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Enhanced YOLOv5 algorithm for helmet wearing
detection via combining bi-directional feature
pyramid, attention mechanism and transfer learning
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Abstract
The complexity of infrastructure scenarios has led to a sustained increase in the global num-
ber of worksites related fatalities and injuries. Therefore, safety helmets play an essential
role in protecting construction workers from accidents. It is essential to detect whether the
helmets are correctly worn on the heads for smart construction site. However, due to the
complex construction environments, it is challenging to precisely detect safety helmet wear-
ing in real-time. This paper proposes an enhanced version of You Only Look Once version
5 (YOLOv5) to improve the detection accuracy, where bi-directional feature pyramid net-
work (BiFPN), attention mechanism, and transfer learning are fully integrated. The BiFPN
is taken to replace the original feature pyramid network (FPN) via adding additional cross
layer edges with adaptive connecting weights. Attention mechanism is added after the end
of backbone and neck network to let the network pay more attention on the interested region.
Transfer learning is adopted for model training. The model is pre-trained by a head detec-
tion database and then fine-tuned by the helmet database. The proposed enhanced YOLOv5
is tested on a public GDU-HWD dataset, where both helmet and its color can be identified.
This study achieves the accuracy at 93.3% , which is 4.8% higher than that of the original
YOLOv5, but does not bring in much computing burden to the network. It is believed that
the enhance version can also be successfully used in other similar detection tasks.
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1 Introduction

1.1 Research background

Construction is one of the most dangerous job sectors. The fatal injury rate for the construc-
tion industry is higher than other industries. The construction fatalities are always caused
by the combination of different factors. Among them, traumatic brain injuries account for
about 24% of all construction fatalities in the United States [1]. High-altitude falling objects
occasionally injure the workers in areas of mining, electric power, chemical industries and
other work areas [6]. Thus, to ensure the safety of the construction sites, an increasing num-
ber of helmet monitoring systems based on computer vision have been developed. It can not
only reduce the workload of manual monitoring, but also highlight the unsafe operations
and avoid the occurrence of accidents [9].

Monitoring safety equipment wearing before the operation, especially to detect whether
helmets are properly worn, can effectively reduce the occurrence or cost of accidents.
Traditional monitoring technologies largely rely on the observation and inspection by the
experienced managers on site, which generally exists the problems of low automation level,
large workload and limited inspection items. In addition, manual inspection is difficult to
conduct continuous supervision during operation, which becomes one of the most potential
safety hazards for construction sites.

With the background of internet of things and big data, smart construction site [2] has
been proposed to improve the quality of safety monitoring via taking the advantage of arti-
ficial intelligence. The information can be transmitted to a big data management server for
security analysis to fulfill automatic alarm or stop in real time. Object detection technology
plays a critical role in these smart monitoring systems, where helmet detection becomes a
hot research point. After years of development, helmet wearing detection have shifted from
traditional machine learning methods to deep learning ones.

Object detection algorithms based on deep learning are generally divided into two cat-
egories: two-stage detection and one-stage detection method. The main idea of two-stage
detection is to first generate a series of sample candidate boxes and classify these samples
through a convolutional neural network. Some classic algorithms include the RCNN and
Faster R-CNN [22]. Due to the RPN structure, two-stage method represented by the Faster
R-CNN has a high detection accuracy but a slow speed, which makes it difficult to reach
real-time processing requirements for construction scenes. Unlike the two-stage detection,
one-stage detection does not necessarily generate sample candidate boxes, but directly con-
verts the object location into regression problem, such as SSD [13], YOLO [20] and other
algorithms. One-stage method can achieve the shared features of a single training, the speed
can be significantly improved while keeping a certain accuracy. However, the SSD com-
monly fails to detect small-scale objects because of its inherent properties of weak features
at the bottom layers of high resolution. Therefore, the YOLO series have a wider applica-
tion in object detection tasks [4, 34], and have been continuously updated in recent years.
YOLOv5 algorithm [29] is mostly appreciated due to its balanced performance among
speed, accuracy and robustness. This paper proposes an enhanced YOLOv5 algorithm based
on combining Bi-directional feature pyramid, attention mechanism and transfer learning.

1.2 Related works

From traditional methods to deep learning methods, helmet detection attracts great atten-
tions [24]. Li et al. [9] proposed an innovative and practical safety helmet wearing detection
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method based on image processing and machine learning. Firstly, Visual Background
Extractor (ViBe) background modelling algorithm is exploited to detect motion region
of interest, and then the Histogram of Oriented Gradient (HOG) feature is extracted to
describe inner human. Secondly, with the input of HOG feature, the Support Vector Machine
(SVM) is trained to identify pedestrians. Finally, the safety helmet is detected by its color.
Mneymneh et al. [17] proposed a framework to monitor helmet wearing through detecting
moving objects using standard deviation matrix (SDM) and then identifying human using
the aggregate channel feature-based object detector. After that, a cascade object detector
based on HOG features searched for helmets in the upper area of the identified personnel.
Yue et al. [33] proposed a new Improved Boosted Random Ferns algorithm (IBRFs) for
safety helmet wearing status detection. Firstly, based on HOG feature to construct random
ferns, then weak classifiers are constructed. Finally, selected the most discriminative ones
to build a strong classifier to detect the wearing status of the safety helmet. This method
outperforms some of deep learning methods, including SSD, YOLOv3 and Faster R-CNN.

