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Abstract
Traffic sign detection is an essential part of traffic security and unmanned driving system.
Due to the changes in the traffic environment is complex, how to intelligently and
efficiently detect traffic signs in real scenes is of great significance. The traffic sign
detection task is characterized by many small targets and complex environmental inter-
ference, and the detection scene also requires the detection model to be lightweight and
efficient. This paper proposes a lightweight model Ghost-YOLO, and a lightweight
module C3Ghost is designed to replace the feature extraction module in YOLOv5.
C3Ghost modules extract features in a lightweight way, which effectively speeds up
inference. At the same time, a new multi-scale feature extraction is designed to enhance
the focus on small targets. Experimental results show that the mAP of the Ghost-YOLO is
92.71%, and the number of parameters and computations are respectively reduced to
91.4% and 50.29% of the original. Compared with multiple lightweight models, the speed
and accuracy of this method are competitive.

Keywords Deep learning . Traffic sign detection . Small object detection . Ghost-YOLO

1 Introduction

As the foundation of the national economy, the road transportation system is developing
rapidly. Meanwhile, traffic problems have become increasingly prominent, such as urban
traffic jams, frequent traffic accidents, and increased air pollution. Furthermore, Traffic
accidents endanger personal safety and social security. Analysis of the frequent causes of
accidents mainly includes fatigue driving, illegal driving, bad weather, etc. Among them,
driver’s subjective driving behavior such as driving in violation of traffic signs is one of the
main causes of traffic accidents. Therefore, it is necessary to develop an Intelligent Transport
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System (ITS) to assist the driver [51]. In addition, with the global spread of the new crown
epidemic in 2020, unmanned vehicles are used in many hospitals to distribute emergency
supplies, making unmanned vehicles have once again entered the public’s attention. To sum
up, the Traffic Sign Detection (TSD) system is an important sub-module of ITS [48], and its
detection accuracy is an important prerequisite for ITS to effectively assist the driver and the
unmanned system to drive safely.

TSD can be regarded as a sub-task in the field of object detection, where the goal is to
detect traffic signs and their boundaries. Traffic signs are designed in a specific pattern,
differentiated from their surroundings mainly by color, shape, and what they signify. There-
fore, early traffic sign recognition algorithms were mainly aimed at the localization and
classification of target regions. Traditional methods [55] used color thresholding and shape
analysis to segment traffic signs from images. With the development of computer vision
technology, deep learning has demonstrated the powerful ability to learn feature representa-
tions from raw data, which has received great attention in pattern recognition and computer
vision research. It has been widely used in object detection and recognition. For example,
Convolutional Neural Networks (CNNs) have shown their powerful feature extraction ability
[6]. Many CNN-based methods have achieved fruitful results in object detection tasks.

However, traffic sign recognition still faces the following challenges:

1. Under different viewing angles and viewing distances, the traffic sign images may appear
distortions of shape and color.

2. The complicated road environment can lead to complex background of the traffic signs.
3. Traffic signs have characteristics that most object detection objects do not have, so it is

hard to obtain satisfactory performance by simply applying conventional object detection
methods.

In order to address the above challenges, scholars have done extensive studies. However, these
original methods are difficult to be widely used in practical detection scenarios. On the one
hand, designing these feature extraction methods for specific traffic sign categories requires a
lot of work and consumes manpower and material resources. On the other hand, simple feature
extraction methods are not powerful enough to deal with the complex and changing traffic
environment. In addition, in the real traffic images which can be captured by in-vehicle
equipment, traffic signs often occupy only a small part of the area as shown in Fig. 1.
Conventional object detection classifiers used a series of down-sampling operations to obtain
high-level feature maps. It will lead to the loss of small targets, which is unfavorable for the
TSD task dominated by small targets. So it is difficult to obtain satisfactory performance
simply by using traditional object detection methods. For this reason, a series of excellent basic
networks such as VGGNet [39], ResNet [10] and DenseNet [14] have been proposed. The
typical models also include Fast R-CNN [7], YOLO [32], SSD [23], and RetinaNet [20].

Although increasing the complexity of the detection classifier can improve the detection
effect, the complexity of model heavily increases the number of parameters and computation.
In actual scenarios, the TSD system should be deployed on the premise of onboard embedded
devices to effectively identify traffic signs. Too large models are difficult to meet the real-time
performance required by industrial applications, so quantitative networks came into being. The
SqueezeNet [15] network uses common compression techniques to compress the model and
then expand. On the basis of similar performance to AlexNet [18], the parameter model was
only 1/50 of AlexNet. However, the network still adopted the standard convolution calculation

26064 Multimedia Tools and Applications (2023) 82:26063–26087



method. MobileNet [12] employed a more effective depthwise separable convolution, which
improved the network speed and further promotes the application of the convolution network
on the mobile terminal. Furthermore, higher precision is obtained with less computation.
Theoretically, the amount of computation can still be reduced. ShuffleNet [52] used group
convolution and channel shuffling to effectively reduce the amount of computation for point
convolution, which achieved better performance. With the advancement of mobile devices and
the diversified development of application scenarios, lightweight networks show higher
engineering value. Therefore, how simultaneously ensuring the accuracy and speed of TSD
is still a difficult problem.

