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Abstract
The loss of or impairment in vision makes it challenging for blind and visually impaired
people (BVIP) to navigate easily in their surroundings. Several solutions were proposed to
address this challenge and assist BVIP in navigation by exploiting existing technologies.
However, their reliance on pre-installed infrastructure and costly dedicated hardware made
them less practical. As an alternative, pedestrian dead reckoning techniques were pro-
posed. However, the slow walking pace of BVIP, the required contact with un-intended
obstacles, and the false recognition of activities increase error accumulation, making these
techniques less applicable. Therefore, solutions are needed to accurately recognize the
walking patterns of BVIP so that efficient navigation solutions can be developed. This
article fills this research gap by extending traditional white cane with smartphone sensors.
Specifically, a smartphone is used with a conventional white cane to collect data through
its sensors on a time-based data window. For smooth recording, a revolving tire is attached
at the bottom of the white cane. The collected data is processed by employing the
computational resources of the smartphone using our designed app, which identifies the
user’s walking patterns such as walking, stairs up/down, sit/stand, and collision. As a case
study, these activities were classified using Naïve Bayes, Random Forests, J48, Decision
Table, and LibSVM. Among these, Random Forests gave a higher accuracy. These results
suggest that the proposed solution is more practical in designing navigation applications
for BVIP and may yield better accuracy if tested with more advanced classifiers.
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1 Introduction

Navigation plays a vital role in performing various daily life activities, including going for
education, work, shopping, etc., where the critical part of the vision is clear to and acknowl-
edged by every individual [24]. However, the impairment in vision makes it challenging for
blind and visually impaired people (BVIP) to navigate easily in their surroundings [21].
Worldwide, at least 2.2 billion people suffer from a near or distance vision impairment [5],
a statistic that nobody can ignore. To address this challenge and assist BVIP in navigation,
several solutions were proposed by exploiting existing technologies. Numerous navigational
tools and apps focused mainly on making technologies navigation-friendly for BVIP. How-
ever, these solutions rely heavily on pre-installed infrastructures, such as ultra-wideband
(UWB)-based positioning with pedestrian dead reckoning (PDR) [25], as well as dedicated
and costly hardware, including, e.g., wearable systems having a depth camera and an embed-
ded computer with haptic feedback for navigation [40]. This reliance makes these solutions
less practical to apply in real-world scenarios.

One of the possible solutions to address these issues is to employ PDR techniques [14, 21,
41]. These techniques calculate the current location of a blind user by using her previously
known position and advancing it over time using estimated speeds and trajectories (i.e.,
directions and stride lengths) [14]. These techniques are coupled with building mapped data
to improve the confidence of BVIP and assist them more accurately in developing their mental
models regarding their surroundings. The use of PDR was a success to some extent, yet the
slow walking pace of BVIP and their unattended contact with coming obstacles need special
arrangements [22]. Also, it is further affected by the error accumulation due to issues in the
carrying position of the inertial measurement unit (IMU), detecting accurate step length, and
false activity recognition [23]. Therefore, solutions are required to improve PDR techniques
for enhanced navigation. The first step in this regard is to accurately identify the walking
patterns of BVIP so that more reliable navigation solutions, tools, and apps can be produced on
top of this recognition.

This article fills this research gap by extending traditional white cane with smartphone
sensors. The proposed work is inspired by a recent research study [19] that stresses the use of
smartphones in developing low-cost and user-friendly navigation solutions. Specifically, a
smartphone is used with a traditional white cane to collect data through its sensors and process
using its computational resources. The following are the main contributions of this work:

& We use a smartphone with a traditional white cane to collect data through its inertial
sensors on a time-based data window.

& We use a revolving tire at the bottom of the white cane for smooth data recording and
reducing noise.

& We process the collected data using the computational resources of the smartphone.
& We design a smartphone app to identify the user’s walking patterns such as walking, stairs

up/down, sit/stand, and collision.
& We perform a case study by experimenting with Naïve Bayes, Random Forests, J48,

Decision Table, and LibSVM to classify the walking patterns.
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To the best of our knowledge, the work is both novel and original in the sense that no one
before has attempted the proposed approach. The novelty lies in the use of smartphone inertial
sensors in collecting sensory data, using the computational resources of smartphone for data
processing and activity recognition, the development of our app for activity recognition, and
extending white cane with revolving tire and keeping the smartphone attached to it for smooth
data collection. The proposed work is significant from the perspective of improving the
navigation of BVIP. Accurately, recognizing walking patterns will enable the development
of more efficient navigation solutions. The resulting higher accuracy, even using some of the
basic classifiers, suggests that the proposed solution is more practical in designing navigation
applications for BVIP and may yield better accuracy if tested with more advanced classifiers.
The rest of the paper spans four sections. Section 2 presents related works and concludes the
need to develop the proposed solution. Section 3 gives details about the methodology.
Section 4 presents results & discussion. Section 5 concludes the paper, followed by references.