In the field of deep learning methods, Wu et al. [32] proposed an improved SSD algo-
rithm to improve the efficiency of small target detection. This work developed a novel
aggregation framework combined with the presented reverse progressive attention (RPA),
which propagates the semantically strong features back to the bottom layers progressively.
Deng et al. [3] proposed a lightweight YOLOv3 algorithm for safety helmet detection. This
work integrated the CSPNet and GhostNet to design a more efficient residual network, and
designed a new backbone network, the ML-Darknet. It solves the problem that YOLOv3 is
expensive to calculate and difficult to deploy on mobile devices. Song et al. proposed [25]
a novel object detection model based on anchor-free mechanism—Recurrent Bidirectional
Feature Pyramid Detector (RBFPDet), it composed of multiple RBFP recursive units. This
study regards helmet wearing detection as a strong semantic feature points detection task,
and improves the accuracy of helmet wearing detection.

Although great effort has been made in helmet detection, it still suffers from the follow-
ing problems: (1) unacceptable performance in varying environments, such as changeable
weather and obstructions; (2) safety helmets are usually small targets in wide-angle monitor-
ing system; (3) traditional detection methods are difficult to meet the real-time requirements
on the premise of high accuracy, and thus a more lightweight detection model is needed.

This study takes YOLOv5 as the benchmark algorithm to tackle with the mentioned
issues. On the basis of YOLOv3 [21], YOLOv5 integrates and innovates various advanced
technologies, Cross Stage Partial Network(CSPNet) and FPN+PAN structure constitute the
main detection network structure. This paper proposes an enhanced YOLOv5, for helmet
wearing detection, where attention modules are added at the end of the backbone and neck
network, and FPN is replaced by BiFPN, which improves the capability of network feature
fusion. Transfer learning is adopted during the training process to improve the detection
effect. Considering that different colors of helmets represent different types of work, this
study also distinguish the helmets colors.

1.3 Our contributions

This paper contains the contributions in the following aspects:

• Mixed attention mechanisms are added after backbone and neck network to improve
the capability of feature extraction, and better aggregate features from target region.
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• BiFPN is employed in the neck network to enhance the capability of feature fusion. It
better fuse the fine-grained features and utilize the contribution of different levels for
feature map.

• Transfer learning is adopted to strengthen the model’s perception of the head in the
training phase. It brings the correlation between head and helmet to improve preception
accuracy.

• Enhanced YOLOv5 model can achieve mAP of 93.3% on the GDUT-HWD dataset
[32], which is better than the original YOLOv5 by 4.8%.

2 Material andmethods

2.1 Benchmark YOLOv5

This study adopts YOLOv5 algorithm as the benchmark method for helmet wearing detec-
tion. YOLOv5 is the latest version of the YOLO architecture series. In comparison with
previous versions, it has the most powerful performance without sacrificing the computa-
tional speed. The structure of YOLOv5 network consists of four components: input layer,
backbone network, neck network and detect layer.

(1) Input layer: It uses mosaic data enhancement, adaptive anchor box calculation and
adaptive picture scaling technology to preprocess the image. As the core technology,
mosaic data enhancement combines four images in random zoom, random crop and
random arrangement, which can enrich the data set and improve the detection accuracy
of small targets. An instance of Mosaic data enhancement is shown in Fig. 1.

(2) Backbone network: It is a convolutional neural network that aggregates image features
on different image granularities. Backbone has ten layers, which contains two main
components, Focus structure and CSPNet. The Focus structure is used to generate
more sufficient feature and reduce the calculation of the model. The input 3 channel
image was segmented into four slices with the size of 320 × 320 × 12 per slice, and
then through the convolutional layer composed of 32 convolution kernels, the output
feature map with a size of 32 × 320 × 320 was generated.

CSPNet network [30] is composed of BottleneckCSP(BCSP) module and convolu-
tion module. BottleneckCSP is mainly composed of a Bottleneck module, as shown
in Fig. 2, which connects a convolutional layer whose convolution kernel size is 1 ×
1, with a convolutional layer whose convolution kernel size is 3 × 3. The final output
of the Bottleneck module is the addition of the output of this part and the initial input
through the residual structure. Such a design can obtain richer gradient combination
information.

(3) Neck network: It contains a series of network layers that mix and combine image fea-
tures, to pass the new features for the prediction layer. Neck network has 14 layers,
which are composed of FPN and PAN structure. As shown in Fig. 3, the FPN [11] con-
veys strong semantic features from the top to the bottom, while the PAN [14] conveys
strong positioning features from the bottom to the top, so that the output of different
backbone layers are aggregated in the neck network. The feature maps of different
scales are fused in pairs, so that the same target object with different sizes and scales
can be accurately recognized.

(4) Detect layer: It predicts categories based on image features and generates bounding
boxes. The detection network is composed of three detect layers, whose input is a
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Fig. 1 Mosaic data enhancement. Four images are randomly cropped together and fed into the detection
network

feature map with dimensions of 80 × 80, 40 × 40 and 20 × 20 respectively, used to
detect targets of different sizes.