Inspired by the above methods, the purpose of this study is to develop a lightweight
method for TSD which can strike a balance between accuracy and efficiency and can
solve the problem of small target loss. In this paper, a new traffic sign recognition
method called Ghost-YOLO was proposed. The main contributions can be summarized
as follows:

1. The detection and recognition of traffic signs in the actual environment is one of the
technical bottlenecks of ITS. Through experimental research and test, this paper provided
a scientific means and framework for accurate recognition of traffic signs.

2. The Ghost-YOLO model was proposed. Based on Ghost Conv, a more lightweight
C3Ghost structure is proposed to replace the backbone network of the YOLOv5 target
detection model. After realizing model compression and speeding up inference, this paper
obtains an optimized neural network model, which greatly reduced the dependence on the
hardware environment.

3. Aiming at the fact that there are many small objects in the actual scene of TSD, the multi-
scale feature fusion detection head is used to detect large, medium and small scales, which
improves the detection performance of small objects.

4. Experimental results on TT100k dataset show that compared with several current ad-
vanced object detection methods, this method can obtain a more lightweight model scale

(a) (b)

Fig. 1 Image sample in TT100K. a Original images in TT100K dataset and the green rectangle regions contain
traffic signs; b Image patches that are cropped from (a) according to the green rectangle
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on the basis of maintaining competitive performance, which enhances the practicability of
the model

The rest of this paper is organized as follows. Section 2 introduces the related work of TSD in
recent years. Section 3 introduces the C3Ghost module design method, multi-scale feature
fusion scheme, and overall model structure. Section 4 describes the dataset, experimental setup
and experimental results. Finally, Section 5 provides a summary and outlook of this paper.

2 Related work

2.1 Traditional TSD

Traffic signs are usually designed in a specific pattern, mainly distinguished by color, shape,
and the content they mark, which are often different from the surroundings. Color and shape
are the basic attributes of traffic signs and their information started to be used for identification
in early research. The core of the algorithm for detecting based on color is to select the color
space of the image, and the images collected by the in-vehicle equipment are generally RGB
images. Benallal et al. found that the RGB components are significantly different under
different lighting conditions. Segmenting the RGB images collected by the camera can reduce
the amount of calculation [3], thereby greatly improving the speed and meeting the real-time
requirements of the algorithm. But when detecting in a complex environment, interference
such as background noise will be mixed with traffic signs. Hence, algorithms that only
consider the color space cannot achieve good detection results. There are also many solutions.
Zhou et al. used color threshold and shape analysis to segment traffic signs from images.
Complementary data obtained from different sensors was utilized to fuse the prior location,
color, laser reflectivity, and lidar data of traffic signs. The above operations improved the
robustness of the algorithm [55]. Zhu et al. converted the image from the RGB model to the
HSI model, and the red color was extracted from the H channel value. Then, the template LOG
was used to extract the edge. Finally, the BP network was adopted to process the image [38].
However, converting RGB to HSI color space requires a certain amount of computation,
which requires hardware processing to improve real-time performance.

2.2 Deep learning-based TSD

With the wide application of deep learning technology in various fields, it has demonstrated
the powerful ability to learn feature representations from raw data. The representative network
CNN is one of the most widely used network models for deep learning in computer vision
[22]. Therefore, many CNN-based methods have been transformed to address the tas of TSD.
Various object detection models were improved in [1] and applied to TSD. Sermanet et al.
used a multi-scale CNN network for TSD and obtained an accuracy of 99.17% [36].
Belghaouti et al. proposed an automatic road sign recognition system based on the LeNet
model, which achieved 99% accuracy in the German traffic dataset [2]. Song et al. advanced
an efficient convolutional neural network (CNN) that can significantly reduce redundancy
parameters, and increase the speed of the network [40]. Wang et al. proposed a new space-
cover convolutional neural network (SC-CNN) for technological conundrum [46]. Zhou et al.
proposed the Ice Environment Traffic Sign Recognition Benchmark (ITSRB) and Detection