2 Related works

Several technologies have been used to develop assistive solutions for BVIP to help them walk
in and navigate their surroundings [34]. These include ultrasonic sensors [29, 44], radio-
frequency identification (RFID) tags [3, 23] vision using camera or lasers [10, 39], smartphone
technology [20, 21], and sensor data fusion [25, 42]. Among these, several studies have
observed smartphones to give orientation and navigation aids to BVIP. The following
paragraphs briefly discuss the most related works to draw conclusions and set the stage for
presenting the proposed solution.

Vera, Zenteno, and Salas [39] proposed a smartphone-based virtual white cane by combining a
smartphone with a laser pointer through a mounting system to detect obstacles in front of the
walking user. However, this solution is expensive, consumes too much battery power, and its
performance gets affected by the light coming in front of it from other sources. Lin, Lee, and
Chiang [27] propose a smartphone-based guiding system for visually impaired users to help them
avoid obstacles in their navigation pathway and guide them about their surroundings. It uses a
smartphone camera and employs image recognition. It captures the photo of incoming object
using the smartphone and sends it for processing to the backend server, which processes it using
CNN and YOLO and identifies obstacles with 60% accuracy. However, it is unable to identify
and classify activities as walking, stairs down, stairs up, sit/stand, and collision using smartphone
sensory data coming from inertial sensors, instead they use camera only for obstacle detection.

Croce et al. [6] developed a smartphone-based indoor navigation system that uses the
camera and colored taps stuck to the floor for navigation. The quick response codes (QR
codes) are placed on the point of interest, holding the information about locations using
uniform resource locators (URLs) to be queried from the server. A blind user must have an
active Internet connection so that she can fetch the URLs from the server after scanning QR
codes for navigation. These settings make this simple solution costly and limited, as an active
fast Internet connection may not be possible each time during navigation.

Amari and Wu [35] used PDR through a smartphone to assist BVIP in navigating indoor
environments with auditory feedback. They used mapped routes to limit error accumulation. The
errors were handled by updating the current position upon the detection of a change in the heading
direction. However, it uses an external wireless IMU with the smartphone, which increases system
cost and requires a complex recognition mechanism. Lee et al. [25] proposed an indoor positioning
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application for blind people using UWB-based positioning with PDR. They replaced step detection
and stride length estimationwith deep learning (DL)-based speed estimation using the Kalman filter.
The fusion ofUWBandDL-based speed estimation have improved positioning accuracy. However,
UWB makes its implementation costly due to the required dedicated infrastructure.

Riehle et al. [28] exploited smartphone inertial sensors in assisting BVIP regarding their
position in indoor environments. The environment was divided into small cells named
microcells having two-dimensional coordinates. The regression-based analysis was used to
train the multi-layer perceptron for mapping IMU to the coordinates of the vertex of microcells
corresponding to the smartphone’s position. Ren et al. [33] experimented with a similar
approach with the WeAllWalk dataset considering two scenarios, i.e., with and without the
building data. They developed a two-stage turn detector with an LSTM-based step counter to
reconstruct the path traversed in the first case. The building map data is used from the
mentioned dataset in the second case. Mocanu et al. [30] enhanced the traditional white cane
by attaching sensors to interpret colors for walking in smart cities, and the user is warned with
tactile signals. Husin and Lim [15] used the internet of things and mobile phones to extend the
functionality of the white cane using an embedded board system with various sensors. The
data from the sensors are interpreted and passed to the smartphone via Bluetooth for global
positioning and SMS alerts. All these solutions are limited to dedicated hardware and costly
infrastructure such as smart cities. Therefore, alternatives must be found.

Summarizing, several navigation solutions have been proposed in the literature. However,
they are limited in accurately guiding BVIP as their navigation is affected by several factors.
These include the sensitivity of the subjects (i.e., the how the sensing device is attached to the
body of the user), the complexity of the navigation activity, the insufficient dataset for training/
classification, and the constraints on the use of energy and computational resources [7, 16].
The recent literature has extensively used smartphone in assisting BVIP in navigation. They
offer portability and convenience to BVIP in navigation [24] and have the potential to be used
in developing low-cost and user-friendly navigation solutions [19]. In this regard, the current
literature lacks in a smartphone-based solution that can collect data smoothly to improve the
classification accuracy. One possible solution is to extend the traditional white cane by adding
two modifications. First, smartphone can be placed at a fixed position, near the handle of the
white cane, so that the issue of subject sensitivity can be addressed. Second, a revolving tire
can be attached at its bottom for smooth data collection. The data collected through smart-
phone sensors can be processed using the computational resources of the smartphone in
identifying the walking patterns of the users. The accurate classification of the walking patterns
as walking, stairs up/down, sit/stand, and collision will open new avenues of developing more
user-friendly navigation solutions. In line with this need, Section 3 presents the proposed
solution and all the essential details of the methodology adopted.

