete Tchebichef Polynomials with respect to the order n

It is worth mentioning that when α is an unnatural number, (±1)α = e±j2πα is a complex
number, so the matrix Cα is also a complex matrix. In order to obtain a FrDTTs matrix that
always satisfies the real matrix, the eigenvalues of the matrix should not include ±1. Compared
with DCTs, when the signal length N of the matrix dimension is a multiple of 4, it does not
contain the eigenvalue ±1. DTTs has certain advantages. It satisfies that when the matrix
dimension is even, that is, N = 2N0 does not contain the eigenvalue ±1. It is more flexible and
convenient in practical applications [11, 12, 21].

4.3 Proposed fractional-order discrete Tchebichef transform

The generalized FrDTTs are obtained from the FrDTPs. It can be seen from Eq. (23) that the
inverse matrix of Cα can be obtained by its negative order matrix C−α. The FrDTTs are
obtained from the FrDTPs presented in the previous subsection. Thus, the 1D forward FrDTTs
of signal f(x) of length N with fractional order α can be defined as follows:
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Fα ¼ Cα f ð25Þ

The reconstruction of the signal f(x)can be found from its transform by using the following
expression:

f ¼ FαC−α ð26Þ

In 2D case, the FrDTTs in terms of polynomials matrices Cα with fractional order (α, β), for
an image with intensity function f(x, y), can be defined as follows:

Fα;β ¼ CαfCβ ð27Þ

The Eq. (27) leads to the following inverse reconstruction procedure:

f ¼ C−αFα;βC−β ð28Þ

5 Proposed image/video encryption scheme using FrDTTs

In the several applications of image/video processing like business conferencing, military
communication, secure transfer of images, Medical imaging, Road safety, Electronic
signature, Remote monitoring [15, 30] etc., the content of image/video is required to be
preserved. So, for the preservation of image/video information security techniques are
required. To meet this requirement several techniques had been invented. Recently, a
number of fractional transform based image/video encryption methods have been widely
studied in recent years [19, 20, 22, 62, 67, 73]. In this section, an FrDTTs based image/
video encryption and decryption scheme is proposed. Offering good security quality,
resistance against image processing and large key space and high robustness against
various kinds of attacks. The proposed scheme is a real-value-toreal-value mapping in
encryption and decryption processes. In summary, different fractional orders will generate
different FrDTTs matrices. Such characteristics can be well applied to image/video en-
cryption. This section introduces a new image/video encryption method based on FrDTTs
and gives detailed steps of the encryption and decryption process. Figure 3 illustrates the
flowchart of the image/video encryption and decryption processes, and details are given in
the following.

5.1 Encryption process

As mentioned above, different fractional orders (αk, βk) result in different C
αk and Cβk . This

property can be used for image encryption efficiently. Let a sequence of video frames have R
frames of size N×M, which we note Ir, r = 1,2, ⋯, R. Each frame Ir is divided at the
beginning into K blocks Bk, k = 1,2, ⋯, K ∈ ℕ∗ of width n and length m. Thus, each Bk

block is encrypted separately as shown in Fig. 4. Let Cαxk , Cαyk , Cβxk and Cβyk be real
FrDTTs matrices of size n×m constructed according to Eq. (27) with αxk ;αyk ;βxk and βyk

being fractional orders. Thus, for each value of k = 1, 2, ⋯, K, the block Bk is encrypted in
the following steps:
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Step 1. This step alters the image in the transverse direction, the original image Ir divided
into sub-blocks Bk of size 8 × 8 pixels. Then each of these image blocks
Bk undergoes a Jigsaw Transform (JT) [22]: Bk = {bk(i, j), 0 ≤ i, j < 7} (k =
1, 2, …, N2/64).

Step 2. The two-dimensional FrDTTs of the fractional order αxk ;αyk are computed for each

block Bk by using the following equation: F
αxk ;αyk
Bk

¼ Cαxk BkC
αyk . The transform

matrix of one block is denoted by F
αxk ;αyk
Bk

. with Cαxk and Cαyk the matrix generated

from the fractional discrete Tchebichef matrix defined in Eq. (27).
Step 3. To ensure the security of each block Bkwe secretly select the blocks (8 × 8) in image

f(x, y). The secret key FrDTTs (Key1) of fractional order αxk ;αyk corresponds to the
position of the selected blocks.

Fig. 3 The flowchart of the proposed scheme

Fig. 4 Scheme of the encryption and decryption system based on FrDTTs
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Step 4. Perform data masking on each block of the original image, then the pixels of the
output of each block are multiplied by a random phase code R(x, y) (Key2). With
R(x, y)is chosen to be a phase function eiφ(x, y), where φ(x, y) is a random function
uniformly distributed over [0, 2π].

