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Abstract
Electroencephalography (EEG) signals are named letters of the brain, and their translation
is a complex issue. This work recommends a new hand-crafted feature-based EEG signal
classification model, including a new local histogram-based feature generation function,
the cube pattern. The recommended model comprises preprocessing/signal denoising,
feature extraction using the presented cube pattern, neighborhood component analysis-
based feature selection, and classification by employing 25 classifiers. Multi-scale prin-
cipal component analysis (MSPCA) is applied to the raw EEG signals in the denoising
phase. Afterward, the denoised EEG signals are forwarded to the feature extraction
method. Next, tunable q-factor wavelet transform (TQWT) is employed to denoise
signals for decomposition, and levels/sub-bands are generated. The selected features are
classified from 25 classifiers by using the MATLAB Classification Learning tool. The
presented model is applied to a commonly used EEG signal dataset. Variable perfor-
mance evaluation metrics are used to test the performance of each classifier. Per the
calculated results, the presented model reached over 99% accuracy using 24 of the 25
classifiers, and a comprehensive benchmark is obtained. The calculated results and
obtained findings denote the high performance of the presented cube pattern and the
neighborhood component analysis-based model.

Keywords Cube pattern . TQWT . NCA .Multi-scale principal component analysis . EEG
classification

1 Introduction

Epilepsy is a brain disorder that affects nerve cell activity. It has many negative effects on
human life, including seizures, unusual behavior, and even loss of consciousness [6, 9].
Epileptic activity in the brain can be detected through electroencephalography (EEG) by
experts. Machine learning techniques help experts classify EEG signals better and diagnose
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disorders more accurately [7, 14, 39]. Some epilepsy patients can be resistant to treatment with
drugs as a particular portion of the brain causes this resistance. EEG signals are used to detect
this brain portion. The removal of the portion via surgery is an accepted treatment method,
hence determining the correct location has the utmost importance. EEG signals received from
parts of the brain affected by epileptic seizures are classified as focal. Other signals that are
recorded from other brain regions not affected by epileptic seizures are called nonfocal [25].

1.1 Motivation and the proposed method

As epilepsy is one of the most common brain disorders worldwide affecting patients’ quality of
life, any new method that will facilitate the disorder’s diagnosis and treatment should be
regarded [12]. Characteristics of focal and nonfocal EEG signals are different. Therefore,
machine learning methods can detect differences in these signals automatically. In this study,
an automated and high-accurate classification method is recommended to classify EEG signals
with high performance. This work’s primary goal is to use appropriate preprocessing, feature
generation, and feature selection methods to reach a high-true prediction rate using shallow
classifiers. Thus, multi-scale principal component analysis (MSPCA) is utilized as a denoising
method in preprocessing. Multileveled or multilayered feature generators have high, moderate,
and low levels of feature extraction capabilities, such as in deep models [8]. Therefore, a multi-
leveled feature generationmethod is preferred in this work. Tunable Q-factor wavelet transform
(TQWT) [30] is employed to create levels. A new local histogram-based feature generation
function is proposed for feature extraction, namely, the cube pattern. Two-dimensional (2D)
graphs (generally called local graph structures) based generators are commonly used in the
literature. In this study, the feature generation and extraction abilities of a three-dimensional
(3D) shape are investigated through the cube pattern. An appropriate feature selector must be
used to reach high performance and decrease the used classifiers’ training and testing time.
Therefore, a neighborhood component analysis (NCA) [15] selector is used in this phase.
Twenty-five variable classifiers are used for demonstrating the general success of this model.

1.2 Contributions

Contributions of this work can be summarized as follows:

& A new 3D pattern-based feature generation function, the cube pattern, is presented.
& The proposed model yielded high accuracy rates by employing 25 shallows/conventional

classifiers. Our approach focuses on combining the proposed cube pattern, TQWT, and
NCA to obtain a high-accurate EEG classification model. Moreover, this model outper-
forms the existing methods (see Table 6) and has low computational complexity.

1.3 Literature review

Manual classification of the EEG signals can be subjective and error-prone. Thus, automated
methods are proposed in the literature to aid medical professionals. A literature survey was
performed to acquire related work covering recent studies (after 2019) that conduct EEG signal
classification on Bern-Barcelona and Bonn datasets and have a minimum accuracy of 89%.
Selected studies are listed in Table 1.
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Considering studies listed in Table 1, it can be observed that hand-crafted feature generation
models have widely been used for focal and nonfocal EEG signal classification. However,
hand-modeled methods can generate low-level features. To improve classification ability, deep
networks have been applied on EEG datasets. Daoud and Bayoumi [10] have extracted
features using the deep convolutional autoencoder. Generated features have been classified
using the multi-layer perceptron. They have used Bonn and Bern-Barcelona EEG datasets, and
their model has achieved 96.0% and 93.21% accuracies for these datasets, respectively.