26066 Multimedia Tools and Applications (2023) 82:26063–26087



Benchmark (ITSDB) annotated in the COCO2017 dataset format. They put forward an
attention network-based approach for high-resolution traffic sign classification (PFANet) and
performed ablation experiments on the designed parallel fused attention module [56]. Zhu
et al. modified the OverFeat framework and proposed a single network that simultaneously
detects and classifies landmarks [57]. Li developed a novel perceptual generative adversarial
network to improve detection performance by generating super-resolution images of small
traffic signs [19]. MR-CNN [25] adopts a multi-scale deconvolution structure that combines
the features from deep and shallow layers. The fused feature maps reduce the number of region
proposals to a certain extent and improve the efficiency of TSD. In [30], a feature aggregation
structure is proposed to aggregate regional features of different scales, which improves the
performance of small traffic signs. Zhang et al. proposed a cascaded R-CNN network for
detecting small traffic sign instances and designed a data augmentation method to increase the
number of difficult negative samples [53]. SADANet [26] combines a domain-adaptive
network and a multi-scale prediction network to address the scale variation problem. The
TSD method based on deep learning learns the features in a large amount of data, which has
more advantages than the traditional method using artificially designed features. It is also not
easily affected by external factors such as illumination and occlusion. Compared with the
traditional detection method, the generalization ability is strong and accurate.

2.3 Multi-scale feature fusion

In the target detection task, the most important problem is how to extract target features more
accurately [9]. Current neural networks like depth convolution structure used for feature
extraction. With the deepening of network layer, the network reception field increases
gradually, and the semantic expression ability also increases. But it also reduces the resolution
of the images, and many details characteristics after multi layer network of convolution blur,
such as smaller traffic signs. Shallow neural networks have smaller receptive fields and richer
details, but weaker semantic information is extracted. In order to obtain accurate semantic
information, traditional target detection models usually only use the feature graph output from
the last layer of feature extraction network to classify and locate objects. However, the graph of
the last feature corresponds to a large down-sampling rate, resulting in less effective informa-
tion and reduced detection ability of small targets. Multi-scale feature fusion solves this
problem well. FPN (Feature Pyramid Network) used the RPN to extract candidate regions
on the feature pyramid [33]. By fusing deep features with shallow features, predictions were
made at multiple scales of the feature pyramid. Thus, the semantics of shallow feature maps
were enhanced, and the detection accuracy of small targets was improved. The study [44]
proposed an efficient and accurate arbitrary-shaped text detector, termed Pixel Aggregation
Network (PAN), which is equipped with a low computational-cost segmentation head and a
learnable post-processing.

2.4 Research on model lightweight

Deep neural networks (DNNs) have recently achieved great success in many visual recogni-
tion tasks. However, existing neural networks require a lot of memory space and computa-
tional cost, making them difficult to deploy in devices with low memory resources. Solving
these problems requires joint solutions from many disciplines, including but not limited to
machine learning, system structure optimization and hardware design. Reference [16]
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proposed to use different tensor decomposition schemes, which only lost 1% of the accuracy
and achieved a 4.5x speedup. Since the translation-invariant property is ensured when
exploring the features of the input image, the parameters of the CNN network are efficient,
which is the key to successfully training the deep neural network and avoiding overfitting.
Using a compact convolution kernel to replace a convolution kernel with a large number of
parameters can directly reduce the amount of computation. SqueezeNet [47] adopts a 1 × 1
convolutional layer instead of a 3 × 3 convolutional layer, which reduces the number of
parameters. The same approach is also adopted for MobileNets [13]. The work in [37]
introduces a more advanced successor of the CNNS called 3-D CNNS, and the computing
time (0.19 seconds per frame) of the proposed work shows that the proposal may be used in
real-time applications. The work in [35] exploits the advantages of deep neural networks to
solve the network compression problem. It proposes FitNets to train deep yet lightweight
networks to compress large deep neural networks.

3 Proposed method

3.1 Overall architecture

The YOLOv5 [27, 42] network is the latest model in the YOLO series. The network model has
high detection accuracy, fast inference speed, and the fastest detection speed can reach 140
frames per second. The weight file of the YOLOv5 network model is nearly 90% smaller than
that of YOLOv4, which indicates that the YOLOv5 model is suitable for deployment on
embedded devices for real-time target detection. However, YOLOv5 still has defects in the
problem of small target detection, and cannot accurately identify smaller targets. To solve this
problem, a multi-scale detection layer is further added in the latest YOLOv5 series named
YOLOv5-P6 [42]. But what followed is a substantial increase in the amount of parameters and
FLOPS. The YOLOv5 model has four architectures, named YOLOv5-s [42], YOLOv5-m
[42], YOLOv5-l [42] and YOLOv5-x [42]. The main difference between them is the depth and
number of feature extraction modules and convolution kernels at specific positions, and the
size and model parameters of the four structural models are accordingly increased. This paper
needs to identify many small targets and the intelligent driving system has high requirements
on the real-time and lightweight performance of the recognition model. Hence, the accuracy,
efficiency and scale of the recognition model are comprehensively considered in this paper,
and the improved design is carried out based on the YOLOv5s architecture.

