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Abstract
Remote photoplethysmography (rPPG) recorded by low-cost smartphone cameras is a
promising method for noncontact monitoring of heart rate (HR). The main challenges of
this method are the limited rPPG signal strength and motion artifacts (MAs). To obtain a
clean signal while preserving photoplethysmography features, this study proposes algo-
rithms to eliminate the noise and distortions of the extracted rPPG signal. To obtain the best
point for the rPPG signal extraction, the highest green channel difference in two consecutive
frames is calculated. Mexican hat wavelet transform decomposition is used for MA distor-
tion elimination. Furthermore, we propose a recursive baseline-wander removal algorithm
with an adaptive window to effectively remove baseline drift. The peak detection accuracy is
enhanced by using an adaptive sliding-window size based on the detected fast Fourier
transform beat frequency. Our proposed algorithmwas validated using a range of HR values
from seven subjects. The results of the algorithm validation showed a real-time operation
and accuracy improvements of more than 37.5% for peak detection in the worst case. The
proposed method can measure HR remotely from a 0.4 m distance without any additional
sensors, achieving a mean absolute error ± standard deviation of 3.58 ± 2.4.

Keywords Remote Photoplethysmography . Heart rate .Wavelet transforms .Motion artifacts .

Baseline wander

https://doi.org/10.1007/s11042-023-14399-w

* Mohamed Atef
moh_atef@uaeu.ac.ae

Asmaa Hosni
asmaaf@uaeu.ac.ae

1 College of Information Technology, United Arab Emirates University, 15551 Al Ain, Abu Dhabi,
UAE

2 Assiut University, Assiut 71515, Egypt
3 Electrical Engineering Department, United Arab Emirates University, 15551 Al Ain, Abu Dhabi,

UAE

Published online: 31 January 2023

Multimedia Tools and Applications (2023) 82:20571–20588

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14399-w&domain=pdf
http://orcid.org/0000-0002-3344-6127
mailto:moh_atef@uaeu.ac.ae


1 Introduction

Heart rate (HR) is a major physiological indicator of considerable significance for personal
health monitoring, which can be measured using photoplethysmography (PPG) signals. A
PPG sensor consists of a light transmitter for sending light that passes through the tissue. The
absorption of the light depends on the blood volume changes in the circulatory system. Then, a
light detector is used to receive and sense the reflected/transmitted light. The received light
contains information related to changes in blood volume and HR [23].

PPG signals can be sensed from the wrist, fingertip, forehead, or earlobe. Smartwatches
with optical sensors can be used to extract PPG signals from the wrist. Moreover, smartphone
cameras can measure PPG signals from the fingertip, wrist, and forehead. However, contact
between the PPG sensor/camera and the skin is required to obtain a high-quality PPG signal.
While the contact-based PPG method can obtain high-quality signals, it is difficult to use as a
universal sensor for different parts of the body [10, 23].

In recent years, many researchers have used smartphone cameras as sensors for monitoring
HR, oxygen saturation level, blood glucose, and blood pressure using recorded PPG videos [11,
28, 22, 27]. Moreover, robots can collect information during interactions with humans and
estimate their HR with a tolerance of 5 bpm [1]. The PPG technique extracts the PPG signal
from the skin color changes in a recorded video and then calculates the HR according to the
number of peaks detected in a certain period. A smartphone camera can extract PPG signals from
any part of the human body in a noncontact manner [15, 17, 6, 24] (Fig. 1). The availability of
smartphones makes them a convenient computing platform for medical diagnoses.

Different factors negatively affect the quality of the PPG signals. Motion artifacts
(MAs) are one such factor; MAs induce unwanted in-band variations in the acquired PPG
signals. Furthermore, PPG signals extracted from smartphone cameras are exposed to
MAs more than PPG signals acquired from contact PPG sensors. MAs occur because of
the subject’s breathing or movement, causing misplacement of the measurement position
during video recording. The MA levels are greater in amplitude than PPG signals and are
considered a major source of distortion for the PPG signal, which creates a challenge for
accurate PPG measurements [21].