3 Materials and methods

Figure 1 shows some additions and extensions that are suggested to be added to traditional
white cane to make it ready for use with our designed smartphone-based solution. We call it
smart white cane, which can be created easily by using any selfie stick from the market.
Keeping smartphone at the position shown has no negative impact on the use of the white
cane, such as folding and joining. A revolving tire is attached at the bottom of the white cane
for smooth data collection. We use it with our designed smartphone app, which is
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schematically presented in Fig. 2, to collect data using sensors, pre-process it, store it, extract
features from it, train the classifiers to select a suitable classifier, and use the trained model in
identifying walking patterns of the user. The proposed system has been implemented with our
designed app to collect sensory data from triaxial accelerometer, gyroscope, and magnetometer
from blind users while performing daily activities with the white cane.

The resulting data is used to define a predictive model for identifying walking patterns of
BVIP, which include walking, stairs up/down, sit/stand, and collision. This identification can

(b)

(a) (c) (d)

Fig. 1 The white cane after (a) modification, (b) with a holder, (c) joint identification marks, and (d) roller &
attachment

Fig. 2 A schematic diagram of the navigation app for the smart white cane
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be done in offline mode using some basic classification algorithms, including Naïve Bayes,
Random Forests, J48, etc., on desktop PCs to process raw data and obtain model parameters or
online in real-time using smartphone pre-processing & storage capabilities. The collected data
is passed through low-pass filters to reduce noise using Android libraries.

The role of feature extraction is inevitable in any inertial sensors-based activity recognition
process [17]. The reasons include the limited battery life and the energy-constrained nature of
smartphones, requiring to select those features that are energy efficient and give higher
accuracy [17]. These features either belong to time or frequency domain [8]. The most widely
used time domain features include mean, variance, energy, entropy, correlation between axes,
signal magnitude area, tilt angle, and autoregressive coefficients [17]. The most popular
frequency domain features include discrete cosine transform and fast fourier transform coef-
ficients [17]. Among these, the latter set of features require long time windows, high
computational cost, and are least suitable for real-time applications [17]. Li et al. [26] reported
that the time domain features outperform frequency domain features in terms of accuracy for
all the reported machine learning algorithms. Therefore, we extracted time-domain features,
including mean, median, zero-crossing rate, standard deviation, the correlation between
accesses, tilt angle, etc. The resulting data is classified to identify walking patterns using the
training data. These activities are exploited in step detection and estimating heading direction
and distance based on user profiling to the target position. The following subsections present
the essential steps of sensing/data collection, pre-processing & storage, training/classification
before they can be exploited in the identification of walking patterns, as presented in Fig. 2.

3.1 Data collection

We developed an Android app to collect data using various smartphone sensors. The smart-
phone was employed on the said white cane and given to each of the six blind participants

(a) (b) (c)

Fig. 3 The Android app for data collection. (a) startup screen, (b) list of activities with soft coded sampling rate,
time-data window and noise filter values, and (c) sensor reading with a start and stop button
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(male, age: 22–40) from the University of Peshawar, Pakistan. They performed six activities
using the proposed smart white cane in an indoor environment. These include walking, stairs
up, down, sitting/standing, and collision. Figure 3 shows a few screenshots of the Android app
with additional details in Algorithm-I & II and Section 3.3. For the data collection, storage, &
training/classification, the proposed app offers all activities with the option for the BVIP to
select any activity by dragging her finger up to down. The data collection can be started for a
specified activity by double tapping the screen. Algorithm-I presents the programming logic
used behind the smartphone app for data collection, pre-processing, and storage.