The overall framework is shown in Fig. 2, including the backbone and head. The head is
composed of neck and detector. Features need to be extracted from the detected image and use
the backbone for localization and classification so as to detect the location and class of
landmarks. The backbone network consists of Focus, Ghost Convolution (GhostConv),
GhostBottleneck with three convolutional layers (C3Ghost) and Spatial Pyramid Pooling
(SPP). The first layer of the backbone network is the focus module, as shown in Fig. 3. This
module performs a slicing operation on the 640 × 640 × 3 input image and divides it into 4
parts. The 4 parts complement each other and expand from 3 channels of the input image to 12
channels. Finally, convolution is performed on the generated new image. The Focus module
reduces the cost of convolution. The method of reshaping tensor is used to downsampling and
increase channels which reduces FLOPs and increases speed. The channel expansion algo-
rithm adopted by this module is as follows:
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Algorithm 1: The process of Channel Expansion.

C3Ghost module refers to the structure of CSPNet [45] and combines GhostConv to
perform convolution operation on images. The feature map of the base layer in one stage is
divided into two parts, which realizes feature extraction by cheap means. At the same time, the
probability of repetition is reduced in the process of information integration. Section 3.2 details
the specific structure.

Fig. 2 The architecture of Ghost-YOLO
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The last layer of the backbone network is the SPP module. After the combined three multi-
scale max-pooling layers are used, the receptive field can be greatly improved with almost no
speed loss while extracting features. It also effectively reduces the possible loss of image
information when the images are directly stretched which ensures detection accuracy.

In the head part, the high-level feature information and the bottom-level feature information
are transferred and fused by upsampling to realize a top-down information transfer structure.
The Concat operation is performed on the bottom-level features and the high-level features so
that the features with high resolution of the bottom-level can be easily transferred to the high-
level. Thereby realizing the PANet [24] structure. Effectively utilize the complementary
advantages of multi-scale features, and improve the accuracy of target recognition.

Based on YOLOv5s, the proposed model in this paper firstly replaces the convolutional
layer and Bottleneck with the GhostConv module and the C3Ghost module to extract the
features. Then add a detection layer of small target scale in the detector, which can more
effectively identify small targets. Finally, the feature maps of each scale are input into the
Detect module. In general, this method can validly enhance the recognition effect of small
targets at high resolution. Moreover, it has less parameter quantity and calculation quantity,
which achieves model compression under the premise of ensuring accurate detection. It is
beneficial to deal with complex TSD scenes.

3.2 C3Ghost

CNNs have shown excellent performance in various computer vision tasks. The traditional
CNNs usually require a large number of parameters and FLOPS to achieve satisfactory
accuracy. Considering the extensive redundancy in the intermediate feature maps computed
by mainstream CNNs, GhostNet [8] proposed an innovative convolution module, named
Ghost module. It generates more feature maps to obtain the same effect as the original
convolution through cheap linear operations. This new basic unit successfully achieves more
feature maps with fewer parameters and computations, as shown in Fig. 4(a). Given input data
X ∈ Rc × h × w h and w are the height and width of the input data, while c is the number of
channels of the input data. Any convolution operation used to generate n feature maps can be
expressed as

Y ¼ X � ωþ b ð1Þ

where Y∈ Rn�h
0 �w

0
represents that the output is n feature map with height h′ and width w′, while

ω ∈ Rc × k × k × n represents that the convolution operation is performed by c × n convolution
kernels of size k × k, and b is the bias term. It is not difficult to find that the FLOPS required in

Fig. 3 Focus module
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this convolution can be calculated as n ∙ h′ ∙ w′ ∙ c ∙ k ∙ k This value usually reaches
hundreds of thousands, because the number of convolution kernels n and the number of
channelscare usually very large.