Several MA-removal techniques have recently been proposed for PPG signals. Hardware-
based MA detection and removal approaches use extra sensors, such as accelerometers,
gyroscopes, or infrared light-emitting diodes to generate reference signals to remove MAs
[26, 18, 13]. However, hardware-based MA reduction methods require additional sensors to be
connected to smartphones, which is inconvenient for wearable systems and increases their cost
and design complexity.

By contrast, many software methods have been developed to detect and remove MAs,
such as filtering techniques, cubic spline interpolation, and wavelet transform [25, 12,
21]. Algorithm-based methods for MA reduction, such as time-domain processing,
frequency-domain techniques, combining time and frequency techniques, and blind
source separation methods, have been proposed in [5]. Low-frequency MAs can be
removed by using a high-pass filter. Because the MA associated with PPG signals is
time-varying, time-frequency approaches, such as wavelet transforms, can be effective in
removing MA components from PPG signals [29, 20]. However, the method proposed in
[29] requires a wrist-worn accelerometer. In addition, the techniques in [29, 20] were
applied to PPG signals acquired directly with a finger-connected pulse oximeter and not
to remote PPG (rPPG) signals.
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In this paper, we present an MA-removal method for contactless smartphone PPG signals. It
utilizes the best point selection and adaptive multistage baseline-wander removal algorithms to
enhance the quality of weak noisy PPG signals. The proposed algorithm uses wavelet filtering for
MA cancelation and adapts four parameters for peak detection, segmentation, and normalization.
These parameters are the average signal value, peak-to-peak time interval, successive peak values,
and PPG segment time. These parameters are used to enhance the PPG signal quality. Therefore,
the PPG signal features and shapes remain the same with minimum interference. The experi-
mental results indicate that the proposed algorithm is effective in extracting extremely weak
contactless rPPG signals that are more susceptible to MA interference.

Our main contributions include the following:

1) An algorithm to select the best point for rPPG signal extraction.
2) A multistage recursive baseline-wander removal (RBLWR) algorithm to effectively

remove baseline drift.
3) Adaptive peak detection and segmentation based on fast Fourier transform (FFT).

The remainder of this article is organized as follows: Section 2 presents an overview of the
proposed system and method. Section 3 describes the main steps and best point selection.
Section 4 explains the proposed motion artifact and baseline-wander removal. The HR

Fig. 1 Smartphone camera used to sense PPG signals in a contactless manner
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calculation is described in Section 5. The results and discussion are presented in Section 6.
Finally, Section 7 concludes the paper.

2 Proposed method and measurement setup

The videos were recorded and processed according to the following steps, and a flowchart of
the entire process is shown in Fig. 2. In the first step, a 30 s video of the face was recorded at
60 fps using a Samsung S20 camera. Videos were recorded for seven subjects (three men, two
women, and two children). The video was then transferred to a laptop for further processing
and HR calculations using Python. The entire face and forehead were detected from a distance
of 0.4 m. Then, the best point was selected and checked to determine if the chosen pixel has a
maximum green color value change in two consecutive frames. Subsequently, the PPG signal
was extracted from the video frames.

The PPG perfusion ratio (AC/DC) enables the determination of the relationship between the
color channels used. Based on the perfusion ratio values, it can be seen that the green is the

Fig. 2 Flowchart of the proposed HR monitoring based on rPPG
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most pulsatile channel [4]. The PPG signal obtained from the green channel is the strongest
signal that reflects and preserves the blood volume variation during cardiac cycles. In addition,
the quality of the video recording is affected by face position, motion, and surrounding light
intensity. Therefore, we evaluated the recorded video by monitoring the strength of the green
channel frame by frame. The strength of each color was evaluated to provide a suitable
threshold for accepting or rejecting the acquired video. A total of 1800 video frames from
the first 5 s of the seven subjects were used to calculate the appropriate threshold level.