Algorithm I Data collection, pre-processing, and storage

3.2 Data pre-processing and storage

The collected data is pre-processed to reduce noise, create a time-based data window, and store
in a format suitable for further analysis. Two types of noise comes with the data collection, the
one generated by sensors when an activity is started or stopped by the user and the second from
accelerometer sensor that registers two forces along the X, Y, and Z dimensions. The former
force is applied by the user on the smartphone [37]. The latter is constant gravitational force g
due to earth gravity [37], handled using Eq. 1 and 2. Eq. 1 computes the applied acceleration to
the device Ad, measured as the sum of actual forces applied to the sensor itself Fs and the body
mass m [37]. Equation 2 computes the actual acceleration displacement by removes g [37].
The value of α is soft-coded to get a value suitable for data filtration. V shows the value of
acceleration for particular axis at time t instance.
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Ad ¼ −g −∑Fs=m ð1Þ

g ¼ 1−αð Þ * g þ α * Vt–gð Þ ð2Þ
In Table 1, we have performed analysis for finding the initial and final desired values of the
number of readings for starting time-based data windows and filtration. Figure 4 shows the
results before and after removing noise while starting/stopping activities. The low pass filter is
used to remove noise, where different α values are used, as shown in Fig. 5. During noise
removal, it was observed that if α is higher, the resulting data becomes zero, which is not
required as we are interested in noise removal only. Therefore, α = 0.2, which removes noise
without affecting the actual data.

Dividing data into a time-based data window is among the most suitable techniques for
activity recognition [45]. A feature vector (time-domain features) of each time-data window is
computed and used in the learning phase. Activities are either performed sequentially or
concurrently [1]. The time-based data window is suitable for sequential activities [45]. In
our case, the data acquisition is sequential; therefore, a time-based data window approach was
used. However, selecting the appropriate window size is challenging, significantly affecting
recognition accuracy and system response time. Therefore, different window sizes were
chosen based on time [18, 37] and a range of 2–12 seconds. The accuracy was increased by
using the sliding window approach [32, 38], which is effective if there are transitions between
activities data (reduce transition state noise) [4, 31, 43]. In our case, there is no transition
among the selected activities, and therefore, we use the time-based data windows concept only.
The raw data for activity recognition is kept in the smartphone’s internal memory and

Table 1 Noise reduction in start/stop of activity with the averaging method

S # No of readings before the
activity start

Time taken before the
activity starts

No of readings after
activity stops

Time taken after
activity stops

1. 42 0.9333 39 0.8667
2. 39 0.8667 42 0.9333
3. 33 0.7333 33 0.7333
4. 31 0.6889 32 0.7111
5. 29 0.6444 41 0.9111
6. 32 0.7111 35 0.7778
Total 206 4.5778 222 4.9333
Average 34 0.7630 37 0.8222

Fig. 4 The noise due to starting/stopping an activity (a) before and (b) after its removal
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transferred to the computer for analysis. The text file format (.txt) was used for data storage
because of its simplicity and easy processing during data analysis. The data recorded by each
sensor is stored in a separate text file naming with sensor name date and time, e.g., (ACC: 12
Feb 2017 11:55:36.txt). In the text file, the three-axis data is stored and separated by tab
labeling with the desired axis, such as Ax, Ay, and Az, as shown in Fig. 6.

Raw data with noise = 0.7

= 0.5 = 0.3

= 0.2 = 0.1

= 0.02 = 0.01

Fig. 5 The best value of α for noise removal

27013Multimedia Tools and Applications (2023) 82:27005–27025



The proposed solution collects sensors’ data from various inertial sensors of the smart-
phone. From the collected data, different features are extracted. As discussed early, extracting
and processing frequency domain features consume too much resources of the smartphone [8,
17]; therefore, we extracted time domain features. Specifically, we extracted simple statistical
features (SSF), a type of time domain features, which are better for recognizing activities due
to low resource consumption [17]. This study used SSF as it consumes less power/energy of
the smartphone and offers high accuracy at low sampling rates [12, 18].

3.3 Training

The extracted features help train the classifier to classify the activities in real-time. The
Waikato Environment for Knowledge Analysis (WEKA)1 tool [11] was used for employing
the learning algorithms to evaluate a given dataset using random split or cross-validation.
WEKA also supports APIs through which new learning algorithms can be incorporated. The
time-domain features hold basic statistical data for each data window (segment). These include
mean, standard deviation, correlation, zero-crossing rate, and maximum and minimum values.
The three-axis sensory data is considered, but some studies consider signal magnitude area as
the fourth dimension. It is the sum of the three-axis of the sensor in each segment window and
used in cases where orientation sensitivity is considered an issue, unlike other axes of the
sensors [18]. In our case, orientation is controlled with a fixed mounting system on the smart
white cane that neglects the need for the fourth dimension. The mean is the average value for
each time data window for each dimension in the mentioned features. Max and min represent
the maximum and minimum reading in each time-data window. The standard deviation
represents the amount of dispersion in the dataset related to their mean value, and correlation
estimates the strong or weak linkage between the pair of axes. The zero-crossing rate indicates

1 https://www.cs.waikato.ac.nz/ml/weka/

(a) (b) (c)

Fig. 6 Activity data storage test file with sensor axis labels
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the number of times the value sensed is less than zero in each time-data window. This
discussion leads to three axes for each of the sensors. We have six time-domain features for
each time-data window: mean, correlation, standard deviation, zero-crossing rate, and min and
max values. In total, we have 18 features for each sensor and 54 features for all sensors. The
selection and processing of the feature extraction are kept simple to assess the role of sensors
and their combination in identifying the walking patterns through this specialized setting.
Algorithm I and II show each of the steps performed for the data collection, preprocessing,
storage, and feature extraction.

