
https://doi.org/10.1007/s11042-023-14512-z

Probabilistic intuitionistic fuzzy c-means algorithm
with spatial constraint for human brain MRI
segmentation

Rinki Solanki1 ·Dhirendra Kumar2

Received: 9 August 2021 / Revised: 14 July 2022 / Accepted: 31 January 2023 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Segmentation of brain MRI images becomes a challenging task due to spatially distributed
noise and uncertainty present between boundaries of soft tissues. In this work, we have pre-
sented intuitionistic fuzzy set theory based probabilistic intuitionistic fuzzy c-means with
spatial neighborhood information method for MRI image segmentation. We have investi-
gated two well known negation functions namely, Sugeno’s negation function and Yager’s
negation function for representing the image in terms of intuitionistic fuzzy sets. The pro-
posed approach takes leverage of intuitionistic fuzzy set theory to address vagueness and
uncertainty present in the data. The spatial neighborhood information term in the segmen-
tation process is included to dampen the effect of noise. The segmentation performance
of the proposed method is evaluated in terms of average segmentation accuracy and Dice
score. Further, the comparison of the proposed method with other similar state-of-art meth-
ods is carried out on two publicly available brain MRI dataset which shows the significant
improvements in segmentation performance in terms of average segmentation accuracy and
Dice score. The proposed approach achieves on average 91% average segmentation accu-
racy in the presence of noise and intensity inhomogeneity on BrainWeb simulated dataset,
which outperformed the state-of-art methods.
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1 Introduction

In the recent past, diagnostics have been revolutionized with the advancement of many med-
ical imaging modalities such as positron emission tomography (PET), magnetic resonance
imaging (MRI), computed tomography (CT), Mammogram, X-rays, Ultrasound etc. These
modalities help in delineating the human anatomy for disease diagnosis. Among all, MRI
[26] is the frequently used modality for capturing the soft tissues present in the human
brain such as gray matter(GM), white matter(WM) and cerebrospinal fluids (CSF). The
image sequences [14] are captured in MR images by applying an appropriate setting of
pulse parameters such as repetition time (TR), echo time (TE), spin-echo, gradient-echo,
inversion-recovery etc. TE and TR are the two key parameters for obtaining different image
contrast. Due to this, the MRI machines can delineate the multi-spectral image with high
contrast. Nowadays, these diagnostic machines are easily accessible which produce huge
amount of medical data for disease diagnosis. Manual analysis of these images for disease
diagnosis requires the expert radiologist. This being a time consuming process and may
involve human error. There is a requirement of analyzing these MRI images in less time for
faster diagnosis. The computer aided diagnosis [8] may help the expert radiologist in faster
analysis of medical images. In some situations, the quantification and localization of differ-
ent normal and abnormal tissues are required for brain related diseases using MRI modality.
For this, these MRI images need to be segmented in different similar regions. The man-
ual segmentation of MRI images is a challenging task as images are likely to have artifacts
during the delineation process. The main factors affecting the quality of MRI segmented
images includes (a) a non-uniform intensity variation is introduced in the MRI images.
This variation is due to radio frequency utilized in the MRI, termed as bias field effect or
intensity in-homogeneity (IIH) or intensity non-uniformity (INU) [1]; (b) noise; (c) partial
volume effect. The presence of such artifacts adversely affect segmentation as well as visual
evaluation based on absolute pixel intensities [13].

Machine learning (ML) based techniques are the most extensively used for segmenting
brain MR images. These techniques are further classified into supervised and unsupervised
techniques. The supervised segmentation techniques are fully automatic and effective seg-
mentation approaches [2, 10, 16, 29, 42, 47, 48]. Although the segmentation accuracy is
improved by the supervised ML techniques by incorporating prior knowledge, the major
drawbacks of supervised techniques are as follows [2]: (a) training classifier with the same
training set for a large number of MR images may often lead to biased results due to phys-
iological variability between different subjects; (b) several parameters are required by the
classifiers to be trained, thus necessitating the requirement of fast processing devices with
large amount of main memory.

Unsupervised segmentation techniques [46] can be described as partitioning the image
into different groups or regions, each having alike features such as texture, color, etc. Clus-
tering is one of the popular unsupervised techniques to explore and analyze the structural
information associated with the unlabeled data. The conventional way of obtaining clusters
is the Hard c-means (HCM) clustering method, which results in c-crisp partitions of the data
set [39]. Assigning a data point to exactly one cluster ignores the uncertainty about the data
point belonging to more than one cluster especially at the boundary and therefore tending
to lose it’s interpretability for many real world applications.

Fuzzy c-means (FCM) [5] overcomes this problem by assigning membership values to
each data point to c number of clusters where each cluster is represented by fuzzy sets. FCM
[6] is the most widely used clustering algorithm for segmenting brain MR images [8, 9, 23].
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The reason for wide acceptance of FCM for MRI image segmentation is its ability to handle
(a) uncertainty present in image boundaries/regions; (b) imprecise gray levels in images;
(c) vagueness in defining class. The performance of FCM degrades in presence of imaging
artifacts because it does not consider any spatial information [52]. In the past, many research
work has been done by incorporating the local spatial information to the FCM clustering
algorithm [1, 11, 13, 33, 36, 37, 41, 45, 48, 50, 56, 62, 63]. Several other research work
related to brain MRI segmentation also reported in [4, 31, 32, 49] etc.

The methods discussed so far are dependent on selection of optimal parameter values and
lose their fine image details. Krindis et al. [33] addressed this issue by proposing a fuzzy
local information clustering method (FLICM) to tackle the problem of noise in image seg-
mentation. This method is similar to FCM S [1] as it uses the neighboring pixels deviation
from centroid’s intensity, weighted by a fuzzy factor and spatial distance of neighbours. The
FLICM doesn’t take into account any parameter but calculates the local information term
for each iteration and hence makes it a time consuming segmentation method. The litera-
ture reports that the objective value is not minimized further by FLICM rather converging
the fuzzy partition matrix only. Guo et al. proposed an Adaptive fuzzy c-means (NDFCM)
[22] method, which is based on local noise detection. In this method, the spatial parameters
for each pixel were dependent on the noise level in a given immediate neighbourhood. In
spite of being the noise adaptive algorithm, NDFCM has a high computational complexity
because it depends on the three input parameters which are required to be fine tuned for
good performance. Recently a fast and robust fuzzy c-means algorithm (FRFCM) was pro-
posed by Lei et al., which gave magnificent results with significantly low time complexity
[35]. The pre-processing step in FRFCM employed morphological reconstruction opera-
tion, which made it robust to a variety of noises. The post processing step uses membership
filtering for avoiding the heavy computation in measuring the distance between the neigh-
bour pixels and centroids to handle noisy pixels. The FRFCM performs well for several
noise varieties, but shows its poor performance on high noise samples because the sharp
edges and shapes are not preserved. In another research work Deviation-sparse fuzzy c-
means with neighbor information constraint (DSFCMN) algorithm [60] is proposed, which
modeled the deviation between the original pixel values and measured noisy pixels value
as residual and incorporated this value in the optimization function. The residual term in
DSDCMN is sparse matrix and uses the L1 norm distance measure in objective function as
a constraint over residuals. However DSFCMN did not show good results when tested on
a dataset with high noise. Further, Wang et. al. proposed Weighted Residual fuzzy c-means
(WRFCM) [55], which uses weighted L2-norm measure for residual estimation and showed
satisfactory performance compared to the previous research methods.