A 5 Hz low-pass filter (LPF) to remove high-frequency noise and 0.4 Hz high-pass filter
(HPF) to remove slow-motion artifacts and breathing effects were then applied. Subsequently,
the filtered PPG signal was interpolated using a cubic spline to improve the accuracy of peak
detection as the sampling rate was increased from 60 to 240 samples/s. An accurate HR
variability analysis requires high sampling rates.

Then, a continuous wavelet transform (CWT) was applied to filter the slow components
related to MAs. Subsequently, an FFT was used to extract the beat frequency. Then, initial
peak detection was applied to find peaks and valleys and to create PPG segments based on the
FFT-extracted beat frequency. The proposed RBLWR method based on segment normaliza-
tion in conjunction with recursive peak detection was applied. Before computing the HR,
outliers were removal by removing segments with irregular pulse-to-pulse interval (PPI), pulse
width, and amplitude features.

Finally, the HR was calculated from the clean PPG signal. Simultaneously with recording
of the video to generate the PPG signal, reference HR was recorded using the FDA-approved
BEURER PO30 Pulse Oximeter [3]. This was performed to validate the calculated HR results
of the proposed algorithm.

3 Preprocessing and best point selection

The PPG signal extraction and preprocessing steps were as follows:

1. Skin detection
2. Best point selection around the center of gravity

Fig. 3 Skin detection and the center-of-gravity pixel detection. Best pixel calculations based on maximum color
change in two consecutive frames
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3. Spatial smoothing around the selected best point
4. Spatiotemporal extracting of the green channel
5. Out-of-band noise removal using LPF and HPF

The recorded video was converted into frames, and a skin detection algorithm based on skin
tone was then applied to one frame. The skin detection algorithm was adapted based on a
threshold that recognizes skin regions using the RGB-HSV-YCbCr model [19]. The skin
detection algorithm returned the skin portion of the image (primarily the face), and the center
of gravity pixel was automatically detected from the forehead, as shown in Fig. 3.

The center of gravity of the connected region of the detected face is computed as follows:

pc x; yð Þ ¼ 1

∅
∑

x;y∈∅
x;

1

∅
∑

x;y∈∅
y

 !
; ð1Þ

where x and y are the horizontal and vertical pixel indices, respectively, and ∅is the total
number of pixels in the detected region. Because the forehead is found in the upper one-fourth
of the face, the forehead pixel pf is computed as

pf x; yð Þ ¼ pc x; y−
∅
4

� �
ð2Þ

To generate a strong PPG signal, we checked whether the chosen pixel had a maximum green
color value change in two consecutive frames. Within a windowW of neighborhood pixels, let
us assume that pf in Eq. (2) is computed at the ith frame, as shown in Fig. 4. The best point
pbest for generating the PPG signal is then computed as

pbest x; yð Þ ¼ argma xp f ∈W pf i
−p f iþ1

� �h i
ð3Þ

Fig. 4 Extracting PPG signal from the video frames
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The absorption of light by the blood depends on the change in the forehead blood volume.
Changes in light intensity due to absorption were recorded in the video. Consequently, the
pixel intensity pf in a fixed location had different values for each frame i. The PPG signal was
extracted from the temporal changes in the pixel intensity in the adjacent frames. The green
channel from each frame was selected and processed. The acquired video was then converted
into an image sequence (frames). A 30 s video was recorded for each subject. The frame rate
was 60 fps; thus, a video of 30 s contained M = 30 × 60 = 1800 images.

Each frame in the image sequence was transformed into data points by averaging the
selected pixels according to a certain window size. For any ith frame, assuming neighboring
pixels in the window of size N × N and the pixel color value of Pi (j, k), the pixel values of all
points were superimposed and averaged.