With the same network components, YOLOv5 is divided into four sub versions by its
size (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x), where YOLOv5s is the smallest
model with the fastest inference speed. The network structure of YOLOv5s model is shown
in Fig. 4. Table 1 shows the configuration of four sub versions. The depth multiple and
width multiple parameters are used to control the depth and width of different network
structures. Depth multiple controls the number of BCSP in the network, and width multiple
controls the number of convolution kernels in the network.

Input Conv2d
1×1 BN+Hardswish Conv2d

3×3 AddBN+Hardswish Output

Bottleneck module

Shortcut

Fig. 2 Structure of Bottleneck module
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Fig. 3 Structure of FPN+PAN

2.2 Enhanced YOLOv5 for helmet detection

2.2.1 Enhanced YOLOv5 structure

Figure 5 demonstrates the enhanced YOLOv5 structure proposed in this paper for hel-
met wearing detection, where BiFPN and CBAM are two new components. The enhanced
YOLOv5 network has 28 network component layers, compared with the original YOLOv5
(Fig. 4), 4 layers are increased. CBAM modules are added after the 10th, 19th, 23th and
27th layers respectively. The utilised BiFPN structure includes four weighted-contact oper-
ation for feature fusion, and an additional edge that connects the third BCSP3 (7th layer) in
backbone and third BCSP1 (22th layer) in neck network, which allows easy and fast multi-
scale feature fusion. CBAM is integrated into the original YOLOv5 structure after several
BCSPs, which can extract richer helmet related features from images.

For the detection task in this study, the detection network of enhanced has three detect
layers, each detect layer outputs a 30-channel vector ((1 class probability + 4 surround-
ing box position coordinates + 5 helmet classes) × 3 anchor boxes), and then predicts the
bounding boxes and categories of the helmet target.

2.2.2 BiFPN fusion structure

The fusion of feature maps for different scales is a significant way to improve the recog-
nition performance of the detection network. YOLOv5 adopts the FPN+PAN structure,
where all the feature images are changed into the same size for concat. However, different
input features have different resolutions, and they usually contribute to the output feature
unequally.

In order to better fuse fine-grained features and utilize the contribution of different lev-
els for feature maps, BiFPN network is employed [27, 28]. The main ideas for BiFPN is
efficient bidirectional cross-scale connections and weighted feature fusion.
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Fig. 4 Architecture of the original YOLOv5s network. The specific component of BottleneckCSP, Focus and
SPP are described in the green box on the left

The enhanced YOLOv5 replaces the FPN+PAN structure by a customised BiFPN, an
extra edge is added at the feature level of 40×40, and the connection of different feature
layers is replaced by weighted feature fusion, as shown in Fig. 6. On one hand, at the feature
level of 40×40, an additional edge is added to connect the first downsampling structure and
the last downsampling structure. On the other hand, this study provides adaptive weights for
different feature levels during fusion, so that the contributions of feature maps at different
levels can be learned to describe the significance of each input feature. As described in the
following equation,

O =
∑

i

w̄i · Ii =
∑

i

wi

ε + ∑
jwj

· Ii , (1)

Table 1 Four different depths of YOLOv5 network

YOLOv5s YOLOv5m YOLOv5l YOLOv5x

depth multiple 0.33 0.67 1.0 1.33

width multiple 0.50 0.75 1.0 1.25
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Fig. 5 The propsed enhanced YOLOv5 network structure, where CBAM are added to better aggregate
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Fig. 6 The BiFPN fusion structure of the proposed enhanced YOLOv5, which is used to replace the original
FPN structure
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where wi is a learnable weight for the ith input feature;
∑

jwj indicates the sum of all the
weights; Ii is the feature that needs to be weighted, and ε = 0.0001 is a small value to avoid
numerical instability. It is worth to be noticed that the final weights are normalised to make
sure that the value of w̄i is limited to a range between 0 and 1, which could potentially avoid
training instability.

Equations (2) and (3) describe two fused features at level 40×40 in this study, which are
consistent with Fig. 6.

P td
40×40 = Conv

(
w1P

in
40×40 + w2Resize

(
P in
20×20

)

w1 + w2 + ε

)
, (2)

P out
40×40 = Conv

(
w′
1P

in
40×40 + w′

2P
td
40×40 + w′

3Resize
(
P out
80×80

)

w′
1 + w′

2 + w′
3 + ε

)
, (3)

where P td
40×40 is the intermediate feature at level 40 × 40 on the top-down pathway, and

P out
40×40 is the output feature at level 40 × 40 on the bottom-up pathway.

