Multimedia Tools and Applications (2023) 82:32305-32328
https://doi.org/10.1007/511042-023-14565-0

®

Check for
updates

Task scheduling for improved response time of latency
sensitive applications in fog integrated
cloud environment

Rishika Mehta' - Jyoti Sahni? - Kavita Khanna?

Received: 9 September 2021 /Revised: 20 May 2022 / Accepted: 31 January 2023/
Published online: 3 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Fog integrated Cloud Computing is a distributed computing paradigm where near-user
end devices known as fog nodes cooperate with cloud resources hosted at distant
datacentres for providing computational and storage services to end user applications.
One of the most challenging issues in fog integrated cloud based system is task sched-
uling. Most of the existing scheduling approaches involve centralized decision making
which fail to exploit the advantages that may be achieved by a decentralized approach,
that directly maps with the distributed architecture of fog based systems. This work
proposes a decentralized heuristic algorithm for scheduling real-time IoT applications
bounded by tolerable latency as the Quality of Service (QoS) constraint. The proposed
technique aims to take into consideration the resource constraints of the fog resources to
yield a schedule that not only meets the QoS requirements defined in terms of tolerable
latency but also improves the response time of applications hosted on a fog-cloud
infrastructure. Performance evaluation on different IoT applications indicate that the
presented algorithm delivers better performance by reducing response time by 11% on
an average in comparison to the other state-of-the-art policies.

Keywords Internet ofthings - Fog computing - Task scheduling - Response time - CPU utilization

P4 Rishika Mehta
rishikamehtal0 @gmail.com

Jyoti Sahni
jyoti.sahni@ecs.vuw.ac.nz

Kavita Khanna
kavita.khanna@dseu.ac.in

The NorthCap University, Gurugram, India
Victoria University of Wellington, Wellington, New Zealand
Delhi Skill and Entrepreneurship University, New Delhi, India

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14565-0&domain=pdf
mailto:rishikamehta10@gmail.com

32306 Multimedia Tools and Applications (2023) 82:32305-32328

1 Introduction

In recent years, Internet of Things (IoT) has seen an exponential growth. It is being seen to have
huge potential to provide solutions to various real world problems in nearly all aspects related to
individuals, corporations, and society as a whole. Typical application of IoT involves devel-
oping smart environments in domains such as buildings, cities, healthcare, emergency, trans-
port, agriculture, supply chain, retail, lifestyle, energy, environment, tourism and culture [36].

One important aspect of the majority of IoT applications is that they generate vast volume
of data which is required to be analysed for subsequent decision making. Since cloud
computing has been used effectively to process voluminous data owing to its high processing
and storage capabilities [8, 37], the collaboration of IoT with cloud computing has been
explored in many research efforts [4, 13]. However, a major issue observed with cloud
computing is that cloud data centers are situated at a multi-hop radius from the IoT data
sources. This means that all the requests and data must be transferred to remote cloud which
significantly increases the response time of the applications. This may be suitable for some
applications but is not desirable in the case of time critical IoT applications such as early
warning systems in healthcare, manufacturing and meteorological services. Besides, IoT
devices are geo-distributed, generating a massive amount of data which if forwarded to the
cloud for analysis would overload the global Internet. If each tuple of IoT data is transmitted to
the cloud, increased application response time, bandwidth saturation of network channels and
degraded Quality of Service (QoS) might be experienced [23].

To overcome the aforesaid shortcomings of IoT and cloud integration, fog computing [9]
has been devised that makes the use of elastic compute and storage resources at the edge of the
network. The purpose is to bring compute, storage, and networking facilities near to the end-
users or the source of generation of data rather than dispatching it to the cloud [1, 6, 40]. The
aim is not to replace cloud with fog but to serve the requests that cannot be satisfied timely by
cloud alone. Fog computing produces faster response to events by dismissing a round trip to
the cloud. It processes extremely time-sensitive data near to the things [11]. Most often, a
collaboration of fog and cloud computing is required to cater for the QoS and resource
requirements of large-scale IoT enabled systems. While fog nodes provide local services
enabling low response-time and context awareness, cloud provides centralized services glob-
ally supporting long-term storage and complex analysis of data [12]. For requests which
require long-term storage or demand comprehensive evaluation entailing archival data-sets
(e.g. data backups and analysis), fog nodes only serve as gateways or routers to direct the
requests to the core cloud computing framework.

Any device with computing, storage, and networking capabilities lying in the path from IoT
device to cloud can act as a fog node. Fog nodes are generally resource-constrained (such as
networking devices like proxy servers, set-top boxes, switches, base stations, gateway routers
etc. which can be installed near IoT devices/sensors), heterogeneous and hierarchically
arranged in multiple levels forming a fog device layer between IoT device layer lying at the
bottom and cloud data centre layer at the top of the distributed computation model [6, 13]. IoT
applications hosted on fog-cloud environment are generally considered as a set of lightweight
and interdependent tasks or modules which can be deployed on to distributed fog and cloud
resources [35]. Scheduling these application tasks onto distributed fog and cloud resources is
therefore an optimal assignment problem. It involves assigning application tasks to the
pertinent nodes such that the desired QoS requirements are met under the restrictions imposed
by the limited capacity and heterogeneity of the underlying fog resources [3].

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32307

Below, two example scenarios are discussed where Fog Computing can be utilized to
reduce the application response-time in order to enhance real-time experience of the end-users.

Traffic management system Intelligent Transport System (ITS) aims to improve traffic,
timely identify possibilities of collision, reduce stop-time of vehicles and provide other value
added services. ITS involves building a vehicular network where each vehicle is equipped with
sensors, processors and wireless communication modules. While the processing capabilities of
the processors embedded in vehicles are limited, ITS applications require frequent data
processing and demand faster response. For this reason, many ITS applications leverage cloud
infrastructure to execute and deliver services, which however, is not appropriate for
many latency sensitive ITS applications. Furthermore, depending exclusively on the
centralized cloud for these high priority services results in communication overhead,
which exhausts the network bandwidth and increases the response time, consequently
reducing the overall system performance. To provide response to the moving vehicles in
real-time, road side units generally spread out in various parts of the city can be
effortlessly promoted to function as fog nodes. These road-side units take region-level
decisions and provide diverse services to intelligent vehicles, such as video-surveillance,
navigation and regulation of traffic lights for reducing congestion. In contrast, cloud
servers can be used for processing data for long term purposes such as study of usage
models and predictive analytics.

Fall detection system Falls are considered risky for the elderly people as it can severely
impact their health. For older people living alone, a stumble at home can be very risky as they
might not be able to get assistance. Studies indicate that more than 20% of individuals who got
admitted to the hospital following a fall have been on the ground for longer than an hour [22].
Specifically, half of the people who remain on the ground for more than an hour following a fall, die
in a span of six months even without experiencing direct injury, reflecting a decline in general health
[38]. A fall, if not assisted in time, can cause functional impairment in elderly people. In many cases,
to detect the fall, accelerometer in smartphone is employed to continuously collect the movements of
aged persons [42]. The sensed data is dispatched to the cloud and then, notifications from the cloud
are sent to the patient’s care-providers in the event of an emergency. Since accelerometer generates
voluminous data, it requires high bandwidth as well as fast internet speed to send the data in its
entirety from smartphones to the cloud. Continuously sending a large volume of data (i.e. hundreds
of GBs) from the smartphone to the cloud increases the response time. For example, a late
notification from the cloud to a doctor can lead to a delayed response in case of critical head-injury,
which might result in death. In this case, the doctor could provide emergency assistance (e.g.,
preventing bleeding) to save the patient’s life if the doctor was aware of the issue in real time.
Therefore, the identification of a fall must be carried out in real-time which cannot be achieved if the
application tasks are scheduled solely in the remote cloud. One of the possible ways to address this
issue is to send the data from various patients to the proximal fog nodes where data can be processed
in parallel enabling detection of the fall in a reasonable time-span. Besides reducing the response
time, it also reduces the network congestion and overall cost of using cloud resources.