Step 5. For the last step of the encryption procedure, introduces the last security key FrDTTs
(Key3) of fractional order βxk ;βyk into the f(x, y) image to produce the encrypted

final image Ir.

5.2 Decryption process

The decryption process is the inverse transformation of the encryption process. Based on
FrDTTs satisfying exponential additivity, the fractional orders αxk ;αyk ;βxk and βyk can be

selected. Figure 4 shows the main steps of decryption procedure which can be described in the
following:

Step 1. The first step of the decryption procedure, an inverse FrDTTs of order −βxk ;−βyk is
performed on the encrypted image Ir then divide the image into small non-

overlapping blocks (Bk)∗ of size 8 × 8 pixels. Bkð Þ* ¼ b*k i; jð Þ; 0≤ i; j < 7
� �

k ¼ð
1; 2;…;N2=64Þ.

Step 2. The FrDTTs matrix F
αxk ;αyk
Bk

	 
*
is computed for each decryption block (Bk)∗ by

F
αxk ;αyk
Bk

	 
*
¼ C−αxk Bkð Þ*C−αyk .

Step 3. Perform the inverse FrDTTs on each block, for one block coefficients (Bk)∗ multi-
plied with the conjugate of the random phase mask R∗(x, y).

Step 4. For the last step of the decryption procedure, introduce the inverse FrDTTs of
fractional order −αxk ;−αyk in each frame blocks, then we undergo an inverse Jigsaw
transformation (IJT) to produce the final decrypted frame Ir.

The main advantage of the proposed method is that for a single frame Ir we use 4× fractional
orders αxk ;αyk ;βxk and βyk instead of 4 fractional orders in the method FrDTTs, which

significantly improves the secret key space. In addition, the use of the real FrDTTs transform
and block random phase makes the proposed video image sequence encryption algorithmmore
efficient in terms of transmission rate and computational complexity. The process can be

Fig. 5 Picture of a video sequence
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defined as a sequence of images presented at a certain rate expressed in the number of frames
per second (FPS) (Fig. 5).

6 Simulation results

In this section, we first analyze the fractional-order transformation performance of various
encryption methods from the perspective of sensitivity analysis, key space analysis and
robustness to the noise attack. In the experiments, we use “Lena” and “Peppers” images of
different sizes. Then, we present simulation results of applying the proposed block-based
encryption method on a few test video image sequences [48, 68] of standard CIF (352 × 288)
and gray level (8bits) format.

6.1 Histogram analysis

The histogram is a very important analysis method used to describe the number of pixels in the
image with different gray levels and their frequency of occurrence. The histograms of the
original images usually are different, while those of encrypted images obey a uniform
distribution, by which the attackers cannot obtain useful information. Mathematically, the
variances of histograms are calculated by [70]:

Var Yð Þ ¼ 1

n2
∑
n

i¼1
∑
n

j¼1

1

2
Y i−Y j
� �2 ð29Þ

where Y is the vector of the histogram values and Y = {Y1, Y2, …, Y256}, Yi and Yj are the
numbers of pixels which gray values are equal to i and j respectively.

The variance of the histogram reflects the histogram uniform distribution for the encrypted
video sequence, where both are inversely proportional. Low variance means a uniform
histogram. Table 4 shows the variances of histograms for the test video sequence. The
variances of the encrypted video sequence are smaller than the variances of the original video
sequence. Figure 6a, b, c and d shows the histograms and pixel distributions of the original
images Lena and Peppers. Although the histograms and pixel distributions of the two original
images are different from each other, the histograms of encrypted images are almost the same,
following a nearly uniform distribution. Thus, one believes that the attackers cannot obtain any
useful information by histogram analysis.

To evaluate the security of the proposed method against statistical histogram analysis. Let a
sequence of video images in CIF format composed of 100 frames and Q a secret key which is

Table 4 Variances of histograms for both Original and encrypted video sequence

Video Variances of histograms Average value

Frame 1 Frame 2 Frame 3 Frame 4

Original video sequence Tennis 1.17×105 2.13×105 1.02×105 5.01×105 2.33×105

CoastGuard 7.9×105 8.62×105 6.3×105 9.01×105 7.95×105

Encryption video sequence Tennis 248.471 257.1392 262.943 249.451 254.50
CoastGuard 291.918 287.439 294.632 296.158 292.54
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defined by: fractional orders αxk ;αyk ;βxk ;βyk

	 

and the width n and length m of the block.