In order to deal with non-linear structure present in any image, many research meth-
ods have been reported in literature that utilize the kernel distance measure. The research
work [61] proposed a kernel generalized fuzzy c-means (KGFCM) clustering with spatial
information for image segmentation. Most kernel based methods are dependent on optimal
selection of input parameters values for satisfactory segmentation performance. The grid
search method is mostly used to find the optimal values of these parameters which is a time
consuming process. Gong et al. [21] proposed a variant of FLICM method by replacing the
Euclidean distance with kernel metric and further introduced a trade off weighted fuzzy fac-
tor to better use the neighbor information in an adaptive manner termed as KWFLICM. The
performance of KWFLICM method is better in comparison to the FLICM method but still
it inherits the problem of FLICM method.
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The membership values in variants of FCM depend on the distance between cluster
centroids and image pixels. In some situations, the image acquisition process leads to uncer-
tainty due to imprecise pixel intensity value. Hence, calculation of membership values of
a given pixel to different clusters is imprecise [44]. Therefore to handle such problems,
an intuitionistic fuzzy set (IFS) introduced by Atanassov [3] that deals with imprecise
and vagueness in defining the membership value [12, 28]. For this, IFS set includes non-
membership and hesitancy components along with membership value. The introduction
of IFS theory into the clustering process increases the segmentation accuracy. Further, it
makes the segmentation method robust and faster in comparison to FCM algorithm [27].
The research work [57], suggested a fuzzy clustering of data represented in terms of IFS
which utilizes the Euclidean distance measure [51] defined for IFS. Chaira [12] introduced
the concept of IFS theory to incorporate hesitation in defining the membership value in
FCM algorithm. The research work [12] increases the significant data points in a given
cluster. The problem of variations in pixel intensities is studied in the research work [18]
which utilizes the IFS theory to represent the MRI images in terms of IFSs and further these
data are clustered for image segmentation. PIFCM [40] is a recently proposed clustering
algorithm which uses probabilistic Euclidean distance measure (PEDM) in the objective
function. The presence of PEDM in the PIFCM have shown following advantages over con-
ventional IFCM algorithms: (1) It is an adaptive algorithm, as it uses probabilistic weights;
(2) reduced number of iterations for convergence; (3) lower sensitivity towards the fuzzy
factor m, therefore, leads to higher stability. Further, the research work [53] suggested an
improved Probabilistic Intuitionistic Fuzzy c-Means Clustering Algorithm. The improved
PIFCM uses the min-max normalization as a membership function which minimizes the
matrix computation of the original PIFCM. The PIFCM and Improved PIFCM handle the
uncertainty in the dataset very well but are susceptible to the noisy dataset as in the case of
MRI images. The performance of IFS theory based clustering method for image segmen-
tation process deteriorates in presence of noise. To handle noise, the incorporation of local
spatial information is advocated in literature.

The research work [25] proposed neighborhood information based IFCM algorithm with
genetic algorithm (NIFCMGA) for automatic optimal parameter selection. It reduces the
effect of noise and outliers in medical images segmentation but consumes more time as
it utilizes genetic algorithm. The research work [54] suggested improved IFCM (IIFCM)
to handle noise which combines both local spatial and grey level information together for
MRI segmentation. Their algorithm is free from parameter tuning but have considerably
higher running time. The research work [34] proposed IFCM with spatial neighborhood
information (IFCM-SNI). The spatial neighborhood information (SNI) term is incorporated
in the objective function of IFCM algorithm and is capable of dealing with noise without
losing the fine image details. Their model gives better results on highly noisy MRI images.

From the above discussion, it is evident that noisy pixels can be correctly classified by
incorporating spatial neighborhood information in the image segmentation process. The per-
formance of the PIFCM [40] method is not giving promising results for image segmentation
in presence of noise. To address this issue, we have proposed a intuitionistic fuzzy cluster-
ing that uses probabilistic Euclidean distance measure with spatial constraints (PIFCM S).
The proposed PIFCM S method utilizes a spatial regularization term in the optimization
problem for obtaining the clusters. This spatial regularization term utilizes the mean filtered
image to dampen the effect of noise with a regularization parameter. The spatial regulariza-
tion parameter sets a trade off between the level of noise and the segmentation performance.
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Higher the noise in the image, the value of this regularization parameter should be high. Fur-
ther, we have investigated two well known intuitionistic fuzzy generators, namely, Sugeno’s
negation function and Yager’s negation function for representing the image in terms of IFS.
To validate the performance of the proposed method, we have utilized two publicly available
brain MRI image dataset. Further, the performance of the proposed method is compared
with several state-of-the-art methods in terms of average segmentation accuracy and Dice
score.

The rest of the paper is organized as follows: preliminaries and related works are
included in Section 2. The PIFCM S algorithm and its formulation is discussed in Section 3.
Section 4 discusses experimental setup and results. Finally, conclusion is included in
Section 5.

2 Preliminaries and related works

The description of notations and related work used throughout the paper are discussed in
the section.

The fuzzy set (FS) F, is defined by using membership function μF (x), x ∈ X and
μF (x) ∈ [0, 1]

Intuitionistic Fuzzy Set (IFS) [3], A is defined using membership function μA(x) and
non-membership function νA(x) and is represented as:

A = {〈x, μA(x), νA(x)〉|x ∈ X} (1)

Here μA : X → [0,1] and νA : X → [0,1] simultaneously assigns membership value and
non-membership value respectively to each element x ∈ X with respect to A, if

0 ≤ μA(x) + νA(x) ≤ 1. (2)

For every x ∈ X in A, If νA(x) = 1 − μA(x), then set A reduces to fuzzy set.
In an IFS, the hesitancy value, πA(x) defines the uncertainty in definition of membership

function and is calculated as:

πA(x) = 1 − μA(x) − νA(x), where 0 ≤ πA(x) ≤ 1. (3)

Hence, due to presence of hesitancy value in IFS, the membership value lies in the interval
[μA(x), μA(x) + πA(x)].

