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Abstract
Heavy metal pollution in our aquatic bodies is a major health concern in the present
scenario. The harmful effect of non-biodegradable toxic and trace metals is more serious
than other contaminants. Fishes are more susceptible to various harmful impacts of these
pollutants within the aquatic environment. Heavy metal toxicity from fish intake can
cause health problems such as multi-organ damage, and serious diseases. Due to bioac-
cumulation through the food chain and direct absorption of these heavy metals, it is very
important to monitor the quality of food fishes. Classical chemical-based methods for the
assessment of fish quality are destructive and at the same time, they also require costly
machines and expert manpower. In the present work, a machine learning-based method-
ology has been employed in which the suitable color and texture features have been
identified and have been genetically optimised for the classification of heavy metal
exposed and non-exposed fish using a machine learning classifier. The performance of
the proposed method has also been tested using transfer learning-based approach. The
best F1-score of 97.1% and 93.5% have been obtained in the case of the proposed
genetically optimised color texture features-based approach and the transfer learning-
based approach respectively. Thus, the proposed technique can be utilised to identify
heavy metal-contaminated fish and to mitigate possible consequences. The proposed
method can also be used for large-scale fish processing.
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1 Introduction

Heavy metals are natural constituents of marine environments; however, their levels have been
continuously rising in recent years due to geological weathering, various anthropogenic
activities such as the discharge of agricultural, municipal and industrial wastes, and direct
atmospheric deposition [13, 35]. Earlier researchers have found that there is an increase in the
pollution of specific heavy metals in freshwater systems around the world, notably rivers.
Industrial operations and trash have been the primary sources of pollution [22, 29]. Toxic
metals have affected freshwater ecosystems all around the world [12, 44]. Many studies have
been organised in the past to examine the effects of heavy metals on various fish species [10,
38]. These findings highlight the key necessity of monitoring heavy metal levels in fish species
to improve freshwater ecosystems [24]. Heavy metals are known to have negative implications
for human health when passing through the food chain [31]. Heavy metals can also cause
histopathological abnormalities in the internal structure of the gills and brain [5]. The
consumption of these heavy metal-intoxicated fish can cause detrimental hazards to human
health [3]. As fish is a daily food for billions in the world, it is a huge challenge for the
aquaculture industry to keep track of the quality of fish for safe human consumption [11].
Heavy metal toxicity has an negative impact on the fish quality [25].

Heavy metals can be propagated into fish either through the alimentary tract or through gills
or skin [49]. Then, absorbed heavy metals are transported through the bloodstream of fish to
other organs and tissues, where they get bioaccumulated [19]. The bioaccumulation of heavy
metals like Cd, Pb, Cu, Fe, Zn, Mn, Hg, and As in fish occurs in the liver, gills, and skin tissues
[41]. Lead, cadmium, mercury and arsenic heavy metals are the main threat to human health.
The harmful effects of these heavy metals have been periodically reviewed by international
bodies such as WHO [28]. These heavy metals also destroy the metabolic process in human
beings [20]. Other risks such as cardiovascular disorders, renal damage, cancer and diabetes
are also associated with drinking contaminated water [42].

In [14], the level of exposure to mercury (Hg), lead (Pb), and cadmium (Cd) in adult
population was investigated. Mercury (Hg) was found to be present in high concentration in
sea foods in comparison to other Heavy metals (Cd, Hg, and Pb). In another study, probable
sources of heavy metal contamination in fish through bioaccumulation have been studied to
evaluate possible human health risks. It was found that gills have a high concentration of heavy
metals in collected fish samples [37]. A similar pattern of bioaccumulation was also found in
different species of fish found in various regions of the world [56]. Since fishes are in direct
contact with water, gills are more prone to bio-accumulation [43]. Therefore, gills are
considered the main area of investigation for the present study.

The classical methods for the categorisation of heavy metals exposed fish are based on the
chemical testing method such as inductively coupled plasma mass spectrometry (ICP-MS),
Liquid chromatography-mass spectrometry (LC-MS), and High-Performance Liquid Chroma-
tography (HPLC). Identification and detection of heavy metal contamination in fish is a
challenging task and these conventional methods need several costly devices, chemicals,
laboratories and expert manpower. These techniques are also highly time-consuming, costly,
and destructive, since, the sample under chemical testing becomes unusable [8]. Hence, there
exist a playing field to thrive into an automatic and non-invasive method for the identification
of heavy metal exposure to fish.