Suppose we have four frames randomly drawn from a sequence of Tennis video images.
Figure 7 shows the encryption of these frames using the proposed method with the secret

key Q defined earlier. We notice that the histograms of the encrypted frames are entirely
different from those of the original frames, and they are generally identical regardless of the
original frame. This reduces the risk of statistical attacks based on collecting information about
the original frames by analyzing the histograms of the encrypted frames. Figure 7a, b show
different frames from the Tennis video sequence along with their corresponding histograms,
and then Fig. 7e, f shows the histograms and pixel distributions of corresponding encrypted
frames. Consequently, the proposed method is robust against statistical analysis by histogram.

6.2 Correlation of adjacent pixels

The correlation coefficient is another useful indicator to evaluate the performance of
image/video encryption and decryption scheme. To test the correlation of the encrypted
image/video obtained by the FrDTTs based method proposed in this paper, 1000 pairs
of neighboring pixels are randomly selected as samples from the horizontal, vertical,
and diagonal directions of the original image and the encrypted image and calculate the
correlation coefficient for the three directions. The correlation coefficient, Rx, y, can be
obtained using the following equation [23].

Rx;y ¼ E x−E xð Þð Þ y−E yð Þð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D xð Þ � D yð Þp ð30Þ

where

Fig. 6 Histograms and pixel distributions before and after image encryption
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E xð Þ ¼ 1

N
∑
N

i¼1
xi;D xð Þ ¼ 1

N
∑
N

i¼1
xi−E xð Þð Þ2 ð31Þ

x and y are gray-scale values of the adjacent pixels in the image. Figure 8 shows the
correlation analysis between the pixels of “Lena” images before and after the encryption
in three directions (horizontal, vertical and diagonal) to evaluate the performance of the
proposed scheme, and the results are listed in Table 5 with a comparison with recent

Fig. 7 Histograms and pixel distributions of some frames of the Tennis video sequence (a) original frames, (b)
histograms of original frames, (c) pixel distributions of original frames, (d) encrypted frames, (e) histograms of
encrypted frames and (f) pixel distributions of encrypted frames
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published results. The Table 5, we can see that the correlation coefficients of adjacent
pixels in the three directions of the original image are close to 1, while the correlation
coefficients of the encrypted image are close to 0. This shows that the proposed
encryption algorithm can reduce the correlation between pixels very well and can resist
the attack using image correlation.

Figure 9 shows the correlation analysis between the pixels of some CoastGuard frames of
the video sequence before and after encryption in three directions (horizontal, vertical and
diagonal) in order to evaluate the performance of the proposed scheme, Table 6 shows the

Fig. 8 The correlation plots of the Lena image and the corresponding encrypted image of Lena (a) horizontal; (b)
vertical; (c) diagonal; (d) horizontal of the encrypted image; (e) vertical of the encrypted image; (f) diagonal of
the encrypted image

Table 5 Correlation coefficients of different images using the proposed method and other similar methods

Method Image Testing direction Average value

Vertical Horizontal Diagonal

Original Lena (512×512) 0.9513 0.9607 0.9347 0.9489
Proposed method Encryption « Lena » 0.0112 – 0.0201 – 0.0131 0.0148
FrDCT [62] Encryption « Lena » 0.0593 – 0.0504 – 0.0493 0.0530
FrDFT [31] Encryption « Lena » – 0.0575 0.0671 – 0.0716 0.0654
FrMT [73] Encryption « Lena » 0.0753 0.0613 – 0.0405 0.0590
DFrST [43] Encryption « Lena » 0.0540 0.4834 0.6274 0.3883
DFrKT [37] Encryption « Lena » 0.0213 – 0.0379 – 0.0192 0.0213
FrHT [24] Encryption « Lena » 0.0301 – 0.0921 – 0.0461 0.0301

Original Peppers (1024×1024) 0.9638 0.9467 0.9785 0.9630
Proposed method Encryption « Peppers » 0.0092 – 0.0121 – 0.0160 0.0124
FrDCT [62] Encryption « Peppers » 0.0464 – 0.0492 – 0.0506 0.0487
FrDFT [31] Encryption « Peppers » – 0.0656 0.0808 – 0.0737 0.0734
FrMT [73] Encryption « Peppers » 0.0532 0.0402 – 0.0653 0.0529
DFrST [43] Encryption « Peppers » 0.0602 0.5322 0.5923 0.3949
DFrKT [37] Encryption « Peppers » 0.0301 – 0.0293 – 0.0278 0.0301
FrHT [24] Encryption « Peppers » 0.0219 – 0.0726 – 0.0537 0.0219
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(a)

(b)

(c)

(d)

Fig. 9 Correlation distributions of two adjacent pixels in original and encrypted video sequence. a Correlation of
two adjacent pixels in frame 1 of the video sequence b Correlation of two adjacent pixels in frame 2 of the video
sequence c Correlation of two adjacent pixels in frame 3 of the video sequence d Correlation of two adjacent
pixels in frame 1 of the video sequence
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correlation coefficients of the Tennis frames of the video sequence in the horizontal, vertical
and diagonal directions respectively. From these results, we can see that there are strong
neighborhood correlations between the adjacent pixels of each frame of the original video
sequence, while those of the encrypted video sequence. Consequently, the proposed algorithm
can effectively realize the confusion and diffusion of image information, which shows a
capability against the correlation analysis attack.