Both the scenarios discussed above depict potential response-time sensitive applications
that may benefit by leveraging fog-cloud infrastructure and are suitable use-cases for our
proposed work.

In this paper, we study the problem of task scheduling in a fog-cloud integrated environ-
ment with the objective of meeting the latency constraints and improving the overall response

@ Springer

32308 Multimedia Tools and Applications (2023) 82:32305-32328

time under resource limitations experienced at fog nodes. Specifically, the problem involves
multiple users where each user submits a time-sensitive application as an interdependent set of
tasks that is to be executed within its pre-defined user’s tolerable latency; the objective is to not
only meet the user defined tolerable latency but also to reduce the overall response time of the
submitted applications. This not only helps meet the QoS requirements of latency sensitive
applications but also improves performance as observed by the user by making the best use of
available resources. We present a solution to this problem by proposing a distributed task
scheduling strategy that takes advantage of fog computing environment while taking into
consideration the resource constraints in order to generate a schedule that executes the tasks of
multiple IoT applications within user-specified tolerable latency while improving the overall
response time of the applications.

The organization of the paper is as follows. Section 2 reviews the literature on task scheduling
in fog computing. Section 3 presents the DAG-based application structure and the fog-cloud
architecture considered in this work. Section 4 describes the problem definition, followed by
Section 5 where the proposed task scheduling algorithm is presented. Performance evaluation
based on the experiments is detailed in Section 6 and finally, Section 7 concludes the work.

2 Related work

Task scheduling on distributed resource(s) is an NP-hard problem as elucidated in [20]. To
deal with this intractable problem, it is assertive to apply heuristic or metaheuristic optimiza-
tion techniques for yielding comparative or near-optimal solutions. To meet the demands of
delay-sensitive applications, most of the existing works propose utilizing fog computing for
task scheduling. In this section, some current contributions of the field are surveyed.

Guevara and Fonseca developed a task scheduling technique based on Integer Linear Pro-
gramming for reducing the makespan of submitted IoT based applications [18]. The authors
employed a classifier at the edge of the network to label the submitted applications according to
their QoS requirements. The labels can be Best-effort, CPU-bound, Streaming, Conversational,
Interactive, Real-Time or Mission-critical; out of which the authors considered real-time as well as
delay-tolerant applications. Based on the assigned label and resource availability, the scheduler
determines fog or cloud resource where the job should be scheduled. This approach is evaluated
on EEG tractor beam game and Video Surveillance applications. Results depict that the proposed
technique reduces makespan compared to the traditional task scheduling techniques.

Mahmud et al. proposed a heuristic-based technique to cater to latency-aware module
placement over the fog environment [24]. In this module placement policy, two algorithms
are proposed. The first algorithm focusses on meeting the user-defined tolerable latency by
treating latency-sensitive and latency-tolerant applications differently. The second algorithm
optimizes the resource usage by relocating an application module from an under-occupied node
to an over-occupied node in the same cluster based on the first-fit policy. However, the policy
does not serve user requests faster by reducing the response time as it does not favour the
placement of tasks in the lower level fog nodes even if there is enough resource availability.

Skarlat proposed a conceptual architecture for provisioning of the resources and placement
of the services in the fog environment [31]. Authors proposed the idea of fog colonies which
consist of arbitrary number of fog cells and employed genetic algorithm to place the services in
fog cells. This algorithm is evaluated in terms of resource usage, response time, processing
cost and deadline adherence.

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32309

Liu et al. introduced a multi-objective mathematical model by performing computation
offloading in the fog system to create a trade-off between delay, energy, and cost parameters
[21]. By utilizing queuing theory, different queue models are created for fog resources, mobile
nodes, cloud data centers, and wireless channels. This optimization strategy with multiple
objectives is converted into a single objective optimization approach which is solved using
Integer Point Method (IPM). Simulation results depict the supremacy of the approach over
state-of-the-art approaches. However, the employed model is centralized due to which it suffers
from low availability and scalability as the central node is susceptible to single point of failure.

Yang et al. developed a task scheduling approach utilizing homogeneous fog infrastructure
[39]. The policy employs Lyapunov optimization strategy for reducing energy consumption
along with the service delay. Various mathematical models for offloading the tasks, data
transmission, handling of the incoming traffic, and queuing are built to develop a comprehen-
sive analytical framework. Simulation results as well as theoretical study showcase the supe-
riority of this presented approach when compared with Least Busy Scheduling and Traditional
Random Scheduling policies; however, low scalability is an issue with this strategy.

Ni et al. proposed a dynamic strategy for allocation of resources on the basis of Priced Timed
Petri Nets (PTPN) in fog environment [27]. The central idea of this strategy is to improve cost,
makespan as well as the efficiency of the fog resources. The authors created PTPN models which
dynamically allocate the tasks to the fog devices. Empirical results of this approach depict
efficient resource selection and better utilization of chosen resources when compared with
existing approaches. However, this strategy can be further improved by incorporating learning
function in resource provisioning strategy to offer better services to the clients.

Bitam et al. introduced bee life optimization strategy to deal with the job scheduling
problem [5]. This technique works in multiple phases. In the first phase, an end-user forwards
a service request to the nearby fog resource. In the next phase, the fog resource forwards the
information relevant to the request to an administrator node. In the third phase, the centralized
administrator breaks down the job into a number of tasks and executes bee life algorithm to
determine an optimal schedule. In the fourth phase, tasks are processed on the fog nodes as per
the schedule. In the next phase, all the fog nodes forward the results to the administrator node.
The administrator then combines the results and forwards the response to the end user via a
primary fog node. The effectiveness of this approach is determined based on the makespan and
total memory consumption in executing all the tasks. However, this algorithm functions as a
centralized algorithm and follows static scheduling which is not effective for the real-time
environments in which new traffic keeps on entering the system when existing requests are
already being served.

Xuan-Qui et al. introduced a heuristic-based approach for task placement problem to find an
optimal balance between the monetary cost and task execution time in fog-cloud infrastructure
[28]. There are three stages to the task placement approach. In the first stage, the priority of the
task is determined. In the next stage, a suitable fog or cloud node is allocated to the task in order
to attain an optimum balance between the cloud cost and the makespan. In the last stage, the
resulting schedule from the previous stage is fine-tuned to satisfy the predefined tolerable
latency. To reduce the total makespan, the best node for each task on the critical path is selected.

Brogi and Forti proposed a generic model for IoT application deployment over the fog
environment [7]. The authors accessed the quality of considered framework based on band-
width utilization and latency metrics. Whilst creating pertinent applications, model based tools
can be utilized during design, deployment and run time phases. Authors implemented one such
tool, FogTorch in Java. By applying various aspects relevant to fog, certain concerns have

@ Springer

32310 Multimedia Tools and Applications (2023) 82:32305-32328

been carefully considered including (i) the proposed solution disregards the communication
technologies at each tier, focusing solely on their quality of service (ii) the fog nodes can have
different computational capabilities with no dependence on particular hardware or software
(iii) all kinds of components of the application and IoT devices are suited.

Kafhali and Salah proposed a queuing based analytical model to examine the effectiveness
of fog-cloud integration in an IoT environment [14]. The presented model depends on following
metrics: QoS, amount of fog nodes required, and maximum supported load. Given the two
metrics, the third one can be determined. The analytical framework consists of edge devices,
cloud data center and cloud gateway. From the analytical framework, numerical formulas are
formulated for the key parameters such as throughput, CPU utilization, average message
requests, loss rate and response time. Extensive simulations were performed using discrete-
event simulator to show the effectiveness of the presented approach.