2.2.3 CBAM attention module

Attention mechanism a simple but effective module for feedforward convolutional neural
networks, it has great application prospects in convolutional neural networks [35]. Attention
mechanism can focus on important features and suppress unnecessary ones. Common atten-
tion modules include Squeeze-and-Excitation (SE) block [7], Spatial Attention Mechanism
(SAM) [37] and Convolutional Block Attention Modules (CBAM) [31]. SE block adap-
tively recalibrates channel-wise feature responses by explicitly modelling interdependencies
between channels. SAM generates a spatial attention map by utilizing the inter-spatial rela-
tionship of features. CBAM exploits both spatial and channel-wise attention based on an
efficient framework, and empirically verify that is superior to using only the channel-wise
attention or spatial-wise attention. This work employs CBAM in YOLOv5. CBAM is a
mixed attention mechanism combining channel-wise and spatial-wise attention, so that each
branch can learn ’what’ and ’where’ to attend in the channel and spatial. Given an interme-
diate feature map, CBAM infers attention maps along two separate dimensions, channel and
spatial. Then the attention maps are multiplied to the input feature map for adaptive feature
refinement. The process can be summarized as:

F ′ = Mc (F) ⊗ F, (4)

F ′′ = Ms

(
F ′) ⊗ F ′, (5)

where ⊗ denotes element-wise multiplication; Mc (·) extracts 1D channel attention maps;
Ms (·) extracts 2D spatial attention map; F is an input feature maps; F ′′ is the final refined
output.

The network structure of CBAM is shown in Fig. 7. It is divided into two parts: chan-
nel attention module (CAM) and spatial attention module (SAM). CBAM firstly performs
channel weighting and then spatial weighting.

CAM aggregates spatial information of a feature map by using both average-pooling
and max-pooling operations, generating two different spatial context descriptors: average-
pooled features and max-pooled features. Then, they are forwarded to a shared network to
produce channel attention map. The shared network is composed of multi-layer perceptron
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Fig. 7 The network structure of CBAM, where the input feature are processed by CBAM, containing CAM
and SAM to obtain refined feature

(MLP). After the shared network is applied to each descriptor, CAM merges the output
feature vectors using element-wise summation.

SAM aggregates channel information of a feature map by using two pooling operations
to generate two 2D maps: average-pooled features and max-pooled features. Those are then
concatenated and convolved by a standard convolution layer, producing 2D spatial attention
maps.

Enhanced YOLOv5 adds CBAM at the end of the backbone network and neck network.
Since CBAM can significantly improve the attention to the target and enhance the refining
ability of detection, it can be employed before multi-scale prediction to improve detection
performance.

2.2.4 Transfer learning for training process

This study introduces transfer learning strategy for training. The model is firstly pre-trained
by a head detection database to obtain a pre-trained model, and then transfers to the helmet
detection model, via further training by a helmet database.

It is worth noting that the development of deep learning is accompanied by transfer learn-
ing [15, 16, 19]. Based on the similarity between source domain data and target domain
data, source task and target task, transfer learning uses the knowledge learned in the source
domain to solve the target domain task. In recent years, transfer learning has been widely
used to promote object detection accuracy [10, 18]. Selecting a pretrained network model
and using it as a starting point to learn a new task is the concept behind transfer learning.
To be specific, transfer learning is represented by using a pretraining model, that is trained
on a large benchmark dataset to solve similar problems. In this way, the training does not
need to start from scratch, which can not only shorten the training time, but also improve
its performance. The official YOLOv5 is also pre-trained by the COCO dataset [12] of 80
categories, which is an example of transfer learning.

Most of the helmet detection scenarios are of complicated environment and high crowd
density, which becomes the main cause of missing detection. Besides, deep learning meth-
ods ignore the situations that the helmet is not properly worn on the head, but held in the
hand. This is owing to the detection model does not have a favorable perception of human

28626 Multimedia Tools and Applications (2023) 82:28617–28641



heads in a complex scene. In terms of these problems, the head detection model is introduced
as the pre-training model for the helmet detection, which can be regarded as a secondary
transfer learning. As shown in Fig. 8, the head dataset is put into the original YOLOv5 net-
work for pre-training. Then the helmet dataset is put into the enhanced YOLOv5 network
for training and fine-tuning.

The role of transfer learning is reflected in three aspects. (1) alleviates the unstability
caused by the insufficient data amount of the helmet dataset; (2) improves the convergence
speed; (3) brings the correlation between head and helmet to improve preception accuracy.

2.2.5 Loss function

The loss function includes: classification loss, confidence loss, and boundary loss (forecast
the error between the Bounding box and the Ground truth). YOLOv5 uses the binary cross
entropy loss function (BCELoss) to calculate the classification loss and confidence loss.
In addition, YOLOv5 adopts CIOU Loss as the loss of bounding box regression. The loss
function of YOLOv5 can be defined as:

Loss(object) = Losscls + Lossobj + CIOU loss, (6)

YOLOv5 divides an image into S × S cells and gets B × S × S prediction boxes. A
mask matrix is created before the training phase to determine whether object appears in
each prediction box, which is a B × S × S boolean matrix. If object appears in a prediction
box, the corresponding position in the mask matrix is set to true, otherwise false. Based on
this, classification loss and confidence loss are defined as:

Losscls = 1

Nt

S×S∑

i=0

B∑

j=0

1obj
ij

M∑

t=0

lossBCE(i, j, t), (7)

weights
YOLOv5s network

Enhanced YOLOv5 

network

Head dataset Helmet dataset

Pre-training Training

Transfer 

Learning

Fig. 8 Flow chart of transfer learning. The head detection model is transferred to the training of the helmet
model
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and

Lossobj = α

Nt

S×S∑

i=0

B∑

j=0

1obj
ij lossBCE(i, j)

+1 − α

Nf

S×S∑

i=0

B∑

j=0

1noobj
ij lossBCE(i, j), (8)

where M is the number of categories; Nt is the number of true elements in the mask matrix;
1obj
ij denotes if object appears in cell i and the j th bounding box predictor is responsible

for that prediction. Nf is the number of false elements in the mask matrix; α is the weight
coefficient when the mark matrix element is true. lossBCE is BCE loss function.