The advent of artificial intelligence brings a huge transformation in research and develop-
ment to provide intelligent assistance and decision-making [33, 51, 59]. Machine learning
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classifiers and convolutional neural networks (CNNs) have recently been used in the many
applications of different domains such as object classification [30], medical image analysis
[34], biology [2, 7], medicine [9], and bioinformatics [39]. CNN is one of the most popular
models for image processing for two reasons: there is no need for manual analysis of the
features. Another reason being the models acts as a feature extractor as well as a classifier.

In the proposed work, colour and texture-based features optimised with the genetic
algorithm have been used for the classification of fish sample images. The performance
obtained with the proposed color and texture features-based genetically optimised feature
selection method has been compared with the transfer learning-based-deep feature extraction
and classification method. The proposed method at first, segments the gill region using the
customised K-means clustering algorithm, and then the color and texture features extracted
from the segmented gill region were fused. The fused features were further optimised using the
fitness function defined for the genetic algorithm. Finally, the final classification results
obtained with the classical machine learning classifiers have been compared with the state-
of-the-art transfer learning-based approach. Both methods have been compared extensively to
different performance metrics to prove the effectiveness of the proposed former color texture
feature-based method in comparison to the deep feature-based method. The main contributions
made by the present work can be summarised as follows:

(i) An automatic cost-effective and non-destructive machine learning-based methodology
has been proposed for the categorisation of normal (non-exposed) and heavy metal
exposed fish.

(ii) Suitable color and texture features have been identified that discriminate the heavy metal-
exposed and non-exposed fish.

(iii) Extracted color texture features have been optimised using the genetic algorithm for
better performance.

Though the scope of the present study is limited to the identification of mercury-heavy metal
exposed fish identification it can be extended to other heavy metals as well.

The rest of the paper can be systematically studied in the following fashion: Section 2 briefs
the most relevant related works. Section 3 explains the materials and methods used in the
present work. Section 4 presents experimental results and carries out discussions on the
experimental outcomes. Section 5 compares the present work with other related works.
Finally, Section 6 concludes.

2 Related works

This section summarises some research and development of new techniques which has been
used to assess the different aspects of fish related issues. For the detection of heavy metals in
fish tissue, a microfluidic device-based colorimetric sensor device with a highly sensitive
enzyme nanoprobe has been constructed. However, nanoprobes of this type had to be stored in
certain settings to be preserved. Typical devices still rely on microscopes or other readout
technologies, which are challenging to include in on-site portable tests. As a result, standalone
systems must be developed using new technologies to enable the creation of practical
analytical platforms [54]. Furthermore, numerous previous research studies have indicated
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trends towards sophisticated mercury sensors-based paradigm to the active participation of
state-of-the-art artificial intelligence and machine learning-based systems [32].

Image processing techniques have widely been adopted in different studies to estimate the
quality of fish and exposure to toxic elements. An image processing-based framework had
been presented for the evaluation of the wholesomeness of a fish using wavelet features
extracted from fish gills [17]. In another work, the freshness of a fish was evaluated by
analysing the changes that took place in the colour of an eye and a gill tissue [16]. Various
image processing-based methods were also summarised for the assessment of fish quality and
freshness [15]. Computer vision-based techniques are also studied for the quality assessment of
the fish exposed to pesticides [47]. A method for identifying heavy metal-exposed fish was
designed with an image processing and machine learning techniques with gills tissue as the
key region of interest (ROI). The AUC value for identifying metal-exposed fish using a
classification tree range from 82% to 92% [53]. Evolutionary algorithms have also been used
to find the optimal set of features [26]. Sengar et al. have used the image processing-based
method to analyse the freshness of a fish. They have analysed the statistical features extracted
from the fish skin tissue image in HSV (Hue, Saturation, Value) colour space [48]. Banwari
et al. have used the fish eyes as a region of interest and established a relation between the eye
colour and storage pattern of a fish to assess the freshness of the fish sample [4].