Algorithm II Identify walking patterns

The processed sensory data was labeled with the corresponding activity by the Android app
using supervised learning. These activities were classified using Naïve Bayes, Random
Forests, J48, Decision Table, and LibSVM. WEKA is used to obtain the model parameters
(vector of features, i.e., the trained dataset) and the significant classifier for evaluation and
implementation. The extracted features were converted into Attribute-Relation File Format
(ARFF) before inputting to WEKA, the required format for this platform. The most optimal
classifier was selected for the design of the test application by applying 10-fold cross-
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validation on the same dataset after the evaluation. The details are further discussed along with
the results in the coming section.

4 Results and discussion

This section attempts to identify the most important factors for identifying the walking patterns
of BVIP, such as the sampling rate, the reasonable axis of the sensors to identify accurate
activity, and time-based window size. It also attempts to find the most reliable classifier for
identifying the walking patterns of BVIP.

4.1 Finding the reliable sensor axis

Each sensor is subject to change concerning data it collects while the user navigates at a given
time. Therefore, it becomes active to collect reliable data and represent the actual scenario. As
each sensor gives three-dimensional readings along the x-, y-, and z-axis, it is essential to
analyze the data for each activity on specified access and find out the reliable axes that could
be included in recognizing a specified activity. This requires data sampling for each activity
performed by each user holding the smart white cane with a basic usage position to get the
initial sensory readings. These initial readings (default values), shown in Fig. 7 for different
sensors, help understand the sensor axes and compare various activities. For example, the
default values for the accelerometer sensor are approximately 1, 6.4, and 7.2 for the x-, y-, and
z-axis, respectively. For each axis of the gyroscope, these values are near to zero.

(a)

(b)

(c)

Fig. 7 Default axis of smartphone accelerometer and gyroscope sensors. (a) x-axis, (b) y-axis, and (c) z-axis
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The activities performed by blind participants several times to compare the collected data
against the given default values for understanding changes in the collected sensory data for
each activity. Each activity is graphically illustrated in Fig. 8 and Fig. 9 for accelerometer and
gyroscope, respectively. It can be seen that walking is better recognized by the x- and y-axis of
the accelerometer. The z-axis partially contributes to this recognition in the maximum and
minimum range of (4, −4) for the x-axis and (−4, −12) for the y-axis. However, the gyroscope
gives considerable readings for walking in all three dimensions in the range of (0.4, −0.6), (4,
−4), (4, −4) for x-, y-, and z-axis, respectively. Therefore, it can be used to identify walking
easily. The sensor readings for the remaining patterns are shown in Fig. 8 and Fig. 9. The
accelerometer’s x-axis offers partial patterns for stairs-up, while the gyroscope’s x-axis gives
reliable patterns. For the stairs down, all axes of the gyroscope and x- and y-axis of the
accelerometer participate completely without the z-axis. For standing/sitting, the readings of
the accelerometer’s x-axis and gyroscope’s y- and z-axis show no clear patterns and readings
vary irregularly, but all other axes are participating well. For collision, all the accelerometer
and gyroscope axes participated fully.

4.2 Time-based data window and sampling rate

The appropriate data window and sampling rate for accurately identifying the walking patterns
was calculated by observing BVIP in real-time to see how much time they take in navigation.
We created two datasets with configurations given in Table 2. Each dataset is arranged based
on the sampling rate. We collected data for each activity with basic settings, e.g., 20 samples/
sec with different time-based data windows ranging from 2.0 to 3.0. This resulted in two

(a)

(b)

(c) 

(d)

Fig. 8 The data representation of accelerometer sensor for different activities. (a) Walking (b) Stairs Up (c) Stairs
Down (d) Sit/Stand
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datasets, each having three small datasets with the same sampling rate but different time-based
data windows. These datasets gave the evaluation required for developing our design smart-
phone app for identifying walking patterns. Table 3 summarizes the accuracies of the selected
classifiers using these datasets. The most reliable setting for achieving the best results is a
sampling rate of 40with a data window size of 2.0 and 3.0 seconds. However, to guide the blind
users in real settings, a shorter time-based data window is required so that the target application
can quickly alert the user. Therefore, we considered the sampling rate as 20 and the time-based
data window of 2.0 seconds. This setting yielded, on the average, an accuracy of 95.5%, which
is sufficient to be used in the smartphone app to identify the walking patterns of BVIP.