In object detection tasks, bounding boxes are usually used to localize objects. Yu et al. [8]
firstly introduced an intersection over union (IOU) loss function to evaluate the prediction
results, which is defined as:

IOU loss = 1 − IOU = 1 − | A ∩ B |
| A ∪ B | , (9)

where A is prediction box; B is ground truth. However, if the two boxes do not intersect,
IOU becomes 0, and no gradient can be obtains. Therefore, after continuous optimization,
GIOU [23], DIOU and CIOU [36] are proposed. CIOU takes the distance between the tar-
get frame and the prediction frame, the overlap rate, scale and penalty terms into account,
making the target frame regression more stable.

The expressions of CIOU loss is as follows:

CIOU loss = 1 − CIOU = 1 − IOU + d2

c2
+ αv, (10)

where α is a positive trade-off parameter, and v measures the consistency of aspect ratio;
as shown in Fig. 9, c is the diagonal length of the smallest enclosing box covering two
boxes; and d is the Euclidean distance of central points of two boxes.

α = v

(1 − IOU) + v
, (11)

where

v = 4

π2
(arctan

ωgt

hgt
− arctan

ω

h
)2, (12)

Fig. 9 The normalized distance
between the prediction frame and
target frame. The upper left box
represents the target frame, and
the lower right block represents
the prediction frame
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where ωgt and hgt represent the width and height of the target frame, and ω and h represent
the width and height of the prediction frame, respectively.

This study adopts Stochastic Gradient Descent (SGD) with momentum to optimize the
training parameters. Momentum serves to accelerate the gradient in the right direction. In
addition, during the training process, each batch of training is updated by means of Cosine
annealing. Better convergence can be achieved by reducing the learning rate through cosine
function.

2.3 Experimental setup

2.3.1 Platform and parameters

This study constructs an algorithm evaluation environment under Windows10( Microsoft,
United States). Experiments are carried out on the Pytorch deep learning framework and
programmed by Python3.8 . The training process uses GTX 1080Ti GPU processors with
11G memory.

The parameter setting of the propesed network are as follows: the epoch (100), the batch-
size (4), the momentum (0.95) and initial learning rate (0.001).

2.3.2 Datasets

Two datasets are selected to verify the effectiveness and feasibility of the algorithm. As
shown in Fig. 10, BrainWash [26] is a dense dataset of human heads taken in convenience
stores. In this study, 10,000 images from the dense head dataset BrainWash are used for pre-
training, and 3174 images from helmet dataset GDUT-HWD with color label are used for

(a) BrainWash dataset

(b) GDUT-HWD dataset

Fig. 10 Some image examples in BrainWah and GDUT-HWD datasets
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the second stage of training. GDUT-HWD uses 2539 images for training and 635 images
for testing. As shown in Table 2, five detection categories are marked, namely blue, yellow,
white, red and none, which are used to classify the color of the helmet and test the multi-
target detection effect of the trained model. The data set is divided in a 8:2 ratio, to form
training set and testing set. Note that the label “none” indicates the person without wearing a
helmet. By adding negative samples “none”, the trained model can have stronger robustness.

In addition, GDUT-HWD divides the helmets of different sizes into three categories:
small (area < 322 pixels), middle (322 < area < 962 pixels ) and large (area > 962 pixels).
As shown in Table 3, the number of small instances is largest in the dataset, which increases
the difficulty of helmet wearing detection.

2.3.3 Evaluation index

In object detection tasks, it not only needs to detect object in an image, but also to find
out the position of the object. It is necessary to take both precision rate (P) and recall rate
(R) into consideration. Therefore, a standard index average precision(AP) for judging the
quality of the network model is introduced. Conceptually, AP is the area under the precision-
recall curve. The expressions of precision and recall are as follows:

P = Precision = T P

T P + FP
, (13)

and

R = Recall = T P

T P + FN
, (14)

where T P is the number of helmets detected correctly; FP is the number of helmets mis-
judged; FN is the number of missed detection. After obtaining the values of Precision and
Recall, AP is defined as:

AP =
∫ 1

0
P (R) dR, (15)

It should be noticed that for multi-target detection, mean average precision (mAP) is the
average value of AP for all categories, which is defined as:

mAP = 1

K

∑k

i=1
APi, (16)

where k represents the number of categories. In this paper, mAP is accessed as the index to
test the detection accuracy of enhanced YOLOv5.