Guerrero et al. introduced a decentralized algorithm for the placement of services in a fog
system [17]. The central idea of this policy is that it places the most requested services near to
the end-users. The approach used depicts its effectiveness through hop count metric as the
user-nearness indicator. The approach determines the task priority according to its request rate.
The most requested services are the ones with the highest priority. The algorithm places the
most popular services near the clients and migrates lesser demanded services to the fog devices
lying up in the hierarchy. The policy reduces usage of the network and improves service
latency for the most requested services. However, it increases the service latency and count of
service migrations for the less requested services.

Ramasubbareddy and Sasikala proposed a response time based approach for task offloading
in a cloudlet environment [29]. A mobile user submits a task request to the centralized cloudlet
controller. The centralized controller creates and keeps a record of the response times of the
cloudlet servers and selects an appropriate cloudlet server on the basis of minimum response
time. The proposed strategy tries to balance the load on the computational servers while
choosing an apt computational server each time. Experiment based evaluation of this technique
with existing approaches shows outcomes in favour of this policy.

Gupta et al. introduced a distributed task scheduling strategy, Edgeward for scheduling
tasks based on the resource requirements [19]. This policy schedules the tasks in each leaf-to-
root path between end-devices and cloud. Tasks from the different paths are combined if they
are allocated the same device and shifted to the parent device to combine both the instances
even if the nearby devices have adequate resource availability. The results of this policy are
compared with cloud-based placement strategy to showcase the benefits of task placement in
the fog environment.

Deng et al. presented a mathematical framework for the problem of allocation of workload
examining a balance between power consumption and transmission delay in fog-cloud
environment [12]. The primal problem(PP) is decomposed into sub-problems, which are
solved using existing optimization techniques. It aims to find an equilibrium between power
consumption and delay in the fog subsystem using convex optimization techniques. The
second sub-problem is a mixed integer nonlinear programming (MINLP) problem. Since
MINLP is computationally complex to solve, generalized blenders decomposition (GBD) is
employed to find an equanimity between computation delay and power consumption in the
cloud computing environment. Considered as an assignment problem, the last subproblem tries
to reduce the transmission delay from fog device to cloud resources for a defined rate of traffic
by using Hungarian method. It is evident from this policy that by exploiting fog resources,
network bandwidth is saved and communication latency is reduced which considerably

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32311

enhances the overall performance. However, this workload allocation policy follows a cen-
tralized strategy that is less favoured for fog computing system.

Zeng et al. proposed a heuristic algorithm by exploiting the energy harvesting potential of
the fog nodes by utilizing service composition in the fog-cloud environment [41]. This policy
is developed for Cyber Physical Systems by making the use of green energy in the fog
resources. By considering the distribution of fog nodes in a large geographic area, partial
requirement of the energy as green energy can be fulfilled by making use of natural resources
like wind and sun. In order to enhance the throughput of the system, proposed strategy
considers service replica deployment, load balancing and source rate control. CPS energy-
efficient application mapping approach is formulated as a mixed integer linear programming
problem. Since this problem is NP-Hard, it is addressed by developing heuristic approach.
Experimental evaluation of the presented approach yields near-optimal results. However, the
proposed strategy is centralized due to which it has low scalability.

Craciunescu et al. designed a latency aware task mapping technique in healthcare domain
[10]. The proposed algorithm tries to improve the response time by mapping majority of the
tasks locally or on the fog devices rather than forwarding to a cloud data center. This approach
recognizes the undesirable events such as leaking of gas in a home-setup and reports the
occurrence by issuing a notification to the user in a shorter period of time. The algorithm is
empirically tested in a real-time home environment and is able to identify the inappropriate
events with more than 90% accuracy.

Gu et al. developed a resource management algorithm for cost minimization in a fog
integrated medical cyber physical system [16]. An MINLP problem is formulated while also
considering task distribution, virtual machine placement and base station association in order
to minimize the cost. Further mixed integer linear programming problem is introduced to
reduce the computational complexity of MINLP and finally, a heuristic algorithm is designed
which has low complexity. The evaluation results show a noticeable reduction in delay as well
as cost.

Stavrinides and Kratza proposed a heuristic based dynamic scheduling strategy for IoT
workflows [33]. The approach tries to place computation intensive tasks on cloud while
communication intensive tasks are placed on fog resources. The authors claim that the
proposed policy makes effective use of slack time by scheduling ready tasks on the fog or
cloud resources. The algorithm is tested on synthetic workload and is able to attain lesser
deadline miss ratio but at significant monetary cost.

Table 1 offers a brief overview of the related works on task scheduling in a distributed fog-
cloud environment. Most of the existing task offloading strategies follow centralized task
scheduling approach. In centralized approach, all the tasks are submitted to the centralized
broker which makes task scheduling decisions [26]. The major drawbacks of this strategy
include additional latency due to decisions being transmitted between centralized broker and
other computational servers, additional network overhead, chances of centralized broker being
susceptible to single point of failure and scalability issues. Moreover, the existing approaches
mostly focus on meeting user-defined tolerable latency without simultaneously focusing on
reducing application response time which is desirable in real-time [oT applications. Therefore,
we propose to tackle the problem of task scheduling in a decentralized manner, where each
computational server takes independent decisions on task scheduling based on its resource
availability to not only meet pre-defined user’s tolerable latency but also reduce the overall
application response time. Additionally, the proposed policy reduces hop count of the appli-
cation tasks and optimizes resources in the fog-cloud distributed environment.

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328

32312

SS

a a
A

>
SSSS

SSS OSSN

SS

S a
a
a

SSON NSNS SN

S

a
A

SHOM SHYL
[g€] ezyery] pue sopruLABnS
[91] e 32 nD
[01] Te 30 nosunoEr)
[1¥] ‘e 30 Suaz
[z1] e 10 Sueg
[61] mdno
eIRYISES puk Appareqqnsewie
6] eresises pue Appareqqnseurzy
[L1] "Te 10 o1o1IoND)
[¥1] yeres pue regesy
[£] o4 pue 1501g
[82] ‘T8 10 mO-ueny
[¢] Te 10 weng
[£2] Te 19 IN
[6€] e 30 Suex
[17] Ry
[1€] e 10 yepexs
[+2] "Te 1o pnuwen
[81] Boosuoy pue eieasns

uonezimnn
Aiqeress 20IN0SAY

JUSWAR]J
pamnquysiq

Kouaye| wuno) ou,
J[qeIR[o], doyg asuodsay

syse}
juapuadapuy Ajjemnjy

syse}
Juapuadap-1aju]

Ppalopisuo)) sipewered

adA 7, uoneorddy

oM

SYIOM Paje[al passnosip jo uostredwo) | djqel

pringer

A

Multimedia Tools and Applications (2023) 82:32305-32328 32313

3 The system model

This section discusses the application model, fog resource model and overall computing
system architecture for resource provisioning and task scheduling in the fog integrated cloud
environment.

3.1 Application model

An ToT application is generally modelled as a workflow based application W = (7, E) [35],
where T = {t;, b, ..., t, } is a set of vertices that denotes the application tasks and £ = {e,,
e13, ..., ennt 1s a set of directed edges that represents control and data dependencies among the
tasks. The data and control dependencies among the tasks ¢ and ¢ is represented by an edge ¢;;
where e; e E 5 t;, t;e Tand t; # ¢,

The precedence constraint (depicted by e;) between the tasks # and # signifies that child
task #; cannot initiate to execute until parent task # has completed its execution. Therefore, a
child task does not execute until each of its parent tasks are finished with the execution and the
corresponding control and data dependencies are met. Figure 1 shows an exemplary workflow
model for fall detection.