2.1 Construction and representation of intuitionistic fuzzy sets for gray images

The image acquisition process involves conversion of energy response received on sensing
devices to gray levels. This introduces the imprecise estimation of gray levels for many of
the pixels in the image which in turn includes uncertainty in representing the gray levels
in the image. This issue is resolved by converting the medical image into an intuitionistic
fuzzy domain. In this way, a given gray level corresponding to a pixel is represented using
membership value, non-membership value and hesitancy value. The membership value for
a given pixel in the gray image is obtained by normalizing in the range [0 1]. The non-
membership value and hesitancy value for the pixel is calculated using the membership
value through intuitionistic fuzzy generators (discussed below). We have used two intuition-
istic fuzzy generator functions namely, Yager negation function [58] and Sugeno negation
function [43] for our study.
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An intuitionistic fuzzy generator [12] is a function g : [0, 1] → [0, 1] satisfying the
following properties :

1. g(μ) ≤ 1 − μ for all μ ∈ [0, 1],
2. g(0) = 1 and g(1) = 0

If g is continuous, decreasing (increasing) then the intuitionistic fuzzy generator is called
continuous, decreasing (increasing). The non-membership function NM(μ) for a given
generating function g(.) is defined as:

NM(μ) = g−1(g(1) − g(μ)) (4)

where, g−1(.) is inverse of generating function g(.).

– Yager’s negation function (YNF) [58, 59]: The Yager’s generating function gY (μ) with
negation parameter β is given as follows:

gY (μ) = μβ (5)

Its inverse g−1
Y (μ) is given by:

g−1
Y (μ) = μ

1
β (6)

Yager’s negation function calculates the non-membership value using (4), (5) and (6)
which is given by:

νA(x) = NM(μA(x)) = (1 − μA(x)β)
1
β , β > 0 (7)

where μA(x) represents membership value of IFS A.

– Sugeno’s negation function (SNF) [43]: The Sugeno’s generating function gS(μ) with
negation parameter β is given as:

gS(μ) = 1

β
log(1 + βμ), β > 0 (8)

Its inverse g−1
S (μ) is given by:

g−1
S (μ) = 1

β
(exp(βμ) − 1), β > 0 (9)

Sugeno’s negation function calculates the non-membership value using (4), (8) and (9)
which is given by:

νA(x) = NM(μA(x)) = 1 − μA(x)

1 + βμA(x)
, β > 0 (10)

where μA(x) represents membership value of IFS A.

The intuitionistic fuzzy generator defined above is used to construct the intu-
itionistic fuzzy data for gray image. Let X be the set of p number of pixel and
xi represent the pixel intensity value corresponding to ith pixel in X, where
i ∈ {1, 2, . . . p}. Therefore, each pixel in an image can be represented by an IFS as
XIFS = {〈μX(xi), νX(xi), πX(xi)〉 | i = 1, 2, . . . , p}, where μX(xi) is membership value
obtained by normalization of image in range [0 1] and νX(xi) is non-membership value
calculated using negation function described in (7) and (10) corresponding to Yager’s
negation function and Sugeno’s negation function respectively.
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The probabilistic intuitionistic fuzzy distance measure between ith element XIFS
i =

〈μX(xi), νX(xi), πX(xi)〉 and j th element XIFS
j =

〈
μX(xj ), νX(xj ), πX(xj )

〉
of IFS XIFS

can be defined as [40]

d̃2(X
IFS
i , XIFS

j ) =
[1

2

(
pij (μX(xi) − μX(xj ))

2 + qij (νX(xi) − νX(xj ))
2

+ρij (πX(xi) − πX(xj ))
2
)]1/2

(11)

Here the probabilistic weights pij , qij and ρij corresponding to the membership value,
non-membership value and hesitancy value respectively are data driven. The weight ρij

corresponding to the hesitancy value is computed using the following formula of correlation
coefficient.

ρij = 1 − ω

3(1 + ω)
(12)

where ω = |μX(xi) − μX(xj )| + |νX(xi) − νX(xj )| + |πX(xi) − πX(xj )|.

2.2 Fuzzy clustering with spatial constraints

An approach was proposed in the research work [1] to increase the robustness of FCM to
noise by an addition of a penalty term in the FCM objective function. The penalty term
makes the smoothing of a pixel within its specified neighborhood. The modified objective
function of FCM S algorithm [1] is given as:

Jm(U, V : X) =
p∑

i=1

c∑

j=1

um
ij

∥∥xi − vj

∥∥2 + α

NR

p∑

i=1

c∑

j=1

um
ij

∑

r∈Ni

∥∥xr − vj

∥∥2 (13)

Here X = {x1, x2, . . . , xp} are p pixels, m (1 < m < ∞) is the fuzzification factor,
c (1 < c < p) represents the number of clusters which are fixed, uij (0 ≤ uij ≤ 1)

represents the membership degree for ith pixel in j th cluster, Ni denotes the number of
neighboring pixels around the center pixel xi and NR is cardinality of Ni . The parameter α

controls the trade-off effects of the neighboring pixel. The optimization problem (13) can be
solved by the Lagrange method of undetermined multipliers. Membership value and cluster
centroid are given as [1]:

uij =

(
∥∥xi − vj

∥∥2 + α
NR

∑

r∈Ni

∥∥xr − vj

∥∥2

)− 1
m−1

c∑

k=1

(

‖xi − vk‖2 + α
NR

∑

r∈Ni

‖xr − vk‖2

)− 1
m−1

(14)

vj =

p∑

i=1
um

ij

(

xi + α
NR

∑

r∈Ni

xr

)

(1 + α)
p∑

i=1
um

ij

(15)

The value 1
NR

∑

r∈Ni

xr in (15) represents the mean value of gray-level around the pixel xi

within a specified window. However, FCM S algorithm have high computation time. In
order to decrease computation time of FCM S algorithm, a variant of FCM S algorithm,
named the FCM S1 is proposed in [13]. The mean filtered image in FCM S1 consists of its
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neighbor average gray values around each pixel within a window. The objective function of
FCM S1 algorithm is given as:

Jm(U, V : X) =
p∑

i=1

c∑

j=1

um
ij

∥∥xi − vj

∥∥2 + α

p∑

i=1

c∑

j=1

um
ij

∥∥x̄r − vj

∥∥2 (16)

where x̃r represents the mean value of neighboring pixels around the pixel xr and is com-
puted in advance. The optimization problem (16) can be solved by the Lagrange method of
undetermined multipliers. Membership value and cluster centroid are given as [13]:

uij =
(∥∥xi − vj

∥∥2 + α
∥∥x̄r − vj

∥∥2
)− 1

m−1

c∑

k=1

(‖xi − vk‖2 + α ‖x̄r − vk‖2)− 1
m−1

(17)

vj =

p∑

i=1
um

ij (xi + αx̄r )

(1 + α)
p∑

i=1
um

ij

(18)

The neighborhood term of the FCM S algorithm is simplified in FCM S1 algorithm. FCM S
is suitable for images which are contaminated by Gaussian noise. The parameter α controls
the trade-off effect between the mean filtered image and original image. If the parameter α

is set to zero, then both FCM S and FCM S1 reduce to the FCM algorithm. The outline of
FCM S1 algorithms [13] is given in Algorithm 1.