Convolutional Neural Network (CNN) was generally used to solve computer vision problems in
the literature [20]. However, San-Segundo et al. [29] have used CNN and Fourier transform together
to present a deep EEG signal classificationmodel. Their accuracy has reached 98.90%. Fraiwan and
Alkhodari [13] have presented a recurrent neural network (RNN) based EEG classification model.
Bi-directional long short-term memory (Bi-LSTM) has been applied to the Bern-Barcelona dataset,
and 99.60% accuracy has been reached. As Table 1 denotes, this model [13] has the highest result
among the listed methods that were applied on the Bern-Barcelona dataset.

Although deep network-based EEG classification models attain high accuracies, they are
too expensive in terms of computational complexity. Therefore, a lightweight and high-
accurate model is needed. Our work aims to put forth this kind of solution.

1.4 Organization

The organization of the rest of the article is given as follows. Material and method are
explained in Section 2, results are given in Section 3, discussions are presented Section 4
and conclusions are given in Section 5.

2 Material and method

2.1 Material

The recommended model is applied to the Bern-Barcelona EEG dataset for evaluation, which
is one of the widely preferred EEG datasets for machine learning studies [4, 7, 31, 32]. Its
common usage allows us to compare our method with other techniques that use the same
dataset. The dataset contains EEG signals that belong to two classes: focal and nonfocal. These
signals were collected from Fz and Pz channels. The sampling rate of these signals is 512 Hz.
In this work, the EEG signals are divided into 5120 sized frames. Therefore, 5000 focal and
5000 nonfocal EEG signals have been used [3].

2.2 The proposed method

The fundamental objective of this work is to investigate the feature generation ability of a 3D
shape-based pattern. Therefore, a new cube pattern has been presented for feature generation.
This research analyzes a graph-based textural feature extractor on a focal EEG dataset. This
work recommends a new generation hand-crafted feature-based basic and effective classifica-
tion model for focal and nonfocal EEG signals. The model uses MSPCA-based denoising,
TQWT, the cube pattern feature generation network, the selection of the most discriminative
features via NCA, and classification with 25 conventional classifiers. The primary objective of
this model is to yield a high-performance rate with a low-time cost. An overview of the
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presented EEG signal classification model is given in the following steps. Detailed explana-
tions are provided in the rest of the article.

1: Denoise (reduce noises) the loaded raw EEG signals by employing MSPCA.
2: Apply TQWT to denoised signals to create levels. Values 1, 3, and 6 are assigned to q-factor,

redundancy value, and level number parameters of the presented TQWT, respectively. In
this step, seven sub-bands are generated by applying TQWT with these parameters.

3: Generate 1024 features using the presented cube pattern function. The cube pattern
feature generation function extracts 128 features from a one-dimensional signal. We
apply the cube pattern to the denoised EEG signal and seven TQWT sub-bands of it.
Thus, 1024 (8×128) features are extracted.

4: Generate weights of the extracted 1024 features by applying NCA and select the most
informative/discriminative 128 of them.

5: Forward the chosen 128 features to the used 25 classifiers and calculate the performance
metrics using the actual output and considering the predicted results.

The visual denotation of the presented model is shown in Fig. 1.

Fig. 1 The visual denotation of the presented TQWT and Cube Pattern-based method (SB stands for sub-band)
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2.2.1 Preprocessing

The first phase of this model is denoising. By using MSPCA, existing noises of EEG
signals are removed. MSPCA denoising method is the decomposition of EEG signals by
combining the wavelet transform and PCA. MSPCA generalizes the PCA values/
components of a multivariate signal represented as a matrix by simultaneously performing
a PCA on matrices of different levels of details. Another PCA is also performed on the
coarser approximation coefficients matrix in the wavelet field and on the final recon-
structed matrix. By choosing the number of key components retained, simplified signals
are reconstructed. In this way, noise removal on the signal is performed [22, 38]. Thanks
to this combination, the benefits of using both techniques are observed. The noises are
directly affected by the generated features. Therefore, this phase has a critical importance
for yielding a high classification rate.