To evaluate the complexity of the proposed enhanced YOLOv5, the following evaluation
indicators are used: the number of parameters (Params), Giga Floating-point Operations Per
second (GFLOPs), Frames Per Second (FPS) and the final size of model (Weights). These
indicators are used to analyze the number of parameters and reasoning speed of the model.

Table 2 The category statistics of the GDUT-HWD data set

Label Blue Yellow White Red None

Trainval 2060 3114 2980 3485 3407

Test 552 784 801 746 964

Total 2612 3898 3781 4231 4371
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Table 3 The number of instances in different sizes

Label Small Middle Large

Trainval 4273 4098 984

Test 4713 3826 1035

Total 8950 7924 2019

2.3.4 Comparison and ablation study

To verify the validity of the enhanced YOLOv5, the detection accuracy was compared with
Faster-RCNN and SSD algorithms. Faster R-CNN depends on region proposal algorithms
to hypothesize object locations. It introduces a Region Proposal Network (RPN) that shares
full-image convolutional features with the detection network. The RPN is trained end-to-
end to generate high-quality region proposals. SSD is a kind of one-stage object detection
algorithm. It is based on a feedforward convolutional network, which generates a fixed-size
bounding box set and the corresponding score of the target category in the box, and then
generates the final detection result according to the non-maximization suppression step. In
addition, this study also compares the enhanced YOLOv5 with YOLOX. YOLOX is the
latest achievement of the YOLO series [5]. It switches the YOLO detector to an anchor-free
manner, and adopts a decoupled head and the leading label assignment strategy. YOLOX
has demonstrated excellent performance on COCO data sets.

In order to clearly understand the contribution of each modification to accuracy, abla-
tion experiments are carried out in this section. The different network structures under the
ablation experiments are shown in Fig. 11.

Transfer learning+YOLOv5 indictes that the network structure is not changed
and transfer learning is introduced in the training stage. YOLOv5+BiFPN is a
changed YOLOv5 network, where the orignal neck model is replaced by BiFPN.
YOLOv5+CBAM only adds CBAM to the backbone and neck of the original YOLOv5.
YOLOv5+BiFPN+CBAM is the improved network that adds both CBAM and BiFPN.
Transfer Learning+YOLOv5+BiFPN+CBAM is the enhanced YOLOv5. For the complex-
ity problem, this study also conducts ablation experiments to verify the impact of every
change on the algorithm complexity.

2.3.5 Visualization

YOLOv5 algorithm uses the entire image as the input of the CNN network, and directly
returns to the position of the bounding box and the category. It is often hard to see which
features can be learned in a particular part of the network. Therefore it is essential to visu-
alize the feature maps. In a convolutional neural network, applying the filter to the resulting
feature maps can provide insight into the internal representation of the input at a given point
in the model. With the help of torch vision library of Pytorch framework, this study trans-
forms the network layer to be visualized from tensor format to Python Image Library(PIL)
image format. The image PIL object needs to be converted to a NumPy array of pixel data
and expanded from a 3D array to a 4D array. Then the pixel values need to be scaled appro-
priately for the YOLOv5 model. Finally, the feature map of a certain layer can be obtained.
This study performs visual operations on each layer of the network during training and
detection.
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(a) Transfer learning+YOLOv5

(b) YOLOv5+BiFPN

(c) YOLOv5+CBAM

(d) YOLOv5+BiFPN+CBAM

v

Backbone CBAM BiFPN CBAM Detect

Head  model

(e) Transfer learning+YOLOv5+BiFPN+CBAM(the enhanced YOLOv5)

Fig. 11 Ablation experiment of the enhanced YOLOv5

3 Experimental results

3.1 Model convergence analysis

mAP and the loss of training are two important indicators to measure the quality of the
object detection model. A well-performing model is supposed to have a high mAP value
and low training losses. Figure 12 compares mAP and loss functions between YOLOv5 and
enhanced YOLOv5 during training.

It can be seen that mAP of both can be stabilized to a high level after 20 epochs of train-
ing, while the decreasing speed of the three different loss functions are also gradually stable
after about 20 epochs. It proves that YOLOv5 and its improved network model have a very
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Fig. 12 The changes of mAP, boundary loss, classification loss and objectness loss in training process, where
YOLOv5 and the enhanced YOLOv5 are compared

fast convergence rate during training, and show the good performance on the experimental
dataset.

It can be found that the enhanced YOLOv5 outperforms the original YOLOv5 in terms of
accuracy. For the loss of training, both boundary loss and classification loss have a similar
downward trend, and eventually stabilize at a very close value. In terms of the objectness
loss, the enhanced YOLOv5 is significantly lower than the original YOLOv5, indicating
that our modification improves the accuracy of prediction, resulting in a higher confidence
score for model reasoning. In addition, the enhanced YOLOv5 does not increase the training
time compared with the original YOLOv5. The training time for both is about 2.5 hours in
the same training environment.

3.2 Accuracy

A total of 635 images are randomly selected from the safety helmet dataset GDUT-HWD
as the verification set. Our modifications are tested for average accuary respectively, and
compare them with original YOLOv5.