6.3 Robustness differential attack

In this attack, the attacker encrypts the plain image with the proposed method. Then, the
attackers penetrate the cryptosystem by tracing the difference between two encrypted images.
The number of pixels change rate (NPCR) and the unified averaged changed intensity (UACI)
are commonly used to evaluate the strength of any encryption process. The NPCR is the
change rate of the number of pixels of the cipher-image when only one pixel of the plain image
is modified. The UACI calculate the average intensity of differences between the plain and the
encrypted images. They are calculated as follows [33].

NPCR ¼ 1
N �M

∑
N

i¼1
∑
M

j¼1
D i; jð Þ

 !
� 100% ð32Þ

UACI ¼ 1
N �M

∑
N

i¼1
∑
M

j¼1

C2 i; jð Þ−C1 i; jð Þj j
255

" #
� 100% ð33Þ

where D i; jð Þ ¼ 1; ifC1 i; jð Þ≠C2 i; jð Þ
0; ifC1 i; jð Þ ¼ C2 i; jð Þ

�
and N, M is the image dimensions, L = 255 for

image intensity. To get the best encryption strength against the diferential attack, NPCR and

Table 6 Correlation coefficients of tennis video sequence using the proposed method and other similar methods

Method video Directions Correlation coefficients Average
value

Frame 1 Frame 2 Frame 3 Frame 4

Proposed method Encryption Tennis
video sequence

Horizontal 0.0037 0.0094 0.0094 0.0065 0.0073
Vertical 0.0039 0.0042 0.0042 0.0085 0.0052
Diagonal 0.0139 0.0017 0.0017 0.0081 0.0064

FrDFT [17] Encryption Tennis
video sequence

Horizontal – 0.0120 0.0230 – 0.0423 – 0.0301 0.0230
Vertical – 0.0142 0.0103 – 0.0237 – 0.0415 0.0103
Diagonal – 0.0630 0.0460 – 0.0335 – 0.0526 0.0460

DFrST [43] Encryption Tennis
video sequence

Horizontal – 0.0432 0.0452 0.0137 – 0.0524 0.0295
Vertical – 0.0554 0.0642 – 0.0689 – 0.0621 0.0642
Diagonal – 0.0232 – 0.0536 0.0127 – 0.0349 0.0127

DFrKT [37] Encryption Tennis
video sequence

Horizontal – 0.0726 – 0.0279 0.0230 – 0.0786 0.0230
Vertical 0.0456 0.0236 – 0.0047 0.0443 0.0378
Diagonal 0.0467 – 0.0032 0.0336 0.0498 0.0434

FrHT [24] Encryption Tennis
video sequence

Horizontal 0.0324 – 0.0654 – 0.0435 0.0459 0.0392
Vertical 0.0257 – 0.0549 – 0.0248 0.0168 0.0213
Diagonal 0.0278 – 0.0351 – 0.0532 0.0327 0.0303
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UACI must be higher and in the range of >99% and >33%, respectively. Tables 7 and 8 shows
the results according to the proposed method of NPCR and UACI and compares the NPCR
and UACI average of different encryption method for Lena image and tennis video sequence.
From this table, we know that the proposed method has a larger NPCR average compared with
other method, which show that the proposed method has excellent robustness against differ-
ential attack than the other method.

6.4 Sensitivity analysis to keys

The analysis of key space is required to calculate the space of key that is used for the
encryption process. It should be as large as possible for good encryption technique. The
fractional parameters of Tchebichef are involved in the proposed encryption algorithm, namely
are served as the private keys for the cryptosystem. We analyze the influence of the number of
erroneous fractional orders for image/video encryption. Next, we will check the sensitivity of
our algorithm to the keys. To further validate the sensitivity of the key, this paper quantifies the
mean square error (MSE) between the decrypted image and the original image by computing
the MSE as follows:

MSE ¼ 1

N �M
∑
N

i¼1
∑
M

j¼1
IO i; jð Þ−ID i; jð Þj j2 ð34Þ

Table 7 The comparison results of average NPCR and UACI in proposed method and similar method