According to Formula 1, the dimensions of the input and output maps explicitly determine
the number of parameters to be optimized (in w and b). Ghost module states that the feature
maps generated by mainstream CNN operations contain a lot of redundancy, some of which
are similar to each other. These redundant feature maps can be individually generated by using
cheaper operations. As shown in Fig. 4(b), the feature extraction process of the Ghost module

to generate m feature maps Y
0∈Rn�h

0 �w
0
can be expressed as:

Y
0 ¼ X � ω0 ð2Þ

where ω′ ∈ Rc × k × k × m represent the filters, m ≤ n and no bias term is required. Other
hyperparameters such as convolution kernel size, stride and padding are consistent with
ordinary convolution (Formula 1) to ensure the same size as the output feature map. A series
of linear operations are adopted to generate repeating features according to the following
formula:

Y ij ¼ Φi; j Y
0
i

� �
;∀i ¼ 1;…m; j ¼ 1;…s ð3Þ

where Y
0
i represents the i-th feature map in Y′, Φi, j is the j-th linear operation for each Y

0
i to

generate the j-th Ghost feature map Yij. The desired feature map can be obtained by directly

Standard convolution

Ghost module

Fig. 4 Standard convolution and Ghost module
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splicing the generated feature map with the feature map generated by the original convolution.
After using Ghost module, set the linear convolution kernel size to d × d, comparing the
calculation amount of Ghost module and standard convolution can get the theoretical im-
provement degree.

Cs ¼ c � k � k � n � h0 � w0

n
s
� h0 � w0 � c � k � k þ s−1ð Þ � h0 � w0 � d � d

¼ c � k � k
c � k � k � 1

s
þ d � d � s−1

s

≈
s � c

sþ c−1
≈s ð4Þ

where d × d has a similar magnitude as that of k × k and s ≪ c, Thence, it can be
quantitatively calculated that the calculation amount of the Ghost module is 1/s of standard
convolution. The calculation of the parameters is similar, and it can also be simplified to s in
the end. Theoretically, the superiority of the Ghost module can be quantitatively proved. So
based on the Ghost module, the GhostBottleneck is designed. The specific structure is shown
in Fig. 5(b).

Algorithm 2: Feature Extraction Based on C3Ghost.

Taking the advantages of Ghost module and GhostBottleneck, we introduced a lightweight
feature extraction structure named C3Ghost. As shown in Fig. 5(c), it consists of three 1 × 1
convolution layers and n linearly stacked GhostBottleneck. c1 and c2 in Fig. 6 refer to the
number of input and output feature map channels respectively, h and w have the same meaning
as before. The first 1 × 1normal convolution is used to reduce the number of channels to 1/2
the number of output channels. Then features are extracted by linear stacked Ghostbottleneck
and residual branches respectively. In this way, extracts the depth semantic information of the
input image through two branches and the two sets of features are concatenated by contact
module. Contact is a feature fusion operation, which splices two or more feature maps based
on the number of channels and better utilizes the semantic information of feature maps of
different scales to achieve better performance by increasing channels. Finally, the pieced
signature information will pass through the BatchNorm module and use LeakyRelu as the
activation function. The feature extraction Algorithm of C3Ghost is shown in Algorithm 2. In
this process, the feature information of the original image is effectively preserved and the loss
of features in the deep network is avoided. The C3Ghost module is applied to replace all
BottleneckCSP modules in YOLOv5 to reduce the amount of computation and compress the
model size. In theory, this method is completely feasible.
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Algorithm 3: Training of Ghost-YOLO.

(a) Ghost module (b) GhostBottleneck

(c) C3Ghost module 

Fig. 5 The structure of Ghost module
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3.3 Improvement of fusion feature layer

The fusion of features of different scales is a significant way to improve the recognition
performance of the target detection network [21]. The purpose of feature fusion is to combine
the features extracted from images into a feature with more discriminate ability. The current
detection and segmentation networks mainly use convolutional networks to extract target
features layer by layer. The low-level feature map has a higher resolution and contains more
location and detail information. However, due to fewer convolutional layers, the lower-level
feature map has less semantic information and contains more noise. High-level feature map has
stronger semantic information, but due to the increased receptive field, the resolution of feature
map is lower and the representation ability of geometric information is weakened. How to
efficiently integrate the two is the key to improving performance.

Considering that there are many small targets in TSD, this study adds a multi-scale feature
fusion detection module [29] based on the structure based on the model design in Section 3.3.
As shown in Fig. 7, it consists of a top-down structure and a bottom-up structure. Firstly,
feature extraction is performed on the input image, we can get [C1, C2, C3, C4, C5] five
groups of feature maps with different sizes. Through the up-sampling operation, the network
obtains four groups of feature maps [P5, P4, P3, P2] from bottom-up paths, and obtains four
groups of feature maps [N2, N3, N4, N5] from top-down paths. Unit addition is adopted in the
fusion process, as shown in the dotted box. In addition, two shortcuts spanning multiple layers
are included in the module to reduce information loss across layers. Finally, we can get feature
maps of four scales.