As shown in Table 4, the first four lines are the comparison results of YOLOv5 and
other three algorithms. The last five lines are the results of the ablation experiment of
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Table 4 Comparison of different algorithms by the indicator of AP

Method Blue White Yellow Red None mAP

Faster R-CNN 0.708 0.680 0.696 0.609 0.590 0.656

SSD 0.861 0.855 0.881 0.806 0.760 0.833

YOLOX-S 0.920 0.892 0.924 0.913 0.879 0.906

YOLOv5 0.947 0.945 0.868 0.850 0.817 0.885

Transfer learning+YOLOv5 0.942 0.894 0.918 0.873 0.856 0.896

YOLOv5+BiFPN 0.912 0.921 0.910 0.892 0.868 0.901

YOLOv5+CBAM 0.945 0.900 0.930 0.918 0.905 0.920

YOLOv5+BiFPN+CBAM 0.926 0.946 0.933 0.912 0.912 0.926

Enhanced YOLOv5 0.936 0.949 0.939 0.921 0.920 0.933

enhanced YOLOv5. The bold entries represent the highest precision of each category. Orig-
inal YOLOv5 achieved the highest detection accuracy in the blue category, and enhanced
YOLOv5 achieved the highest detection accuracies in the remaining categories. The mAP
value of enhanced YOLOv5 is 93.3%. It is much higher than Faster R-CNN and SSD, which
reflects its advantages. The mAP value of YOLOX is 2.1% higher than YOLOv5, but it is
still 2.7% lower than the enhanced YOLOv5.

Ablation studies show that among all the improvements, CBAM brings the greatest
improvement, increasing the mAP value by 3.5%. The training method of adopting transfer
learning improves the accuracy by 1.1%, and the feature fusion based on BiFPN structure
also brings 1.6% improvement. The enhanced YOLOv5 integrates the above improvements
together. It brings a maximum increase of 4.8%. This proves that the modifications have a
marked effect on the detection of safety helmet.

Experiments show that adding CBAM can significantly improve the accuracy. To further
explain the contribution of CBAM, this work visualizes the feature maps of 80×80 and
20×20 scales, and outputs the visualization results before and after CBAM processing.

This study selects 4×4 feature maps to observe and compare. As shown in Fig. 13, the
feature information in the shallow layer are basically complete, while the features extracted
from deeper layer are fuzzy. No matter the feature maps of 80 × 80 or 20 × 20 scale, there
are significant changes after CBAM processing. The outline of the target characters and
helmet area become more legible, and the distinction between foreground and background
is more pronounced. It proves that the network that added CBAM is more interested in the
helmets in an image. CBAM learns well to exploit information in target object regions and
aggregate features from them.

3.3 Complexity

Table 5 shows the complexity of the original YOLOv5 and its variations, where params
and GFLOPs represent the number of parameters and calculating speed of the algorithm;
and FPS represents the detection speed of the algorithm; Weight is the final size of the
model. The original YOLOv5 has the lowest complexity. The calculation cost brought by
CBAM processing is negligible, while the BiFPN structure increases a certain amount of
calculation cost and reasoning time. It is worth noting that the training method of transfer
learning does not have any impact on the algorithm complexity. Overall, compared with the
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(a)

(b) (c)

(d) (e)

Fig. 13 Feature map visualization. (a) shows the original image. (b) show the feature maps of 80×80 scale
before CBAM. (c) show the feature maps of 80×80 scale after CBAM. (d) show the feature maps of 20×20
scale before CBAM. (e) show the feature maps of 20×20 scale after CBAM

improved accuracy, a small increase in algorithmic complexity for enhanced YOLOv5 is
within acceptable bounds. In addition, the FPS of 79 indicates that the enhanced YOLOv5
fully meets the real-time requirements of the helmet detection scene. Its reasoning speed is
several times faster than SSD and Faster-RCNN algorithms, and 30% faster than YOLOX-s.

As shown in Fig. 14, this study selects GFLOPs and FPS to measure the relationship
between complexity and accuracy. From YOLOv5s model to YOLOv5x model, heavier net-
works with larger width and depth tend to obtain higher accuracy, but it leads to higher
GFLOPs and lower FPS. In the comparison between YOLOv5s and YOLOv5x, the accu-
racy is increased only by about 2%, but the GFLOPs (about 220) of YOLOv5x is 11 times
of that (about 20) of YOLOv5s, and the processing speed is also significantly reduced
from 57 FPS from 93 FPS. In contrast, the proposed enhanced YOLOv5 structure (i.e.
YOLOv5+CBAM+BiFPN) can obtain the accuracy at 92.6%, but the GFLOPs is almost the
same as YOLOv5s, as seen in Fig. 14(a). Besides, it is also found that the computing speed
of the enhance YOLOv5 is almost the same as YOLOv5m, but its accuracy is more than 2%
higher.

Table 5 Complexity comparison among YOLOv5 and three variations

Method Params/M GFLOPs FPS Weight/MB

YOLOv5 7.3 16.9 93 14.4

YOLOv5+CBAM 7.5 17.1 87 14.7

YOLOv5+BiFPN 8.0 18.3 81 16.8

Enhanced YOLOv5 8.1 18.4 79 17.1
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Fig. 14 A comparison on the complexity among YOLOv5 series and the enhanced YOLOv5, where transfer
learning is not applied during the training stage to obtain the accuracy. (a) and (b) show GFLOPs index and
FPS index, respectively

3.4 Detection demonstration

3.4.1 Different target scale

Figure 15 shows a few detection examples on GDUT-HWD dataset with the enhanced
YOLOv5 model. The examples include helmet wearing detection for small, medium and
large instances. These results show that the proposed model can well complete the helmet
detection task and be applied to many construction sites.