Method Test image Average (NPCR) (%) Average (UACI) (%)

Proposed method Lena (512×512) 99.99% 33.54%
Peppers (1024×1024) 99.98% 33.59%

FrDCT [62] Lena (512×512) 98.21% 29.44%
FrDFT [31] Lena (512×512) 98.81% 31.46%
FrMT [73] Lena (512×512) 98.61% 30.45%
DFrST [43] Lena (512×512) 99.61% 33.45%
DFrKT [37] Lena (512×512) 99.14% 32.95%
FrHT [24] Lena (512×512) 99.56% 32.44%

Table 8 The comparison results of average NPCR and UACI in proposed method and similar method

Method Average NPCR and UACI Test tennis video sequence Average value

Frame 1 Frame 2 Frame 3 Frame 4

Proposed method (NPCR) (%) 99.99% 99.98% 99.97% 99.98% 99.98%
(UACI) (%) 33.74% 33.87% 33.66% 33.94% 33.80%

FrDFT [17] (NPCR) (%) 97.92% 98.78% 97.89% 98.67% 98.32%
(UACI) (%) 30.47% 31.14% 31.57% 31.24% 31.11%

DFrST [43] (NPCR) (%) 98.96% 99.28% 98.54% 98.94% 98.93%
(UACI) (%) 32.35% 33.29% 32.47% 33.53% 32.91%

DFrKT [37] (NPCR) (%) 99.39% 98.79% 99.39% 98.47% 99.01%
(UACI) (%) 33.16% 32.96% 33.19% 33.89% 33.30%

FrHT [24] (NPCR) (%) 98.23% 98.98% 98.92% 99.11% 98.81%
(UACI) (%) 32.64% 32.92% 32.48% 32.95% 32.75%
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The PSNR is defined by:

PSNR ¼ 10� log10
2552

MSE

� �
dbð Þ ð35Þ

where IO(i, j) denotes the original image pixel, ID(i, j) is the pixel of the decrypted image, N ×
M are the size of original and decrypted images.

Figures 10 and 11 show that even if the deviation of the correct keys and fractional-orders
parameters are adjusted down to (δx, δy), no useful information can still be obtained from the
decrypted image/video. We assume that incorrect keys locate in the vicinity of the correct key
values, and then the relations between the keys used for decryption and encryption are

α
0
x ¼ αx þ δx;α

0
y ¼ αy þ δy.

Figure 12a and 13a display the MSE with changes of fractional orders. The x-axis δ
represents the deviation distance (in the interval [−0.05, 0.05] with step size 0,002) to the
correct fractional orders. From the simulation results, we learn that the decrypted image/video
has very distinct difference even if a very small deviation occurs in the fractional orders. When
the deviation is up to 0.0003, the decrypted image/video is fuzzy and when the deviation is
larger than 0.0003, one has difficulty in recovering the original image/video from the
encrypted one.

Figures 12b and 13b compares the security between the fractional transform of different
encryption algorithms FrDTT, FrDCTs [62] , FrDFTs [31], FrMTs [73], DFrST [43], DFrKT
[37] and FrHT [24], from the results of the MSE for grayscale image. The x-axis δ represents
the deviation distance (in the interval [−0.1, 0.1] with step size 0,002) to the correct transform
order parameters. This result demonstrates the effectiveness and performances of the proposed
scheme in terms of its ability to secure image/video and sensitivity to Keys. It should be noted
that when the keys are all correct, the original image/video can be completely decrypted with
MSE = 0 for all compared algorithms.

Fig. 10 Decrypted images with different fractional order deviations: (a) Original image (b) δ = 0.0005, (c) δ =
0.0003, (d) δ = 0.0025, (e) δ = 0.001 and (f) δ = 0.01
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6.5 Robustness detection

6.5.1 Robustness to the noise attack

Since the encrypted image/video are easily affected by noise and data loss during transmission
and processing, it is necessary to measure the robustness of the proposed image/video
encryption algorithm. Therefore, it is necessary to measure the quality of an image/video
encryption method to verify its anti-noise ability. In this paper, the Gaussian white noise with

Fig. 11 Decrypted Tennis video sequence with different fractional order deviations: (a) Original video sequence
(b) δ = 0.0005, (c) δ = 0.0003, (d) δ = 0.0025, (e) δ = 0.001 and (f) δ = 0.01
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Fig. 12 The MSE between the plain and encrypted image with the variation of deviation distance δ = δx = δy. a
the images Lena and Peppers b comparison of MSEs of cryptosystems based on proposed method, FrDCTs [62] ,
FrDFTs [31], FrMTs [73], DFrST [43], DFrKT [37] and FrHT [24]
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the mean value of 0 and variance of 1 is added to the encrypted image/video of “Lena” and
tennis video sequence by Eq. (36) for noise interference.