The average pixel value Pi of the ith frame was obtained using the following formula:

Pi ¼
∑N

j¼1∑
N
k¼1Pi j; kð Þ
N 2 ; i ¼ 1; 2; ::M ð4Þ

Using this method, the 2D image for the ith frame was converted to data points; then, M
frames of the image were converted to M data points, namely, P1, P2, P3,. .. PM. Finally, the
PPG signal was obtained by sorting the data points across time. The time of sample I is ti, and
can be calculated using the following equation:

ti ¼ i
f s

; i ¼ 1; 2; ::M ð5Þ

where fs is the sampling rate, which is equal to the number of frames per second multiplied by
the interpolation factor, that is 60 × 4 = 240 samples/s.

Interpolation was used to increase the number of data points of the PPG signal so that the
interpolated PPG signal would have a higher sampling rate. The extracted rPPG samples from
the video frames versus the sample time are plotted in Fig. 4.

4 Motion artifact and baseline-wander removal

4.1 Wavelet transformation

PPG extracted from video frames may experience various sources of motion interference and
baseline drift. Therefore, further filtering of the pulse wave is necessary. Removing low-
frequency components using the HPF to eliminate the baseline wander results in the loss of
some useful features in the PPG signal. The wavelet filter was not bound to a fixed cutoff
frequency. Hence, it could approximate where the drift frequencies that vary with time increase
or decrease below the cutoff frequency threshold. The application of wavelet filters is
considered one of the most effective methods for the MA filtering of biological signals [20].

TheMexican hat wavelet was selected as the mother wavelet because it is similar in shape to the
PPG signal. By trying different wavelet functions, the Mexican hat mother wavelet with scale 8
yielded the highest signal quality after the reconstruction. We selected a scale of 8, and the signal
was stretched by a factor of 8, making it more sensitive to lower frequencies in the signal.
Increasing the scale value resulted in more sub-bands, and consequently, in more degrees of
freedom for noise suppression. Increasing the scale value requires more computational complexity,
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which results in longer processing time. The first two levels have low-frequency content and
artifacts related to motion. Next, reconstruction was performed by summing the scaled weighted
sub-signals over the selected scales.

4.2 Peak detection and normalization

A sliding-window algorithm was adopted to find the PPG signal peaks and valleys. However,
owing to baseline drift, the signal peaks and valleys could not be detected. If the peaks and
valleys were incorrectly detected, the subsequent peaks and valleys had a high probability of
being detected incorrectly. Therefore, peaks and valleys must be detected accurately. Conse-
quently, we proposed a new algorithm to remove the baseline wander, after which the PPG
signal is returned to its normal time base and segmented into single pulsed periods.

The peaks and valleys of the PPG signal were detected correctly using an adaptive sliding
window with a recursive mechanism. The pseudocode for the RBLWR is shown below, and it
lists the entire process of the algorithm. For periodic segmentation, correct localization of all
peaks and valleys is required. After conducting several experiments, we empirically selected a
window size of five periods, which achieved the best performance in terms of accuracy and
real-time operation. The period length (1/fo) was obtained by extracting the beat frequency(fo)
using the FFT for the PPG signal. One advantage of the RBLWR algorithm is the correction of
incorrectly detected peaks and valleys using outlier removal. It is not expected that the HR will
exceed 200 bpm, even under strenuous exercise. Therefore, the minimum time spacing
between two consecutive peaks was set to be greater than 0.4 × 1/fo to remove the false peaks.

Outlier removal was implemented by removing segments with irregular features. As the HR
limits are 50–200 bpm, segments with width of more than 1.2 s or less than 0.3 s were
removed as outliers.

Algorithm Recursive Baseline-Wander Removal (RBLWR)

The new normalized sample values inside segment n were calculated based on the
following equation [7]:

PPGn ¼ PPG0−min PPG0ð Þ
max PPG0ð Þ−min PPG0ð Þ ð6Þ

PPGn indicates the normalized sequence of a single beat, whereas PPG0 represents the original
sampled real-amplitude sequence. Two functions, min and max, returned the minimum and
maximum values of the sequence, respectively.
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After noise cancellation and signal normalization, the outlier segments caused by occa-
sional incorrect measurements were removed.