The present work proposes a color texture feature extraction-based method in which the
extracted features are optimised genetically. The genetically optimised features present better
generalisation and classification accuracy due to the small number of selected features. The
performance of the proposed method has been compared and analysed with the transfer
learning-based method.

3 Materials and methods

3.1 Experimentation details

Freshwater fish Channa punctatus were collected from the fish farm at Noida, Uttar Pradesh.
C. punctatus, a freshwater fish belonging to the Channidae family, is also referred to as the snake-
headed murrel. This fish is local to India and a few other nations in the region. Certain biological
characteristics that distinguish the fish as an ideal model include a wider distribution range,
sensitivity to environmental toxins, ease of transportation, and maintenance in laboratory settings
[50]. The average weight of the fish was 20 ± 2.0 g and the average length was 12 ± 0.5 cm. All
fishes were kept in the 100 L glass aquarium (10 fishes per aquarium) filled with dechlorinated
water at room temperature for 15 days. LC50 (96 h), in case of, mercuric chloride was measured
using Boyd’s method [6]. Post acclimatization, fish were distributed into two classes. The first
class (100 fishes) was exposed to mercuric chloride (0.10 mg/l – sublethal dose), and the second
class (100 fishes) was treated as a control without anymetal exposure. Fishes in the exposed group
were exposed to a sublethal dose of mercury for 15 days. To keep up the concentration of metal in
tanks, water in the tank was renewed daily. Water quality parameters like temperature pH and
dissolved oxygen were maintained at 24 ± 2o C, 7.5 ± 0.1 and 5.5 ± 0.2 mg/L, respectively.

Fishes were anaesthetized by immersing in the solution of tricaine methane sulphonate (MS
222) (25 mg/l) for 3–5 minutes after 15 days of metal exposure. Post-acquisition of the image
of fish gill, fish were dissected to preserve liver tissue for mercury estimation. 100 mg of liver
tissue was exposed to 1 ml of concentrated nitric acid (water dilluted) at 80o C for an hour.
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Perkin Elmer AA800 (Atomic Absorption Spectrophotometer) was deployed to estimate the
presence of Hg in liver. Table 1 shows precisely the concentration of metal in the liver of fish
exposed to mercuric chloride for 15 days.

3.1.1 Image acquisition

The 20.2. MP (megapixel) Canon IXUS 285HS digital camera has been used to capture the
fish sample images. The camera has been hung from the roof of a wooden box of dimension
100X120X100 (in centimetres) and placed at a distance of 8 cm from the fish specimen. The
box has been illumination with four CFLs (25 W), three tube lights each of 9 W and three LED
(Light-emitting diodes) lamps (18 W) placed at a 45-degree angle to uniformly illuminate the
fish sample placed under them. The acquired sample image is of size 3885X5814 pixels. The
schematic representation of the image acquisition setup has been shown in Fig. 1.

3.2 Proposed methodology

The proposed methodology consists of the following steps: (i) Acquisition of fish-sample
image (ii) Segmentation of the Region of Interest i.e., gill (iii) feature extraction (iv) Classi-
fication of heavy-metal exposed and non-exposed fish using genetically optimised color
texture features. The proposed methodology for the current proposed work has been presented
using Fig. 2. In stage I, the collected fish samples are first categorised into two groups – The
exposed group and the control group. Then, images of these fish samples were passed through
various image processing operations like color space conversion and clustering to segment out
the gill region in stage II. In stage III, the color and textural features drawn out from the
segmented gill image are given to the classifier after selecting the optimised features using a
genetic algorithm. In stage IV, these extracted features are given as input to different classifiers
and these classifiers after subsequent training are used for testing unseen test samples to check
the efficacy of the proposed classification approaches.

3.2.1 Fish gill segmentation

Gill is a red-coloured respiratory organ in the fish through which blood flows directly. The
colour of the fish gills varies physically, and these changes yield discriminatory characteristics,
which were exploited in the proposed work. Because the proposed work involves image
analysis, parameters that are easily detectable using computer vision techniques should be
chosen. As a result, the gills were chosen as the region of interest in the suggested technique.