4.3 Experimental results in real-settings

We collected data from the accelerometer and gyroscope sensors to perform the experiments in
real settings according to the time-based data window. Five parameters were extracted from
each sensor’s data with labeled classes based on the time-based data window, resulting in a

x-axis y-axis z-axis

(a)

(b)

(c)

(d)

Fig. 9 The data representation of gyroscope sensor for different activities. (a) Walking (b) Stairs Up (c) Stairs
Down (d) Sit/Stand

Table 2 The datasets time-based data window and sampling rates

Dataset # Activities Sampling Rate Time-based data window

Dataset 1 Walking, stairs up, stairs down, sit/stand, collision 20 2.0
2.5
3.0

Dataset 2 Walking, stairs up, stairs down, sit/stand, collision 40 2.0
2.5
3.0
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total of ten parameters for each activity. Table 4 shows the number of times each of the six
blind users performed an activity. The collected data was exploited in training and testing. The
selected classifiers were employed to classify these activities, where 10-fold cross-validation
was used for evaluation, with each fold holding an equal proportion of each class [36]. The
equal distribution guarantees the high quality and precision of results without causing any
ambiguity [13]. The WEKA version 3.8 was used without applying any optimization on this
dataset of 5910 instances with their labeled classes. Each walking activity used ten parameters
for real type data and one nominal data type to represent the class.

Table 5 shows the confusion matrix for the walking patterns including walking, stairs
down, stairs up, sit/stand, and collision. This confusion matrix [2, 43] is automatically
generated by WEKA with computation of all the required parameters, such as true positive
(TP) and misclassifications or false positive (FP) required for the evaluation of accuracy and

Table 3 The classifiers’ accuracies based on sampling rates and time-based data windows

Sampling
Rate

Time-data
window

Activity The % accuracy of the classifier

Naive
Bayes

J48 Random
Forrest

Decision
Table

LibSvm

40 2.0 Walking 98.3 98.3 98.1 96.7 74.2
Stairs Up 83.3 94.2 97.0 87.8 98.9
Stairs Down 90.3 94.9 96.1 90.3 99.9
Sit/Stand 88.9 93.6 97.0 82.4 99.9
Collision 94.2 95.3 98.0 85.0 83.4
Total 91.0 95.2 97.2 88.4 91.2

40 2.5 Walking 99.4 99.8 98.8 99.0 74.5
Stairs Up 59.5 59.1 97.2 71.4 0.00
Stairs Down 86.2 96.0 96.1 81.8 0.00
Sit/Stand 98.9 94.0 95.9 95.0 100
Collision 90.2 88.3 97.3 88.8 88.7
Total 86.8 87.4 97.0 87.2 52.6

40 3.0 Walking 99.2 99.7 98.6 98.6 71.7
Stairs Up 86.1 84.4 95.1 76.5 100
Stairs Down 83.2 88.9 96.9 77.8 0.00
Sit/Stand 99.3 97.7 97.2 96.4 100
Collision 92.3 93.0 98.2 90.0 88.0
Total 92.0 92.7 97.2 87.8 71.9

20 2.0 Walking 95.2 93.2 96.1 95.7 73.2
Stairs Up 80.1 92.1 95.2 84.3 96.9
Stairs Down 87.3 91.4 95.1 91.3 94.9
Sit/Stand 83.2 90.1 95.0 80.1 91.9
Collision 88.8 92.3 96.1 88.2 81.3
Total 86.9 91.8 95.5 87.9 87.6

20 2.5 Walking 94.2 94.2 95.8 97.3 72.3
Stairs Up 53.1 53.2 94.2 69.2 3.00
Stairs Down 82.4 95.4 94.4 78.3 0.00
Sit/Stand 95.2 91.1 95.1 93.1 95.5
Collision 88.2 93.0 96.0 88.3 82.3
Total 82.6 85.3 95.1 85.2 50.6

20 3.0 Walking 94.4 94.1 98.2 93.6 61.3
Stairs Up 82.5 81.2 91.3 72.5 77.8
Stairs Down 97.3 86.1 95.2 71.8 3.00
Sit/Stand 97.1 93.1 94.2 92.4 99.0
Collision 93.0 90.0 96.9 91.0 92.3
Total 92.8 88.9 95.6 84.2 66.8
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computation of precision score, i.e., Precision = TP/(TP + FP) [9]. For example, in Table 5,
first row, the bod-faced value reports TP = 1470 and normal-faced values represent FP = 9 +
20 + 45 = 74. Putting these values in the above formula gives 95.2%, as given in the first row
under the precision column in Table 5.