Fig. 6 The structure of multi-scale feature fusion module
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Combined with the multi-scale feature fusion module to improve the network structure, the
fusion of layers 4 and 15, 6 and 11, 10 and 21 in the original YOLOv5s architecture are
changed to the fusion of layers 4 and 22, 6 and 18, 8 and 14, 16 and 28 in the network
architecture designed in this paper. In order to improve the accuracy and make up for the loss
of information caused by the low resolution of high-level features, the output features of the
20th and 25th layers of the improved network structure are fused.

3.4 Training

Algorithm 3 describes the construction of the dataset and the complete training process. The
design of hyperparameters will be given in Section 4.

4 Experiment

4.1 Data description

In this paper, we choose the TT100k [58] dataset as the experimental object. The TT100k
dataset contains 9170 images, of which 6105 images are used as the training set and 4071
images are used as the test set. The size of the picture is 2048 × 2048 and includes the
situation in different light and weather conditions. The size of the traffic sign is between 8 × 8
and 400 × 400, which is about 0.001%–4% of the whole picture. We ignore classes with less
than 100 tt100k instances to ensure there is enough data for each type of traffic sign, leaving 45
classes for detection. Through the analysis of the data set, the visualization results are obtained,
as shown in Fig. 8. The data set format is PASCAL VOC format, but YOLOv5 needs a txt tag

Fig. 7 Typical traffic sign categories in TT100K

(a) Sign category distribution
(b) Sign center location distribution

(c) Sign size distribution

Fig. 8 Dataset analysis
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file in YOLO format, and Ghost-YOLO also inherits this. The YOLO format is specifically
(class_id, x, y, w, h), and they are all normalized results, so the original data set needs to be
converted accordingly. The format conversion operation rules are as follows:

x ¼ xcenter=width ð5Þ

x ¼ ycenter=height ð6Þ

w ¼ xmax−xminð Þ=width ð7Þ

h ¼ ymax−yminð Þ=height ð8Þ

Among them, xmax ymax xmin and ymin respectively refer to the coordinates of the upper left
corner and the lower right corner of the position of the marked object relative to the upper left
corner of the picture in the VOC marking format. These coordinates are given in the dataset.

4.2 Metrics and experiment setup

In the object detection task, total samples can be divided into three types. TP (true positive)
denotes the targets which are correctly detected, FN (false negative) indicates the targets that
have not been detected and FP (false positive) is used to denote the incorrect detections of
targets. Three criteria are used to evaluate the performance in this study, including precision,
recall and mAPs. Precision (P) [50] was used to evaluate the percentages of correct predictions
in the results. Recall (R) [50] was used to evaluate how many positive samples were correctly
detected. These two criteria are defined as follows:

precision ¼ TP
TP þ FP

ð9Þ

recall ¼ TP
TP þ FN

ð10Þ

Mean average precision (mAP) [50] is a commonly used metric to evaluate object detectors, as
shown in formula 11. In both metrics, to be considered as a true positive, the intersection-over-
union (IoU) overlap between the detection and the ground truth needs to exceed the defined
minimal value. IoU was used to represent the overlap rate of predicted and real borders, which
is the ratio of their intersection to union. We used two types of mAPs here. mAP_0.5 refers to
the average AP of the classes when the IoU is set to 0.5, and mAP_0.5:0.95 refers to the
average mAP at different IoU thresholds. The IoU value ranges from 0.5 to 0.95 with a step
size of 0.05.

mAP ¼ 1

N
∑
N

i¼1
APi ð11Þ
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The experiment was run on a GPU server. Table 1 shows the detail of the experiment
environment. We mainly use Python 3.8, Pytorch, OpenCV and other required libraries to
implement our model.

The proposed Ghost-Yolo was using a backpropagation learning algorithm with CIoU
(Complete-IoU) and BCE (Binary Cross Entropy) as the loss function and the stochastic
gradient descent (SGD) algorithm as the optimizer. The model has about 30 hyperparameters
for training settings, including training parameters and image processing parameters. The
initialization values of key hyperparameters are given in Table 2. The training parameters
include various coefficients and momentum and the image processing parameters include the
coefficient of data enhancement. Learning rate is an important hyperparameter that cannot be
ignored in model training, setting a proper learning rate can help model training. The learning
rate of all experiments in this paper uses Warmup [11] to avoid model oscillation caused by a
high initial learning rate during model training, cosine warmup is used to update the learning
rate. The learning rate of the bias layer is decreased from 0.1 to the preset learning rate of 0.01,
and the learning rate of other parameters is increased from 0 to 0.01, then attenuated according
to the cos function value. All experiments are trained for 700 epochs.