2.2.2 Feature generation

In the proposed model, a multileveled feature generation method is employed. The feature
generator uses TQWT and the cube pattern together. TQWT is the third-generation wavelet
transformation method introduced by Selecnick [30]. It is very effective for decomposition and
feature generation. Therefore, hand-crafted feature extractors have used TQWT to generate
high-level features. TQWT is a parametrical decomposition model. Several wavelet filters can
be presented by deploying these parameters, such as theQ-factor (oscillatory value), the signal
redundancy, and the number of levels. The Q-factor determines the oscillation of the signal. If
the value of the Q-factor is selected as one, non-oscillatory decomposition is applied. The
signal redundancy parameter can define users. The number of levels parameter is dependent on
the length of the signals. By using this parametric transformation mechanism, variable wavelet
coefficients are calculated based on the particular problem. The used feature generation model
can be described in detail below (L is used as the abbreviation of Level describing the different
levels of the method):

L 1: Decompose the EEG signal by using TQWT. The Q-factor (Q), the redundancy (r), and
the level number (J) are assigned as 1, 3, 6, respectively.

SBj ¼ TQWT Signal; 1; 3; 6ð Þ; j ¼ 1; 2;…; 7f g ð1Þ
L 2: Generate features from signal and sub-bands. The cube pattern extracts 128 features

from a one-dimensional signal. In mathematical notations, the cube pattern is defined as
CP(.) function.

X k; jð Þ ¼ CP Signalð Þ; k ¼ 1; 2;…;NSf g j ¼ 1; 2;…; 128f g ð2Þ

X k; 128 * iþ jð Þ ¼ CP SBi� �
; i ¼ 1; 2;…; 7f g ð3Þ

where X denotes generated features, NS defines the number of signals. Equations 2 and
3 represents feature generation and concatenation. Sub-steps of the cube pattern are as
follows:

19680 Multimedia Tools and Applications (2023) 82:19675–19691



L 2.1: Divide a one-dimensional signal (EEG signal) into the eight-sized overlapping
blocks.

blh kð Þ ¼ Signal hþ k−1ð Þ; h ¼ 1; 2;…; len Signalð Þ−7f g; k ¼ 1; 2;…; 8f g ð4Þ
where blh defines hth overlapped block, len(.) represents the length calculation
function.

A cube has eight corners. Therefore, each value is used as a corner of the cube.
An eight-sized block is shown in Fig. 2.

L 2.2: Create the cube by using the values of the block. The edges of the cube denote the
relationship of the values. Binary features are generated by using these relation-
ships and the signum function. A cube has 12 edges (see Fig. 3) and 12 bits are
generated by using them.

bit1
bit2
bit3
bit4
bit5
bit6
bit7
bit8
bit9
bit10
bit11
bit12

2
6666666666666666664

3
7777777777777777775

¼ Sign

P1;P2
P1;P4
P1;P5
P2;P3
P2;P6
P3;P4
P3;P7
P4;P8
P5;P8
P5;P6
P6;P7
P7;P8

2
6666666666666666664

3
7777777777777777775

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð5Þ

Sign t; ið Þ ¼ 0; t−i < 0
1; t−i ≥ 0

�
ð6Þ

where Sign(., .) is signum function, t and i are input parameters of the signum
function, biti is the ith extracted binary feature

L 2.3: Divide the generated 12 bits into left and right sections. While the first six bits are
from the left section, the remaining bits are from the right section.

left jð Þ ¼ bit jð Þ; j ¼ 1; 2;…; 6f g ð7Þ

right jð Þ ¼ bit jþ 6ð Þ ð8Þ
L 2.4: Calculate left and right map signals.

mapleft hð Þ ¼ ∑
8

j¼1
left jð Þ * 2 j−1 ð9Þ

Fig. 2 An eight-sized block. Each value in the block corresponds to a corner of the cube
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mapright hð Þ ¼ ∑
8

j¼1
right jð Þ*2 j−1 ð10Þ

where mapleft and mapright define the left map signal and right map signal
consecutively.

L 2.5: Extract histogram values of the generated map signals. Equations 9 and 10 denote
that these map signals are coded in six bits. Therefore, the length of each map
signal histogram is calculated as 26 = 64.