For walking, Random Forests outperforms others by achieving an accuracy of 96.1%
followed by Decision Table with 95.7%, Naïve Bays with 95.2%, J48 with 93.2%, and

Table 4 Sample collected by each blind user for different walking patterns

User Walking Stairs down Stairs up Sit/stand Collision Total

1. 275 197 150 162 263 1047
2. 250 180 130 144 280 984
3. 230 170 132 145 300 977
4. 260 180 140 134 230 944
5. 280 188 133 120 250 971
6. 249 210 145 150 233 987
Sum 1544 1125 830 855 1556 5910
% 26.12 19.03 14.04 14.46 26.3 100

Table 5 The confusion matrices for different classifiers in identifying the walking patterns

Activity Classified as Precision

Walking Stairs down Stairs up Sit/stand Collision

Naive Bayes
Walking 1470 9 0 20 45 95.2%
Stairs Down 0 982 0 65 78 87.3%
Stairs Up 23 55 674 78 0 80.1%
Sit/Stand 102 0 41 712 0 83.2%
Collision 123 0 0 50 1383 88.8%
J48
Walking 1440 0 15 29 60 93.2%
Stairs Down 0 1029 34 47 15 91.4%
Stairs Up 6 23 765 12 24 92.1%
Sit/Stand 42 0 3 771 39 90.1%
Collision 55 11 21 32 1437 92.3%
Random Forrest
Walking 1485 0 10 20 29 96.1%
Stairs Down 0 1070 8 35 12 95.1%
Stairs Up 9 6 790 0 25 95.2%
Sit/Stand 18 20 4 813 0 95.0%
Collision 26 21 13 0 1496 96.1%
Decision table
Walking 1478 16 0 30 20 95.7%
Stairs Down 48 1028 0 31 18 91.3%
Stairs Up 0 30 700 0 100 84.3%
Sit/Stand 170 0 0 685 0 80.1%
Collision 103 0 80 0 1373 88.2%
LibSVM
Walking 1131 43 13 36 321 73.2%
Stairs Down 57 1068 0 0 0 94.9%
Stairs Up 25 0 805 0 0 96.9%
Sit/Stand 150 0 0 695 10 81.3%
Collision 180 0 0 12 1364 87.6%

The bold-faced values that appear diagonally represent those activities that were correctly classified, while the
remaining ones are misclassifications
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LibSVM with 73.2%. For stairs up LibSVM outperforms others by showing an accuracy of
96.9% followed by Random Forests with 95.2, J48 with 92.1%, Decision Table with 84.3%,
and Naïve Bayes with 80.1%. For stairs down Random Forests outperforms others by showing
an accuracy of 95.1% followed by LibSVMwith 94.9%, J48 with 91.4%, Decision Table with
91.3%, and Naïve Bayes with 87.3%. For sit/stand, Random Forests outperforms others by
showing an accuracy of 95% followed by J48 with 90.1%, Naïve Bayes with 83.2%, LibSVM
with 81.3%, and Decision Table with 80.1%. For collision, Random Forests outperforms
others by showing an accuracy of 96.1% followed by J48 with 92.3%, Naïve Bayes with
88.8%, Decision Table 88.2%, and LibSVM with 87.6%. It is worth noting that the WEKA
software enables handling the class/data imbalance by offering cost-sensitive classification,
which penalizes those classes that are misclassified. However, in the confusion matrix of
Table 5, the majority of the classes are correctly classified, while misclassifications are at a
minimum. Another possible reason behind some of the misclassifications is the resemblance or
similarities among activities, such as between walking and collision, which led to misclassi-
fications in some scenarios. It can be seen that for a majority of the walking patterns, including
walking, stairs down, sit/stand, and collision, Random Forests outperforms others. Therefore,
in the implementation of Algorithm-II in our designed smartphone app, it can be implemented
as a suitable classifier. In addition, Random Forests gave fewer overlapping results with values
29, and 26 for walking and collision, respectively, and thus are much lesser than the
corresponding values of 60 and 55 in the case of J48. Figure 10 shows the activity recognition
application based upon the selected classifier.

Table 6 presents the results obtained from the classification of walking patterns by using the
smartphone app with trained classifiers in real-settings. The accuracies of the classifiers are
presented with associated activities. It can be seen that all classifiers performed well in
classifying the activities accurately. These accuracies resulted in from the device orientation
at a fixed position on the white cane, the specified time-based data window, and using the
revolving tire for smooth data collection. Moreover, the sensor data fusion of the accelerometer
and gyroscope led to the maximum accuracy of classifying the walking patterns.