Algorithm 1 FCM S1 algorithm.

2.3 Probabilistic intuitionistic fuzzy C-Means algorithm

Probabilistic Intuitionistic Fuzzy C-Means (PIFCM) [40] is an adaptive IFS based cluster-
ing algorithm. It incorporates the advantage of IFS for handling uncertainty which arises
due to imprecise and incomplete information. The peculiarity of PIFCM is that it assigns
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weights pij , qij and ρij corresponding to membership, non-membership and hesitancy value
respectively in the objective function (19) directly from the dataset. Therefore, this algo-
rithm gives weightage to each data point in every cluster. PIFCM algorithm divides p data
points into c clusters by optimizing the objective function through continuous updation of
the centroid (vIFS

j ) and membership degree (uij ) until the termination condition is achieved.
The objective function of PIFCM was formulated as follows:

Jm(U, V IFS : XIFS) =
p∑

i=1

c∑

j=1

um
ij d̃2(X

IFS
i , vIFS

j )

subject to,
c∑

j=1

uij = 1, 1 ≤ i ≤ c (19)

Here m is a fuzzy parameter, X = {xIFS
i }p×1 represents the image in terms of IFS, and the

ith element XIFS
i = 〈μX(xi), νX(xi), πX(xi)〉, U = [uij ]p×c is the fuzzy partition matrix in

which each entry uij represents the membership value of ith data point into the j th cluster,
V = {vIFS

j }c×1 denotes cluster centroid and PEDM d̃2(X
IFS
i , vIFS

j ) computes the distance

between image pixel XIFS
i and centroid pixel vIFS

j . The weights pij , qij and ρij is obtained
using Algorithms 2, 3 and 4 respectively. The solution of the optimization problem given in
(19) can be obtained using Lagrange method of undetermined multiplier which is given as:

uij =
⎧
⎨

⎩

c∑

k=1

(
d̃2(X

IFS
i , vIFS

j )

d̃2(X
IFS
i , vIFS

k )

) 2
m−1

⎫
⎬

⎭

−1

(20)

μV (vj ) =

p∑

i=1
pijuijμX(xi)

p∑

i=1
pijuij

, ∀ 1 ≤ j ≤ c (21a)

νV (vj ) =

p∑

i=1
qij uij νX(xi)

p∑

i=1
qij uij

, ∀ 1 ≤ j ≤ c (21b)

πV (vj ) =

p∑

i=1
ρijuijπX(xi)

p∑

i=1
ρijuij

, ∀ 1 ≤ j ≤ c (21c)

The outline of PIFCM method is depicted in Algorithm 5 [40].

3 Probabilistic intuitionistic fuzzy c-means with spatial constraint
(PIFCM S)

The acquisition process in an image gives rise to noise, which may bring variation in the
pixel intensity value. Hence, the noisy pixels show an anomalous behaviour in its adjacency
which leads to incorrect segmentation of image. The PIFCM algorithm does not incorporate
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Algorithm 2 Weight matrix P for membership values.

Algorithm 3 Weight matrix Q for non-membership values.

Algorithm 4 Weight matrix R for hesitancy values.

any spatial information in its objective function (19) to handle such noises and results in
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Algorithm 5 PIFCM algorithm.

poor segmentation performance. Secondly, the presence of noise in an image makes bound-
aries around the pixels sensitive and hence affecting the membership degree (20) of a given
pixel to cluster. Therefore in this section, we formulate an optimization problem robust to
noise, named probabilistic intuitionistic fuzzy c-means with spatial information (PIFCM S).
The inclusion of spatial regularization term in the optimization problem of PIFCM S makes
it robust to handle the problem of noise and uncertainty present between the boundaries in
images in the segmentation process. The optimization problem of the PIFCM S algorithm
is defined as:

min Jm(U, V IFS : XIFS) =
p∑

i=1

c∑

j=1

um
ij d̃

2
2 (XIFS

i , vIFS
j )

+α

p∑

i=1

c∑

j=1

um
ij d̃

2
2 (X̄r

IFS
, vIFS

j ) (22)

where, U = [uij ]p×c(0 ≤ uij ≤ 1) represents the fuzzy partition matrix, X = {xIFS
i }p×1

represents the image in terms of IFS, and the ith element XIFS
i = 〈μX(xi), νX(xi), πX(xi)〉,

m is a fuzzy parameter, V = {vIFS
j }c×1 denotes cluster centroid, α is spatial regularization

parameter value and should be tuned proportionally to the noise level present in the image,

X̄r
IFS

= 〈μ̄X(xr ), ν̄X(xr ), π̄X(xr )〉 represents mean value of neighboring pixels around
the pixel and d̃2(X

IFS
i , vIFS

j ) computes PEDM between image pixel XIFS
i and centroid

pixel vIFS
j . The Lagrange method of undetermined multiplier method is used to solve the

optimization problem (22). The Lagrangian of optimization problem of PIFCM S with ζi
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as Lagrange multiplier is defined as:

L(U, V IFS, XIFS : ζi) =
p∑

i=1

c∑

j=1

um
ij d̃

2
2 (XIFS

i , vIFS
j )

+α

p∑

i=1

c∑

j=1

um
ij d̃

2
2 (X̄r

IFS
, vIFS

j ) −
p∑

i=1

ζi

⎛

⎝
c∑

j=1

uij − 1

⎞

⎠ (23)

Calculating partial derivative of L with respect to μV (vj ), νV (vj ) and πV (vj ) and equate
them to zero, we have

∀
1≤i≤p
1≤j≤c

∂L

∂μV (vj )
= ∂L

∂νV (vj )
= ∂L

∂πV (vj )
= 0 (24)

Simplifying (24), 1 ≤ j ≤ c we obtain

μV (vj ) =

p∑

i=1
piju

m
ij (μX(xi) + αμ̄X(xr))

(1 + α)
p∑

i=1
piju

m
ij

(25a)

νV (vj ) =

p∑

i=1
qij u

m
ij (νX(xi) + αν̄X(xr))

(1 + α)
p∑

i=1
qij u

m
ij

(25b)

πV (vj ) =

p∑

i=1
ρiju

m
ij (πX(xi) + απ̄X(xr))

(1 + α)
p∑

i=1
ρiju

m
ij

(25c)

Similarly, calculate the partial derivative of L with respect to uij and ζi and equating
them to zero, we have

∀
1≤i≤p
1≤j≤c

∂L

∂uij

= 0 and ∀
1≤i≤p

∂L

∂ζi

= 0 (26)

After simplifying (26), we get

uij =
⎧
⎨

⎩

c∑

k=1

(
d̃2

2 (XIFS
i , vIFS

j ) + αd̃2
2 (X̄IFS

r , vIFS
j )

d̃2
2 (XIFS

i , vIFS
k ) + αd̃2

2 (X̄IFS
r , vIFS

k )

) 1
m−1

⎫
⎬

⎭

−1

(27)

The final solution is obtained using (25) and (27) with the help of an alternating optimization
algorithm which is given in Algorithm 6. The value of spatial regularization parameter α =
0 in (22) reduces to solution of the optimization problem (19)

4 Experimentation setup and results

To check the efficacy of the proposed PIFCM S algorithm in comparison to other exist-
ing counterparts such as FCM [7], IFCM [57], FCM S [1], FLICM [33], KFCM S [13],
ARKFCM [19], IIFCM [54], KIFCM [38], PIFCM [40], KWFLICM [21], NDFCM [22],
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Algorithm 6 PIFCM S algorithm.