4.3 Result analysis

To demonstrate the advantages of the proposed method in the task of TSD, we compare the
proposed method with RentinaNet [20], Faster R-CNN [34], R-FCN [5], SSD [23], YOLOv3
[31], MSA_YOLOv3 [54], YOLOv4 [4], the original YOLOv5-s and our Ghost-YOLO.
Among these models, Faster R-CNN represents a two-stage detector, while YOLOv3 is a
representative one-stage detector. As can be seen from Table 3, RentinaNet achieves poor
results in the two-stage detector, with an accuracy rate of only 69.83%. YOLOv3 is an efficient
one-stage detector with results comparable to the faster Faster R-CNN. These demonstrate that
simply applying a generic object detector to TSD does not achieve significant results. Ghost-
YOLO proposed in this paper achieves competitive performance on the TT100k dataset. Using
the Ghost-YOLOmodel, the accuracy rate is 93.48%, the recall rate is 89.65%, the mAP_0.5 is

Table 1 Experimental environment

OS Windows 10

CPU Intel Core i5-10400F @2.90GHz
GPU GTX 2070 SUPER
Memory 8 GB
CUDA version 11.1.0
Pytorch version 1.8.0

Table 2 Settings of parameters

Parameter Value

Momentum 0.937
Weight_decay 0.0005
warmup_epochs 3.0
warmup_momentum 0.8
Learning rate 0.01
IoU training threshold 0.20
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92.71%, and the mAP_0.5:0.95 is 73.31%. Compared with the YOLOv5-s model, the
accuracy rate increased by 5.2%, the recall rate increased by 4.13%, mAP_0.5 increased by
3.26%, and mAP_0.5:0.95 increased by 3.04%. For the two-stage detector, mAP_0.5 is 6.8%
higher than Faster R-CNN and 5.52% higher than R-FCN. Compared with other legacy
models, the Ghost-YOLO model is competitive in all detection metrics.

Moreover, some state-of-the-art methods were compared. As shown in Table 4, our
method achieves similar or even better results than these latest methods. Finally, we
show the detection results (mAP_0.5) of different algorithms in each category. We can
see that methods such as Faster-RCNN perform better for large objects but less well for
small objects. Our method achieves better performance in most categories, especially in
small flag categories, such as ‘wo’, ‘io’, etc., Ghost-YOLO has a significant improve-
ment, which also shows the improvement of multi-scale feature fusion for small target
detection (Table 5).

In order to further confirm the efficiency of the modules and networks proposed in
this article, as shown in Table 6, we present the mAP(0.5), speed and some other
evaluation indicators of the improvement. We think that inference speeds faster than
30FPS can be considered real-time detection. It can be seen that the YOLO series has
obvious advantages in speed, and the inference speed of our model can reach FPS 56.
Yolov5-s can reach FPS 48.3, slightly lower than our model. Yolov3-tiny can reach FPS
60.4, which is the fastest. Ghost-YOLO also has advantages in network size, the
calculation amount and parameter amount are compressed to 50.29% and 91.4% of the
original, and the derivation process is improved by 6.25%. YOLOv3-tiny is a represen-
tative lightweight model, compared with it, the amount of computation and parameters
are compressed to 65.64% and 75.8%. Although the inference speed is slightly slower,
however, our model maintains high accuracy while performing real-time detection,

Table 3 The recognition results of different methods on TT100K dataset

Method Precision(%) Recall(%) mAP_0.5(%) mAP_0.5:0.95(%) FPS(f ∙s−1)

RentinaNet 69.83 75.71 75.02 71.5 5.4
Faster R-CNN 74.12 87.95 85.84 77.95 3.5
R-FCN 76.69 89.16 87.19 85.28 2.8
SSD 70.41 76.05 75.11 71.6 7.4
YOLOv3 77.60 68.50 73.47 51.54 11.1
MSA_YOLOv3 – – 86.30 – 23.8
YOLOv4 85.84 81.91 85.06 66.09 65.8
YOLOv5-s 88.30 85.52 89.45 70.27 48.3
Ghost-YOLO 93.48 89.65 92.71 73.31 56

Table 4 Comparison with the state-of-the-art method on the TT100K dataset

Method Year mAP(%) Precision(%) Recall(%) FPS(f ∙s−1)

Zhu et al. 2016 81.56 – – –
Yang et al. [49] 2018 80.31 – – –
Wang et al. [43] 2020 – 93.80 92.25 –
Qing et al. [41] 2021 93.0 – – 2.3
Liu et al. [28] 2021 93.0 – – 20.6
Ours – 92.71 93.48 89.65 56
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which proves that our method achieves a balance between accuracy and speed. Finally,
we compare the improved method with the training process of YOLOv5-s and YOLOv3
which are representative models of the YOLO series and the comparable lightweight
model YOLOv3-tiny. Figure 9 sketches these curves. Due to the learning of the model
on the dataset, these values all increase rapidly. The changes stabilized at 100 epochs but
were still gradually increasing, and all fluctuations were within acceptable limits. When
the training ends at 700 epochs, the metrics of each model reach the maximum value.
Ghost-YOLO also achieved the best performance.