L 2.6: Combine the extracted histograms and generate the feature value of the cube
pattern.

feature sð Þ ¼ Histleft sð Þ; s ¼ 1; 2;…; 128f g ð11Þ

feature sþ 128ð Þ ¼ Histright sð Þ ð12Þ
where Histleft and Histright are histograms of the left and right map signals,
respectively.

The given six steps are defined as CP(.) function.

2.2.3 Feature selection

Feature selection is a critical phase of the proposed method. The recommended feature
extraction method generates 1024 features. This phase aims to select the most discriminative
128 of them. One of the widely preferred weight-based selectors, NCA, is preferred in this
work. NCA is a version of kNN allowing feature selection. It is a distance-based selector
presented by Goldberger et al. [15]. Fixed initial weights are assigned in NCA. A distance
function (Manhattan) and an optimization function (stochastic gradient descend) are used to

P1 P2

P5 P6

P7P8

P4 P3

Fig. 3 The presented cube pattern
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create positive weights. By using the created weights, the most valuable features are selected
[15]. Steps (abbreviated as ‘S’) of this phase are;

S1: Normalize each feature individually.

maxi jð Þ ¼ max X :; jð Þð Þ ð13Þ

mini jð Þ ¼ min X :; jð Þð Þ ð14Þ

XN k; jð Þ ¼ X k; jð Þ−mini kð Þ
maxi kð Þ−mini kð Þ ð15Þ

Herein, X(:, j) defines the jth feature values, maxi(j) represents the maximum value of the
jth feature, mini(j) is the minimum value of the jth feature, and XN expresses normalized
features.
S2: Calculate weights deploying NCA.
S3: Sort the generated weights to find indices by descending.

wS ; idx
� � ¼ sort wð Þ ð16Þ

where w is weights of the features by generating NCA, idx expresses sorted indices, and
sort(.) is the sorting function.
S4: Select 128 of the most informative/discriminative features (XS) by using XN and idx.

X S k; cð Þ ¼ XN k; idx jð Þð Þ; c ¼ 1; 2;…; 128f g ð17Þ

2.2.4 Classification

MATLAB (2020a) classification learner toolbox is used to apply 25 conventional classifiers.
Among them, XS is considered as the input of conventional classifiers. All other classifiers are
used in their default setting. 10-fold cross-validation is used for training and testing. The used
classifiers are listed in Table 2.

3 Results

Results of this study have been calculated by using 25 conventional classifiers. Different
metrics are used to evaluate the performance of the presented method. Mathematical expres-
sions of these metrics are listed below [37].

Accuracy ¼ Tpþ Tn
Tpþ Tnþ Fpþ Fn

ð18Þ

19683Multimedia Tools and Applications (2023) 82:19675–19691



F1 ¼ 2Tp
2Tpþ Fpþ Fn

ð19Þ

Precision ¼ Tp
Tpþ Fp

ð20Þ

Sensitivity ¼ Tp
Tpþ Fn

ð21Þ

Specificity ¼ Tn
Tnþ Fp

ð22Þ

Geometric mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tn
Tnþ Fp

*
Tp

Tpþ Fn

s
ð23Þ

where, Tp, Tn, Fp, and Fn express true positives, true negatives, false positives, and false
negatives, respectively. By using these parameters (see Eqs. 18–23) and with the help of 25
classifiers, the results are calculated as shown in Table 3.

Table 3 denotes that the best accurate results are obtained from Medium Gaussian SVM as
it reaches 99.97% classification accuracy. Twenty-four of the used 25 classifiers result in
>99% classification accuracy. The worst classifier is Fine Gaussian SVM, and it yields 98.08%
accuracy. The results demonstrate a high classification capability of the presented TQWT and
cube pattern-based focal-non focal EEG classification. The ROC (Receiver Operating Char-
acteristic) of the Medium Gaussian SVM is shown in Fig. 4.

Moreover, the time complexity of the presented model is calculated using the Big O
notation. This model consists of four main phases (see Section 3): preprocessing, feature

Table 2 Used classifiers

Category Classifier Category Classifier

Tree [27] Fine Tree SVM Coarse Gaussian
Medium Tree kNN Fine
Coarse Tree Medium

Discriminant [19] Linear Coarse
Quadratic Cosine

Regression [23] Logistic Cubic
Naïve Bayes [26] Gaussian Weighted

Kernel Ensemble Boosted Tree
SVM [18] Linear Bagged Tree

Quadratic Subspace Discriminant
Cubic Subspace kNN
Fine Gaussian RUS Boosted Tree
Medium Gaussian