3.2 Fog resource model

Figure 2 below depicts the fog resource model considered in this work. The model consists of
geographically distributed, hierarchically arranged, heterogeneous and resource constrained
computation, storage and networking facilities.

The hierarchical structure of the fog nodes in the model conforms to the real world fog
based architecture where the capacity of fog nodes increase while moving up in the hierarchy
[2]. Further, the lower level fog nodes reside closer to the end-user devices and typically
provide application interfaces. Most often, the fog nodes take their scheduling decisions based
on the resource availability. Our work makes a number of assumptions including (i) the fog
nodes at the same level are homogeneous while those at different levels are heterogeneous in
terms of computational capacity (processing core count, RAM and Bandwidth) (ii) nodes from
a given level connected to the same parent form a cluster and (iii) a particular fog node at any
given time instance belongs to only one cluster. Nodes within a cluster interact with each other

P N
¥ @ Preprocessing and D’Oo
any ¥ \e’ Normalization o 58,
Accelerometer ~_ 1, 7> O 2 Sy S
K & &
$
Client Gait Analysis
o
O
S Fall
WO 0 e > :
; \) L7 detection
Display G,a‘eQ 9/@,7/ /" Emergency Alert

) Handler B J

Fig. 1 Application model of elderly fall detection

@ Springer

32314

Multimedia Tools and Applications (2023) 82:32305-32328

Cloud

@)) (@) 1) (o)) (@) {)

Fig. 2 Clusters in Fog Layers

Cloud
Fog Level 3 A
Fog Level 2 Fog Layer
Fog Level 1 \4
(o)],,)) (@)],,)) (o)],,)) (©)],,)) End devices (loT Sensors

and Actuators)

through networking standards such as Constrained Application Protocol (CoAP), a REST
based web transfer protocol. Inter-nodal communication latency is thus considered negligible
among the nodes of the same cluster [24, 32].

3.3 System model task scheduling framework

Figure 3 depicts the task scheduling framework in a fog-cloud environment that is considered
in this work. Each fog node has a component Resource Management System (RMS) respon-
sible for scheduling the tasks of an application.

An end-user connects with the nearest fog node in order to submit the workflow together with its
QoS requirements i.e. tolerable latency and resource specifications. Tolerable latency is the

Fog node

RMS

Resource Management System

Task Execution Controller

i

[Task Scheduler]
A

Resource Administrator

Resource Capacity \ Resource Allocation
Assessment Component | Component

Workflow, Tolerable Latency,
Resource Specifications
o

¥

End-User

Fig. 3 System Model for Task Scheduling in Fog-Cloud Environment

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32315

maximum allowed time period up to which all tasks of an application should complete their
execution while resource specifications describe the CPU, Memory or Bandwidth requirements of
the application. After an application workflow is submitted to a fog node, the RMS in the node
analyses the resource requirements, allocates the appropriate resources (if available), schedules and
monitors execution of the application’s tasks. If the required resources are not available, the fog node
forwards it to other fog node in accordance with a predefined policy. Predominantly, RMS has three
components: Resource Administrator, Task Scheduler, and Task Execution Controller. Resource
Administrator component has further two sub-components: Resource Capacity Assessment com-
ponent and Resource Allocation component. Resource Capacity Assessment component determines
the resource requirements of a task while the Resource Allocation component allocates the required
resources to the task and releases them after the task execution. The Task Scheduler keeps a track of
the order of execution of the different tasks mapped onto the fog node while the Task Execution
Controller executes the scheduled task.

4 Problem definition

Considering a group of n users denoted by the set U = {Uj, U,, ..., U,} where each user U;
submits a workflow based loT application A; consisting of a set of tasks M = {¢,, b, ..., t,} along
with its tolerable latency 7; the objective is to execute these applications on a fog-cloud infrastructure
while honouring the tolerable latency and also improving the response time observed by the users.

Formally, given a set S = {(A, 1), (A2, ™), ..., (A,, 7,) } of workflow based IoT
applications, where each application A; is associated with a user’s tolerable latency 7;, and a set
of fog-cloud resources FC = {{F, F,, ..., F;}, {Cy, Cy, ..., C;}} with different processing
capabilities, the objective is to find a schedule of the tasks of the different applications onto the
fog-cloud resources such that the QoS requirements w.r.t tolerable latency are met and the
response time is minimized. It is to be noted that the tolerable latency defined by the user
depicts a threshold value for response time and if the observed response time exceeds the pre-
defined tolerable latency, the user experience deteriorates considerably which is not desirable.

Evidently, the response time of an IoT application relies on two important factors: a)
processing time of the different tasks, that depends upon how different tasks of the application
are mapped onto the fog-cloud devices and b) transmission time required for task offloading
and receiving the response back to the user device and is given by Eq. 1 as follows.

RT; = Y P, +TT; :te€A;seFC (1)

where, P; represents the processing time of application’s task ¢ scheduled on the computational
server s. T7; is the transmission time involved in offloading of tasks and for communication of
control signals/data between the different tasks of the application that are hosted on diverse
resources in the fog-cloud architecture. Specifically, transmission time is incurred when applica-
tion tasks (including code and/or data) are offloaded on to the computational servers via an uplink
channel or via a downlink channel during transmission of response to the requesting [oT devices.

Therefore, the total transmission time is the consolidation of time taken to relay the tasks to
the computational resources and the time incurred to send the response from computational
server to the user which is defined in Eq. 2 as follows.

TT; = TT" + TT¢ (2)

@ Springer

32316 Multimedia Tools and Applications (2023) 82:32305-32328

where, TT? is the uplink transmission time and 77" f is the downlink transmission time defined
in Eqgs. 3 and 4 below.

IT! =TTy 6 + X1 TTGx (3)

where, E is the user end device, G ¢ F'is the client gateway, K € FC is any node within the fog-
cloud infrastructure.

TT¢ =TT, (4)
where, S is the node where the exit task of the application is scheduled.
Keeping the above points in consideration, a task scheduling algorithm for improved

response time of [oT applications, IRTTS, is proposed in the next section. Table 2 lists the
different notations used in the proposed algorithm.

Table 2 Notations

Symbol Meaning

A Set of applications in the system

T User-defined application tolerable latency

F Set of fog nodes in the system

L Set of all tasks in the system

M Set of tasks belonging to same application A; ¢ A; McL
R Set of all the resources (e.g. CPU, RAM, Bandwidth etc.)
G Client Gateway

t. Current task to be scheduled

b Previous task which is already scheduled

F, Current fog device under consideration for scheduling task 7.e M

Fl Fog node i on level j

R;'eeq Resource requirements of task #,e M

R (fc‘c Amount of occupied resources on fog device F;eF

RE . Maximum resource capacity of device F;eF

R(Fa}/; Maximum resource capacity of device F; at level j; F;eF

ROFC,’C Resource usage of device F; at level j; F;eF

RS Amount of occupied resources on cloud

Rglp Resource capacity of cloud

© Minimum Threshold limit for optimum resource usage

p Maximum Threshold limit for optimum resource usage

Ocd Perceived communication delay in the system (e.g. uplink latency)
e Equals to 1 if task is scheduled, 0 otherwise

G Cluster of fog nodes

p, f Processing time of task 4 in node Fy ¢ F; t; e M

B, Maximum allowed latency budget of each task #,e M

Yc; Maximum inter-nodal communication delay in cluster C;

Host(#;) Fog node where task ¢ is scheduled; ;e M

Parent(F;) Parent of fog node F;eF

TT(F, F)) Perceived communication delay between two nodes F; and Fj; Fy, F;eF
Dg Sensor emitting data