In addition to the intuitive loss performance, this paper also draws the classification
confusion matrix, as shown in Fig. 10. The confusion matrix is used to summarize the
classification results and represent the accuracy evaluation matrix, the darker the color, the
higher the recognition rate of the targets.

4.4 Ablation studies

In this section, we verify the impact of each component in Ghost-YOLO on the final
performance, we conduct an ablation study on the TT100K dataset. The baseline is the
original YOLOv5-s. As shown in Table 7, we compare the results by mAP(0.5) and FPS.
Compared to the baseline, the model using only the C3Ghost module has a significant
improvement in speed and a small loss of accuracy but is within acceptable limits. This
is because Ghost Conv uses linear operation to replace the complex convolution oper-
ation, and the feature extraction effect has a certain fluctuation. Networks using the
improved feature fusion module show significant improvements in mAP, but are slightly
slower. This can be explained as follows: multi-scale feature fusion significantly im-
proved the accuracy of small target recognition, but more complex feature fusion also
reduced the inference speed.

Table 6 Performance comparison of each model

Method mAP(0.5) Params Layers GFLOPs Speed (s) FPS(f ∙s−1)

Faster R-CNN 85.84 – – – 0.076 3.5
YOLOv3 73.47 61,760,674 333 155.7 0.034 11.1
YOLOv3-tiny 71.24 8,771,516 59 13.1 0.012 60.4
MSA_YOLOv3 86.3 – – – 0.042 23.8
YOLOv5-s 89.45 7,276,605 283 17.1 0.017 48.3
Ghost-YOLO 92.71 6,655,232 640 8.6 0.014 56

Precision Recall mAP_0.5

Fig. 9 Performance comparisons of Ghost-YOLO, YOLOv5, YOLOv3 and YOLOv3-tiny
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4.5 Visualization result

To directly verify the detection capability of the model, we visualize the results.
Figure 11(a) gives the detection result of the YOLOv5-s and Ghost-YOLO. The original
image is in the first column, the second and third columns respectively represent the
visual detection results of the above two models. We can zoo min on the picture to see
the more detailed detection results. It can be seen that both YOLOv5 and Ghost-
YOLOv5 have good recall since they both detected the target. Ghost-YOLOv5 has a
certain degree of accuracy improvement in various detection targets and is more accurate
than YOLOv5 in recognizing farther and smaller traffic signs, which is useful for TSD
tasks and driverless safety. Moreover, Fig. 11 also shows some detection results for
traffic signs in complex environments such as occlusion and shadow and the results of
small targets. It shows that our model excellently detects and recognizes traffic signs.

Fig. 10 Confusion matrix of Ghost-YOLO on test set

Table 7 Ablation studies of the proposed Ghost-YOLO, FF stands for the improved feature fusion structure

Model mAP(%) FPS(f ∙s−1)

YOLOv5-s 89.45 48.3
YOLOv5-s+C3Ghost 86.87 88.0
YOLOv5-s+FF 93.2 47.3
YOLOv5-s+C3Ghost+FF(ours) 93.1 56.0
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5 Conclusions

In this paper, based on the framework of YOLOv5, aiming at the difficulty of the traffic sign
detection and the shortcomings of original YOLOv5, the lightweight network Ghost-YOLO is
proposed. We design a new feature extraction module to reduce the account of redundant
parameters and computation and speed up inference. At the same time, the multi-scale feature
fusion structure is used to combine the high-level semantic information in the deep feature map
with the shallow feature map to improve the feature representation of small targets and
improve the accuracy of TSD. Experimental results on the TT100K dataset showed that the
method achieves the balance of accuracy and lightness and has better robustness. In future

(a)

(b)

(c)

Fig. 11 Visualization results on the TT100K dataset: (a) detection results for YOLOv5-s and Ghost-YOLO; (b)
detection results of the small target; (c) detection results in complex environments. Shadows, occlusions, cloudy,
etc.
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work, we plan to explore a more lightweight model and further address the efficiency of the
model on the mobile terminal. At the same time, considering that traffic signs are usually
stored in image format, image classification based on massive data has become one of the
important topics [17], and the work in this paper can also be used as one of the future work
ideas for image classification.
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