E
0 ¼ E 1þ σGð Þ ð36Þ

where Eand E′ represent of the ideal encrypted image and the noise-affected encrypted image,
respectively. Parameter σ is a coefficient on noise strength or intensity, and G represents
Gaussian random data with zero-mean and identity standard deviation.

To see the resistance of the proposed method against noise, Fig. 15 shows four frames of a
tennis video sequence along with their PSNRs when decrypted with an additive white
Gaussian noise of variable power coefficient σ we notice that the frames remain identifiable
despite the presence of noise. In the same way, Fig. 14 shows the encrypted images of the
proposed method in this paper at Gaussian noise intensity σ correctly decrypted image at 0.05,
0.10, 0.20, 0.50, 0.80, 1.00.

)b()a(

Fig. 13 The MSE between the plain and encrypted video sequence with the variation of deviation distance δ =
δx = δy. a The CoastGuard and Tennis video sequence. b Comparison of MSEs of cryptosystems based on
proposed method, FrDCTs [62] , FrDFT [17], DFrKT [37] and FrHT [24]

Fig. 14 Decrypted image with different Gaussian noise intensities
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As can be seen in Figs. 14 and 15, although the quality of the decrypted image/video
gradually increases as the intensity of the Gaussian noise added to the decryption increases, the
image/video quality after decryption is also decreasing. The noise intensity drops, but at 0.10
the image/video is clearly visible, and even when the intensity is increased to 1.00, the image is
still visible. The original image/video information is vaguely recognizable, thus it can be seen
that the encryption method proposed in this paper has good anti-noise performance. In order to
deepen the comparison with current classical methods of image encryption, experiments were
carried out to calculate the PSNR values of the decrypted images of proposed method, FrDCTs
[62] , FrDFTs [31], FrMTs [73], DFrST [43], DFrKT [37] and FrHT [24]. From Table 9, we

Fig. 15 Decrypted tennis video sequence with different Gaussian noise intensities σ

Table 9 The PSNR values of the decrypted images “Lena” after different intensities of Gaussian noise
interference using the proposed method and other similar methods

Noise Intensity
σ

Decrypted image quality (PSNR)

Proposed
method

FrDCTs
[62]

FrDFTs
[31]

FrMTs
[73]

DFrST
[43]

DFrKT
[37]

FrHT
[24]

0.05 34.52 32.85 33.29 31.23 31.54 33.29 31.73
0.10 27.18 25.92 26.23 24.83 24.26 25.99 25.19
0.20 22.43 20.64 21.56 19.39 21.41 21.39 20.33
0.50 16.13 12.83 14.03 13.61 11.38 14.92 11.87
0.80 11.04 8.54 10.84 9.47 9.23 10.84 9.35
1.00 10.71 6.87 9.79 7.19 7.79 9.88 7.65
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can see that, although the PSNR values of images decrypted by FrDFTs under different noise
intensities of 0.80 and 1.00.

Figure 16 shows the computed MSE between a decrypted tennis video sequence and the
corresponding original video sequence as a function of the variable power coefficient σ. In this
experiment, the MSE curves between the original video sequence and decrypted one with
different σ of FrDCTs [62] , FrDFTs [17], DFrKT [37] and the proposed method are shown in
Fig. 16a. This Figure shows the decrypted video performance of FrDCTs [62] , FrDFT [17],
DFrKT [37] encrypted Tennis frame and the proposed method after Gaussian noise interfer-
ence of different intensity. However, the FrDTTs based video sequence encryption method
proposed in this article is better than the other in most cases has a better robustness.

6.5.2 Classical types of attacks

The proposed scheme for the image/video encryption is robust; it protects image/video from
several attacks that are applied by the intruder, for the data extraction from encrypted image/
video. There are four classical types of attacks [56]:

(i) ciphertext only attack (COA): the intruder doesn’t have any idea about the key used for
encryption. Attacker tries to calculate the key to hack information. The encrypted image/
video in proposed scheme is free from COA because of the use of fractional parameter
keys, so attacker won’t be able to calculate it, without the presence of original fractional
parameter. It is also called as replacement attacks.

(ii) known plaintext attack (KPA): the attacker has some plaintexts and their corresponding
ciphertext also, with use of them unauthorized person tries to calculate the relation
between original and encrypted information. In proposed scheme fractional parameter
and random phase code two asymmetric keys are applied alternatively on each frame of
video. So, even if the hacker gets the information about public key, he won’t be able to
extract original information, without the presence of private key. In this way proposed
scheme is free from KPA attacks.