D, Actuator receiving the response

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32317

5 The proposed task scheduling algorithm - IRTTS

In order to initiate an application’s execution, the end-user connects with the nearest fog
node and submits the application together with its specification. At this point, the
scheduling process starts in coordination with the RMS (Fig. 3) of the fog node.
Scheduling decisions are made by the Resource Administrator in coordination with
the Task Scheduler of the RMS by employing a procedure — ScheduleTask. The
procedure takes the following inputs: current node, to-be-placed task, previously placed
tasks, perceived communication delay, application’s tolerable latency, lower utilization
threshold and an upper utilization threshold. Here, current node is the host where the
parent task is scheduled and tolerable latency defines the maximum response time that
can be observed by the end-user without adversely affecting the user-experience. For
every task to be scheduled, the Resource Administrator along with Task Scheduler of
the RMS computes latency budget for each task based on the task instruction length.
This information, together with two utilization thresholds, lower and upper, is then used
by the procedure ScheduleTask to find a task-node mapping. The objective behind using
two utilization thresholds is to maintain a balance between the utilization of individual
fog nodes, overall utilization of the fog-cloud infrastructure and the QoS requirements
of the applications [15, 25]. As long as the resource utilization at lower level fog nodes
is less than the lower threshold, any new task can be scheduled on these nodes, however
when the utilization exceeds lower threshold, the proposed algorithm checks to see if
the given task can be placed at upper level fog nodes without compromising the QoS. If
the QoS is compromised, the new tasks are nevertheless placed at lower level nodes
until the resource utilization at these node reaches the upper threshold. Thus, while
lower threshold ensures that some amount of resources are always reserved at lower
levels to cater to the applications with strict response-time requirements, upper utiliza-
tion threshold prevents overprovisioning of the nodes.

The procedure starts by scheduling the entry task which is always scheduled at the
nearest fog node known as the client gateway; once the entry task is scheduled on the
client gateway, the scheduling process for the subsequent tasks is initiated which are
then placed based on the application’s tolerable latency and the resource constraints of
the fog nodes. If a parent task is already scheduled on a given node, the ScheduleTask
procedure checks to see if the child task can also be placed at the same node without
exceeding the lower threshold. If it is not feasible to host the task on the same node
where parent task is scheduled, task’s latency budget is used to check if it can be routed
to an uplink node. In the case when latency budget of the task does not allow it to be
hosted on an upper level fog node, the procedure checks if upper threshold capacity of
the current node can accommodate the task; otherwise, it tries to schedule the task onto
some other node in the same cluster with an inter-nodal delay of y.. If no node in the
cluster has adequate resources to host the task then the task is forwarded to its uplink
node with perceived communication latency d.;, which might possibly result in QoS
violation. This cycle continues until the current node is cloud; all the unmapped tasks
are then scheduled onto the cloud resources. The run time complexity of the proposed
algorithm is O(m*(c + k)), where ¢ and k represent cluster size and number of levels in
fog-cloud hierarchical infrastructure respectively. The pseudo-code of this procedure is
shown in Algorithm 1.

@ Springer

32318

Multimedia Tools and Applications (2023) 82:32305-32328

Algorithm 1 IRTTS Task Scheduling Algorithm - ScheduleTask

1.

R B A ol ol

— o~
* N

NN N
X @k W

AR R W W W W W W
N~ S0 NSk =

N
Q@

NN
o

W
N~

- e

—
IS

~ o~
S

NN =
N o v

W N N b
S 0 % N

AR
N »

%3 IS
S ~

v
hed

ScheduleTask (Fu, te, tp, 8.4, T, @, 1)
if t. is not null

F, « Host(t,) //Fiwould be same as F, for the child of entry task
if E, is Cloud then
Schedule unmapped tasks on Cloud
else
if(Rig, < (RE, + @)= RIY) /g is the lower threshold
Rt < Roic + Ry
Seqg & 8cq +TT(FL E) //TT(Fy, F,) would be zero if Fi=F,
TL « TL + TT(F,F) + B
Increment count_tasks and set F) to F,
Add t, to list of placed tasks on node F,
Set € to true
else
F, < Parent (F,;)
if(TL + P:p + TT(F, F,)) < B, //Check if task can be scheduled on parent node
ScheduleTasks (Fy, te, tp, 8cq, T, @, 1)
else
if(Ri, < (RI:, +) — R{%) /. is the upper threshold
Rt « Roic + Rigy
Sca « 8ca + TT(Fi, Fy)
TL « TL + TT(F,F)+ B
Increment count_tasks and set F, to F,
Add t, to list of placed tasks on node F,
Set € to true
else //Check cluster nodes of current node F,
For each node F; in Cluster C,
i (Rigy < (Rigy * W) — Rilo)
Rote « Rt + Ry
8cq < 8ca + TT(F,F)
TL « TL + TT(F,F)+ B
count_tasks < count_tasks + 1
F < F;
Add t. to list of placed tasks on F;
set € to true
break
End-if
End-if
End-if
End-if
End-if
if (e == false)
E, « Parent (F,)
ScheduleTasks (Fy, te, tp, §ca » T, @, 1) //Scheduling the task on uplink node
End-if
t, < te
t. « Fetch the next task from the list of tasks, M
ScheduleTasks(Fu, te, tp, 8ca , T, ¢, 1)
if exit task is scheduled on F,
RT « TL + TT(F, ud) //Response time is calculated
End-if

else

Return

End-if

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32319

6 Performance evaluation

This section evaluates the performance of our proposed algorithm by conducting simulation
tests in iFogSim [19]. We evaluated our proposed task scheduling technique against central-
ized task placement policy CASSIA-RR [18] as well as distributed techniques LAMP [24] and
Edgeward [19]. CASSIA-RR [18] is a recently proposed task scheduling policy aimed at
minimization of makespan of IoT applications. The Latency-aware module placement
(LAMP) algorithm [24], is one of the most cited algorithms for placing application modules
in distributed fog environment while meeting the service delivery latency. Edgeward [19], on
the other hand, is an in-built distributed task scheduling strategy in iFogSim.

CASSIA-RR is a centralized task scheduling policy which employs randomized rounding
technique to develop an approximation to the Integer Linear Programming based exact
CASSIA-INT strategy. The authors employed a classifier at network’s edge to label IoT
applications as Best-effort, CPU-bound, Streaming, Conversational, Interactive, Real-Time
or Mission-critical. Based on the class of application, appropriate processing layer is chosen
where the task is scheduled. LAMP policy considers DAG-based IoT applications. It treats
applications with strict tolerable latency differently from the ones with relaxed tolerable
latency requirements. It schedules the tasks with stricter latency requirements horizontally in
the cluster while the tasks with relaxed latency requirements are placed vertically upwards.
Additionally, this policy performs forwarding of the modules in order to optimize the
resources. Edgeward on the other hand, schedules application’s tasks following First-In-
First-Scheduled strategy on leaf-to-root paths between users and the cloud on the basis of
availability of resources on the computational servers. The task instances from different paths
are merged if scheduled on the same device and migrated to parent if required. Both these
algorithms (LAMP and Edgeward) take local decisions for scheduling the task and does not
get influenced by any other entity similar to the working of the policy proposed in our work.
However, Edgeward [19] is a general policy, that schedules tasks based on the resource
constraints of the resources and does not aim towards satisfying the user-specified tolerable
latency that has been taken into account in CASSIA-RR [18], LAMP [24] as well as in our
work.