19684 Multimedia Tools and Applications (2023) 82:19675–19691



Table 3 The calculated results of the presented EEG signal classification model

Classifier Accuracy F1 Precision Sensitivity Specificity Geometric mean

Fine Tree 99.39 99.39 99.28 99.50 99.28 99.39
Medium Tree 99.42 99.42 99.36 99.48 99.36 99.42
Coarse Tree 99.24 99.24 99.42 99.06 99.42 99.24
Linear Discriminant 99.91 99.91 99.84 99.98 99.84 99.91
Quadratic Discriminant 99.91 99.91 99.82 100.0 99.82 99.91
Logistic Regression 99.87 99.87 99.82 99.92 99.82 99.87
Gaussian Naïve Bayes 99.72 99.72 99.44 100.0 99.44 99.72
Kernel Naïve Bayes 99.78 99.78 99.56 100.0 99.56 99.78
Linear SVM 99.90 99.90 99.84 99.96 99.84 99.90
Quadratic SVM 99.96 99.96 99.96 99.96 99.96 99.96
Cubic SVM 99.95 99.95 99.96 99.94 99.96 99.95
Fine Gaussian SVM 98.08 98.12 96.30 100.0 96.16 98.06
Medium Gaussian SVM 99.97 99.97 99.96 99.98 99.96 99.97
Coarse Gaussian 99.89 99.89 99.78 100.0 99.78 99.89
Fine kNN 99.94 99.94 99.88 100.0 99.88 99.94
Medium kNN 99.85 99.85 99.70 100.0 99.70 99.85
Coarse kNN 99.78 99.78 99.56 100.0 99.56 99.78
Cosine kNN 99.84 99.84 99.70 99.98 99.70 99.84
Cubic kNN 99.85 99.85 99.70 100.0 99.70 99.85
Weighted kNN 99.89 99.89 99.78 100.0 99.78 100.0
Boosted Tree 99.63 99.63 99.58 99.68 99.58 99.63
Bagged Tree 99.56 99.56 99.52 99.60 99.52 99.56
Subspace Discriminant 99.86 99.86 99.74 99.98 99.74 99.86
Subspace kNN 99.93 99.93 99.86 100.0 99.86 99.93
RUS Boosted Tree 99.45 99.45 99.46 99.44 99.46 99.45

Fig. 4 The calculated ROC curve of the Medium Gaussian SVM. Per this figure, 100.0% AUC value was
calculated
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generation, feature selection, and classification. Table 4 shows the time burden of the
presented model on each phase and in total.

In Table 4, n defines the length of the EEG signal, and k and t represent the time complexity
variable of the NCA and the used classifiers. In this model, several classifiers with different
time burdens are used to calculate results. For instance, the time complexity of the kNN is
calculated as O(nd), while O(nd3) is the time burden of the SVM. The memory complexity of
the presented EEG detection model is also given in Table 5.

In Table 5, n, f, p and d are the length of the signal, number of features, number of selected
features, and the number of the used EEG observations. It can be concluded that the proposed
method is lightweight by considering Tables 4 and 5.

4 Discussions

TQWT is an effective and fast decomposition model that presents various wavelet decompo-
sition methods by changing Q, r, and J parameters. The recommended cube pattern is a
microstructure for feature generation. We have investigated the feature generation ability of the
3D shapes/graphs by proposing a cube pattern. The presented model yielded very high
accuracy by using 25 variable classifiers. The range of the calculated accuracies is between
98.08% and 99.97%. Accuracy rates of the priorly presented EEG classification models and
our method are listed in Table 6.

Table 6 denotes our method yields the best accuracy rate. The best of other models reached
99.92% classification accuracy. We achieved better results than that model using five classi-
fiers (Quadratic SVM, Cubic SVM, Medium Gaussian SVM, Fine kNN, Subspace kNN).
Also, the generated and selected separable features have a positive effect on these high
classification performances. A scatter plot shows the distribution of these features in Fig. 5.
Statistical properties of these features are provided in Fig. 6 by using boxplot analysis.