(iii) chosen ciphertext attack (CCA): only ciphertext or encrypted data is used to hack the
information, by doing little change in encrypted information and observing variation

)b()a(
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Fig. 16 a Robustness performance decrypted tennis video sequence of FrDCTs [62] , FrDFT [17], DFrKT [37]
and proposed method after different intensity Gaussian noise interference. b Robustness performance of the
proposed method against noise perturbation with different σ
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from image/video. Due to use of two different keys (fractional parameter and random
phase code) for different image/video, the observation between two ciphered image/
video will not facilitate hacker to deduce relation between them. So, the image/video is
secured from chosen ciphertext attacks.

(iv) chosen plaintext attack (CPA): the opponent has obtained temporary access to the
encryption machinery. Hence, he can choose a plaintext string, and construct the
corresponding ciphertext string.

In this way due to use of two different keys (fractional parameter and random phase code) for
the encryption of image/video, the information is highly secure from the invaders. So, the
proposed scheme can resist the chosen plaintext/ciphertext attack.

6.6 Computational complexity analysis

The complexity of the proposed algorithm is the sum of the complexities needed to implement
the proposed algorithm. We count the main operations used in each step, and the total number
represents the cipher’s complexity. Step 1 is to compute the 8 × 8 FrDTTs of a frame block
using the matrix given by Eq. (27). The video sequence encryption process with secret keys is
mainly implemented by times two-dimensional FrDTTs for each block of the frame. So the
time complexity in Step 1 is (nf × M × N), with nf the number of frames. The time complexity
in Step 2 is (nf × M × N) since the time-consuming part is the number of the FrDTTs for each
block. Therefore, considering that a block of an M × N frame

has to be transformed at most 8 times. Similar to Step 2, the mathematical complexity for
the random phase mask can also be computed along similar lines for each block. The
complexity of the random phase block in Step 3 is also (8 × nf × M × N). In the last stage,
four key streams with size of M × N are used to modify the image pixels. Therefore, the total
time complexity of the presented encryption scheme is (8 × nf × M × N)

. This will increase the security of the encryption process by many orders of magnitude in
addition to the security provided by the FrDTTs and the random phase codes. However, our
proposed algorithm can be executed in a parallel mode, which can accelerate the operation
speed.

6.7 NIST statistical tests

NIST tests were performed on 100 encrypted Lena 256 × 256 Gy-scale images, each
encrypted with hundred different keys. Table 10 below shows the obtained results of NIST
tests. As it can be observed, all the tests were passed with a minimum passing rate of 98%.

7 Conclusion

In this paper, we have proposed an efficient method for the encryption of video image
sequences. This method makes it possible to individually encrypt each frame of a video
sequence using fractional-order discrete Tchebichef transform, which is advantageous in terms
of transmission rate and in complexity of calculations. In addition, a block encryption scheme
has been adopted and introduced in order to improve the sensitivity and space of the key. The
method proposed in this paper extends the fractional-order discrete Tchebichef transform to the

33491Multimedia Tools and Applications (2023) 82:33465–33497



fractional-order vector in the real domain. Moreover, the use of fractional-orders parameters
settings increases the key space for image/video encryption and has high key sensitivity. In
addition, the encrypted image/video is a real-value image/video, and its size is the same as the
original image/video size, which is convenient for display, transmission, and storage. Finally,
the simulation results clearly show the feasibility of the proposed method as well as its
resistance against statistical, brute force and noise attacks. Therefore, the image/video encryp-
tion method proposed in this paper can have a good application scenario in the field of image/
video encryption communication.

Appendix A

Proof of property (v) Let λ be an eigenvalue of Tchebichef polynomial matrix and u the
corresponding eigenvector, then Cu = λu, using the properties (iii) and (iv), we have:

u ¼ CCu ¼ λCu ¼ λ2u ðA1Þ
thus. {Key1, Key2}

λ2−1
� �

u ¼ 0 ðA2Þ
The matrix C has only two eigenvalues {1, −1}, The proof of Eq. (19) has been completed

Appendix B

Proof of properties (a)-(b) Let C ∈ ℂN × Nbe Tchebichef polynomial matrix, with their
eigenvalues on the diagonal of a diagonal matrix Λ = diag (λ1, ……λN) ∈ ℂN × N and the
corresponding eigenvectors forming the columns of a matrix V = [u1, ……, uN] ∈ ℂN × N, we
have:

C ¼ VΛV−1 ðB:1Þ

Table 10 NIST Results for 100 Encrypted Lena 256 × 256 Images

NIST test P value Result of tests

Frequency 0.54524 Pass
Block Frequency 0.54420 Pass
Cumulative Sums 0.79747 Pass
Runs 0.85283 Pass
Longest Runs 0.94638 Pass
Rank 0.43538 Pass
FFT 0.65793 Pass
Non-overlapping Templates 0.87692 Pass
Overlapping Templates 0.86537 Pass
Universal 0.44986 Pass
Approximate Entropy 0.79918 Pass
Random Excursions 0.86579 Pass
Random Excursions Variant 0.97160 Pass
Serial 0.86537 Pass
Linear Complexity 0.96495 Pass
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where, the orthonormal vectors u1, ……uN are eigenvectors of C, corresponding to eigen-
values λ1, ……λN.