(a) (b) (c)

Fig. 10 Activity recognition app based on the selected classifier
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5 Conclusions and future work

The loss of or impairment in vision makes it challenging for blind and visually impaired
people to navigate easily in the surroundings. To address this challenge and assist them in
navigation, several solutions were proposed by exploiting existing technologies. However,
their reliance on pre-installed infrastructure and dedicated costly hardware made them less
practical. As an alternative, the pedestrian dead reckoning techniques were proposed. How-
ever, the slow walking pace of blind and visually impaired people, the required contact with
un-intended obstacles, and falsely recognizing activities increase error accumulation, making
these techniques less applicable. This article extended traditional white cane with the smart-
phone sensors. We used a smartphone with traditional white cane to collect data through its
sensors on a time-based data window. For smooth recording, we attached a revolving tire at the
bottom of the white cane. The collected data was processed using the computational resources
of the smartphone via our designed app, which identifies the walking patterns of the user such
as walking, stairs up/down, sit/stand, and collision. As a case study, these activities were
classified using several classifiers including Naïve Bayes, Random Forests, J48, Decision
Table, and LibSVM. The following are the main findings and conclusions of this study.

& The placement of smartphone at the specified position as shown in Fig. 1 and the use of
revolving tire improves the data collection accuracy of the sensors, where even the basic
classifiers achieve, on the average, more than 95% accuracy for all the reported walking
activities.

& For walking, Random Forests outperforms others by achieving an accuracy of 96.1%
followed by Decision Table with 95.7%, Naïve Bays with 95.2%, J48 with 93.2%, and
LibSVM with 73.2%.

& For stairs up LibSVM outperforms others by showing an accuracy of 96.9% followed by
Random Forests with 95.2, J48 with 92.1%, Decision Table with 84.3%, and Naïve Bayes
with 80.1%.

& For stairs down Random Forests outperforms others by showing an accuracy of 95.1%
followed by LibSVMwith 94.9%, J48 with 91.4%, Decision Table with 91.3%, and Naïve
Bayes with 87.3%.

& For sit/stand, Random Forests outperforms others by showing an accuracy of 95%
followed by J48 with 90.1%, Naïve Bayes with 83.2%, LibSVM with 81.3%, and
Decision Table with 80.1%.

& For collision, Random Forests outperforms others by showing an accuracy of 96.1%
followed by J48 with 92.3%, Naïve Bayes with 88.8%, Decision Table 88.2%, and
LibSVM with 87.6%.

Table 6 The percentage accuracies of the classifier to identify walking patterns

Activity Naive Bayes J48 Random Forrest Decision Table LibSVM

Walking 95.2 93.2 96.1 95.7 73.2
Stairs up 80.1 92.1 95.2 84.3 96.9
Stairs down 87.3 91.4 95.1 91.3 94.9
Sit/stand 83.2 90.1 95.0 80.1 91.9
Collision 88.8 92.3 96.1 88.2 81.3
Average 86.9 91.8 95.5 87.9 87.6
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In the classification of walking activities, only a few basic classifiers, including Naïve Bayes,
Random Forests, J48, Decision Table, and LibSVM were used, which on average achieved
more than 95% accuracy. Although this accuracy is sufficient in the current scenario for the
identification of the mentioned activities, it can be further improved if more advanced
classifiers are employed. Examples include extra tree, bagging, AdaBoost, gradient tree
boosting as well as deep learning algorithms. We plan to work with these classifiers and
compare their results with the current classifiers. Another future research avenue that may
further strengthen the research implications of this study is to perform detailed experimentation
by involving blind & visually impaired users.

In addition, we can consider multiple disciplines regarding technology advancement and
new techniques for future work. The proposed approach can be implemented through the
wristband. Wristbands are primarily used for tracking user health and physical activities. These
bands also provide a wireless connectivity interface with smartphones and are equipped with a
broad range of inertial sensors (accelerometer, gyroscope, and magnetometer) and heartbeat
sensors. Smartwatch is another up-to-date general-purpose new technology used by most users
to get notifications via smartphone and fitness tracking purposes. Smartwatches are equipped
with a broad range of sensors (camera, inertial, global positioning system (GPS), heartbeat,
etc.) and processing and wireless connectivity interface with robust storage and power backup.
These smartwatches can also provide localization information from GPS and Internet connec-
tivity and user guidance with text-to-speed, vibration, and different sounds or tunes.
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