An input fish image is being analysed in different colour models for segmentation of the gill
as a Region of Interest with better visibility. YCbCr color model has been used for input image
processing the reason for choosing the YCbCr color model has also been described in the next
subsection.

Table 1 Bioaccumulation of heavy metals in the liver of fish

Class/Group Metal concentration (μg/g) (Mean±Std. Deviation)

Control group Not detected
Hg exposed group 0.73±0.7
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YCbCr color model The fish image acquired from the camera is in the RGB (red green and
blue) color format. The RGB color model is not appropriate for gill segmentation because this
model does not work well for color-based detection as this model mixes the color
(chrominance) and intensity (luminance) information present in an input image. Further, after
converting the input image from RGB to the YCbCr color model, it was observed that the
chrominance component of the YCbCr color model represents the marked similarity between
the gills of different fish samples which can be used to distinguish the gill region from the rest
of the fish body. Another reason, for selecting the YCbCr model is that the YCbCr model
works well in medium light conditions. The mathematical model for the conversion of the
RGB model to the YCbCr model is performed using Eq. (1) as follows:

Y
Cb

Cr

2
4

3
5 ¼

0:257 0:504 0:098
−0:148 −0:219 0:439
0:439 −0:368 −0:071

2
4

3
5

R
G
B

2
4

3
5þ

16
128
128

2
4

3
5 ð1Þ

Fig. 1 The schematic representation of the fish sample image acquisition setup

Fig. 2 Block diagram of the proposed methodology
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When an image in the RGB color model is transformed into the YCbCr color model, the
resultant image consists of an intensity component (Y) and chrominance components (Cb and
Cr). Figure 3 visualises the R, G and B component images for the RGB color model and the Y,
Cb and Cr component images for the YCbCr color model for a randomly chosen fish sample
image. It can be visualised from Fig. 3 that for the given sample image the gill region is most
highlighted in the Cr component image; therefore, it is the best-suited component for the
segmentation of the gill area using the proposed segmentation algorithm.

The proposed segmentation algorithm The YCbCr color model also provides better color
clustering performance. Therefore, after selecting the Cr plane image center initialised K-
means clustering algorithm is used to segment the pre-processed chrominance channel gill
image. The proposed algorithm converges faster in comparison to the random initialisation of
the center-based approach.

Input: A Chrominance (Cr) component image of YCbCr model.
Procedure:
Pre-set the total number of clusters (k = 4) and choose their values in such a manner, that

the entire range of grey scale is divided into five equal parts so that it is equally spaced over the
entire range of grey levels in an image. Now measure the euclidean distance between the
cluster centres and the rest of the pixel values present in an image using Eq. (2).

dx;y ¼ f x; yð Þ−ck ð2Þ
where, dx, y is the distance of the pixel at coordinates x and y from the kth cluster centre ck.

Assign pixel to cluster which is nearest to that pixel based on Euclidean distance d from the
cluster centre ck. After assigning all the pixels to their nearest cluster, cluster centres are
recalculated using the relation using Eq. (3):

ck ¼ ∑n
i¼1 f i x; yð Þ

n
ð3Þ

where, n denotes total number of pixels in a cluster centred around ck. Repeat the last three
steps till the cluster centres stop changing their positions.

R-component G-component B-component

Sample Image Y-component Cb-component Cr-component

Fig. 3 Visualisation of an image of individual components of the RGB color model (first row) and YCbCr color
model (second row)
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Output: Segmented image.
The image formed by the fourth cluster is chosen for morphological post-processing, where

hole-filling and area-based object selection procedure is used to remove the noise. The
segmented gill images obtained after applying the proposed segmentation algorithm is shown
in Fig. 4 which shows the good extraction of ROI for a given input image.

Post segmentation the features are extracted from the gill region using color and texture
features.

3.2.2 Suitable feature representation for segmented gill image

The discriminative features are drawn out from the segmented gill region of the fish sample by
giving the segmented gill image as input to the proposed feature extraction procedure. Suitable
color and texture features were extracted and further optimised for better performance using a
genetic algorithm.