For evaluating the effectiveness of our proposed algorithm, a tolerable latency is necessary
to be defined for each considered application. If the tolerable latency is set considerably high
then there would be sufficient slack time to accommodate all the application tasks on the cloud
which would result in a longer observed response time. Therefore, a comprehensive analysis
demands evaluation on all possible tolerable latencies: Strict, Moderate, and Relaxed. Different
tolerable latency range are defined according to the rule mentioned in Eq. 5.

Tolerable Latency (1) = (1-a) *RL(A;) (5)

where:
a) RL(A;) is the maximum tolerable latency, beyond which the user experience is adversely
affected. For the experiments, Maximum Tolerable latency RL(A;) of applications, are

defined similar to the tolerable latencies for real-time applications [34].
b) « is the tolerable latency factor defined in Table 3.

@ Springer

32320 Multimedia Tools and Applications (2023) 82:32305-32328

Table 3 Tolerable latency Range

Tolerable latency Range

Strict 0.5<x<0.75
Moderate 0.25<x<0.5
Relaxed 0<x<0.25

For the experiments, in each category, tolerable latency value were randomly generated
within the specified range.

6.1 Experimental setup

For evaluating the performance of our proposed work, a fog-cloud environment is modelled as
a tree-based topology where nodes are assumed to be hierarchically arranged across four
levels, comprising of three levels of fog nodes-FL;, FL, and FL; and a top-most level of cloud
resources hosted in datacentres. The resource capacity of fog nodes in terms of bandwidth and
storage is considered sufficiently high to accommodate all the tasks assuming computational
capacity as the only constraint for scheduling the CPU intensive tasks.

To evaluate the effectiveness of the proposed policy, three IoT-based applications are
simulated (Table 4), similar to the ones employed in [5]. The instruction lengths of different
tasks in these applications have been chosen to represent three different types of applications -
light-weight (A;), medium-weight (A,) and heavy-weight(As). The topology of all the appli-
cations is similar to the one shown in Fig. 4.

To evaluate the proposed algorithm on different configurations of fog-cloud architecture,
different simulation environments were created by changing the numeration of fog resources
and the count of connected end-users. The simulation parameters employed in the experimen-
tation are listed in Table 5. Experiments were performed on each application by considering
various possible values from the specified range of tolerable latencies.

6.2 Experimental results
An extensive evaluation of the presented approach and its comparison with CASSIA-RR [18],

Latency Aware Module Placement (LAMP) [24] and Edgeward [19] is performed. To this end,
fog environments with different topology configurations are simulated and experiments are

Table 4 Instruction length of each

task of an application Application Task Task, Tasks Tasky
Ay 1.5x10° 1x10° 2x10° 0.5x10°
A,y 1x10° 1.5x10° 3x10° 1x10°
A 0.5x10° 2x10° 3.5%107 2x10°
Ser,
Sensor J ! ﬁfOrmzign
> 3
| Task1 » Task 2 » Task 3 » Task 4 }
——— _——
Actuator “ potion T

Fig. 4 Topology of IoT Application

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32321

Table 5 Simulation parameters and their values

Evaluation Parameters Value

Processing Rate (MIPS)

Cloud 20,00,000
Fog Node Level 3 12,000
Fog Node Level 2 8000
Fog Node Level 1 4000
Topology Configuration

No. of Gateways [4, 8, 40]
No. of Fog nodes per gateway [4, 8, 40]
No. of Users per Fog Node [8, 37]
Communication Delay (ms)

Fog Node Level 3 to Cloud 85-125
Fog Node Level 2 to Fog Node Level 3 55-75
Fog Node Level 1 to Fog Node Level 2 25-45
End device to Fog Node Level 1 5-15
Inter-nodal communication delay among Fog Cluster Nodes (ms) 2-5

No. of Applications 3

No. of users [8-256]
Fractional Selectivity 1

carried out to assess the proposed algorithm in terms of response time, QoS requirements met,
CPU utilization and tasks distribution under different values of tolerable latencies depicting
different applications with strict, moderate and relaxed latency requirements.

Response time We measure the response time separately for each application by varying the
number of users under three different constraints on tolerable latency i.e. strict, moderate and
relaxed. In the following figures, IRTTS represents the outcomes of our proposed algorithm,
and those of Edgeward, Latency-aware module placement and CASSIA-Randomized
Rounding are reflected by Edge, LAMP and CASSIA-RR respectively.

From the analysis of the results in Fig. 5(i), 5(ii), and 5(iii), it can be observed that IRTTS
delivers the least response time in comparison to Edge, LAMP and CASSIA-RR. This is
because the proposed approach schedules inter-dependent tasks on the same computational
device, if possible, or on the devices in the same cluster. This results in reduction of the
communication delay thereby, significantly improving the response time of the applications.
However, all the three policies Edge, LAMP and CASSIA-RR do not favor task mapping near
the end-users. Specifically, LAMP tries to place the tasks as far away from the users as
possible unless QoS in terms of application delivery deadline is not violated; CASSIA-RR
maps the tasks based on the assigned application label at the suitable distant layer of the
hierarchical fog-cloud infrastructure beyond which QoS tends to get dishonored; Edge on the
other hand does not examine the possibility of horizontal task mapping on the cluster nodes,
consequently, forwarding the tasks to higher levels whenever current node is not able to host
the given task. Our proposed policy, therefore, outperforms all the three policies Edge, LAMP
and CASSIA-RR for each category of tolerable latency. It is significant to mention here that
each evaluation test is performed at least 25 times and the average of the results obtained are
depicted.

QoS requirements met Figure 6(i), (ii), and (iii) represent the overall percentage of schedules
satisfying Strict, Moderate and Relaxed tolerable latencies for all three types of applications

@ Springer

32322

Multimedia Tools and Applications (2023) 82:32305-32328

Response Time
BE8EE5888

(i) Application A

i3

16 32 64 128 192 256
No. of users

w— |RTTS-S

se®+e RTTSM = o= IRTTS-R e Edge-S
= @— Edge-R e LAMP-S +++0++ LAMP-M
e CASSIA-RR-S ++ @+ + CASSIA-RR-M == ®= CASSIA-RR-R

Response Time
w w H 0w
B88E8E8

(ii) Application A,

16 32 64 128 192 256
No of users

@ |RTTS-S
s+ Edge-M
= @== LAMP-R

ce@ee [RTTS-M == @== [RTTS-R sl Edge-S
== @== Edge-R sl L AMP-S o @-+ LAMP-M
@ CASSIA-RR-S ¢+ @<+ CASSIA-RR-M == @= CASSIA-RR-R

Response Time
w H AU LD
8 [y S wu o
o o o
[

]

o

0
-
-
e
o
=

(iii) Application A;

oy

HH T T

IO

g

250
200
8 16 32 64 128 192 256
No. of users
e |RTTS-S sodiee RTTS-M o= @== |RTTS-R el Edge-S
<+ @+ Edge-M == @== Edge-R O | AMP-S ssQes LAMP-M
= @ LAMP-R s CASSIA-RR-S » e @e s CASSIA-RR-M === @== CASSIA-RR-R

Fig. 5 Response Time of applications under different Tolerable latency Constraints

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328

32323

(1) Strict Tolerable Latency
o= @u= [RTTS e=lPue= | AMP ==& «Edgewards CASSIA
100 [S— v —

z . e o
: \ =,
= 8 . ’
[}
o c \. . —
g 2 60 .
R \
Se
“— 0
o B 40 s
o 3
o0
g \
> 20
8 .
o
. \

0 .