(c) small size detection object

(a) large size detection object

(b) middle size detection object

Fig. 15 Detection examples on GDUT-HWD test with enhanced YOLOv5
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3.4.2 Comparison with YOLOv5 on different detection scenarios

In Fig. 16, three typical detection results are compared between YOLOv5 and enhanced
YOLOv5. (a) It represents a situation where the background is dark and unclear. YOLOv5
failed to identify the person with the red helmet on the left. (b) It represents a small target
detection task. The helmet occupies a tiny proportion of the whole image. YOLOv5 fails to
detect a number of small targets. (c) It represents the case where the helmet is not worn on
the head. YOLOv5 mistakenly marked a helmet placed on the table. The above problems of
missed detection and wrong detection are effectively solved by the enhanced YOLOv5.

In sum, it can be found that enhanced YOLOv5 model has stronger inhibition to the
interference of occlusions, better performance in complex environment with small targets.

(a) dark environment

(b) small target detection

(c) unworn safety helmet 

Fig. 16 The experimental comparison results of YOLOv5 and enhanced YOLOv5, where the left side are
the detection results of original YOLOv5, and the right side are the detection results of enhanced YOLOv5
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In addition, enhanced YOLOv5 has better head perception and a lower probability of error
detection.

4 Discussions

This paper explores a safety helmet wearing detection method in real time. In order to
meet both requirements on the accuracy and computing speed in industrial occasions, an
enhanced YOLOv5 is proposed via BiFPN, CBAM and transfer learning. BiFPN strength-
ens the capability of network feature fusion. CBAM improves the ability of feature
extraction. Transfer learning contributes to a better detection accuracy around head region.
In general, the feasibility of this study is as follows:

• Accuracy: the detection accuracy of enhanced YOLOv5 on GDUT-HWD dataset is
significantly higher than that of YOLOv5, which is due to its outstanding detection
performance in challenging scenarios, such as dark environment, occlusion, and small
targets etc. The achieved 93.3% mAP value demonstrates that the enhanced YOLOv5
can basically meet the detection requirement, which is much more superior than other
traditional approaches.

• Speed: the proposed model can reach 79 FPS, which is fast enough to meet the real-
time requirement. It is partly benefited from the advantage of the original YOLOv5
structure, but more importantly, it proves that our modification on the YOLOv5 does
not result in heaver computing burden. Therefore, it can be directly used in industrial
scenarios.

• Applicability: this study selects GDUT-HWD dataset to carry out the experiments. The
dataset includes the information of helmet color, and a large number of negative sam-
ples. Therefore, it is believed that the model trained by such a dataset is robust. Besides,
the adaptation of transfer learning allows the network to focus more on the head region,
and neglect non-relevant region, which can avoid misrecognition.

In the experiments, some issues are identified and are worthy to be discussed. The first
one is about whether to increase the detection layer in BiFPN. The original BiFPN structure
contains five layers, whereas YOLOv5 has only three layers in FPN. Therefore, this study
attemptsto add additional layers and edges into YOLOv5. However, such changes signifi-
cantly increase its complexity and reduce the reasoning speed of the model. Therefore, this
study optimises the BiFPN structure by reducing the number of layers and edges. Although
the accuracy is slightly reduced, it does not bring in much change on its complexity. The
second one regards transfer learning. Experimental results show that the introduction of
transfer learning brings 1% accuracy improvement, but it is far more than what we expected.
The possible reasons are as follows: 1) the most suitable scenario of transfer learning is to
transfer the source domain with a large number of samples to the target domain with a small
number of samples, but in this study, the quantity of images in target domain may enough
to sufficiently train the model. 2) heads and safety helmets are visually similar. Although
the introduction of the head detection model can improve the detection performance of the
safety helmet, it may also lead to misrecognition.

In the future, it is recommended to further improve the detection speed of the model, so
that it can be used in embedded systems for practical evaluation. Besides, transfer learning
can be further studied to see how it influencing the accuracy, and corresponding optimising
strategies can be proposed.
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5 Conclusion and further works

Detection of helmet wearing is of great importance to worker safety at construction sites.
In this paper, an enhanced YOLOv5 model is proposed to improve the detection accuracy
without sacrificing its computing speed. It integrates attention mechanism and BiFPN struc-
ture into the original YOLOv5 network, and takes transfer learning method for training.
The experimental results show that the enhanced YOLOv5 model achieves a significant
improvement in the accuracy. To make maximum use of its advantages in terms of small
size and high accuracy, network downgauging will be focused in future research. It is to
reduce the size of the model and improve its inference and operation speed without sacri-
ficing its high accuracy. Eventually, the model could be deployed on mobile and hardware
platforms, driving the intelligent and humanized development of smart construction sites.
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