Table 5 The memory burden of
the presented EEG detection model Phase Memory burden

MSPCA O(nd)
Multilevel feature generator O(fd)
NCA O(pd)
Classifiers O(pd)
Total O(nd+ fd+2pd)≅O(nd+ fd+pd)

Table 4 Time complexities of the
presented EEG detection model Phase Time burden

MSPCA O(nlogn)
Multilevel feature generator O(nlogn)
NCA O(k)
Classifiers O(t)
Total O(2nlogn+k+ t)≅O(nlogn+k+ t)
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Figures 5 and 6 demonstrate the distinctiveness of the features that contributes to the high
calculated performance. Moreover, a t-test was applied to the generated and chosen 128
features. The calculated p values were shown in Fig. 7. The minimum p value is found as
zero, and the average value is calculated as 4.0940e-13. Figures 5, 6 and 7 obviously denote
the discriminative attributes of the features using TQWT, the recommended cube pattern, and
the NCA selector.

Table 6 Classification accuracies (%) of the existing classification models and the presented model (sorted per
the increasing accuracy rate)

Work Method Accuracy

Sing and Pachori [34] Mean-frequency and root-mean-square bandwidth features 89.7
Sharma et al. 2017–1 [7] Wavelet filter banks and entropies based feature generation.

LS-SVM classification
94.25

Gupta et al. [16] FAWT and three entropies based extraction
and LS-SVM classification.

94.41

Sharma et al. 2017–2 [31] TQWT and three entropies based generation
and LS-SVM classification

95.0

Sairamya et al. [28] Wavelet packet decomposition, entropy and quad binary
pattern based feature generation and ANN classification

95.74

Sharma et al. 2019 [32] Locality sensitive discriminant analysis 96.2
Arunkumar et al. 2017 [4] Entropy 98.0
Jukic et al. [17] Statistical feature generation and ensemble classification

(Adaboost + LAD Tree)
98.75

Arunkumar et al. 2018 [5] Entropy 99.0
Deivasigamani et al. [11] Dual tree complex wavelet transform 99.0
Subasi et al. [36] MSPCA based denoising, EMD, DWT, WPD, and

statistical features extraction and classification using RF.
99.92

Our method TQWT and cube pattern based feature generation and
Medium Gaussian kernel SVM based classification

99.97

Fig. 5 A scatter plot about the selected features. a Statistical properties of the generated and selected focal EEG
features. b Statistical properties of the generated and selected nonfocal EEG features
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Per these findings and results, the following points can be highlighted as the advantages of
the presented model:

& A new 3D pattern, the cube pattern, is presented in this research. By applying the cube
pattern on the chosen dataset, the effectiveness of the 3D shape-based pattern is
investigated.

& The presented multileveled hand-crafted feature generation model has low-level and high-
level feature generation abilities.

& The most discriminative features are generated and selected for classification by using
TQWT, the cube pattern-based generation, and the NCA selection models.

& 25 variable classifiers have been used for calculating results. The range of the yielded
accuracies is from 98.08% to 99.97%.

& Simple/basic methods have been used together. Therefore, the model can be classified as
lightweight.

(a) Statistical properties of the generated 

and selected focal EEG features.

(b) Statistical properties of the generated 

and selected nonfocal EEG features.

Fig. 6 Boxplot denotation of the generated and selected features

Fig. 7 The calculated p-values of
the features
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5 Conclusions

This research presents a new 3D pattern-based feature generation method for classifying focal
and nonfocal EEG signals. The presented TQWT and cube pattern-based model’s primary goal
is to generate discriminative features to solve the EEG signal classification problem with high
accuracy. Therefore, basic/simple methods were utilized together to create a useful model. The
Bern-Barcelona dataset was used to perform experiments. The presented TQWT and cube
pattern-based model tested on 25 variable classifiers. The proposed EEG classification model
yielded >98% classification accuracies for all the used classifiers. The best-resulted classifier is
Medium Gaussian SVM, whose accuracy is calculated as 99.97%. The results and findings
denote the success of the presented model. By applying the presented model, high accuracy
rates were calculated using any shallow classifiers.

In the near future, we are planning to develop an automatic EEG abnormality detection
application to solve real-world problems. In this system, we will develop a new EEG signal
classification model deploying a big EEG signal classification model. The used huge dataset
will be trained using our presented 3D shape-based EEG classification models. In the medical
centers, the EEG signals will be sent to the trained dataset using a graphical user interface
(GUI), and our cloud-based model will send responses to the developed GUI. The intended
system will help medical professionals and will cause speed up diagnosis processes.

Moreover, similar to the presented cube pattern (3D shape-based feature generator) in this
research, other shapes or graphs can be used to propose novel transformations, decomposition
techniques, and feature generation models. These models can be employed in advanced signal
and image processing methods. Novel deep learning models can also be presented deploying
shape/graph-based feature generators.
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