The proposed feature extraction process Many studies have validated the change in colour
and physical parameters of fish and their organs due to exposure to heavy metals [21, 36, 40,
45, 57, 58]. Since the accumulation of heavy metal residues occurs in fish gills, therefore, it
may bring changes to the color and texture features of the heavy-metal exposed fish gills. It
was observed during experiments that neither color nor texture features can individually
classify the fish samples in the control and experimental group with high accuracy, therefore
the combination of color and texture features has been used to classify the fish samples in the
control and metal-exposed class.

In the present work, color features have been extracted using the first two-colour moments, i.e.,
themean and standard deviation. The color-moments represent the distribution of color in an image.
The color moments have been extracted from the red channel of the RGB (Red-Green-Blue) color
model, the hue channel of theHSI (Hue-Saturation-Intensity) colormodel and the chrominance (Cr)
channel of the YCbCr color model. The reason for choosing these channels is the dominance of red
color in the image of the segmented fish-gill region. The mean and standard deviation can be
calculated from each of the channels using Eq. (4) and (5) respectively.

mean ¼ 1

mn
∑i¼m

i¼1∑
j¼n
j¼1 f ij ð4Þ

Std:dev ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i¼m

i¼1∑
j¼n
j¼1 f ij−mean

� �2

m−1ð Þ n−1ð Þ

vuut ð5Þ

where, fij is the pixel intensity at ith row and jth column and mean is the average intensity value
of a 2D image having m rows and n columns. The texture features from the segmented region
are extracted using the Local Binary Pattern (LBP). The calculation of LBP code for a specific
pixel is performed using Eq. (6):

LBPN ;R f cð Þ ¼ ∑N−1
N¼0g f N− f cð Þ:2n ð6Þ
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(a) (b)

Fig. 4 The output of the fish gill segmentation (a) Displays the original colour images and (b) Highlights the
segmented region of the fish gill (in yellow)
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where, fc is the value of the central pixel and fN (N = 0, 1, 2, …N − 1) is the value of pixels
located at the neighbourhood of radius R and N is the number of sampled neighbours. And
g(x) = 1 for x > = 0, otherwise,g(x) = 0. In this work, uniform LBP pattern [60] has been
utilised since it reduces the size of the feature vector by only selecting those patterns which
have a limited number (<=2) of bit transitions from 0 to 1 or 1 to 0 and grouping all non-
uniform patterns (no. of transitions>2) into a single category. The uniform patterns are
approximately accounted for 80% of the patterns present in any texture image [60]. With N
(=8) neighbourhood pixels total N*(N-1) +2 (=58) different uniform bit patterns are possible.
The transformation from simple LBP to uniform LBP is implemented using a lookup table
having 2N entries mapping 58 different bit patterns. All uniform patterns have been shown in
Fig. 5. All patterns in one row, as shown in Fig. 5, can be normalised to single pattern,
therefore, total 9 patterns are possible after converting uniform patterns into rotation invariant
LBP operator, denoted by LBPriu.

Thus, the total number of features in case of uniform LBP and rotation invariant LBP
patterns when combined with the proposed color descriptors were 64 and 15 respectively.
Since a large number of features affects the performance of a classifier due to the curse of
dimensionality and may also result in overfitting. Therefore, the selection of highly discrim-
inatory features is of utmost importance as it will not only reduce the complexity of a classifier
but it will also improve its accuracy.

Fig. 5 Different uniform local binary patterns formed for #Neighbor = 8, radius = 1
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3.2.3 Feature selection using genetic algorithm

The most discriminatory features were selected using the genetic algorithm. Binary encoding
has been used to encode the features. The features are selected based on the fitness measure
defined for the genetic algorithm. The fitness measure used for the genetic algorithm is defined
using Eq. (7):

costi ¼ w1*error zið Þ þ w2*r f ð7Þ
where, w1 and w2 are the weightage assign to the component of Eq. (7). These value for these
weightages ranging from 0 to 1; whereas,w2 = w1 − 1 ; rf is the ratio of the length of the selected
feature to the total number of features; costi is a cost function of ith selected feature for a given
classifier; Cost function has two sub-component: first part of the cost function represents the
weighted classification accuracy of a classifier on ith selected feature subset (chromosome)
represented by zi and the second part of the Eq. (7) represents the weighted ratio of the length
of selected feature. Generally, w1 can vary from 0.75 to 1 based on user requirements. If accuracy
is more important than feature reduction then w1 is given more weightage than w2. The value of
w1 = 0.80 and w2 = 0.20 is used for experiments in the proposed work.