WRFCM [55], FRFCM [35] and DSFCMN [60], experiments have been conducted on two
publicly available brain MRI dataset. The PIFCM S method performs clustering of the pix-
els of the image represented in terms of IFS for image segmentation. For this purpose,
we have investigated two well-known intuitionistic fuzzy generation functions, namely
Sugeno’s and Yager’s negation functions to convert the MRI images in IFS. Both the vari-
ants of proposed method are denoted as PIFCM S(S) and PIFCM S(Y) corresponding to
Sugeno’s negation function and Yager’s negation function respectively for representing the
image. The segmentation performance of both the variants of proposed PIFCM S method is
compared with the state-of-art methods in terms of average segmentation accuracy (ASA)
and Dice score (DS). The mathematical definition of the performance measures indexes are
summarized in Table 1. In this table, c is the number of clusters; Xi represents the pixels
belonging to the manually segmented MRI image (ground truth) and Yi represent the pixels
belonging to the experimental segmented MRI image corresponding to ith region; mod Xi

represents the cardinality of Xi . The datasets used for experimentation are described in
Section 4.1.

Table 1 List of performance measures

Performance measure Formula

Average Segmentation Accuracy (ASA)
∑c

i=1
|Xi∩Yi |∑c
j=1|Xj |

Dice Score (DS) 2|Xi∩Yi ||Xi |+|Yi |
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4.1 Datasets:

4.1.1 Brain MRI datasets :

Two publicly available real world dataset are also used for experimentation. The description
about the brain MRI datasets is given as :

– Simulated MRI brain volumes: It is a publicly available dataset from the McConnell
Brain Imaging Center of the Montreal Neurological Institute, McGill University [15].
The dataset contains simulated T1-weighted MRI images with different levels of noise
(1%, 3%, 5%, 7% and 9%) and intensity inhomogeneity or intensity non-uniformity
(INU) (0%, 20% and 40%) of resolution 1×1×1mm3 with 181×217×181 dimension
with ground truth.

– Internet Brain Segmentation Repository (IBSR): It is a real MRI brain images that
has been acquired from the Internet Brain Segmentation Repository (IBSR)1 which has
the ground truth data along with it. For all the MRI images, the brain extraction tool2 is
utilized for skull striping.

4.1.2 Tool used for experimental results

All the Experimental results are obtained using MATLAB version 9.6 running on a PC
having 3.40 GHz frequency and 16 GB of RAM.

4.1.3 Parameter selection:

In this work, we have applied grid search for obtaining the optimal parameter values for
all the methods along with the proposed PIFCM S method based on the optimal value of
objective function and the performance measures corresponding to the optimal parameter
value is quoted. The proposed PIFCM S algorithm involves mainly three parameters; fuzzi-
fier factor m, spatial regularization factor α and intuitionistic fuzzy generator parameter β,
which have significant impact on the solution of its optimization problem, i.e., cluster cen-
troids and fuzzy partition matrix according to (25) and (27) thereby affecting the cluster
performance measures. The optimal values of the parameters in the proposed PIFCM S and
other related methods have been obtained using the grid search method [24]. The parame-
ter value is set based on the maximum average segmentation accuracy obtained. The range
of Yager’s negation parameter and Sugeno’s negation parameter is searched in the interval
[0, 2] and [0, 5], respectively, with 0.05 step-size. The optimal value of spatial regulariza-
tion factor α is chosen in the interval [0, 5] with 0.1 step-size depending on the noise level
present in the MRI image. The fuzzifier factor m and tolerance criterion ε are set to 2 and
10−5, respectively.

4.2 Results and discussion on BrainWeb datasets

In this section, a detailed discussion and comparison of the performance of the proposed
methods, namely, PIFCM S(S) and PIFCM S(Y) is presented with other state of art meth-
ods in terms of aforementioned performance measure indexes (see Table 1) on BrainWeb

1 IBSR [online], available: https://www.nitrc.org/projects/ibsr
2 Brain Extraction Tool (BET) [online], available: http://www.fmrib.ox.ac.uk/fsl/.
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simulated MRI datasets. Figure 1 represents the Original image (INU = 40% and noise
level = 9% ) and ground truth corresponding to WM, GM and CSF. Figure 2 represents
the qualitative segmentation results obtained for WM, GM and CSF using the proposed
method and the state-of-the-art methods on this image. From Fig. 2, It can be noted that the
qualitative segmentation results obtained using the proposed methods, namely, PIFCM S(S)
and PIFCM S(Y) better in comparison to the state of art methods. Figure 3(a)-(f) depicts
the bar chart of variation of average segmentation accuracy with different levels of INU for
a given level of noise. Figure 4(a)-(c) shows the line graph of the variation of average seg-
mentation accuracy with different levels of noise for a given level of INU. Table 2 shows
the performance in terms of average segmentation accuracy on brainweb simulated MRI
datasets for high levels of noise (7 % and 9%) with different levels of INU (0 %, 20 %
and 40 %). From Figs. 3(a)-(f), 4 (a)-(c) and Table 2, the observation drawn is discussed as
follows:

1. The performance of the proposed method is better than other state of the art methods
for a given noise level.

2. For a given level of noise, the performance of the proposed method is steady for dif-
ferent levels of INU over state of the art methods where the performance is debased
substantially. Although FCM, FCM S, IFCM and IIFCM methods perform well on INU
(40 %) images with low noise (0 %, 1 %, 3 % and 5 %) compared to the proposed
method but lag behind on high level of noises (5 % and 7 %).

3. As the level of the noise increases (see Fig. 3(a)-(f)), the performance of all the methods
debased as expected, but it is less in case of our proposed method in comparison to
other related methods.

4. Figure 3(f) clearly depicts that the proposed method gives better segmentation accuracy
compared to other methods such as ARKFCM, KFCM S and KIFCM to handle both
noise and INU.

5. For a given level of INU, the average segmentation accuracy is always going to be
debased as the level of the noise increases. But this debasement of the segmentation
performance in the proposed method is less in comparison to other methods. This
shows that the proposed method is robust towards noise due to successful exploitation
of spatial constraint.

6. For a given level of INU, the performance of all the methods debased as the level of
noise increases from 0 % to 9 % (See Fig. 4(b)-(c)). However, the debasement in the
performance of the proposed methods is less in comparison to other methods that shows
its robustness towards the INU.