Percentage of tolerable latency
satisfaction

8 16 32 64 128 192 256
No. of users

(i1) Moderate Tolerable Latency

o=@ [RTTS e==@u==|AMP ==@ -Edgewards «+ CASSIA

0 e S e e — e
\ ——

" N
40 \
20 \

80

8 16 32 64 128 192 256
No. of users

(1if) Relaxed Tolerable latency

= @u= |RTTS e=lus | AMP ==@ - Edgewards . « CASSIA

100 S & e
g ~
3
< 80 -~ :
Qo
o)
c§ 60 ~
o s
o8
S8 40
o s
o 3
&
€ 20
@
L
& 0

8 16 32 64 128 192 256

No. of users

Fig. 6 Percentage of tolerable latency met for different number of users and tolerable latencies

@ Springer

32324 Multimedia Tools and Applications (2023) 82:32305-32328

under varying number of users. As can be seen, IRTTS performs better even for the
applications with strict tolerable latency requirements. This is because our policy reserves
some amount of resources at the lower level fog nodes to support applications with strict
latency requirements. Table 6 below explicitly depicts the percentage of users of the different
applications A, A, and A; for which the latency observed was within the tolerable latency
defined for the various categories-Strict, Moderate and Relaxed. Evidently, the proposed
IRTTS algorithm outperforms all the compared algortihms, followed by CASSIA-RR and
LAMP while Edge exhibits lowest number of applications that are able to meet their QoS
requirements. This is so because the proposed scheduling algorithm maps tasks onto compu-
tational servers with an objective to minimize the application’s response time and therefore
tries to place the tasks as close to the user as possible. On the contrary, the other three policies
do not aim better response time and therefore always place tasks away from the user. Since
fog-cloud resources may suffer from performance variation due to sharing of underlying
resources and virtualization [30], such an approach may lead to situations where tasks are
hosted on to distant resources and applications are not able to meet their QoS requirements due
to the associated communication delays. The proposed algorithm therefore is able to deliver a
better performance in comparison to Edge, LAMP and CASSIA-RR policies even in the
presence of performace variation of fog-cloud resources.

CPU utilization Figure 7 represents the CPU utilization of the computational resources at each
hierarchical level of fog-cloud infrastructure for different tolerable latencies i.e. Strict, Mod-
erate and Relaxed. CPU utilization of a computational device is calculated as the ratio between
utilized and available CPU resources. CPU usage of each of the three fog levels and cloud
(Level 4), is therefore computed by taking mean of the CPU utilization of all the nodes at that
level as shown in Eq. 6. CPU usage of the cloud is calculated as shown in Eq. 7. Each point
corresponds to mean of the level-wise CPU utilization for all the applications.
Ri
7 v

Ur(j) :T (6)

where, F* { is the i** computational node at level j of the fog-cloud hierarchical structure.

Table 6 Percentage of tolerable latency met for different applications and tolerable latency factors

Tolerable Latency Factor Technique Ay A, As
Strict Edgeward 71.4 71.4 42.85
LAMP 97.14 88.57 85.71
CASSIA-RR 97.14 89.32 86.24
IRTTS 97.14 9143 88.57
Moderate Edgeward 71.4 71.4 57.14
LAMP 97.14 9143 91.43
CASSIA-RR 97.14 92.35 92.36
IRTTS 100 94.28 94.28
Relaxed Edgeward 94.28 94.28 88.57
LAMP 100 100 100
CASSIA-RR 100 100 100
IRTTS 100 100 100

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32325

1

0.8
c
g A a
© 0.6 a T
= 3 A A
S bay =) g
g 0.4 e -
S A
0.2
0
0 1 2 3 4
Hop Count
IRTTS-S LAMP-S Edge-S CASSIA-S AIRTTS-M A LAMP-M
A Edge-M CASSIA-M —IRTTS-R —LAMP-R —Edge-R — CASSIA-R
Fig. 7 CPU utilization of computational servers
RC
N — occ
Ucl) = -5 7

cap

For each value belonging to the defined range of Strict, Moderate or Relaxed tolerable latencys;
CPU utilization for the proposed policy is highest for the level near to the end-users (i.e. lowest
level) and lowest for the resources at the cloud whereas no such pattern can be observed for the
compared policies Edge, LAMP and CASSIA-RR. This is because of the fact that the
proposed policy tries to utilize the lower level resources before mapping the tasks on the
resources at higher levels. In addition, IRTTS ensures that utilization of the resources does not
go beyond the upper threshold in order to prevent performance degradation. However, Edge,
LAMP and CASSIA-RR utilize computational servers that are distant from the users and
therefore many a times result in sub-optimal user-observed performance.

w
o

S
o

w
o

N
o

Percentage of application tasks
=

o

Hop Count

el [RTTS el LAMP Edge e=@==CASSIA-RR

Fig. 8 Percentage of tasks scheduled and level number

@ Springer

32326 Multimedia Tools and Applications (2023) 82:32305-32328

Tasks distribution Figure 8 shows the distribution of tasks at different levels of fog-cloud
hierarchical infrastructure. To measure the proximity degree of task and client, we used hop
count metric. Hop count depicts the level number of the computational server hosting the task.
The lower the value of hop count, the higher is the task proximity. The optimization objective
of our algorithm is to improve the response time which is intrinsically achieved by reducing
the value of hops for the application tasks. From the figure, it can be inferred that IRTTS
schedules more number of tasks at lower levels whereas Edge, LAMP and CASSIA-RR map
majority of the tasks at the higher levels. Since Edge, LAMP and CASSIA-RR tend to map the
applications with borderline latency requirements on the resources at higher levels, overall
response time for these applications might increase. The proposed algorithm hosts such
applications at lower levels thereby lowering the response time and hence the hop count.

In conclusion, we can say that our policy reduces the application’s response time, makes
better use of available resources, and also tries to place the user tasks as proximal to the user’s
location as feasible. The proposed approach thus results in reduced communication delays in
comparison to the other three policies.

7 Conclusion

Fog Computing environment offers enormous possibilities for executing [oT-based applica-
tions. In this work, we proposed a solution to the problem of scheduling IoT applications on to
the hierarchically distributed fog and cloud resources in order to meet the user-specified
latency constraint and simultaneously, improving the response time which is desirable for
real-time IoT based applications. Towards this, a decentralized heuristic algorithm is designed
which tries to assign as many tasks to resources in the bottom tier as feasible without causing
resource over-utilization, while also preserving enough resources to handle applications with
strict response time requirements, making it suitable for handling large-scale real-time appli-
cations. We evaluated our proposed approach by considering different categories of tolerable
latency-strict, moderate and relaxed on three different IoT application profiles — light-weight,
medium-weight and heavy-weight. Empirical results depict that our proposed policy outper-
forms the state-of-the-art heuristics by making efficient use of available resources, honouring
the tolerable latency, reducing the response time observed by the users and consequently
improving the hop count of the application tasks.

In future, we aim to improve this policy by reducing the operating cost, energy and memory
consumption of fog and cloud resources. In addition, we aim to extend this work to include
user profiles for ranking instances of IoT applications.

Declaration

Conflict of interest The authors have no competing financial interests or personal relationships that influence
the work reported in this paper.