The outlier removal algorithm has the following steps:

a) For all n PPG segments, we measure PPI and pulse interval.
b) If the corresponding PPI and pulse interval values for a certain segment are larger or

smaller than a certain threshold, the segment is removed from the sequence as an outlier.

5 Heart rate calculation

To extract the HR from the rPPG signal, we first calculated the PPI of PPG. PPG peaks were
detected using a traditional peak detection algorithm [2] and used to calculate the PPI time
series (Fig. 5).

The mean instantaneous pulse rate within the one-minute time window was calculated as

HR ¼ 60

PPI
ð7Þ

where PPI is the mean of the PPIs.
To evaluate the performance of our system, we compared the reference HR values from

BEURER PO30 with the HR values obtained using the proposed method.

6 Results and discussion

The effects of the extracted raw PPG signal from video frames using the forehead skin center
of gravity and selected best point around the center of gravity are compared in Table 1. Videos
of seven subjects (three men, two women, and two children) were recorded and then

Fig. 5 Extracting PPI from PPG signal
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transferred to a laptop for further processing and HR calculation using Python. The entire face
and forehead were detected from a distance of 0.4 m. The results in Table 1 indicate that the
HR measurement error improved from 14.6% to 2.8% for Subject #2 and from 3.6% to 2.5%
for Subject #3 when the proposed best point selection method was used. The highest HR error
measured using the proposed algorithm for rPPG signal was 7%. This improvement can be
attributed to the best point method having a stronger signal intensity.

The measured HR Error introduced in Eq. (8) is considered a metric for performance
improvements:

HR Error% ¼ Refrence HR−Meaured HR
Refrence HR

���� ����x100% ð8Þ

where the reference HR is measured using BEURER PO30 Pulse Oximeter.
The mean absolute error (MAE) and standard deviation (SD) were calculated using Eqs. (9)

and (10), respectively.

MAE ¼ 1

N
∑N

i¼1

jyi−byij
yi

ð9Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 yi−MAEð Þ2
N

s
ð10Þ

Here, N is the number of measurements, and yi is the measured HR in each subject.
Furthermore, the proposed algorithm was also applied to the MPSC-rPPG dataset [9]. The

MPSC-rPPG dataset contains HD RGB videos recorded at 30 fps for 5 min of a volunteer
sitting still on a chair 3 ft. away from the camera. Concurrently, a wristwatch tracked the wrist
PPG sampled at 64 Hz from the volunteer’s dominant hand. The dataset consists of videos of
seven volunteers: one woman and six men. All subjects were healthy and had no known
medical conditions, with HR ranging from 50 bpm to 95 bpm [9].

Table 2 shows the HR measured using the proposed algorithm for the MPSC-rPPG dataset.
The results shown in Table 2 indicate that the maximum HR measurement error was 4.36 in
Subject #2. The proposed algorithm shows an HR MAE ± SD of 2.23 ± 1.58 for the MPSC-
rPPG dataset.

Table 1 Measured HR using the proposed algorithm compared with the reference HR

Reference HR HR without best point HR Error HR with best point HR Error

Subject #1 110 107 2.7% 107 2.7%
Subject #2 109 93 14.6% 106 2.8%
Subject #3 83 86 3.6% 85 2.5%
Subject #4 85 91 7% 91 7%
Subject #5 92 91 1% 93 1%
Subject #6 95 97 2.1% 97 2.1%
Subject #7 93 100 7% 100 7%
MAE±SD 5.43±4.66 3.58±2.4
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The detected PPG signals are susceptible to external noise sources, such as ambient light
noise, and 60–50 Hz powerline interference and its harmonics. Hence, the extracted PPG
signal was denoised by an LPF to reject frequency components higher than 5 Hz and by an
HPF to remove frequencies lower than 0.4 Hz, as shown in Fig. 6. The high-frequency noise
was removed by the LPF, and part of the baseline wander was removed using the HPF.