Further, to show the effectiveness of the proposed method over the state-of-art methods for
tissue segmentation evaluation, the Dice score for GM and WM is summarized in Tables 3
and 4, respectively. The high values of the DS for both GM and WM tissue evidence the
correct identification of the regions in an image using the proposed PIFCM S method in
presence of both noise and INU. From Tables 3 and 4, it is clear that the state-of-art methods
are unable to provide comparable results in terms of DS for GM and WM corresponding
to the proposed PIFCM S method except for the FLICM and KFCM S methods. It is also
observed from Figs. 3 and 4 that for low levels of noises (0 %, 1 % and 3 %), the proposed
PIFCM S method gives better performance in terms of ASA when the image is represented
in IFS using Yager’s negation function. Whereas, for higher levels of noises (5 %, 7 % and 9
%), the performance of the proposed method is better when the image is represented in IFS
using Sugeno’s negation function. This shows the effectiveness of both Yager’s negation
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Fig. 1 Original image (INU = 40% and noise level = 9% ) and ground truth corresponding to WM, GM and
CSF

function and Sugeno’s negation function over different levels of noise on Brainweb MRI
dataset.

4.3 Results discussion on real brain MRI dataset

The effectiveness of the proposed PIFCM S method with other state-of-art methods is fur-
ther checked on real normal brain MR images from IBSR database for which ground truth
is available. For this, the 134th axial slice of T1-weighted image is extracted from IBSR
dataset for 8 cases 110 3, 111 2, 11 3, 12 3, 15 3, 16 3, 1 24 and 205 3 and corrupted
with 10 % Rician noise to test the performance of the segmentation methods in noisy envi-
ronment. Table 5 shows the performance of the proposed PIFCM S method along with
state-of-art methods in terms of ASA. From Table 5, it can be clearly seen that the proposed
method on real brain MRI images corrupted with 10 % Rician noise outperforms the other
related methods. Whereas, the performance of the existing methods for high noise images
could not provide satisfactory performance. The utilization of the spatial constraints in the
proposed PIFCM S method provides resistance to noise for real brain MRI images in the
IFS framework. Table 6 shows the tissue segmentation performance measure in terms of
Dice Score (DS) corresponding to GM on these images. It can be noted from these tables
that the proposed PIFCM S method performs well except on the images 11 3 and 15 3 in
comparison to other methods in terms of DS. However, the average value of the proposed
PIFCM S method is higher than other state-of-arts methods (see Fig. 5). Figure 5 shows the
average value of ASA and DS for GM over 8 cases of real brain MRI images with 10 %
Rician noise. It is evident from Fig. 5 that the proposed PIFCM S method with Sugeno’s
negation function performs well on average over all 8 cases of real brain MRI image in
terms of ASA and DS (GM). It reveals the performance of the proposed PIFCM S method
on these images has significant improvement in terms of the performance measures used
while comparing with other state-of-art methods.
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Fig. 2 Qualitative results for WM, GM and CSF for different methods (Cont..)
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Fig. 2 (continued)
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Fig. 2 (continued)
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Fig. 3 Variation in performance in terms of average segmentation accuracy with INU level of for given level
of noise on Brain Web dataset a) 0 % b)1 % c) 3 % d) 5% e) 7% and f) 9%

4.4 Statistical test

Friedman test, a two way non-parametric statistical test is conducted to find out the signif-
icant difference among the proposed and other segmentation methods for both the publicly
available datasets. The null hypothesis (H0) of this test is that there is no significant dif-
ference in the performance of the proposed and other segmentation methods whereas the
alternative hypothesis (H1) defines as the performance of the proposed and other methods
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Fig. 4 Variation in performance in terms of average segmentation accuracy with noise level of for given level
of INU on Brain Web dataset a) 0 % b) 20 % c) 40 %
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Table 2 Comparison of PIFCM S with other methods in terms of ASA for Brain Web dataset

Image/Methods 7% Noise 9% Noise

0% INU 20% INU 40% INU 0% INU 20% INU 40% INU

FCM 0.8976 0.8994 0.8762 0.8421 0.8414 0.8330

IFCM(S) 0.9031 0.9030 0.8861 0.8608 0.8602 0.8505

IFCM(Y) 0.9035 0.9030 0.8864 0.8609 0.8590 0.8513

FCM S 0.9288 0.9225 0.9002 0.9175 0.9094 0.8869

FLICM 0.9283 0.9188 0.9007 0.9242 0.9137 0.8959

KFCM S 0.9294 0.9231 0.9013 0.9214 0.9139 0.8926

ARKFCM 0.9306 0.9244 0.9032 0.9198 0.9101 0.8934

IIFCM 0.9100 0.9135 0.8961 0.8788 0.8777 0.8699

KIFCM 0.9301 0.9245 0.9026 0.9196 0.9090 0.8922

PIFCM(S) 0.8978 0.8977 0.8760 0.8469 0.8444 0.8376

PIFCM(Y) 0.8963 0.8969 0.8732 0.8426 0.8390 0.8331

KWFLICM 0.9283 0.9217 0.8979 0.9220 0.9123 0.8973

NDFCM 0.9165 0.9099 0.8887 0.9070 0.9053 0.8824

WRFCM 0.9335 0.9264 0.9032 0.9232 0.9175 0.8959

FRFCM 0.9134 0.9024 0.8841 0.9027 0.8960 0.8730

DSFCMN 0.9318 0.9240 0.9079 0.9202 0.9148 0.8926

PIFCM S(S) 0.9314 0.9238 0.9025 0.9238 0.9166 0.8951

PIFCM S(Y) 0.9311 0.9228 0.9020 0.9238 0.9160 0.8946

Fig. 5 Average value of ASA and DS (GM) over 8 cases of the IBSR dataset with 10% Rician noise
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Table 3 Comparison of PIFCM S with other methods in terms of DS for GM for Brain Web dataset

Image/Methods 7% Noise 9% Noise

0% INU 20% INU 40% INU 0% INU 20% INU 40% INU

FCM 0.8619 0.8669 0.8405 0.7950 0.7958 0.7864

IFCM(S) 0.8696 0.8722 0.8542 0.8193 0.8197 0.8093

IFCM(Y) 0.8696 0.8718 0.8537 0.8183 0.8168 0.8090

FCM S 0.9017 0.8959 0.8695 0.8881 0.8787 0.8506

FLICM 0.9033 0.8928 0.8728 0.8994 0.8872 0.8658

KFCM S 0.9034 0.8968 0.8712 0.8941 0.8853 0.8588

ARKFCM 0.9055 0.8992 0.8749 0.8926 0.8814 0.8615

IIFCM 0.8778 0.8850 0.8660 0.8397 0.8397 0.8311

KIFCM 0.9046 0.8990 0.8739 0.8921 0.8797 0.8595

PIFCM(S) 0.8653 0.8679 0.8444 0.8069 0.8053 0.7979

PIFCM(Y) 0.8624 0.8659 0.8396 0.7993 0.7964 0.7903

KWFLICM 0.8791 0.8774 0.8715 0.8725 0.8645 0.8704

NDFCM 0.8502 0.8447 0.8304 0.8364 0.8362 0.8254

WRFCM 0.9127 0.9043 0.8744 0.8989 0.8934 0.8650

FRFCM 0.8857 0.8718 0.8496 0.8702 0.8643 0.8367

DSFCMN 0.9128 0.8999 0.8795 0.8961 0.8908 0.857

PIFCM S(S) 0.9077 0.8995 0.8750 0.8994 0.8909 0.8653

PIFCM S(Y) 0.9068 0.8974 0.8734 0.8987 0.8895 0.8637

are different. For a given performance measure M, the H0 and H1 can be defined as:

H0 : μFCM = μIFCM(S) = μIFCM(Y) = μFCM S

= μFLICM = μKFCM S = μARKFCM = μIIFCM

= μKIFCM = μPIFCM(S) = μPIFCM(Y)

= μKWFLICM = μNDFCM = μWRFCM

= μFRFCM = μDSFCMN = μPIFCM S(S) = μPIFCM S(Y ) (28)

H1 : μFCM �= μIFCM(S) �= μIFCM(Y) �= μFCM S

�= μFLICM �= μKFCM S �= μARKFCM �= μIIFCM

�= μKIFCM �= μPIFCM(S) �= μPIFCM(Y)

�= μKWFLICM �= μNDFCM �= μWRFCM

�= μFRFCM �= μDSFCMN �= μPIFCM S(S) �= μPIFCM S(Y ) (29)

The rank of different segmentation methods, according to the different performance mea-
sures is obtained for comparing the methods separately. In Friedman test, the average rank
Rj of j th methods for a given N number of images is obtained with respect to a given
performance measure as:

Rj = 1

N

N∑

i=1

r
j
i (30)
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Table 4 Comparison of PIFCM S with other methods in terms of DS for WM for Brain Web dataset

Image/Methods 7% Noise 9% Noise

0% INU 20% INU 40% INU 0% INU 20% INU 40% INU

FCM 0.9300 0.9308 0.9105 0.8860 0.8860 0.8766

IFCM(S) 0.9321 0.9318 0.9132 0.8942 0.8941 0.8832

IFCM(Y) 0.9326 0.9323 0.9144 0.8954 0.8943 0.8850

FCM S 0.9604 0.9543 0.9343 0.9552 0.9482 0.9292

FLICM 0.9596 0.9504 0.9329 0.9569 0.9470 0.9293

KFCM S 0.9615 0.9550 0.9353 0.9556 0.9499 0.9302

ARKFCM 0.9605 0.9544 0.9342 0.9512 0.9431 0.9257

IIFCM 0.9390 0.9407 0.9221 0.9111 0.9090 0.9002

KIFCM 0.9606 0.9544 0.9344 0.9513 0.9430 0.9259

PIFCM(S) 0.9258 0.9252 0.9034 0.8799 0.8780 0.8700

PIFCM(Y) 0.9261 0.9264 0.9042 0.8805 0.8780 0.8706

KWFLICM 0.9595 0.9531 0.9288 0.9534 0.9474 0.9297

NDFCM 0.9475 0.9419 0.9234 0.9413 0.9395 0.9189

WRFCM 0.9575 0.9522 0.9311 0.9511 0.9472 0.9273

FRFCM 0.9518 0.9424 0.9242 0.9435 0.9366 0.916

DSFCMN 0.9557 0.9496 0.9318 0.9489 0.9463 0.9218

PIFCM S(S) 0.9618 0.9540 0.9326 0.9565 0.9494 0.9280

PIFCM S(Y) 0.9628 0.9541 0.9347 0.9569 0.9500 0.9292

Table 5 Comparison of PIFCM S with other methods in terms of ASA for IBSR dataset with Rician noise
(σ =10)

Methods\Images 110 3 111 2 11 3 12 3 15 3 16 3 1 24 205 3

FCM 0.7293 0.6946 0.7214 0.7352 0.5090 0.5474 0.6864 0.7150

IFCM(S) 0.7403 0.7424 0.7270 0.7522 0.6685 0.6859 0.7460 0.7183

IFCM(Y) 0.7309 0.6955 0.7226 0.7371 0.5090 0.5506 0.6899 0.7145

FCM S 0.7321 0.7007 0.7306 0.7407 0.5160 0.5737 0.6929 0.7209

FLICM 0.7406 0.7245 0.7695 0.7721 0.5875 0.6826 0.7506 0.7558

KFCM S 0.7344 0.7219 0.7307 0.7492 0.5820 0.6826 0.6929 0.7269

ARKFCM 0.6139 0.6012 0.7162 0.7413 0.5818 0.6806 0.7652 0.6200

IIFCM 0.7400 0.7470 0.7479 0.7601 0.5915 0.6957 0.7528 0.7302

KIFCM 0.7472 0.7273 0.7406 0.7594 0.5049 0.6949 0.7587 0.7274

PIFCM(S) 0.7642 0.7422 0.7574 0.7605 0.6702 0.7263 0.7508 0.7515

PIFCM(Y) 0.7675 0.7454 0.7594 0.7596 0.6459 0.7407 0.7540 0.7588

KWFLICM 0.5148 0.6790 0.7125 0.7239 0.5698 0.5910 0.6893 0.5448

NDFCM 0.7521 0.7196 0.7389 0.7290 0.6670 0.6998 0.6945 0.7129

WRFCM 0.6919 0.6723 0.6935 0.7106 0.6817 0.6735 0.6714 0.6902

FRFCM 0.6695 0.6762 0.7156 0.7089 0.6742 0.6858 0.6813 0.6924

DSFCMN 0.7397 0.7062 0.6195 0.7119 0.6361 0.6633 0.6799 0.7479

PIFCM S(S) 0.7709 0.7556 0.7721 0.7759 0.6750 0.7441 0.7670 0.7688

PIFCM S(Y) 0.7705 0.7499 0.7682 0.7665 0.6446 0.7473 0.7636 0.7622
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Table 6 Comparison of PIFCM S with other methods in terms of DS for GM for IBSR dataset with Rician
noise (σ =10)