3.2.4 Framework for classification

The extracted-reduced features from the earlier two approaches were used to train different
machine learning classifiers; the training parameters for these classifiers are shown in Table 2.

4 Experimental results

In this work, NVIDIA Tesla K40 GPU (12 GB RAM) has been used for execution purpose
with implementation of all the methods on Python 3.5. Different performance metrics are used
to assess the performance of the proposed method such as precision, recall, F1-score and AUC
(Area under the curve). The experimental results for the proposed method have been presented
in section 4.1 and the experimental results obtained with the transfer learning-based method
have been presented in section 4.2.

4.1 Classification performance of the proposed genetically optimised color texture
features-based approach

This section describes the experimental results obtained from the training of a classifier with
hand-crafted color and texture features and the improvement in classifier performance before
and after the selection of features using a genetic algorithm.

Table 2 Training parameters of different classifiers

Machine Learning Model Parameters settings for classification

Support Vector Machine Gaussian Radial Basis Function Kernel, Scaling Factor Sigma=1.8
Artificial Neural Network No. of Hidden Layers=5, Training Function=Levenberg-Marquardt, Epochs=30
Random Forest Number of trees=40
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Table 3 represents the total number of features before and after feature selection using a
genetic algorithm and the corresponding accuracy of the prediction of the classifier. It can be
analysed from Table 3 that the accuracy of SVM and Random Forest classifiers improves with
a significant reduction in several features. Among all the classifiers Random Forest performs
well in terms of accuracy.

After applying the genetic algorithm and selection of discriminatory features, the average
performance metrics of the trained SVM classifier such as recall, precision, F-score and
accuracy are evaluated using a five-fold cross-validation technique for the proposed method
have been shown in Table 4. The Random Forest classifier performs the best among other
mentioned classifiers with an AUC score of 0.98 while the Neural Network classifier perfor-
mance is the worst and achieved an AUC score of 0.94.

The average computation time is 1.34 seconds for processing each image using the
proposed methodology. Figure 6 shows the mean ROC curve for the 5-folds for different
classifiers before and after the selection of features. It can be analysed from the ROC curves of
the classifier that the performance of the classifier gets improved for all the classifiers except
Neural Network.

A comparison between the classification performance of the SVM classifier obtained with
different LBP descriptors when these features were combined with the proposed color
descriptors has also been made and presented in Table 5. The number of features pre and
post-selection and the corresponding classification accuracy obtained with each LBP-based
descriptor has also been presented in Table 5.

It can be analysed from the Table 5 that rotation invariant LBP has given better perfor-
mance in comparison to other LBP descriptors.

4.2 Comparison of the proposed method with the transfer learning-based approach

Pre-trained deep CNN models such as VGG16 [52], Resnet50 [23], Inception v3 [55],
Mobilenet [18] are used for feature extraction. The last convolution layer of different pre-
trained deep CNN models is used to draw out feature maps from an input image (RGB format)
of size 224 × 224 × 3. Before drawing out the features from the gill, it is segmented out.
These feature maps were further given as an input to the global average pooling (GAP) layer to

Table 3 Feature selected by genetic algorithm for different classifiers and the accuracy of a classifier with
selected features

Classifier #color and
texture features

Accuracy #features by the
genetic algorithm

Accuracy
(%)

SVM 64 92.14 9 96.4
Neural Network 64 96.15 11 95.7
Random Forest 64 97.04 32 97.1

Table 4 Performance measurement of classifiers with feature selection

Model Recall Precision F- score Accuracy AUC

Support Vector Machine 1 0.928 0.965 0.964 0.95
Neural Network 0.932 0.985 0.957 0.957 0.94
Random Forest 0.971 0.971 0.971 0.971 0.98
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obtain concise global representation of the features present in an input image. The output of the
GAP layer is used to train SVM classifier for discriminating heavy-metal exposed and non-
exposed fish.