C ¼ u1⋯⋯uN½ �
λ1

⋱
λN

0
@

1
A uT1

⋮
uTN

2
4

3
5 ¼ λ1u1⋯⋯λNuN½ �

uT1
⋮
uTN

2
4

3
5 ðB:2Þ

C ¼ λ1u1uT1⋯⋯λNuNuTN ðB:3Þ
Notice that the matrices

P j≔u juTj ∈ℂ
N�N ðB:4Þ

are orthogonal projectors, since PTj ¼ P jand P2j≔uj uTj u j

	 

uTj ¼ ujuTj ¼ P j

C ¼ ∑
N

j¼1
λ jP j ðB:5Þ

if j ≠ k, then the orthogonality of the eigenvectors implies

P jPk ¼ ujuTj uku
T
k ¼ 0 ðB:6Þ

The proof of properties (a) and (b) has been completed.

Proof of propriety (c) Let γ, η and λ be respectively the eigenvalues of the matrices P0,P1 and
C of size N × N, using Eq. (18), we have:

jγI−P0j ¼ jγI−0:5 Cþ Ið Þj ¼ j γ−0:5ð ÞI−0:5Cj
¼ j γ−0:5ð ÞI−0:5Cj ¼ 0:5N j 2γ−1ð ÞI−Cj
¼ 0

ðB:7Þ

Similarly, we have

jηI−P1j ¼ 0:5N j 2η−1ð ÞI−Cj ¼ 0; and jλI−Cj ¼ 0 ðB:8Þ
From (B.7) and (B.8), we have

2γ−1 ¼ λ; and− 2η−1ð Þ ¼ λ ðB:9Þ
Hence, if λ = 1, there is γ = 1, η = 0, and if λ = − 1, then γ = 0, η = 1.

The proof of propriety (c) has been completed.

Appendix C

Let P0 and P1 the spectral projection matrices of Tchebichef polynomial matrix C ∈ ℂN × N,
and u,v be their eigenvectors corresponding to λ = 1, respectively.

Proof of Lemma 1 From Table 1 and Property (c), we have:

P0u ¼ u; and P1v ¼ v ðC:1Þ
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using (C.1) and Property (b), we have:

uTv ¼ P0uð ÞT P1vð Þ ¼ uTP0TP1v ¼ 0 ðC:2Þ
The proof of Lemma 1 has been completed.

Proof of Lemma 2 From Eq. (15), Lemma 1 and property (b) we have:

Cu ¼ λ0P0 þ λ1P1ð Þu ¼ λ0P0uþ λ1P1u
¼ λ0P0uþ λ1P1P0u ¼ λ0P0uþ λ1P

T
1 P0u

¼ λ0P0u ¼ λ0u
ðC:3Þ

Cv ¼ λ0P0 þ λ1P1ð Þv ¼ λ0P0vþ λ1P1v
¼ λ0P0P1vþ λ1P1v ¼ λ1P1v ¼ λ1v

ðC:4Þ

The proof of Lemma 2 has been completed.Abbreviations FrDTs, Fractional-order Discrete
Transform.; FrDTTs, Fractional-order Discrete Tchebichef Transform.; FrDTPs, Fractional-order Discrete
Tchebichef Polynomials.; DTTs, Discrete Tchebichef Transform.; SVD, Singular Value Decomposition.;
FrDFTs, Fractional Discrete Fourier Transform.; DFrSTs, Discrete Fractional Sine Transform.; FrDMMs,
Fractional discrete Meixner moments.; DFrKTs, Discrete Fractional Krawtchouk Transform.; FrHTs,
Fractional Hartley Transform.; FrMTs, Fractional Mellin Transform.; DCTs, Discrete Cosine Transform.;
FrDCTs, Fractional Discrete Cosine Transform.; NPCR, Number of Pixels Change Rate.; UACI, Unified
Averaged Changed Intensity.; MSE, Mean Square Error.; NIST, National Institute of Standards and
Technology; PSNR, Peak Signal to Noise Ratio
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