@ Springer

Multimedia Tools and Applications (2023) 82:32305-32328 32327

References

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

. Architecture Working Group OpenFog Consortium (2017) Openfog reference architecture for fog comput-

ing. OPFRA001 20817, 162

. Ashrafi TH, Hossain MA, Arefin SE, Das KD, Chakrabarty A (2018) IoT Infrastructure: Fog Computing

Surpasses Cloud Computing. In: ot infrastructure: fog computing surpasses cloud computing, In intelligent
communication and computational technologies (pp. 43-55). Springer, Singapore

Basu S, Karuppiah M, Selvakumar K, Li KC, Islam SH, Hassan MM, Bhuiyan MZA (2018) An intelligent/
cognitive model of task scheduling for IoT applications in cloud computing environment. Futur Gener
Comput Syst 88:254-261

Biswas R, Giaffreda R (2014) IoT and cloud convergence: opportunities and challenges. In 2014 IEEE
world forum on internet of things (WF-IoT) (pp. 375-376). IEEE

Bitam S, Zeadally S, Mellouk A (2018) Fog computing job scheduling optimization based on bees swarm.
Enterprise Inform Syst 12(4):373-397

Bonomi F, et al (2012) "Fog computing and its role in the internet of things." Proceedings of the first edition
of the MCC workshop on Mobile cloud computing

Brogi A, Forti S (2017) QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J
4(5):1185-1192

. Cai H, Xu B, Jiang L, Vasilakos AV (2016) IoT-based big data storage systems in cloud computing:

perspectives and challenges. IEEE Internet Things J 4(1):75-87

Cisco delivers vision of fog computing to accelerate value from billions of connected devices (2014) Press
release. Cisco. [Online]. Available: http:/newsroom.cisco.com/release/1334100/Cisco-Delivers-Vision-of-
Fog-Computing-to-Accelerate- Value-from-Billionsof-Connected-Devices-utm-medium-rss.

Craciunescu R, Mihovska A, Mihaylov M, Kyriazakos S, Prasad R, Halunga S (2015) Implementation of
fog computing for reliable E-health applications. In 2015 49th Asilomar conference on signals, systems and
computers (pp. 459-463). IEEE

Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of things realize its potential. Computer
49(8):112-116

Deng R, Lu R, Lai C, Luan TH, Liang H (2016) Optimal workload allocation in fog-cloud computing
toward balanced delay and power consumption. IEEE Internet Things J 3(6):1171-1181

Doukas C, Maglogiannis I (2012) Bringing IoT and cloud computing towards pervasive healthcare. In 2012
sixth international conference on innovative Mobile and internet Services in Ubiquitous Computing (pp.
922-926). IEEE

El Kafhali S, Salah K (2017) Efficient and dynamic scaling of fog nodes for IoT devices. J Supercomput
73(12):5261-5284

Goswami P, Mukherjee A, Maiti M, Tyagi SKS, Yang L (2021) A neural network based optimal resource
allocation method for secure IloT network. IEEE Internet of Things Journal

. GuL, Zeng D, Guo S, Barnawi A, Xiang Y (2015) Cost efficient resource management in fog computing

supported medical cyber-physical system. IEEE Trans Emerg Top Comput 5(1):108—-119

Guerrero C, Lera I, Juiz C (2019) A lightweight decentralized service placement policy for performance
optimization in fog computing. J Ambient Intell Humaniz Comput 10(6):2435-2452

Guevara JC, da Fonseca NL (2021) Task scheduling in cloud-fog computing systems. Peer-to-Peer Network
Appl 14(2):962-977

Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017) iFogSim: a toolkit for modeling and simulation of
resource management techniques in the internet of things, edge and fog computing environments. Software:
Prac Exp 47(9):1275-1296

Johnson DS, Garey M (1979) Computers and intractability: a guide to the theory of NP-completeness.
Freeman&Co, San Francisco

Liu L, Chang Z, Guo X, Mao S, Ristaniemi T (2017) Multiobjective optimization for computation
offloading in fog computing. IEEE Int Things J 5(1):283-294

Lord SR, Sherrington C, Menz HB, Close JC (2007) Falls in older people: risk factors and strategies for
prevention. Cambridge University Press, Cambridge, GB

Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy, survey and future directions. In:
Internet of everything (pp. 103—130). Springer, Singapore

@ Springer

http://newsroom.cisco.com/release/1334100/Cisco-Delivers-Vision-of-Fog-Computing-to-Accelerate-Value-from-Billionsof-Connected-Devices-utm-medium-rss
http://newsroom.cisco.com/release/1334100/Cisco-Delivers-Vision-of-Fog-Computing-to-Accelerate-Value-from-Billionsof-Connected-Devices-utm-medium-rss

32328 Multimedia Tools and Applications (2023) 82:32305-32328

24.
25.

26.

27.

28.

29.
30.
31.

32.

33.

34.
. Taneja M, Jalodia N, Davy A (2019) Distributed decomposed data analytics in fog enabled IoT deploy-

36.
37.
38.
39.
40.
41.

42.

Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware application module management for fog
computing environments. ACM Transac Int Technol (TOIT) 19(1):1-21

Maiti M, Krakovich V, Shams SR, Vukovic DB (2020) Resource-based model for small innovative
enterprises. Manag Decis 58:1525-1541

Nguyen T, Doan K, Nguyen G, Nguyen BM (2020) Modeling multi-constrained fog-cloud environment for
task scheduling problem. In 2020 I[EEE 19th international symposium on network computing and applica-
tions (NCA) (pp. 1-10). IEEE

Ni L, Zhang J, Jiang C, Yan C, Yu K (2017) Resource allocation strategy in fog computing based on priced
timed petri nets. IEEE Internet Things J 4(5):1216-1228

Pham XQ, Man ND, Tri NDT, Thai NQ, Huh EN (2017) A cost-and performance-effective approach for
task scheduling based on collaboration between cloud and fog computing. Int J Distri Sensor Netw 13(11):
1550147717742073

Ramasubbareddy S, Sasikala R (2019) RTTSMCE: a response time aware task scheduling in multi-cloudlet
environment. International journal of computers and applications, 1-6

Schad J, Dittrich J, Quiané-Ruiz JA (2010) Runtime measurements in the cloud: observing, analyzing, and
reducing variance. Proc VLDB Endowment 3(1-2):460-471

Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P (2017) Optimized IoT service placement in the
fog. SOCA 11(4):427-443

Slabicki M, Grochla K (2016) Performance evaluation of CoAP, SNMP and NETCONF protocols in fog
computing architecture. In NOMS 2016-2016 IEEE/IFIP network operations and management symposium
(pp. 1315-1319). IEEE

Stavrinides GL, Karatza HD (2019) A hybrid approach to scheduling real-time IoT workflows in fog and
cloud environments. Multimed Tools Appl 78(17):24639-24655

Suznjevic M, Saldana J (2015) Delay limits for real-time services

ments. IEEE Access 7:40969-40981

Vermesan O, Friess P (2014) Internet of things applications-from research and innovation to market
deployment. Taylor & Francis, p 364

Wang L, Ranjan R (2015) Processing distributed internet of things data in clouds. IEEE Cloud Comput 2(1):
76-80

Wild D, Nayak U, Isaacs B (1981) How dangerous are falls in old people at home? Br Med J (Clin Res Ed)
282(6260):—266

Yang Y, Zhao S, Zhang W, Chen Y, Luo X, Wang J (2018) DEBTS: delay energy balanced task scheduling
in homogeneous fog networks. IEEE Internet Things J 5(3):2094-2106

Yi S, etal (2015) "Fog computing: Platform and applications." 2015 Third IEEE workshop on hot topics in
web systems and technologies (HotWeb). IEEE

Zeng D, Gu L, Yao H (2020) Towards energy efficient service composition in green energy powered cyber—
physical fog systems. Futur Gener Comput Syst 105:757-765

Zhang T, Wang J, Liu P, Hou J (2006) Fall detection by embedding an accelerometer in cellphone and using
KFD algorithm. Int J Comput Sci Network Sec 6(10):277-284

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

	Task scheduling for improved response time of latency sensitive applications in fog integrated cloud environment
	Abstract
	Introduction
	Related work
	The system model
	Application model
	Fog resource model
	System model task scheduling framework

	Problem definition
	The proposed task scheduling algorithm - IRTTS
	Performance evaluation
	Experimental setup
	Experimental results

	Conclusion
	References