4.2.1 Classification performance of the transfer learnt SVM classifier

The average performance metrics of the SVM classifier trained with the features drawn out
from the pre-trained CNNs for five-fold cross-validation have been shown in Table 6. As
shown in Table 6, VGG16-based features outperforms with an average classification accuracy
of 93.5% for SVM. The highest value of precision and recall was obtained with the features of
the VGG16 model. The discriminability of features drawn out from different pre-trained
models can be ranked based on the performance of SVM classifier as shown in Table 6.

ROC curves for each of the 5 folds for trained SVM on features drawn out from the pre-
trained model are shown in Fig. 7, where the mean area under the curve (AUC) was maximum
for the VGG16 model whereas it was minimum for the Inception v3 model.

Fig. 6 Mean ROC curve for 5-folds of the classifiers before and after features selection for different classifiers
(a) SVM (b) Neural Network (c) Random Forest

Table 5 Classification performance obtained with different LBP descriptors and the number of selected features

Descriptor #features before selection #features selected SVM classifier %accuracy
with selected features

LBP 262 18 89.1
Uniform LBP 64 9 96.4
Rotation-invariant LBP 15 8 96.4
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The performance of SVM with the features drawn out from different pre-trained CNNs, is
almost uninterpretable. Since these deep models were trained on the ImageNet dataset which
consists of millions of images of almost 1000 categories it has nothing to do with the presence
of heavy metal traces in the fish gills. Therefore, certain hand-crafted features were explored to
establish a discrimination between the fish samples of exposed and non-exposed groups. The
performance of machine learning models on these hand-crafted features is explained in the
next subsection.

4.2.2 Visualisation of the learned features using saliency-based techniques

It has been investigated and attempted to visualise the learned features using a saliency-based
method [46] as shown in Fig. 8. However, due to the drawback of saliency-based methods as
highlighted in [1] that sometimes these methods work independently of features learnt by the

Table 6 Performance metrics for SVM on features extracted from pre-trained deep CNN models

Model Recall Precision F- score Accuracy AUC

VGG16 0.937 0.937 0.937 0.935 0.99
Resnet50 0.823 0.875 0.848 0.843 0.94
Inceptionv3 0.769 0.714 0.741 0.750 0.84
Mobilenet 0.75 0.643 0.692 0.714 0.89

Fig. 7 ROC curves for 5 folds on features extracted from (a) VGG16 (b) Resnet50 (c) Inception v3 (d)
Mobilenet
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model and simply work as an edge detector. The same observation has been made in our case
as saliency-based techniques cannot highlight the salient regions in an input image and work
only as an edge detector. The reason for this drawback is that the gradients are calculated only
for the weights learnt by the model from the last convolution layer, not for the weights learnt
by the model in all other convolution layers present in the CNN. As shown in Fig. 8 that the
saliency-based method only highlights the edges of a gill region present in an image which
may not be the case as the exposure of heavy metals to fish bring changes in the textural and
color properties of its gill region which has also been established with the experimental results
presented in section 5.2.

5 Comparison with the other similar approaches

The methods earlier developed for the fish quality assessment have been described in brief
with the conclusion in Table 7 and also compared with the present proposed method.

Treated Normal

Segmented Gill Heatmap
Overlapped

Heatmap
Segmented Gill Heatmap

Overlapped
Heatmap

Fig. 8 Visualisation of gradients of the last convolution layer for class score (GradCAM saliency method)
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6 Conclusions and future work

The present work successfully developed a machine-learning-based method for the
categorisation of heavy metal exposed and non-exposed fish using the gill tissue of the fish
as a region of interest. The proposed methodology has been analysed in multiple sets of
configurations and techniques. The color and texture features extracted from the segmented
gill region gives better discrimination ability in comparison to the features extracted from the
transfer learnt deep features extracted from pre-trained deep convolution neural networks. The
color texture features after optimising using genetic algorithm give better classification
performance. The methodology proposed in the present work is easy to implement in that it
can be used for the classification of heavy-metal exposed fish at a commercial scale with
almost no incurred cost. Large image datasets related to the fish and the effect of other heavy
metals will be analysed in future work to assess the impact of heavy metals in a more efficient
manner.
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