By using wavelet decomposition and reconstruction, the MAs were eliminated. Comparing
Fig. 7a for the filtered signal and Fig. 7b for the wavelet-constructed signal, it can be seen that
the amplitude affecting the low-frequency noise is well corrected using the Mexican hat
wavelet with a scale of 8.

To find the peaks, a search window related to the PPG period must be set. The period length
was obtained by analyzing the frequency of the periodic signal using FFT and selecting the
beat frequency, as shown in Fig. 8.

The normalized PPG signal after the first normalization using Eq. (6) is shown in Fig. 9a.
The normalization was repeated until all peaks and valleys were found, as shown in Fig. 9b.
The final PPG signal after outlier removal is shown in Fig. 10b. Of the total samples, 2% were
removed from the original signal compared with Fig. 10a. A zoomed-in PPG segment, which
demonstrates that the features are preserved after wavelet reconstruction and recursive nor-
malization, is shown in Fig. 11.

Fig. 6 Filtered PPG using 5 Hz
LPF and 0.4 Hz HPF

Table 2 Measured HR using the proposed algorithm with the MPSC-rPPG dataset

Reference HR (bpm) HR using proposed Alg. (bpm) HR Error

Subject #1 96.44 96.14 0.3
Subject #2 82.2 86.56 4.36
Subject #3 87.62 88.8 1.18
Subject #4 81.83 80.61 1.22
Subject #5 91.6 88.1 3.5
Subject #6 93.2 89.46 3.74
Subject #7 82.52 83.84 1.32
MAE±SD 2.23±1.58
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To measure the accuracy of the proposed method, the detection error was defined by Eq.
(11) [2]:

Error% ¼ FP þ FN
Total

x 100 % ð11Þ

Fig. 8 FFT for filter PPG

Fig. 7 a The input signal after LPF and HPF filtering, and b the reconstructed signal after wavelet transformation
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where FN and FP denote the number of false negatives (undetected peaks) and false positives
(erroneously detected peaks), respectively. The sum of FN and FP was counted as the total
detection error. The denominator is the total number of peaks labeled visually.

The measured HR values and their related error percentages using the proposed algorithm
compared with the reference HR are listed in Table 3. It also summarizes the accuracy
improvements of using Mexican hat for peak detection. Before using the wavelet transforma-
tion, the detection error ranged from 47% to 74%. After the wavelet reconstruction of the
signal, the highest detection error was 9.5%, a 37.5% accuracy improvement. These improve-
ments were due to the removal of MAs from the reconstructed signal.

One of the main advantages of the proposed system is its low computational time. The
algorithm has low computational complexity because the main computations are performed for

Fig. 10 a PPG after BLWR and b PPG after outlier removal

Fig. 9 PPG signal after recursive normalization (a) first trial and (b) after finding all peaks
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the 1D rPPG signal, not 2D, as in other methods. Thus, our system can be used in real-time
applications, such as wearable devices. Table 4 shows the time consumed to generate the rPPG
signal and the processing time for our algorithm for two different video lengths. In general, the
total time complexity of our algorithm is low, proving that it can be used in real-time
applications. The most time is consumed by generating the rPPG signal. In future work, we
will focus on enhancing this step using parallel processing.

Table 5 shows the comparison of rPPG state-of-the-art algorithms in terms of MAE and
SDs. The work presented in [14] used spatiotemporal homomorphic filtering (ASTHF) and
achieved a MAE ± SD of 4.81 ± 3.39 with the camera at 0.5 m distance from the target.
Nevertheless, a major drawback of ASTHF is that is not robust to MAs [14].

Principal component analysis and discrete cosine transform were used in [8] with a 0.5 m
distance to achieve a comparable error of 4.69 ± 3.43. However, this method is not applicable
for real-time HR measurements because of its dependency on the temporal stability of the
facial point trajectory [8].