Methods\Images 110 3 111 2 11 3 12 3 15 3 16 3 1 24 205 3

FCM 0.7667 0.7193 0.7635 0.7535 0.5499 0.6073 0.6880 0.7646

IFCM(S) 0.7623 0.7593 0.7509 0.7665 0.6655 0.6946 0.7432 0.7575

IFCM(Y) 0.7674 0.7200 0.7641 0.7552 0.5491 0.6100 0.6919 0.7637

FCM S 0.7675 0.7245 0.7720 0.7589 0.5531 0.6244 0.6938 0.7699

FLICM 0.7672 0.7437 0.8028 0.7896 0.6172 0.7168 0.7552 0.7993

KFCM S 0.7667 0.7387 0.7698 0.7647 0.5936 0.6951 0.6946 0.7741

ARKFCM 0.6638 0.6107 0.7619 0.7567 0.5926 0.6936 0.7556 0.6764

IIFCM 0.7586 0.7589 0.7697 0.7734 0.6293 0.7215 0.7458 0.7696

KIFCM 0.7783 0.7468 0.7857 0.7789 0.5502 0.7126 0.7595 0.7758

PIFCM(S) 0.7929 0.7696 0.7720 0.7821 0.6764 0.7007 0.7567 0.7910

PIFCM(Y) 0.7950 0.7727 0.7704 0.7817 0.6157 0.7234 0.7610 0.7951

KWFLICM 0.5385 0.7062 0.7399 0.7338 0.6017 0.5965 0.7182 0.5514

NDFCM 0.7694 0.7442 0.7705 0.7050 0.6642 0.7050 0.7199 0.7000

WRFCM 0.7006 0.6883 0.7194 0.7114 0.6603 0.6589 0.6911 0.6656

FRFCM 0.6909 0.7079 0.7511 0.7302 0.6867 0.6953 0.7134 0.6852

DSFCMN 0.7479 0.6935 0.6135 0.6844 0.5485 0.6367 0.6791 0.7288

PIFCM S(S) 0.7946 0.7787 0.7822 0.7964 0.6644 0.7273 0.7742 0.8061

PIFCM S(Y) 0.7972 0.7759 0.7813 0.7878 0.6048 0.7127 0.7708 0.7997

where r
j
i ∈ {1, 2, . . . , k}(1 ≤ i ≤ N, 1 ≤ j ≤ k) is rank value for ith image and j th

method. Table 7 shows the average Friedman ranking of different segmentation methods
corresponding to ASA for 9 BrainWeb brain images and 8 synthetic images used for exper-
iment [17, 20]. Lowest numerical value of rank for a segmentation method shows its better
performance compared to other methods for a given performance measure. On the basis of
Friedman ranking, the proposed method PIFCM S(S) performs better in terms of ASA. The
statistical hypothesis test proposed by Iman and Davenportis is used. The statistic FID is
defined by Iman and Davenport [30] is given as:

FID = (N − 1)χ2
F

N(k − 1) − χ2
F

(31)

which is distributed according to F-distribution with k − 1 and (k − 1)(N − 1) degrees of

freedom, where χ2
F is the Friedman’s statistic defined as 12N

k(k+1)

[∑
j R2

j − k(k+1)2

4

]
. In our

experiments k = 18 and N = 17. The p-value obtained by Iman and Davenport statistic is
0.0 corresponding to the performance measures ASA, which advocate the rejection of null
hypothesis H0 as there is significant difference among different segmentation methods at
the significance level of 0.05.

However, these p-values obtained are not suitable for comparison with the control
method, i.e. the one that emerges with the lowest rank. So adjusted p-values [17] are com-
puted which take into account the error accumulated and provide the correct correlation.
This is done with respect to a control method which is the proposed method PIFCM S(S)
(lowest rank for ASA). For this, a set of post-hoc procedures are defined and adjusted
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Table 7 Average Friedman Rankings of the algorithms

Algorithm Ranking Algorithm Ranking

PIFCM S(S) 2.50 DSFCMN 10.09

PIFCM S(Y) 3.94 PIFCM(S) 10.21

KIFCM 7.35 IFCM(S) 10.44

KFCM S 7.50 PIFCM(Y) 10.47

FLICM 8.03 NDFCM 11.29

IIFCM 8.18 KWFLICM 11.97

WRFCM 8.74 IFCM(Y) 12.74

FCM S 9.50 FRFCM 14.06

ARKFCM 9.59 FCM 14.41

p-values are computed. The most widely used post-hoc method [17] to obtain adjusted p-
values is Holm procedure. Table 8 shows the various values of adjusted p-values obtained.
Table 8 indicate that the performance of proposed PIFCM S method with Sugeno’s nega-
tion function and Yager’s negation function in terms of ASA performance measures have
no significant difference.

5 Conclusion

In this research work, we have presented a intuitionistic fuzzy set theoretic clustering for
image segmentation problem that uses probabilistic Euclidean distance measure with a spa-
tial regularization term (PIFCM S). For this, we have utilized the mean filter image in the
spatial regularization term in the segmentation process to dampen the effect of noise. The
optimization problem of the proposed approach has the advantage of probabilistic Euclidean
distance measure and regularization term to handle the noise in IFS framework. The image
representation in terms of IFS increases the representational capability and hence improves
segmentation performance. For this, two well-known intuitionistic fuzzy negation func-
tions, namely Yager’s negation function and Sugeno’s negation function have been utilized
to convert the gray image in terms of IFS. The experiments are carried out on two publicly
available brain MRI dataset for checking the efficacy of the proposed method. Moreover,

Table 8 Adjusted p-values (Friedman) corresponding to performance measure ASA

Algorithm Unadjusted p value pHolm value Algorithm Unadjusted p value pHolm value

FCM 7.76E-11 1.32E-09 ARKFCM 1.08E-04 8.67E-04

FRFCM 2.75E-10 4.39E-09 FCM S 1.32E-04 9.23E-04

IFCM(Y) 2.27E-08 3.41E-07 WRFCM 6.61E-04 0.004

KWFLICM 2.32E-07 3.24E-06 IIFCM 0.002 0.010

NDFCM 1.57E-06 2.04E-05 FLICM 0.003 0.010

PIFCM(Y) 1.34E-05 1.61E-04 KFCM S 0.006 0.019

IFCM(S) 1.45E-05 1.61E-04 KIFCM 0.008 0.019

PIFCM(S) 2.57E-05 2.57E-04 PIFCM S(Y) 0.431 0.431

DSFCMN 3.41E-05 3.07E-04
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the comparison of the performance of the proposed PIFCM S method with other state-of-art
methods is carried out on the datasets. The results obtained on these two publicly available
datasets show significant improvement in the segmentation performance of the proposed
PIFCM S method in comparison to other related methods in terms of average segmenta-
tion accuracy and Dice score. It is clearly depicted from the results that Sugeno’s negation
function gives better performance for higher level of noise whereas Yager’s negation func-
tion gives better performance for lower level of noise. Further, a statistical test has been
performed to check the significant difference in the performance of the proposed PIFCM S
method with the state-of-art methods. The statistical test shows that the performance of the
proposed PIFCM S method is superior over other related methods. The limitation of the
proposed PIFCM S method is the manual tuning of the intuitionistic negation parameter
and spatial regularization parameter, which is important to obtain the accurate segmenta-
tion. In the future direction, we may investigate an adaptive way to choose the optimal value
of these parameters based on the image itself.
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