The HR was measured from a larger distance of 1 m in [24] using Soft Signature (SoftSig),
and from 1.5 m in [16] using a deep recursive convolutional network. However, the methods
introduced in [16, 24] required an additional near-infrared sensor or multi-imager system,

Table 3 Detected peaks after LPF and HPF filtering and after wavelet reconstruction

Total Reference Peaks Peaks After LPF&HPF Error % Peaks After Wavelet Error %

Subject#1 60 16 73% 62 3.3%
Subject #2 58 15 74% 60 3.4%
Subject #3 21 11 47% 23 9.5%
Subject #4 69 25 63% 71 2.8%
Subject #5 94 37 60% 94 0%
Subject#6 108 43 60% 107 0.1%
Subject #7 86 20 76% 89 3.4%
MAE±SD 3.21±3.15

Fig. 11 One PPG segment after wavelet reconstruction and recursive normalization
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respectively. The work in [30] achieved MAE of 4.65 for 0.5 m distance using a convolutional
neural network.

The proposed method based on CWT and RBLWR works from a 0.4 m distance without
any additional sensors, achieving an MAE ± SD of 3.58 ± 2.4. These MAE ± SD metrics
were calculated based on the results of the seven subjects, as summarized in Table 1. As
filtering and MA removal are applied to 1D data points, not to the 2D image frames, real-time
HR measurement is achieved.

The background light fluctuations influence the accuracy of the results. In addition, accuracy
decreases as the target distance increases to more than 0.4 m. In future work, we will study the
effect of changing the distance and the background light on the accuracy of the proposed method.

7 Conclusion

A recursive normalizationmethod with an adaptive windowwas proposed to reduce the influence
of MAs on the rPPG signal. The amplitude variations due to low-frequency MA noise were well
corrected using aMexican hat wavelet with a scale of 8. Before using the wavelet transformation,
the detection error ranged from 47% to 74%. After the wavelet reconstruction of the signal, the
highest detection error was 9.5%. These improvements were due to the removal of MAs from the
reconstructed signal. The PPG signal was recursively normalized until all the peaks and valleys
were detected. Outlier removal was applied to the PPG, with 2% of the total samples removed
from the original signal. The highest HR error measured using the proposed algorithm for rPPG
signal was 7%. The proposed method shows high performance and real-time operation compared
with state-of-the-art methods. HR can be measured remotely from a 0.4 m distance without any
additional sensors, achieving an MAE ± SD of 3.4 ± 2.2. Our experiments were performed
indoors under fixed light conditions. We plan to study the effect of varying the surrounding light
intensity on the rPPG signal and HR accuracy.

The next step is to design an Android app to calculate the HR from recorded video based on the
proposed algorithm. The proposed algorithm can run in real time at 1.34 s using 2-core 2.5 GHz
CPU, with a CPU usage of 30%. Energy consumption should be minimized for implementation in

Table 5 Performance comparison of the state-of-the-art rPPG algorithms in terms of MAE and SD

Distance Motion Reference Sensor Processing Method MAE±SD

[14] 0.5 m No ASTHF 4.81±3.39
[8] 0.4 m No PCA+DCT 4.69±3.43
[24] 1 m Near-Infrared sensor SoftSig 5.23
[16] 1.5 m Multi-Imager +16 mm Lens DRCN 3.08
[30] 0.5 m PFF database CNN 4.65
Proposed 0.4 m No CWT+RBLWR 3.58±2.4

Table 4 Processing times for different video lengths

Video Length (s) Generating rPPG (s) Proposed Algorithm (s) Total Time (s)

36 1.24 0.1 1.34
64.8 1.95 0.18 2.13
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battery-powered devices, such as smartphones. When using Samsung S20 with a 2.73 GHz Octa-
Core processor, sufficient computational power remains available for additional processing.
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